EP3579058B1 - Uhr, die ein tourbillon umfasst - Google Patents

Uhr, die ein tourbillon umfasst Download PDF

Info

Publication number
EP3579058B1
EP3579058B1 EP19173161.1A EP19173161A EP3579058B1 EP 3579058 B1 EP3579058 B1 EP 3579058B1 EP 19173161 A EP19173161 A EP 19173161A EP 3579058 B1 EP3579058 B1 EP 3579058B1
Authority
EP
European Patent Office
Prior art keywords
magnetic
escapement
energy
tourbillon
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19173161.1A
Other languages
English (en)
French (fr)
Other versions
EP3579058A1 (de
Inventor
Polychronis Nakis Karapatis
Marc Stranczl
Benoît LÉGERET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montres Breguet SA
Original Assignee
Montres Breguet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montres Breguet SA filed Critical Montres Breguet SA
Publication of EP3579058A1 publication Critical patent/EP3579058A1/de
Application granted granted Critical
Publication of EP3579058B1 publication Critical patent/EP3579058B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • G04B17/28Compensation of mechanisms for stabilising frequency for the effect of imbalance of the weights, e.g. tourbillon
    • G04B17/285Tourbillons or carrousels
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/22Compensation of changes in the motive power of the mainspring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/06Free escapements
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B45/00Time pieces of which the indicating means or cases provoke special effects, e.g. aesthetic effects
    • G04B45/02Time pieces of which the clockwork is visible partly or wholly

Definitions

  • the present invention relates to timepieces comprising a watch movement equipped with a tourbillon carrying in a cage a mechanical resonator, formed of a balance and a hairspring, and an escapement device.
  • a watch movement equipped with a tourbillon carrying in a cage a mechanical resonator, formed of a balance and a hairspring, and an escapement device.
  • a carousel By vortex, we also understand what a person skilled in the art sometimes calls a carousel.
  • a watch movement comprises a barrel arranged to accumulate mechanical energy and a gear train kinematically connecting the tourbillon cage to the barrel.
  • Watch movements equipped with a tourbillon have been known for a long time. Such a watch movement and even a watch equipped with such a watch movement is generally called a 'tourbillon'.
  • a particular embodiment of a tourbillon provided with a cage carrying a sprung balance and an anchor, which is arranged to cooperate with a fixed escape wheel coaxial with the cage, is disclosed in the patent application WO 2011/006617 .
  • the cage In a classic tourbillon, the cage generally functions as a second mobile. It has a second gear and is driven via this second gear by a middle wheel.
  • the cage carries a classic escapement formed by an escapement mobile and an anchor, in particular a Swiss anchor. The force is transmitted to the escapement mobile via its pinion which meshes, like a satellite, with a fixed seconds wheel integral with the plate.
  • the operation of a conventional Swiss lever escapement is well known to those skilled in the art.
  • the escape wheel has a plurality of teeth which cooperate with two vanes carried by the anchor.
  • Each pallet has at its free end an inclined plane.
  • To generate a maintenance pulse for the sprung balance one of the teeth of the escape wheel comes to rest tangentially against the inclined plane of one of the two pallets, so as to exert a torque on the anchor which is thus driven in rotation by the escape wheel, the latter being driven in rotation by the rotation of the cage via the fixed seconds wheel.
  • the maintenance pulse ends when the pulse nozzle, in each tooth of the escape wheel, is at the bottom of the inclined plane.
  • the escape wheel To generate a maintenance pulse, the escape wheel must be able to undergo a rotation over an angular distance corresponding to the angular distance, relative to the axis of rotation of the escape wheel set, of the inclined plane of the pallet with which it interacts with.
  • the rotation of the escape wheel is intimately linked to that of the tourbillon cage, a kinematic connection being provided between the escape wheel and the tourbillon cage. Consequently, in order to drive the escape wheel in rotation, the tourbillon, which has a relatively high inertia, must be set in rotation.
  • the maintenance pulse transmitted to the balance is therefore limited in intensity by the inertia of the tourbillon and also of the gear train kinematically connecting the tourbillon cage to the barrel.
  • the inertia of the tourbillon cage is related to the escape wheel, which increases the inertia of the latter.
