EP3693687B1 - Refroidissement d'adsorbant - Google Patents

Refroidissement d'adsorbant Download PDF

Info

Publication number
EP3693687B1
EP3693687B1 EP20151979.0A EP20151979A EP3693687B1 EP 3693687 B1 EP3693687 B1 EP 3693687B1 EP 20151979 A EP20151979 A EP 20151979A EP 3693687 B1 EP3693687 B1 EP 3693687B1
Authority
EP
European Patent Office
Prior art keywords
working fluid
gas
sorption channel
cooling
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20151979.0A
Other languages
German (de)
English (en)
Other versions
EP3693687A3 (fr
EP3693687C0 (fr
EP3693687A2 (fr
Inventor
Tobias Lingk
Christof Krampe-Zadler
Hans-Josef Spahn
Thomas Badenhop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102019118977.2A external-priority patent/DE102019118977A1/de
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP3693687A2 publication Critical patent/EP3693687A2/fr
Publication of EP3693687A3 publication Critical patent/EP3693687A3/fr
Application granted granted Critical
Publication of EP3693687C0 publication Critical patent/EP3693687C0/fr
Publication of EP3693687B1 publication Critical patent/EP3693687B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks

Definitions

  • the invention relates to irregular conditions in refrigeration circuits in which a working fluid acting as a refrigerant is conducted in a thermodynamic cycle, such as the Clausius-Rankine cycle, as well as their adsorptive safety device.
  • thermodynamic cycle such as the Clausius-Rankine cycle
  • adsorptive safety device primarily heat pumps, air conditioning systems and cooling devices that are commonly used in residential buildings.
  • Residential buildings are understood to mean private houses, rental house complexes, hospitals, hotels, restaurants and combined residential and commercial buildings in which people live and work permanently, in contrast to mobile devices such as vehicle air conditioning systems or transport boxes, or even industrial facilities or medical devices. What these cycles have in common is that they use energy to generate useful heat or cold and form heat displacement systems.
  • thermodynamic cycle processes used have been known for a long time, as have the safety problems that can arise when using suitable working fluids. Aside from water, the most well-known working fluids at the time were flammable and toxic. In the last century, they led to the development of safety refrigerants made from fluorinated hydrocarbons. However, it turned out that these safety refrigerants lead to global warming and that their safety-related harmlessness led to design carelessness. Up to 70% of sales were attributable to the need to refill leaky systems and their leakage losses, which were accepted as long as this was perceived to be economically justifiable in individual cases and promoted the need for replacement procurement.
  • Today's refrigeration circuits are equipped with these safety refrigerants of safety class A1, i.e. they are non-toxic and non-flammable.
  • the most common refrigerants in heat pump applications are the refrigerants R134a, R407C and R410A, all of which are fluorocarbon compounds.
  • the use of these refrigerants was not subject to any restrictions until January 2015; the introduction of the F-Gase Regulation (EU) 517/2014 on January 1, 2015 will restrict the use of fluorocarbon refrigerants in the future through quantity limits in the European Union in such a way that the prices of existing refrigerants will increase significantly.
  • the aim of the F-Gases Regulation is the medium-term banishment of refrigerants that promote greenhouse gases and their replacement with natural refrigerants or chemical refrigerants with significantly reduced global warming potential.
  • the DE 10 2011 116 863 A1 describes a method for securing a device for a thermodynamic cycle, which is operated with a process fluid that contains or consists of at least one environmentally dangerous, toxic and/or flammable substance.
  • a process fluid that contains or consists of at least one environmentally dangerous, toxic and/or flammable substance.
  • an adsorbent with the process fluid in particular ammonia, propane or Propene, brought into contact and the substance is selectively bound by the adsorbent.
  • the adsorbent is regenerated after use.
