EP3639053A1 - Sensorvorrichtung für ein automatisiertes fahrzeug - Google Patents

Sensorvorrichtung für ein automatisiertes fahrzeug

Info

Publication number
EP3639053A1
EP3639053A1 EP18719093.9A EP18719093A EP3639053A1 EP 3639053 A1 EP3639053 A1 EP 3639053A1 EP 18719093 A EP18719093 A EP 18719093A EP 3639053 A1 EP3639053 A1 EP 3639053A1
Authority
EP
European Patent Office
Prior art keywords
sensor device
sensor
data
vehicle
automated vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18719093.9A
Other languages
English (en)
French (fr)
Inventor
Oliver Pink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3639053A1 publication Critical patent/EP3639053A1/de
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4868Controlling received signal intensity or exposure of sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/54Audio sensitive means, e.g. ultrasound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/06Direction of travel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4091Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder during normal radar operation

Definitions

  • the invention relates to a sensor device for an automated vehicle.
  • the invention further relates to a method for operating a sensor device for an automated vehicle.
  • the invention further relates to a computer program product.
  • Known environment sensors for driver assistance systems such as e.g. Lidar, video, radar have a limited opening angle. Any increase in this opening angle is often either not possible (due to prescriptions regarding eye safety in lidar, reduced resolution in video, etc.) or associated with additional costs.
  • Today's sensors provide the ability to control a limited range of vision (e.g., by electronic beamforming in radar, variations in scanning in lidar, selection of a portion of video, etc.).
  • An object of the invention is to provide a sensor device for an automated vehicle with improved performance.
  • a sensor device for an automated vehicle comprising:
  • path data can be supplied to the evaluation device via the data interface
  • a detection performance can be increased in this way, and for this case also advantageously less electromagnetic energy is radiated into the environment.
  • the object is achieved with a device for operating a sensor device for an automated vehicle, comprising the steps:
  • An advantageous development of the sensor device provides that the track data are designed as trajectory data.
  • the trajectory data By means of the trajectory data, a defined number of future vehicle positions is defined, such data already being present in automated vehicles. In this way, advantageously only a small additional effort for supplying and processing the trajectory data is required for the sensor device.
  • a further advantageous development of the sensor device is characterized in that at least one driving maneuver performed by a driver of the automated vehicle can be taken into account via the data interface. This is done by a transmission of specific data regarding eg a steering angle, a turn signal operation, a braking maneuver, etc. As a result, a better adapted to the travel way of operation of the sensor device is supported.
  • the sensor device is a lidar sensor, a video sensor, a radar sensor or an ultrasonic sensor.
  • the sensor device is a lidar sensor, a video sensor, a radar sensor or an ultrasonic sensor.
  • the sensor device can be used as a front sensor and / or as a side sensor and / or as a rear sensor of the automated vehicle. In this way, an optimized environment detection behavior of the sensor device can be utilized for the automated vehicle.
  • the various design possibilities of the sensor device can be described e.g. be useful in maneuvering the vehicle at very tight curve radii.
  • the surroundings detection characteristic comprises a travel phase of the vehicle lasting from approx. 5 s to approx. 10 s. In this way, the surroundings detection characteristic of the sensor device only has to adapt to a manageable and sufficient spatial area.
  • Disclosed method features are analogous to corresponding disclosed device features and vice versa. This means in particular that features, technical advantages and proceed in a similar manner from corresponding embodiments, features and advantages of the device and vice versa.
  • Fig. 1 is a schematic representation of an operation of the proposed sensor device
  • FIG. 2 shows a further basic illustration of a mode of operation of the proposed sensor device
  • Fig. 3 is a schematic block diagram of a proposed sensor device.
  • automated motor vehicle is used interchangeably in the meanings partially automated motor vehicle, autonomous motor vehicle and partially autonomous motor vehicle.
  • a central idea of the invention is, in particular, to provide an environment detection characteristic of an environment sensor system of an automated vehicle such that only the area relevant for the currently performed driving maneuver of the vehicle is detected at any time. It takes advantage of the fact that an automated driving function "knows exactly" where the vehicle will be moving in the near future since the driving maneuver is completely planned and transmitted, for example in the form of trajectory data, for example to an actuator of the vehicle.
  • Sensor is easy to calculate and independent of the sensor used. Sensor-specific knowledge is not required when specifying track data in the form of a trajectory. For this reason, the data interface can also be used by third parties in a simple manner; for example, a manufacturer can generate a trajectory for his own driver assistance function and make it available to the sensor.
  • Variant is also given a path, i. a geometric description of an area that the vehicle will be driving through in the near future, with no indication of when the vehicle will be in that area at any given point.
  • a path i. a geometric description of an area that the vehicle will be driving through in the near future, with no indication of when the vehicle will be in that area at any given point.
  • an opening angle of the sensor device can be controlled in this way, but visibility is limited.