  • the tourbillon mechanism is known to average vertical positions and therefore improve the rate of a horological movement in a wristwatch when it is worn.
  • the tourbillon increases the inertia of the escapement device because the tourbillon cage is integral in rotation with the escape wheel. This limits the acceleration that the escape wheel can undergo The impulse given to the balance being dependent on the rotation of the escape wheel, it is not possible to increase the frequency above 5 Hz in such a way. reliable in terms of time.
  • the possible oscillation frequency for the sprung balance of such a mechanism whirlpool is limited.
  • the frequency of oscillation of a conventional sprung balance in a tourbillon is generally less than five Hertz (5 Hz) and can in certain specific cases reach 5 Hz. It is usually for example three Hertz. It will be understood that this limits the running precision that can be obtained with a watch movement equipped with a conventional tourbillon.
  • the aim of the present invention is to provide a solution to the problem of the conventional tourbillon mentioned above, so as to make it possible to further increase the chronometric benefit of a tourbillon, in particular to increase the running precision of the watch movement equipped with 'a tourbillon according to the invention by the arrangement of a mechanical resonator in the tourbillon cage, having an oscillation frequency Fo greater than the conventional frequencies, preferably greater than five Hertz (Fo> 5Hz).
  • the invention relates to a timepiece comprising a watch movement equipped with a tourbillon, which comprises a cage arranged rotating around a main axis, a barrel, arranged to accumulate mechanical energy, and a cog kinematically connecting the tourbillon cage to the barrel.
  • the tourbillon carries a mechanical resonator, made up of a balance and a hairspring, and an escapement device.
  • the magnetic escapement further comprising a magnetic element which, or a plurality of magnetic elements each of which is arranged to have an oscillating movement which is synchronous with the oscillation of the mechanical resonator and which has a non-zero radial component relative to said rotation axis.
  • the magnetic element or each of the magnetic elements of the plurality of magnetic elements is coupled, at least momentarily periodically, with the magnetic structure or the magnetic structures so that the escape mobile performs a rotation by an angular period predetermined at each period of oscillation of the balance.
  • the magnetic escapement presents, in normal operation of the watch movement, alternately phases of energy accumulation, originating from a conversion of mechanical energy supplied by the barrel into magnetic potential energy in the magnetic escapement, and phases of transfer of energy accumulated in the magnetic escapement to the magnetic resonator.
  • the energy pulses transmitted to the mechanical resonator to maintain it are no longer limited in intensity by the inertia of the tourbillon cage.
  • the inertia of the cog no longer influences the generation of these energy impulses.
  • the anchor here forms a magneto-mechanical converter.
  • the magnetic escapement according to the present invention therefore makes it possible to temporally dissociate the periodic transmission of a certain quantity of energy from the barrel to the magnetic escapement, which is arranged to accumulate it momentarily, and the transmission of this accumulated energy from the barrel.
  • magnetic escapement with mechanical resonator therefore makes it possible to temporally dissociate the periodic transmission of a certain quantity of energy from the barrel to the magnetic escapement, which is arranged to accumulate it momentarily, and the transmission of this accumulated energy from the barrel.
  • the sustaining pulses supplied by the magnetic escapement to the mechanical resonator can be generated mainly without rotation of the escape wheel and substantially independent of such rotation.
  • the inertia of the gear train and the inertia of the tourbillon cage no longer hinder the generation of the maintenance pulses.
  • the radial nature of the force which intervenes mainly to generate each sustaining pulse after a phase of accumulation of magnetic potential energy in the magnetic escapement so that the fact that the cage rotates either not or only at a small angle is substantially inconsequential on the generation of sustain pulses.
  • the tourbillon mechanism equipped with a magnetic escapement according to the invention can deliver sustain pulses of short duration and of relatively high intensity.
  • the mechanical resonator comprises a balance which is pivoted magnetically in the tourbillon cage, which for this purpose comprises two magnetic bearings.
  • the timepiece comprises a horological movement 2 equipped with a tourbillon 4 comprising a cage 6 arranged to rotate around a main axis 8, a barrel 10 arranged to accumulate mechanical energy and a gear 11 connecting kinematically the tourbillon cage to the barrel.