  • Zeolite also in combination with imidazole or phosphates, and CuBTC are suggested as adsorbents; the adsorbent can be in the form of a bed, a shaped body, a paint, a spray film or a coating.
  • the support structure of the shaped body can consist of a microstructure, lamella structure, tube bundle, tube register and sheet metal and must be mechanically stable and have a large surface area. Circulation of the potentially contaminated air usually occurs continuously, but can also be initiated by a sensor that switches on the ventilation after a threshold value is reached or when an accident is detected.
  • Adsorption can be carried out inside or outside a closed space.
  • the DE 195 25 064 C1 describes a refrigeration machine with a gas-tight housing which accommodates all refrigerant-carrying components of the machine, a space connecting the interior of the gas-tight housing with an outlet is provided, and the space is filled with a substance that absorbs the refrigerant.
  • the amount of sorbing substance is dimensioned so that the entire amount of any refrigerant that may escape can be absorbed and kept away from the environment.
  • the space filled with the sorbent substance is open to the surroundings. For refrigerants that are heavier than air, the space is open at the bottom and for those that are lighter, it is open at the top, so a delivery fan is not necessary.
  • the sorbent is introduced into the housing and completely encloses the refrigeration machine or the refrigerant-carrying devices. On its way out, baffles are provided to prevent short-circuit flows and force escaping gas through the sorbent.
  • a double-walled embodiment, in which the sorbent is arranged in the double jacket, is also possible.
  • a measuring device for refrigerant can be provided at the outlet of the space filled with the sorbent substance to the environment.
  • the EP 3 106 780 A1 describes a heat pump system that is housed in an airtight housing lined with a binder.
  • An adsorption unit with forced ventilation can be arranged within this housing, which cleans the air in the housing in recirculation mode.
  • This recirculating air operation can take place continuously or only in the event of a fault or at regular intervals.
  • a pilot burner, a pilot flame, a catalytic burner or a heating wire can also be arranged downstream of this sorption stage, which burns any remaining combustible impurities.
  • a supply of fresh air in conjunction with the removal of cleaned exhaust air is also conceivable.
  • the JP 2000 105003 A describes a refrigeration unit that is operated with a flammable working fluid, whereby the unit can consist of two parts, one of which is installed inside a building and the other outside in the open air.
  • the inner walls of the inner housing are lined with adsorbent material and the lines of the outside part are coated with a coating of adsorbent material.
  • Activated carbon among others, is suggested as an adsorbent.
  • DE 41 14 529 A1 shows a device according to the preamble of claim 1.
  • activated carbon as an adsorbent
  • activated carbon ages in air over time because slow oxidation processes take place. Due to the requirements of a safety concept for the availability over the service life of devices in which counterclockwise cycle processes are operated, such as heat pumps, degradation of the adsorbent must be avoided at all costs, especially if it could happen unnoticed.
  • the sorption bed is located in a channel with an inflow side and an outflow side within the housing, in which the counterclockwise circular process is also carried out.
  • the aggregates of the cycle process carried out can also be arranged in a separate capsule housing, which is located within the common housing with the sorption channel, and are also included in the invention, as well as those in which the sorption process takes place outside the housing.
  • the contamination of such sorption beds that are open inwards and outwards in relation to the housing is caused by diffusion and convection of contaminants, in the case of adsorption by the contaminating adsorptive.
  • the contaminants can cause reversible or irreversible degradation of the sorption capacity of the sorption bed compared to the emerging working fluid.