  • FIG. 1 shows in four illustrations a schematic, exemplary scenario of a mode of operation of the proposed sensor device 100 for an automated vehicle 200.
  • FIGS. 1 a to 2 d Illustrated in FIGS. 1 a to 2 d is an example of a sensor device which is limited in the transmission energy.
  • the field of vision of the sensor device is narrow and wide (see Figures 1c, 1d: for example in fast straight-ahead driving) or ready and short (see Figures 1a, 1b: for example when cornering at a generally lower speed).
  • the field of view of the sensor device can be pivoted to the left or right.
  • the darkened vehicle 200 is in the current vehicle position, the four brightly marked vehicles represent planned vehicle positions of the vehicle 200 along a planned trajectory for the vehicle 200 that is related to the current vehicle position in e.g. 1, 2, 3 and 4 seconds can be achieved.
  • the visual range FOV represents a sensor visual range of a front sensor of the automated vehicle 200.
  • FIGS. 1 c and 1 d indicate that the automated vehicle 200 changes on a three-lane road from the middle lane to the right lane and then continues to travel on it, e.g. on a highway at high speed. For this reason, the visual range FOV of the sensor device is adjusted to the current plus about four future positions of the vehicle 200.
  • a large detection range (“sighting range”) of the sensor device of about 300m to about 400m allows.With lower speeds, however, the illumination range of the sensor device is reduced and the illumination width increased
  • an eye safety aspect for protecting persons in the vicinity of the vehicle can also be taken into account.
  • an optimized operating behavior of the sensor device with optimized power consumption can be realized in this way.
  • FIG. 2 shows the track data D transmitted to the sensor device 100 of the vehicle 200 based on a video image of the moving vehicle 200 (not shown).
  • These track data D are preferably designed as trajectory data and are indicated in the figure in the form of a wide track.
  • stationary objects can be detected with increased priority. More distant stationary objects, for example on the right side of the image, are less interesting because the vehicle 200 will not move there.
  • the sensor device 100 can concentrate primarily on objects or vehicles in the vicinity of the travel path. In this way, in particular, the vehicle 202 is detected and it is not necessary to consider the preceding vehicle 202 and the right overhauled vehicle 201. As a result, a detection characteristic of the sensor device 100 to the actual lane is optimized.
  • computing time can advantageously be reduced for the sensor device 100, or the available computing time / computing power can be better concentrated on the lane-relevant areas.
  • An efficient operation of the sensor device 100 is advantageously supported this way.
  • a specific driver request also flows into an operating characteristic, e.g. in the form of data of a steering angle impact, a brake maneuver, an operation of a turn signal, etc.
  • the proposed sensor device 100 can also be arranged in the rear region of the vehicle 200 (not shown), as a result of which reverse maneuvers of the vehicle are also designed in an optimized manner.
  • FIG. 3 shows a block diagram of an embodiment of the proposed sensor device 100.
  • a data interface 10 preferably as a software interface, eg in the form of a bus (eg CAN bus, Ethernet, etc.) is formed.
  • the track data D can be transmitted to an evaluation device 20 of the sensor device 100.
  • the infrastructure data D are provided in the automated vehicle 200 by a planning system and are typically used for steering, and / or engine control, and / or braking purposes.
  • the evaluation device 20 determines the future positions of the vehicle 200 and, as a result, transmits an instruction to a control device 30 by means of which an operating characteristic of the sensor device 100 is set in accordance with the track data D.
  • the change in the operating characteristic can be carried out in a manner known per se by a mechanical adjustment of the sensor device and / or a control of the sensor device with suitable electrical signals.
  • the entire area is detected at once.
  • the area in which the vehicle actually moves is of particular relevance. For example, when driving in a left turn only the Wnkel Scheme of about -60 ° to about 0 ° be relevant, when driving straight only the angle range of about -30 ° to about + 30 °, and in a right turn only from approx 0 ° to about 60 °. The area actually covered is thus at no time greater than about 60 °.
  • the operating characteristic of the sensor device 100 can be adapted to the track data, whereby an operating characteristic of the sensor device is advantageously optimized.
  • the proposed sensor device 100 is not bound to a specific technology, so the sensor device 100 may be formed, for example, as a lidar sensor, a video sensor, a radar sensor, an ultrasonic sensor, etc.
  • the sensor device 100 is “distributed.”
  • the evaluation device and / or the control device can be arranged on a separate control device, wherein control signals are transmitted via a further interface to a sensor or to multiple sensors, thus supporting centralized processing with "stupid" sensors.
  • a step 300 delivery of infrastructure data D is performed via at least one data interface 10.
  • an evaluation of the infrastructure data D is carried out by means of an evaluation device 20.
  • control of an environment detection characteristic of the sensor device 100 in dependence on the evaluated infrastructure data D is performed by means of a control device 30.
  • the proposed method can be implemented by means of a running on the sensor devices software program, whereby a simple adaptability of the method is supported.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

Sensorvorrichtung (100) für ein automatisiertes Fahrzeug (200), aufweisend: - wenigstens eine Datenschnittstelle (10); und eine Auswerteeinrichtung (20); wobei über die Datenschnittstelle (10) Fahrwegdaten (D) an die Auswerteeinrichtung (20) zuführbar sind; und - wobei mittels der Fahrwegdaten (D) eine Umfelderfassungscharakteristik der Sensorvorrichtung steuerbar ist.