  • the tourbillon carries a mechanical resonator 14, formed of a balance 16 and a hairspring 15, and an escapement device 18.
  • the tourbillon is pivoted between a plate 3 and a bridge 9.
  • the escape device consists of a magnetic escapement which comprises an escapement mobile 20 formed of an escapement pinion 24 and a first escape wheel 22, the latter comprising a first magnetic structure 26 having a generally annular shape and centered on an axis of rotation 28 of the escape unit.
  • the magnetic escapement comprises a stopper 30 which momentarily couples, in each alternation of the oscillation of the mechanical resonator 14, this mechanical resonator to the exhaust mobile 20.
  • This stopper and the exhaust mobile are pivoted between a part of the cage. 6 and an exhaust bridge 19 carried by this cage.
  • the stopper undergoes, when the mechanical resonator oscillates, a back and forth movement interspersed with rest phases where the stopper is stopped alternately in two rest positions where it is respectively in abutment against two pins 36 and 37.
  • the stopper is formed by an anchor which carries two magnetic elements 32 and 33 each arranged so as to present an oscillating movement which is synchronous with the oscillation of the mechanical resonator and which is oriented mainly in a radial direction relative to the axis of rotation 28 of the anchor.
  • the two magnetic elements are similar and located on the same side of the escape wheel 22. They are both coupled simultaneously in a similar manner to the first magnetic structure, which is arranged so that these two magnetic elements are coupled with it. continuously (or almost continuously) and so that their respective magnetic couplings add up. The operation of this magnetic escapement will be described in more detail below.
  • the escapement mobile 20 comprises a second wheel 38 comprising a second magnetic structure 40 which has planar symmetry with the first magnetic structure 26 and which is located at a distance from the latter so as to allow the two magnetic elements 32 and 33 to be located, when they oscillate, at least momentarily between the first and second magnetic structures.
  • the two magnetic elements 32 and 33 interact, in a similar manner, simultaneously with the first and second magnetic structures, so that the effects add up.
  • the two magnetic elements are coupled with the first and second magnetic structures so that the escapement mobile performs a rotation of a predetermined angular period at each period of oscillation of the balance 16.
  • the first and second magnetic structures and are formed respectively. a first permanent magnet and a second permanent magnet which each have an axial magnetization and the same polarity.
  • the two magnetic elements of the anchor are each formed by a permanent magnet having axial magnetization and reverse polarity relative to the first and second magnets, so as to undergo a magnetic repulsion force with each of the two magnetic structures.
  • the first and second wheels 22 and 38 respectively carry a first ferromagnetic structure 44 and a second ferromagnetic structure 46 which respectively cover the first and second magnetic structures on the two outer sides of the assembly consisting of these first and second magnetic structures, so as to form in combination with a few fixing pins (see Figure 3 ) rising from each of the two ferromagnetic structures, some shielding of the first and second magnetic structures and of each magnetic element located between them and thus magnetically coupled with them.
  • the two ferromagnetic structures respectively form two supports for the two magnetic structures.
  • the magnetic escapement is partially shielded.
  • the magnetic fields of magnetic structures and magnetic elements are confined by the first and second ferromagnetic structures.
  • the magnetic escapement is arranged so as to present, in normal operation of the watch movement, alternately phases of energy accumulation, originating from a conversion of mechanical energy supplied by the barrel into magnetic potential energy in the magnetic escapement, and phases of transfer of energy accumulated in the magnetic escapement to the magnetic resonator.
  • Each energy accumulation phase and the energy transfer phase which follows it occur during a time interval equal to half of a period of oscillation of the mechanical resonator.
  • the Figure 5 shows two energy curves magnetic potential 66 and 68, respectively for the two rest positions of the anchor 30 where the latter is respectively resting against the stops 36 and 37, which each correspond to the magnetic potential energy E PM in the magnetic escapement in function of the angle ⁇ giving the angular position of the exhaust mobile 20 and therefore of the magnetic structures 26 and 40 (it will be noted that this angle ⁇ is measured according to the direction of rotation of the exhaust mobile, namely the clockwise direction in the example shown in Figures 6 to 9 ).