  • the diffusion flow is driven solely by the concentration gradient, while convective inputs are caused by weather-induced air pressure or temperature gradients between the housing and the environment. The resulting pressure differences lead to equalizing flows into the housing and thus also through the sorption bed and to the transport of contaminants into the sorption bed.
  • Contaminants from the housing in which the cycle is carried out include oxygen, mono- and polyhydric alcohols, moisture, drawing greases, cutting oils, foaming agents and RCM oils.
  • aging or degradation is determined by the temperature and the total amount of gas flowing through.
  • the sorption channel is equipped with a gas outlet and is connected to it. Furthermore, according to the invention it is provided that a switchable induced draft fan is connected to the gas outlet of the sorption channel.
  • the adsorber, the sorption channel as well as the gas inlet and gas outlet are arranged within the housing.
  • the gas inlet and gas outlet of the sorption channel are closed with the activated carbon adsorber.
  • the activated carbon is kept at a very low temperature by the cooling medium, which is well below the interior temperature of the housing. This reduction in temperature has two effects: on the one hand, aging and degradation slow down, and on the other hand, the absorption capacity of the activated carbon increases. To do this, the adsorber must be kept permanently cool, which is why good thermal insulation is required.
  • the device has a leak detection system which automatically opens the closures at the gas inlet and, if present, at the gas outlet and automatically switches on the induced draft fan, if present, when a leak is detected.
  • the leak detection system is usually a gas detector, although a propane gas detector can be used, but other detection systems are also suitable. In the event of a power failure, the induced draft fan should always have a charged battery.
  • cooling medium It is certainly possible to use an external cooling medium if it is available cheaply, but Two options can also be used to use cooling media that are used as working fluids in the cycle. Alternatively, it can be provided that either the cooling medium is expanded working fluid, which flows in the flow direction after the expansion device and in front of the heat exchanger acting as an evaporator, or that the cooling medium is expanded working fluid, which flows in the flow direction after the heat exchanger acting as an evaporator to the compressor.
  • the cooling lines must be laid in the cooling channel in such a way that the adsorbent material remains accessible so that it can be removed and replaced if necessary. At the same time, enough heat transfer surface should be installed. This can be done by laying a cooling line in the middle of the sorption channel and equipping it with cooling fins in the longitudinal direction. The distance between the cooling fins should be larger than the activated carbon particles if an activated carbon bed is used as an adsorbent.
  • latent heat storage can be used to slow down such standstill-related temperature compensation. This can be done either as an additional layer on the thermal insulation or in the form of pellets that are mixed into the activated carbon bed. Salts that carry out phase changes in the relevant temperature range can serve as materials, and they must be provided with protective covers. Such materials are described in the prior art.
  • the activated carbon adsorber Since the activated carbon adsorber is closed during normal operation, it can be preloaded with a medium that has a lower adsorptive binding than the flammable working fluid that has to be separated in the event of a leak. During the adsorption of the working fluid, the heat of adsorption causes the activated carbon adsorber to heat up, which is undesirable. In contrast, the desorption of the displaced medium causes cooling.
  • the medium to be displaced can be adsorbed beforehand under high partial pressure, whereby the typical hysteresis curves mean that complete desorption does not initially occur at reduced partial pressure.