Description

Beschreibung Titel
Sensorvorrichtung für ein automatisiertes Fahrzeug
Die Erfindung betrifft eine Sensorvorrichtung für ein automatisiertes Fahrzeug. Die Erfindung betrifft ferner ein Verfahren zum Betreiben einer Sensorvorrichtung für ein automatisiertes Fahrzeug. Die Erfindung betrifft ferner ein Computerprogrammprodukt.
Stand der Technik
Bekannte Umfeldsensoren für Fahrerassistenzsysteme, wie z.B. Lidar, Video, Radar haben einen begrenzten Öffnungswinkel. Eine beliebige Vergrößerung dieses Öffnungswinkels ist oftmals entweder nicht möglich (aufgrund von Vorgaben betreffend Augensicherheit bei Lidar, reduzierter Auflösung bei Video, usw.) oder mit zusätzlichen Kosten verbunden.
Heutige Sensoren bieten die Möglichkeit, in begrenztem Umfang einen Sichtbereich zu steuern (z.B. mittels elektronischem„Beamforming" bei Radar, Variationen von Abtastung bei Lidar, Auswahl eines Teilbereichs bei Video, usw.).
Offenbarung der Erfindung
Eine Aufgabe der Erfindung ist es, eine Sensorvorrichtung für ein automatisiertes Fahrzeug mit verbessertem Betriebsverhalten bereitzustellen.
Die Aufgabe wird gemäß einem ersten Aspekt gelöst mit einer Sensorvorrichtung für ein automatisiertes Fahrzeug, aufweisend:
- wenigstens eine Datenschnittstelle; und
eine Auswerteeinrichtung; - wobei über die Datenschnittstelle Fahrwegdaten an die Auswerteeinrichtung zuführbar sind; und
- wobei mittels der Fahrwegdaten eine Umfelderfassungs-Charakteristik der Sensorvorrichtung steuerbar ist.
Auf diese Weise können technologische Grenzen der Sensorvorrichtung besser ausgenutzt werden, weil je nach konkretem Fahrweg unterschiedliche Umfelderfassungscharakteristiken realisiert werden. Im relevanten Erfassungsbereich kann auf diese Weise eine Detektionsperformance erhöht werden, wobei für die- sen Fall auch vorteilhaft weniger elektromagnetische Energie in die Umwelt abgestrahlt wird.
Gemäß einem zweiten Aspekt wird die Aufgabe gelöst mit einer Vorrichtung zum Betreiben einer Sensorvorrichtung für ein automatisiertes Fahrzeug, aufweisend die Schritte:
Zuführen von Fahrwegdaten über wenigstens eine Datenschnittstelle;
- Auswerten der Fahrwegdaten mittels einer Auswerteeinrichtung; und Steuern einer Umfelderfassungscharakteristik der Sensorvorrichtung in Abhängigkeit von den ausgewerteten Fahrwegdaten mittels einer Steue- rungseinrichtung.
Vorteilhafte Weiterbildungen der Sensorvorrichtung sind Gegenstand von abhängigen Ansprüchen. Eine vorteilhafte Weiterbildung der Sensorvorrichtung sieht vor, dass die Fahrwegdaten als Trajektoriendaten ausgebildet sind. Mittels der Trajektoriendaten ist eine definierte Anzahl von zukünftigen Fahrzeugpositionen festgelegt, wobei derartige Daten in automatisierten Fahrzeugen bereits vorhanden sind. Auf diese Weise ist für die Sensorvorrichtung vorteilhaft nur ein geringer Zusatzaufwand zum Zuführen und Verarbeiten der Trajektoriendaten erforderlich.
Eine weitere vorteilhafte Weiterbildung der Sensorvorrichtung zeichnet sich dadurch aus, dass über die Datenschnittstelle wenigstens ein von einem Fahrer des automatisierten Fahrzeugs durchgeführtes Fahrmanöver berücksichtigbar ist. Dies geschieht durch eine Übermittlung von spezifischen Daten betreffend z.B. einen Lenkwinkel, eine Blinkerbetätigung, ein Bremsmanöver, usw. Im Ergebnis ist dadurch noch eine besser an den Fahrweg angepasste Arbeitsweise der Sensorvorrichtung unterstützt.
Weitere vorteilhafte Weiterbildungen der Sensorvorrichtung sind dadurch gekennzeichnet, dass die Sensorvorrichtung ein Lidar-Sensor, ein Video-Sensor, ein Radarsensor oder ein Ultraschallsensor ist. Dadurch kann für die Sensorvorrichtung eine Vielzahl von unterschiedlichen Technologien genutzt werden.
Eine weitere vorteilhafte Weiterbildung der Sensorvorrichtung sieht vor, dass die Sensorvorrichtung als eine Frontsensorik und/oder als eine Seitensensorik und/oder als eine Hecksensorik des automatisierten Fahrzeugs verwendbar ist. Auf diese Weise kann für das automatisierte Fahrzeug ein optimiertes Umfelderfassungsverhalten der Sensorvorrichtung ausgenutzt werden. Die vielfältige Ausgestaltungsmöglichkeit der Sensorvorrichtung kann z.B. beim Manövrieren des Fahrzeugs bei sehr engen Kurvenradien nützlich sein.