  • a magnetic escapement of the type selected for the first embodiment of the invention is disclosed in the patent application EP 3 208 667 A1 . Its operation and the characteristics specific to this operation which are used in the context of the present invention will be described below.
  • the Figures 6 to 9 show four successive instants of an alternation of the balance 16 and an alternation of the anchor 30 which is momentarily coupled to this balance.
  • the two magnetic structures 26 and 40 together define, in each of the two rest positions of the anchor 30, increasing portions of magnetic potential energy PC1, respectively PC2 for the magnetic elements 32 and 33 of the anchor 30 which are both coupled, here continuously, to the two magnetic structures.
  • these increasing portions are defined substantially by a magnetic track 58 which each of the two magnetic structures 26 and 40 comprises, this magnetic track having a particular line, alternately entering and exiting relative to a median geometric circle.
  • this particular line is adapted to an accumulation of potential magnetic energy during a rotation of the escapement mobile over a certain angular distance, while the anchor is alternately in its two positions. rest.
  • Each magnetic track 58 is formed by the permanent magnet which constitutes the corresponding magnetic structure, this permanent magnet being arranged in magnetic repulsion with the permanent magnets which constitute the two magnetic elements 32 and 33, as already described.
  • the increasing portions PC1 and PC2 thus define angular ramps for the accumulation of magnetic potential energy in the magnetic escapement.
  • the two magnetic structures 26, 40 and therefore the exhaust mobile undergo a torque of magnetic force (shown diagrammatically in Figures 8 and 9 by two tangential arrows FT) having a direction opposite to the direction of rotation of the escapement mobile (given in these figures by a circular arrow), that is to say opposite to a driving torque applied by the barrel via the tourbillon cage to the exhaust mobile, and an intensity less than that of this driving torque, so that the exhaust mobile rotates through a certain angle to allow the accumulation of a certain magnetic potential energy in the magnetic exhaust.
  • a torque of magnetic force shown diagrammatically in Figures 8 and 9 by two tangential arrows FT having a direction opposite to the direction of rotation of the escapement mobile (given in these figures by a circular arrow), that is to say opposite to a driving torque applied by the barrel via the tourbillon cage to the exhaust mobile, and an intensity less than that of this driving torque
  • each magnetic force FM1, respectively FM2 having, on the one hand, a non-zero tangential component relative to the axis of rotation of the exhaust mobile (c ' ie a component tangent at all points to a geometric circle centered on the axis of rotation 28).
  • these magnetic forces FM1 and FM2 are oriented so that the anchor also undergoes a torque of magnetic force, which maintains the fork 52 in support against the stop pin 36, respectively 37 depending on whether the anchor is in one to the other of its two rest positions in the phase of energy accumulation considered.
  • the magnetic forces FM1 and FM2 are oriented so that the torque of magnetic force applied to the anchor is greater than the torque of magnetic force applied to this anchor at the end of an energy accumulation phase (situation corresponding to that of the Figure 6 , but already visible at the Figure 9 showing an intermediate situation of the magnetic escapement during an energy accumulation phase).
  • the magnetic escapement is arranged so that the increasing portions PC1 of the first magnetic potential energy curve 66 are respectively offset by an angular half-period P / 2 relative to the increasing portions PC2 of the second curve d 'magnetic potential energy 68.
  • the two magnetic structures define for the two magnetic elements 32 and 33, in each of the two rest positions of the anchor, magnetic barriers BM1, respectively BM2 which succeed the increasing portions PC1, respectively PC2 .
  • the magnetic barriers BM1 and BM2 of a magnetic potential energy curve 66, 68 are formed respectively by magnetized areas 60 and 62 which are located alternately on either side of the magnetic track 58. Each barrier magnetic BM1 is thus located angularly between two successive magnetic barriers BM2 (and therefore vice versa).
  • two successive magnetic barriers BM1 or BM2 are angularly offset by an angular period P.
  • the two magnetic elements of the anchor are angularly offset, relative to the axis of rotation 28, substantially by one. angle equal to 3P / 2 (generally an odd number of half-periods P / 2).
  • the two anchor rest positions when one of the two magnetic elements is coupled with an exiting part of the track 58, the other is coupled with a reentrant part of this track. Then, when the first magnetic element presents itself in front of an external magnetized pad 60, the second presents itself in front of an internal magnetized pad 62, and vice versa.