  • the housing can be either closed or designed with openings. If the gas is to remain within the housing, either a forced circulation system must be provided, which is operated by a conveyor fan, or the adsorption of the escaping working fluid takes place solely through diffusion. If the gas that has been depleted or completely freed of working fluid can be allowed to escape, either a conveyor fan can suck the gas out of the sorption channel and transport it to the outside via an outlet opening, whereby at the same time an air flow of the same size must be supplied from the outside through an opening, or the The excess pressure that may arise in the housing in the event of a leak forces the gas out of the outlet opening through the sorption channel.
  • Fig. 1 shows a heat pump with a cooled adsorber and forced circulation based on a schematic sketch of a refrigeration circuit 1 with a compressor 2, a condenser 3, a pressure reduction 4 and an evaporator 5 in a housing 6.
  • the heat pump has a heat source connection 7, a heat source flow 8 , a heat sink flow 9 and a heat sink connection 10.
  • the sorption channel 11 with the activated carbon adsorber 12 is arranged in the housing.
  • the sorption channel 11 is equipped with the cooling line 17, and also optionally with the Peltier elements 19 and latent heat storage pellets.
  • the cooling line 17 is integrated into the cycle; the cooling medium is also the working fluid. It is tapped behind the expansion device 4, which is usually a regulated expansion valve, and fed back through the cooling line 17 into the refrigeration circuit 1, where it reaches the evaporator 5.
  • the sorption channel is thermally insulated on all sides, with great importance being placed on the thermal insulation 15.
  • the refrigeration circuit 1 is operated with the flammable working fluid propane, which is also known as R290.
  • propane which is also known as R290.
  • Propane is heavier than air, so if there is a leak in the refrigeration circuit 1, it tends to sink down in the housing 6, although it mixes well in the case of small leaks. Such a leak is detected by the gas detector 18.
  • an opening with a lockable gas inlet 13 is therefore provided, through which an air-propane mixture from the interior reaches the sorption channel 11 with the activated carbon adsorber 12 when the gas inlet 13 and gas outlet 14 are opened at the instigation of the gas detector 18.
  • the suction fan 16 which is also automatically activated by the gas detector 18, draws a defined amount of gas through the activated carbon adsorber, with purified air, optionally enriched with the inert gases nitrogen and carbon dioxide, being introduced into it Housing can be returned. If possible, the refrigeration circuit 1 continues to operate for a while in order to ensure the cooling performance for the activated carbon adsorber 12. As soon as the activated carbon adsorber is loaded, the gas inlet 13 and gas outlet 14 are closed again and the induced draft fan 16 as well as the rest of the heat pump are switched off and the service is called.
  • Fig. 2 shows an exemplary embodiment in which forced circulation is dispensed with.
  • the flammable gas components diffuse through the gas inlets 13, which in this example are located on both the top and bottom of the sorption channel 11, into the activated carbon adsorber 12.
  • Fig. 3 shows an exemplary embodiment in which an induced draft fan 16 discharges the loaded gas, as in Fig. 1 shown, the gas is drawn through the sorption channel 11 as soon as a leak is detected. Deviating from this, however, the gas is not circulated within the housing 6, but is directed outwards via the outlet opening 21. A corresponding amount of air is supplied from the outside through the inlet opening 20.
  • Fig. 4 shows an exemplary embodiment in which an induced draft fan is dispensed with.
  • the resulting excess pressure causes gas to escape to the outside through the outlet opening 21. Since the working fluid that has escaped in the housing 6 is subsequently completely separated in the activated carbon adsorber 12, the resulting negative pressure in the housing 6 must be compensated for by opening the inlet opening 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compressor (AREA)
  • Separation Of Gases By Adsorption (AREA)