Eine weitere vorteilhafte Weiterbildung der Sensorvorrichtung sieht vor, dass die Umfelderfassungscharakteristik eine ca. 5 s bis ca. 10 s dauernde Fortbewegungsphase des Fahrzeugs umfasst. Auf diese Weise muss sich die Umfelder- fassungs-Charakteristik der Sensorvorrichtung lediglich an einen überschaubaren und ausreichenden räumlichen Bereich anpassen.
Die Erfindung wird im Folgenden mit weiteren Merkmalen und Vorteilen anhand von mehreren Figuren detailliert beschrieben. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung, sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in den Figuren. Die Figuren sind vor allem dazu gedacht, die erfindungswesentlichen Prinzipien zu verdeutlichen.
Offenbarte Verfahrensmerkmale ergeben sich analog aus entsprechenden offenbarten Vorrichtungsmerkmalen und umgekehrt. Dies bedeutet insbesondere, dass sich Merkmale, technische Vorteile und Ausführungen betreffend das Ver- fahren in analoger Weise aus entsprechenden Ausführungen, Merkmalen und Vorteilen der Vorrichtung ergeben und umgekehrt.
In den Figuren zeigt:
Fig. 1 eine prinzipielle Darstellung einer Wirkungsweise der vorgeschlagenen Sensorvorrichtung;
Fig. 2 eine weitere prinzipielle Darstellung einer Wirkungsweise der vorgeschlagenen Sensorvorrichtung;
Fig. 3 ein prinzipielles Blockschaltbild einer vorgeschlagenen Sensorvorrichtung sind; und
Fig. 4 einen prinzipiellen Ablauf eines Verfahrens zum Betreiben einer
Sensorvorrichtung für ein automatisiertes Fahrzeug.
Beschreibung von Ausführungsformen
Im Folgenden wird der Begriff automatisiertes Kraftfahrzeug synonym in den Bedeutungen teilautomatisiertes Kraftfahrzeug, autonomes Kraftfahrzeug und teilautonomes Kraftfahrzeug verwendet.
Ein Kerngedanke der Erfindung ist es insbesondere, eine Umfelderfassungscharakteristik einer Umfeldsensorik eines automatisierten Fahrzeugs derart bereitzustellen, dass zu jedem Zeitpunkt nur der für das aktuell durchgeführte Fahrmanöver des Fahrzeugs relevante Bereich erfasst wird. Dabei wird ausgenutzt, dass eine automatisierte Fahrfunktion„genau weiß", wohin sich das Fahrzeug in nächster Zeit bewegen wird, da das Fahrmanöver vollständig geplant und zum Beispiel in Form von Trajektoriendaten z.B. an eine Aktuatorik des Fahrzeugs übermittelt wird.
Vorgeschlagen wird, an einem Umfeldsensor eine Schnittstelle vorzusehen, über die bereits bekannte Fahrwegdaten eingelesen werden. Mithilfe von geeigneten Berechnungsvorschriften innerhalb des Sensors wird daraus eine an die Fahr- wegdaten optimierte Umfelderfassungscharakteristik (z.B. Sichtweite, Öffnungswinkel, usw.) des Sensors eingestellt.
Ein Vorteil dieser Datenschnittstelle für Fahrwegdaten und sensorinterner Be- rechnungsvorschriften besteht darin, dass die Trajektorie für den Nutzer des
Sensors einfach berechenbar und unabhängig vom verwendeten Sensor ist. Vorteilhaft sind bei der Vorgabe von Fahrwegdaten in Form einer Trajektorie sensorspezifische Kenntnisse nicht erforderlich. Aus diesem Grund ist die Datenschnittstelle auch für Dritte auf einfache Weise nutzbar, beispielsweise kann ein Hersteller für eine eigene Fahrerassistenzfunktion eine Trajektorie generieren und dem Sensor zur Verfügung stellen.
Bei vielen Fahrerassistenz- und automatisierten Fahrfunktionen werden ohnehin bereits Trajektorien geplant und ermittelt. Wird eine der genannten Trajektorien vom Sensor empfangen, die auch tatsächlich an die Fahrzeugregelung ausgegeben wurde, ist zu jedem Zeitpunkt sichergestellt, dass genau derjenige Erfassungsbereich der Sensoren abgedeckt ist, den das Fahrzeug in der nächsten überschaubaren Zeit durchfahren wird. Alternativ zu einer Trajektorie kann der Sensorvorrichtung in einer vereinfachten
Variante auch ein Pfad vorgegeben wird, d.h. eine geometrische Beschreibung eines Bereichs, den das Fahrzeug in nächster Zeit durchfahren wird ohne zeitliche Angaben, wann das Fahrzeug an einem bestimmten Punkt in diesem Bereich sein wird. Im Unterschied zu einer Trajektorie mit genauem Zeit- und Ge- schwindigkeitsprofil lässt sich auf diese Weise zwar ein Öffnungswinkel der Sensorvorrichtung steuern, eine Sichtweite allerdings nur eingeschränkt.