  • the magnetic barriers are arranged so as to generate, on the two magnetic elements having climbed a preceding angular ramp, a relatively large torque of magnetic force which is opposed to the driving torque applied by the barrel to the escape wheel set, so as to be able to stop the angular advance of the escape wheel set.
  • the exhaust mobile finally stops at a substantially determined angular position (situation corresponding to the Figure 6 ), corresponding on the Figure 5 at the stable points E 1 , E 3 , E 2N + 1 , with N> 0, alternately on curves 66 and 68.
  • the watch movement 2 comprises a rocket 12 for equalizing the torque supplied by the barrel 10 to the tourbillon cage 6, so that the escapement mobile is subjected to a substantially constant torque in the cylinder.
  • the two magnetic elements 32 and 33 each undergo a radial magnetic force FR1 and FR2 (situation corresponding to the Figure 7 ), relative to the axis of rotation 28 of the exhaust mobile, during an alternation of its oscillating movement and in the direction of this oscillating movement during this alternation.
  • this radial magnetic force is generally a radial component of the total magnetic force exerted on each of the magnetic elements.
  • the oscillating movement of each of the magnetic elements is, in the preferred variant which is shown, substantially radial relative to the axis of rotation 28 of the exhaust mobile and therefore of the magnetic structures 26 and 40 which are generally centered on this rotation axis.
  • the axis of rotation of the anchor is positioned for this purpose in the watch movement.
  • the magnetic forces, acting respectively on the magnetic elements of the anchor, which provide mechanical energy to this anchor, in the form of a work of a couple of magnetic force, are therefore here substantially the radial components FR1, FR2, called also radial magnetic forces, respective total magnetic forces.
  • each alternation of the anchor 30 is started by an initial drive of this anchor by the balance via a pin 50 (pin having a truncated disc profile) which is placed between the two horns. of the fork 52 of the anchor.
  • This initial phase allows the magnetic elements 32 and 33 to each undergo an initial radial displacement before they undergo, in a following phase of the considered alternation of their oscillating movement, a drop in magnetic potential energy so that the magnetic escapement undergoes an overall decrease in potential energy magnetic, referenced D1 and D2 at the Figure 5 , during each alternation of the oscillation of the balance 16 and consequently of each alternation of the oscillating movement of the anchor 30.
  • the anchor passes from one rest position to the other of so that the magnetic potential energy in the magnetic escapement varies from a situation described by curve 66 to a situation described by curve 68 or vice versa, depending on whether the anchor is initially in one or the other of its two rest positions at the beginning of the considered alternation.
  • the arrangement of the magnetic escapement described above from which derives the profile of each of the two curves 66 and 68, therefore allows this magnetic escapement to convert into mechanical energy the magnetic potential energy accumulated in the accumulation phase of previous energy to deliver it to the anchor in the form of a torque force that works as the anchor rotates.
  • the anchor becomes driving and provides an energy pulse to the balance via its fork 50, as in a conventional mechanical escapement, to maintain the oscillation of the balance spring.
  • the magnetic escapement selected in the context of the first embodiment is substantially at constant force; that is to say that the decreases in magnetic potential energy in the phases of energy transmission to the balance remain substantially constant in the useful operating range of the timepiece. It is a property of the magnetic system of the selected magnetic escapement (see Figure 5 ). Indeed, even in the absence of a device for equalizing the force torque applied to the exhaust mobile by the barrel, the sustain pulses supplied to the mechanical resonator in said useful operating range (torque forces applied by the barrel to the escapement mobile varying within a given range of values) correspond respectively to quantities of energy having similar values.
  • the spindle 12 for equalizing the torque supplied by the barrel to the tourbillon cage / to the escape wheel set therefore serves here to improve the efficiency of the entire system (watch movement).
  • the increasing portions of the first magnetic potential energy curve are respectively angularly offset relative to the increasing portions of the second magnetic potential energy curve, each magnetic barrier of one of the first and second magnetic potential energy curves being located angularly between two successive magnetic barriers on the other of these first and second magnetic potential energy curves.