Claims (17)

  1. Dispositif destiné à la mise en oeuvre sûre d'un processus à cycle thermodynamique (1) tournant à gauche au moyen d'un fluide de travail inflammable qui est guidé dans un circuit de fluide de travail fermé et hermétiquement étanche, présentant
    - au moins un compresseur (2) pour un fluide de travail,
    - au moins un équipement de détente (4) pour un fluide de travail,
    - au moins deux échangeurs de chaleur (3, 5) pour un fluide de travail avec respectivement au moins deux raccords (7, 8, 9, 10) pour des fluides d'échangeur de chaleur,
    - un boîtier (6) qui comprend au moins le compresseur (2) et l'équipement de détente (4) et peut comprendre d'autres équipements,
    - au moins un canal de sorption (11) avec un adsorbant (12) contenant du charbon actif, qui peut être traversé par du gaz
    - et le canal de sorption (11) est connecté à l'adsorbeur (12) ainsi qu'à son entrée de gaz (13), caractérisé en ce que
    - le canal de sorption (11) est équipé d'une sortie de gaz (14) et est connecté à celle-ci,
    - un ventilateur de tirage par aspiration (16) commutable est raccordé à la sortie de gaz (14) du canal de sorption (11)
    - l'adsorbeur (12), le canal de sorption (11) ainsi que l'entrée de gaz (13) et la sortie de gaz (14) sont disposés à l'intérieur du boîtier (6),
    - le canal de sorption (11) est limité par rapport à son extérieur par une isolation thermique (15),
    - le canal de sorption (11) peut être fermé à l'entrée de gaz (13), et
    - au moins une conduite de refroidissement (17) est posée dans le canal de sorption (11), conduite qui est raccordée à un agent réfrigérant.
  2. Dispositif selon la revendication 1, caractérisé en ce qu'un système de détection de fuite (18), qui ouvre la fermeture à l'entrée de gaz (13), est prévu dans le boîtier.
  3. Dispositif selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que, lors de l'ouverture de la fermeture à l'entrée de gaz (13), la fermeture à la sortie de gaz (14) s'ouvre également et le ventilateur de tirage par aspiration (16) est mis en marche lorsqu'une fuite est détectée.
  4. Dispositif selon la revendication 2, caractérisé en ce que le système de détection de fuite (18) est un détecteur de gaz inflammable, en particulier de propane.
  5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'agent réfrigérant est un fluide de travail détendu qui s'écoule en aval du dispositif de détente (4) et en amont de l'échangeur de chaleur (5) agissant en tant qu'évaporateur.
  6. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'agent réfrigérant est un fluide de travail détendu qui s'écoule vers le compresseur (2) dans le sens d'écoulement en aval de l'échangeur de chaleur (5) agissant en tant qu'évaporateur.
  7. Dispositif selon l'une quelconque des revendications 5 ou 6, caractérisé en ce qu'un flux partiel du fluide de travail est utilisé en tant qu'agent réfrigérant.
  8. Dispositif selon l'une quelconque des revendications 5 ou 6, caractérisé en ce que la totalité du fluide de travail est utilisée en tant qu'agent réfrigérant.
  9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la au moins une conduite de refroidissement (17) présente des ailettes de refroidissement dans le sens longitudinal.
  10. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que des éléments Peltier (19) sont en outre utilisés pour le refroidissement ou le maintien au frais.
  11. Dispositif selon l'une quelconque des revendications 1 à 10, caractérisé en ce que des accumulateurs de chaleur latente sont en outre prévus pour le maintien au frais dans le canal de sorption.
  12. Dispositif selon l'une quelconque des revendications 1 à 11, caractérisé en ce que l'adsorbant est préchargé avec un adsorbat qui est déplacé par le corps absorbé et refroidit ainsi l'adsorbant.
  13. Dispositif selon la revendication 12, caractérisé en ce que l'adsorbat avec lequel l'adsorbant est préchargé est de l'azote ou du dioxyde de carbone.
  14. Dispositif selon la revendication 12, caractérisé en ce que l'adsorbant, qui est préchargé avec l'adsorbat, est du charbon actif.
  15. Dispositif selon la revendication 12, caractérisé en ce que l'adsorbant, qui déplace l'adsorbat, est du réfrigérant R290.
  16. Dispositif selon l'une quelconque des revendications 1 à 15, caractérisé en ce que le boîtier est connecté à une ouverture d'entrée (20) et à une ouverture de sortie (21).
  17. Dispositif selon la revendication 16, caractérisé en ce que l'ouverture de sortie (21) est connectée à un ventilateur de transport (16).
EP20151979.0A 2019-02-06 2020-01-15 Refroidissement d'adsorbant Active EP3693687B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019102925 2019-02-06
DE102019118977.2A DE102019118977A1 (de) 2019-02-06 2019-07-12 Adsorberkühlung