Fig. 1 zeigt in vier Darstellungen ein schematisiertes, beispielhaftes Szenario einer Wrkungsweise der vorgeschlagenen Sensorvorrichtung 100 für ein automa- tisiertes Fahrzeug 200.
Man erkennt in den Figuren 1a und 1 b ein automatisiertes Fahrzeug 200, welches eine Kurve durchfährt. Die Kurve in Fig. 1a hat eine etwas geringere Krümmung als jene in Fig. 1 b. Man erkennt, dass der Sichtbereich FOV der Sensor- Vorrichtung die aktuelle plus ca. vier zukünftige Fahrpositionen des Fahrzeugs 200 umfasst, was einer ungefähren Fahrzeit des automatisierten Fahrzeugs 200 von ca. 5s bis ca. 10s entspricht. Auf diese Weise ist unterstützt, dass die Sensorvorrichtung 100 in ihrer Charakteristik und ihrem Ausleuchtverhalten an einen zukünftigen Fahrweg des Fahrzeugs 200 angepasst ist.
Dargestellt ist in den Figuren 1 a bisld ein Beispiel für eine Sensorvorrichtung, die in der Sendeenergie begrenzt ist. Abhängig vom Fahrmanöver ist der Sichtbereich der Sensorvorrichtung schmal und weit (siehe Figuren 1 c, 1d: zum Beispiel bei schneller Geradeausfahrt) oder bereit und kurz (siehe Figuren 1a, 1 b: z.B. bei Kurvenfahrt bei in der Regel niedrigerer Geschwindigkeit). Je nach Fahrtrichtung kann der Sichtbereich der Sensorvorrichtung nach links oder rechts geschwenkt werden.
Das dunkel dargestellte Fahrzeug 200 befindet sich in der aktuellen Fahrzeugposition, die vier hell markierten Fahrzeuge repräsentieren geplante bzw. zukünftige Fahrzeugpositionen des Fahrzeugs 200 entlang einer für das Fahrzeug 200 geplanten Trajektorie, die in Relation zur aktuellen Fahrzeugposition in z.B. 1 , 2, 3 und 4 Sekunden erreicht werden. Der Sichtbereich FOV repräsentiert einen Sensorsichtbereich einer Frontsensorik des automatisierten Fahrzeugs 200.
Die Figuren 1 c und 1d deuten an, dass das automatisierte Fahrzeug 200 auf einer dreispurigen Fahrbahn von der mittleren auf die rechte Fahrspur wechselt und auf dieser in weiterer Folge weiterfährt, z.B. auf einer Autobahn bei hoher Geschwindigkeit. Aus diesem Grund ist der Sichtbereich FOV der Sensorvorrichtung an die aktuelle plus ca. vier zukünftige Positionen des Fahrzeugs 200 angepasst.
Auf diese Weise ist zum Beispiel bei schnellen Geradeausfahrten auf Autobahnen eine große Detektionsreichweite („Sichtweite") der Sensorvorrichtung von ca. 300m bis ca. 400m ermöglicht. Bei geringeren Geschwindigkeiten wird dagegen die Ausleuchtweite der Sensorvorrichtung verringert und die Ausleuchtbreite erhöht. Auf diese Weise kann durch eine Reduzierung einer elektrischen Ansteuerleistung der Sensorvorrichtung auch ein Augensicherheitsaspekt zum Schutz von im Umfeld des Fahrzeugs befindlichen Personen berücksichtigt werden. lm Ergebnis kann auf diese Weise ein optimiertes Betriebsverhalten der Sensorvorrichtung bei optimierter Leistungsaufnahme realisiert werden.
Fig. 2 zeigt anhand eines Videobildes des fahrenden Fahrzeugs 200 (nicht dargestellt) die Fahrwegdaten D, die an die Sensorvorrichtung 100 des Fahrzeugs 200 übermittelt werden. Diese Fahrwegdaten D sind vorzugsweise als Trajektori- endaten ausgebildet und sind in der Figur in Form einer breiten Spur angedeutet. Entlang dieser Trajektorie und in der unmittelbaren Umgebung können mit erhöhter Priorität stationäre Objekten erfasst werden. Weiter entfernte stationäre Objekte, zum Beispiel auf der rechten Bildseite sind weniger interessant, da sich das Fahrzeug 200 dorthin nicht bewegen wird. Dadurch kann sich die Sensorvorrichtung 100 vor allem auf Objekte bzw. Fahrzeuge im Umfeld des Fahrwegs konzentrieren. Auf diese Weise wird insbesondere das Fahrzeug 202 detektiert und es brauchen das vorausfahrende Fahrzeug 202 und das rechts überholte Fahrzeug 201 nicht berücksichtigt zu werden. Dadurch ist eine Erfassungscharakteristik der Sensorvorrichtung 100 an die tatsächliche Fahrspur optimiert.
Auf diese Weise kann für die Sensorvorrichtung 100 vorteilhaft Rechenzeit reduziert oder die vorhandene Rechenzeit/Rechenleistung besser auf die fahrspurrelevanten Bereiche konzentriert werden. Eine effiziente Betriebsweise der Sensorvorrichtung 100 ist diese Weise vorteilhaft unterstützt.
In einer Weiterbildung der Sensorvorrichtung kann vorgesehen sein, dass auch ein konkreter Fahrerwunsch in eine Betriebscharakteristik einfließt, z.B. in Form von Daten eines Lenkwinkeleinschlags, eines Bremsmanöver, einer Betätigung eines Blinkers, usw.