Publications (4)

Publication Number Publication Date
EP3693687A2 EP3693687A2 (fr) 2020-08-12
EP3693687A3 EP3693687A3 (fr) 2020-10-21
EP3693687C0 EP3693687C0 (fr) 2024-03-06
EP3693687B1 true EP3693687B1 (fr) 2024-03-06

Family

ID=69172703

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20151979.0A Active EP3693687B1 (fr) 2019-02-06 2020-01-15 Refroidissement d'adsorbant

Country Status (1)

Country Link
EP (1) EP3693687B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
DE102021111808A1 (de) * 2021-05-06 2022-11-10 Vaillant Gmbh Adsorber-Regeneration mit VOC-Abreicherung
DE102022100269A1 (de) 2022-01-07 2023-07-13 Vaillant Gmbh Katalytische Abluftbehandlung für eine Wärmepumpe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5165247A (en) * 1991-02-11 1992-11-24 Rocky Research Refrigerant recycling system
DE4114529A1 (de) * 1991-05-03 1993-02-11 Aero Tech Klima Kaelte Sicherheitseinrichtung fuer eine kaeltetechnische anlage
DE19525064C1 (de) * 1995-07-10 1996-08-01 Joachim Dr Ing Paul Kältemaschine
CN1153032C (zh) * 1998-06-11 2004-06-09 三洋电机株式会社 致冷剂再生装置
JP2000105003A (ja) 1998-09-28 2000-04-11 Sanyo Electric Co Ltd 冷凍機ユニット
JP3149871B2 (ja) * 1999-07-05 2001-03-26 松下電器産業株式会社 置換用気体の回収トラップ容器及び空気調和機の施工方法
DE102011116863A1 (de) 2011-10-25 2013-04-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Sicherung einer Vorrichtung für einen thermodynamischen Kreisprozess und abgesicherte Vorrichtung für einen thermodynamischen Kreisprozess
EP3106780B1 (fr) 2015-06-17 2017-11-22 Vaillant GmbH Installation de pompes à chaleur

Also Published As

Publication number Publication date
EP3693687A3 (fr) 2020-10-21
EP3693687C0 (fr) 2024-03-06
EP3693687A2 (fr) 2020-08-12

Similar Documents

Publication Publication Date Title
EP3693687B1 (fr) Refroidissement d'adsorbant
EP3486582B1 (fr) Dispositif de détection des fuites au moyen de capacité adsorbante
EP3693683A1 (fr) Barrière de diffusion au moyen de couches de protection
EP1162415B1 (fr) Dispositif à sorption pour le rechauffement ou le refroidissement des écoulements de gaz
EP3581861B1 (fr) Sorption du fluide
EP3578895B1 (fr) Dispositif et procédé pour le rinçage sûr et économique d'une enceinte
DE102011116863A1 (de) Verfahren zur Sicherung einer Vorrichtung für einen thermodynamischen Kreisprozess und abgesicherte Vorrichtung für einen thermodynamischen Kreisprozess
DE102009029392A1 (de) Explosionsgeschützte Kälteanlage mit brennbarem Kältemittel
DE10330104A1 (de) Kühlsystem mit Adsorptions-Kühlgerät
EP3748257B1 (fr) Dispositif pour la performance sûre d'un procédé circulaire thermodynamique à rotation à gauche au moyen d'un fluide de travail inflammable avec adsorption de fluide
DE112013001478T5 (de) Kühlsystem
EP3792572A1 (fr) Dispositif de rinçage de sécurité pour une pompe à chaleur
EP2643645A2 (fr) Cuve à vide permettant d'éliminer les gaz étrangers d'une machine frigorifique à adsorption
DE102019118984A1 (de) Diffusionssperre mittels Schutzschichten
DE19963322A1 (de) Sorptionswärmespeicher hoher Energiedichte
EP3486564A1 (fr) Adsorption de fluide à refoulement de gaz inerte
DE102019118977A1 (de) Adsorberkühlung
DE102018125952A1 (de) Wärmeenergiespeichersystem und Kraftfahrzeug mit Wärmeenergiespeichersystem
EP3705823B1 (fr) Dispositif pour une intervention de service en toute sécurité pour un boîtier et procédé d'ouverture du boîtier.
EP4086540A1 (fr) Régénération des adsorbants à appauvrissement en cov
EP2637883B1 (fr) Machine frigorifique à adsorption actionnée par les gaz d'échappement
EP3647684B1 (fr) Zone de sécurité du condenseur
EP3492846B1 (fr) Dispositif pour effectuer en toute sécurité un cycle de rankine thermodynamique en virage à gauche et sa vidange et son remplissage en toute sécurité au moyen d'un fluide de travail inflammable et procédé pour vider en toute sécurité un fluide de travail inflammable
DE102016106091A1 (de) Klimaanlage mit Vakuumeinschluss
DE102019114738A1 (de) Fluidadsorption

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 49/00 20060101AFI20200915BHEP

Ipc: F25B 25/00 20060101ALI20200915BHEP

Ipc: F25B 45/00 20060101ALI20200915BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210408

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230927

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020007208

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240319

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240325