Vorteilhaft kann die vorgeschlagene Sensorvorrichtung 100 auch im Heckbereich des Fahrzeugs 200 angeordnet sein (nicht dargestellt), wodurch auch Rückwärts- fahrmanöver des Fahrzeugs optimiert ausgebildet sind.
Fig. 3 zeigt ein Blockschaltbild einer Ausführungsform der vorgeschlagenen Sensorvorrichtung 100. Man erkennt eine Datenschnittstelle 10, die vorzugweise als eine Softwareschnittstelle, z.B. in Form eines Busses (z.B. CAN-Bus, Ethernet, usw.) ausgebildet ist. Über die Datenschnittstelle 10 können die Fahrwegdaten D an eine Auswerteeinrichtung 20 der Sensorvorrichtung 100 übermittelt werden. Die Fahrwegdaten D werden im automatisierten Fahrzeug 200 von einem Planungssystem bereitgestellt und werden in der Regel für Lenkungs-, und/oder Mo- torsteuerungs-, und/oder Bremszwecke benutzt.
Die Auswerteeinrichtung 20 ermittelt aufgrund der Fahrwegdaten D die zukünftigen Positionen des Fahrzeugs 200 und übermittelt daraus resultierend an eine Steuerungseinrichtung 30 eine Instruktion, mittels der eine Betriebscharakteristik der Sensorvorrichtung 100 entsprechend der Fahrwegdaten D eingestellt wird.
Beispielsweise kann die Änderung der Betriebscharakteristik in an sich bekannter Weise durch eine mechanische Verstellung der Sensorvorrichtung und/oder eine Ansteuerung der Sensorvorrichtung mit geeigneten elektrischen Signalen durchgeführt werden.
Vorteilhaft können auf diese Weise für automatisierte Fahrzeuge situationsabhängig höhere Öffnungswinkel als mit bekannten Sensoren realisiert werden. Um beispielsweise Kurven mit allen typischerweise auf Autobahnen auftretenden Radien fahren zu können, benötigt man für die Frontsensorik beispielsweise eine Abdeckung von ca. ±60°.
Dabei ist es jedoch mit der vorgeschlagenen Sensorvorrichtung vorteilhaft nicht erforderlich, dass der gesamte Bereich auf einmal erfasst wird. Besonders relevant ist in der Regel der Bereich, in dem sich das Fahrzeug tatsächlich bewegt. Beispielsweise könnte bei der Fahrt in eine Linkskurve nur der Wnkelbereich von ca. -60° bis ca. 0° relevant sein, bei Geradeausfahrt nur der Winkelbereich von ca. -30° bis ca. +30°, und bei einer Rechtskurve nur von ca. 0° bis ca. 60° abgedeckt werden. Der tatsächlich abzudeckende Bereich ist also zu keinem Zeitpunkt größer als ca. 60°.
Auf diese Weise kann die Betriebscharakteristik der Sensorvorrichtung 100 an die Fahrwegdaten angepasst werden, wodurch eine Betriebscharakteristik der Sensorvorrichtung vorteilhaft optimiert ist. Vorteilhaft ist die vorgeschlagenen Sensorvorrichtung 100 nicht an eine spezifische Technologie gebunden, so kann die Sensorvorrichtung 100 beispielsweise als ein Lidar-Sensor, ein Video-Sensor, ein Radarsensor, ein Ultraschallsensor, usw. ausgebildet sein.
In einer nicht in Figuren dargestellten Ausführungsform der Sensorvorrichtung kann vorgesehen sein, dass die Sensorvorrichtung 100„verteilt" ausgebildet ist. Dabei können z.B. die Auswerteeinrichtung und/oder die Steuerungseinrichtung auf einem separierten Steuergerät angeordnet sein, wobei Steuerungssignale über eine weitere Schnittstelle an einen Sensor oder an mehrere Sensoren übermittelt werden. Dadurch ist eine zentralisierte Verarbeitung mit„dummen" Sensoren unterstützt.
Fig. 4 zeigt einen prinzipiellen Ablauf einer Ausführungsform des erfindungsge- mäßen Verfahrens.
In einem Schritt 300 wird ein Zuführen von Fahrwegdaten D über wenigstens eine Datenschnittstelle 10 durchgeführt.
In einem Schritt 310 wird ein Auswerten der Fahrwegdaten D mittels einer Auswerteeinrichtung 20 durchgeführt.
In einem Schritt 320 wird ein Steuern einer Umfelderfassungscharakteristik der Sensorvorrichtung 100 in Abhängigkeit von den ausgewerteten Fahrwegdaten D mittels einer Steuerungseinrichtung 30 durchgeführt.
Vorteilhaft kann das vorgeschlagene Verfahren mittels eines auf der Sensorvorrichtungen ablaufenden Softwareprogramms implementiert werden, wodurch eine einfache Adaptierbarkeit des Verfahrens unterstützt ist.
Der Fachmann wird die Merkmale der Erfindung in geeigneter Weise abändern und/oder miteinander kombinieren, ohne vom Kern der Erfindung abzuweichen.

Claims

Sensorvorrichtung (100) für ein automatisiertes Fahrzeug (200), aufweisend:
- wenigstens eine Datenschnittstelle (10); und
eine Auswerteeinrichtung (20);
- wobei über die Datenschnittstelle (10) Fahrwegdaten (D) an die Auswerteeinrichtung (20) zuführbar sind; und
- wobei mittels der Fahrwegdaten (D) eine Umfelderfassungscharakteristik der Sensorvorrichtung steuerbar ist.
Sensorvorrichtung (100) nach Anspruch 1 , dadurch gekennzeichnet, dass die Fahrwegdaten (D) als Trajektoriendaten ausgebildet sind.
Sensorvorrichtung (100) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass über die Datenschnittstelle (10) wenigstens ein von einem Fahrer des automatisierten Fahrzeugs (200) durchgeführtes Fahrmanöver berücksichtigbar ist.
Sensorvorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sensorvorrichtung (100) ein Lidar-Sensor, ein Video-Sensor, ein Radarsensor oder ein Ultraschallsensor ist.
Sensorvorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sensorvorrichtung als eine Frontsensorik und/oder als eine Seitensensorik und/oder als eine Hecksensorik des automatisierten Fahrzeugs (200) verwendbar ist.
Sensorvorrichtung (100) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Umfelderfassungscharakteristik eine ca. 5s bis ca. 10s dauernden Fortbewegungsphase des Fahrzeugs (200) um- fasst.
7. Verfahren zum Betreiben einer Sensorvorrichtung (100) für ein automatisiertes Fahrzeug (200), aufweisend die Schritte:
Zuführen von Fahrwegdaten (D) über wenigstens eine Datenschnittstelle (10);
- Auswerten der Fahrwegdaten mittels einer Auswerteeinrichtung (20); und Steuern einer Umfelderfassungscharakteristik der Sensorvorrichtung (100) in Abhängigkeit von den ausgewerteten Fahrwegdaten mittels einer Steuerungseinrichtung (30).
8. Computerprogrammprodukt mit Programmcodemitteln zur Durchführung des Verfahrens nach Anspruch 7, wenn es auf einer elektronischen Auswerteeinrichtung (20) abläuft oder auf einem computerlesbaren Datenträger gespeichert ist.
EP18719093.9A 2017-06-14 2018-04-12 Sensorvorrichtung für ein automatisiertes fahrzeug Pending EP3639053A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017210045.1A DE102017210045A1 (de) 2017-06-14 2017-06-14 Sensorvorrichtung für ein automatisiertes Fahrzeug
PCT/EP2018/059381 WO2018228733A1 (de) 2017-06-14 2018-04-12 Sensorvorrichtung für ein automatisiertes fahrzeug

Publications (1)

Publication Number Publication Date
EP3639053A1 true EP3639053A1 (de) 2020-04-22

Family

ID=62027965

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18719093.9A Pending EP3639053A1 (de) 2017-06-14 2018-04-12 Sensorvorrichtung für ein automatisiertes fahrzeug

Country Status (6)

Country Link
US (1) US20200172120A1 (de)
EP (1) EP3639053A1 (de)
JP (1) JP2020523603A (de)
CN (1) CN110741275A (de)
DE (1) DE102017210045A1 (de)
WO (1) WO2018228733A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7409324B2 (ja) * 2019-01-17 2024-01-09 日本電気株式会社 制御装置、情報処理装置、並びに、移動制御システム、方法及びプログラム
US20220163635A1 (en) * 2020-11-23 2022-05-26 Harman International Industries, Incorporated Systems and methods for reducing cognitive workload and energy consumption by a sensor utilized on a vehicle
US11754666B2 (en) * 2021-02-12 2023-09-12 Aptiv Technologies Limited Radar detection prioritization based on downstream feedback
DE102021213905A1 (de) 2021-12-07 2023-06-07 Robert Bosch Gesellschaft mit beschränkter Haftung Fahrtrichtungsabhängige Einstellung eines Erfassungsbereichs von Ultraschallsensorarrays

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2910377B2 (ja) * 1992-01-20 1999-06-23 日産自動車株式会社 車両用レーダ装置
JPH08240658A (ja) * 1995-03-06 1996-09-17 Fujitsu Ten Ltd レーダ装置
JP4717195B2 (ja) * 2000-10-12 2011-07-06 本田技研工業株式会社 移動体用物体検知装置
JP3500360B2 (ja) * 2001-02-08 2004-02-23 富士通テン株式会社 レーダ取付方向調整装置、及びレーダ取付方向調整方法
FR2834110B1 (fr) * 2001-12-20 2004-01-30 Valeo Vision Dispositif d'aide a la conduite pour vehicule automobile optimise par synergie avec un eclairage adaptatif
JP3826805B2 (ja) * 2002-02-07 2006-09-27 Jfeスチール株式会社 自立走行車の衝突防止方法
JP4292111B2 (ja) * 2003-08-22 2009-07-08 本田技研工業株式会社 車両用追従走行制御装置
DE102005046045A1 (de) * 2005-09-27 2007-03-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung mindestens eines Objektdetektionssensors
DE102007046648A1 (de) * 2007-09-28 2009-04-02 Robert Bosch Gmbh Radarsensor zur Erfassung des Verkehrsumfelds in Kraftfahrzeugen
JP2010286962A (ja) * 2009-06-10 2010-12-24 Murata Machinery Ltd 走行車
JP5553220B2 (ja) * 2010-06-29 2014-07-16 株式会社安川電機 移動体
DE102010049093A1 (de) * 2010-10-21 2012-04-26 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Verfahren zum Betreiben zumindest eines Sensors eines Fahrzeugs und Fahrzeug mit zumindest einem Sensor
US9194949B2 (en) * 2011-10-20 2015-11-24 Robert Bosch Gmbh Methods and systems for precise vehicle localization using radar maps
US9898006B2 (en) * 2014-09-16 2018-02-20 Honda Motor Co., Ltd. Drive assist device
EP3218885A4 (de) * 2014-11-11 2018-10-24 Sikorsky Aircraft Corporation Auf trajektorie basierende sensorplanung
DE102015209878B3 (de) * 2015-05-29 2016-02-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erfassung von Objekten im Umfeld eines Fahrzeugs
CN105398389B (zh) * 2015-12-23 2018-08-14 安徽安凯汽车股份有限公司 一种汽车安全驾驶辅助检测***及方法
JPWO2018043540A1 (ja) * 2016-08-31 2019-06-24 パイオニア株式会社 制御装置、制御方法、およびプログラム

Also Published As

Publication number Publication date
US20200172120A1 (en) 2020-06-04
CN110741275A (zh) 2020-01-31
DE102017210045A1 (de) 2018-12-20
WO2018228733A1 (de) 2018-12-20
JP2020523603A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
EP3543059B1 (de) Verfahren zur berechnung einer einblendung von zusatzinformationen für eine anzeige auf einer anzeigeeinheit, vorrichtung zur durchführung des verfahrens sowie kraftfahrzeug und computerprogramm
EP3497686B1 (de) Verfahren zur überprüfung einer überholmöglichkeitsbedingung
EP2771227B1 (de) Verfahren zum führen eines fahrzeugs und fahrerassistenzsystem
DE112013007674B4 (de) Vorwarnung bei Überschreiten eines Grenzwertes für ein Lenkdrehmoment eines LCC
DE102017125938A1 (de) Kollisionsvermeidungsunterstützungsvorrichtung
DE102016003438A1 (de) Fahrassistenzsystem eines Fahrzeugs und Verfahren zur Steuerung desselben
EP3639053A1 (de) Sensorvorrichtung für ein automatisiertes fahrzeug
DE102015210986A1 (de) Fahrtsteuerungsvorrichtung für Fahrzeug
DE102016011970A1 (de) Fahrzeugsicherheitssystem
DE102017126238B4 (de) Autonome Fahrvorrichtung und autonomes Fahrsteuerungsverfahren
DE102010007468B4 (de) System und Verfahren zum Validieren von Betriebsweisen eines adaptiven Tempomats
DE102016209619A1 (de) Umgebungsüberwachungsvorrichtung und fahrassistenzvorrichtung
DE102018104011A1 (de) Fahrunterstützungseinrichtung für fahrzeuge
EP3883832A1 (de) Vorrichtung und verfahren zur warnung eines fahrers eines fahrzeugs
DE112014006797B4 (de) Lenksteuerungseinrichtung, Lenksteuerungssystem, Lenksteuerungsverfahren und computerlesbares Medium zum Speichern eines Lenksteuerungsprogramms
DE102017200168A1 (de) Verfahren und System zum Bereitstellen einer zumindest teilweise automatischen Führung eines Folgefahrzeugs
DE112018002997T5 (de) Fahrzeugbewegungssteuerungsvorrichtung, fahrzeugbewegungssteuerungsverfahren und fahrzeugbewegungssteuerungssystem
EP2766244B1 (de) Verfahren zur unterstützung eines fahrers eines fahrzeugs bei einem ausparkvorgang aus einer querparklücke
DE102019117663A1 (de) Fahrzeug-Steuerungs-System
DE102019205365A1 (de) Kraftfahrzeug und Verfahren zur Kollisionsvermeidung
EP1520745B1 (de) Verfahren und Vorrichtung zur Erkennung und Einstellung von Links- oder Rechtsverkehr
DE102021006510A1 (de) Fahrerassistenzgerät und Fahrerassistenzverfahren
DE102018215509A1 (de) Verfahren und Vorrichtung zum Betrieb eines zumindest teilweise automatisiert betriebenen ersten Fahrzeugs
DE102020113730A1 (de) Vorrichtung und Verfahren zur Verhinderung von Fahrzeugkollisionen
DE102014214507A1 (de) Verfahren zur Erstellung eines Umfeldmodells eines Fahrzeugs

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220208