  • the variant of the first embodiment shown comprises six external magnetized pads 60 forming as many magnetic stops to temporarily stop the escape wheel and also six internal magnetized pads 62 also forming as many magnetic stops. It will be noted that the number of external / internal magnetized pads may be different and preferably greater. Thus in another variant, the number of external / internal magnetized pads is equal to ten or twelve. It will also be noted that, in another variant, provision is made to have only internal magnetized pads or, preferably, only external magnetized pads.
  • the invention makes it possible to increase the frequency of oscillation of the sprung balance, even greatly, it is provided for this purpose, in particular to maintain the angular speed of the tourbillon cage at one revolution per minute, which the tourbillon carries an intermediate mobile 74, the intermediate wheel 76 of which meshes with the escape pinion 24 and of which the intermediate pinion 78 meshes with the fixed seconds wheel 80 which the watch movement comprises.
  • the intermediate wheel is a wheel that reduces the frequency of rotation of the escape wheel and is here arranged so that the tourbillon cage performs one revolution on itself per minute.
  • the oscillation frequency Fo of the mechanical resonator is greater than five Hertz (Fo> 5 Hz).
  • the frequency of rotation F Rot of the escape wheel is determined by the frequency of the mechanical resonator Fo and by the number of external magnetized areas 60, respectively by the number of internal magnetized areas 62.
  • FIG. 10 To the Figure 10 is shown, in cross section similar to that of the Figure 3 , a second embodiment of the invention. Onne will describe below that the distinctive elements of this second embodiment.
  • the magnetic escapement is identical to that of the first embodiment and that all the variants which have been described for this first embodiment also apply for the second embodiment, which is distinguished by the arrangement of the mechanical resonator 14A which comprises a balance 16A magnetically pivoted in the cage 6A of the tourbillon 4A.
  • the cage comprises for this purpose two magnetic bearings 84 and 86 which are formed respectively by two magnets 88 and 90, the shaft 92 of the balance 16A being provided in ferromagnetic material to ensure its alignment between the two magnets.
  • the first variant is shown on Figure 11 , in a simplified way.
  • the escapement device 18B comprises an anchor 30B and an escapement mobile 20B, formed of a single wheel 22 similar to that of the variants described above and therefore carrying a magnetic structure 26 which will not be described here again.
  • On this Figure 11 there is shown the median geometric circle 96 around which substantially intervenes each energy pulse supplied to the anchor 30B which transmits it to the mechanical resonator 14B (of which only the balance 16A has been shown schematically). This median geometric circle 96 separates the re-entrant portions of the entering portions of the magnetic track 58 and also the outer stopping areas 60 from the inner stopping areas 62, which form the magnetic barriers described above.
  • this circle 96 separates two annular and contiguous magnetic tracks 98 and 100 opposite which are located the only magnetic element 32B of the anchor respectively in the two rest positions of this anchor and therefore alternately during the accumulation phases of successive magnetic potential energy in the magnetic escapement.
  • the operation of this magnetic escapement is similar to that already described.
  • the major distinction of this variant lies in the anchor 30B which is provided with a single magnet 32B, arranged in repulsion of the magnetized magnetic structure 26, and in the escape mobile which comprises only a single magnetic structure arranged at a level lower / higher than that in which the magnet oscillates when the watch movement is in operation.
  • the variant of Figure 12 is distinguished by the material arrangement of various parts forming the 18C magnetic escapement.
  • the operation is similar to that already described, the magnetic structure 26C having in plan substantially the same design as the structure 26.
  • the escape mobile 20C and its wheel 22C, carrying the magnetic structure 26C differ respectively from the mobile 20B. and its wheel 22 of the previous figure by the fact the structure 26C extends laterally to a core 23, at its periphery, while the structure 26 is arranged on a support disc (with high magnetic permeability or not depending on the variant) .
  • the anchor 30C is, depending on the variant, similar to the anchor 30 or 30B, except for the arrangement of the magnetic elements.
  • the anchor 30C comprises at least one pair of similar magnetic elements 32C and 33C (two identical magnets in the example shown) which are located respectively above and below the magnetic structure 26C and which are both coupled in a similar manner. to this magnetic structure and so that their respective magnetic couplings add up.
  • each pair of magnets is carried by a support 31 made of a material with high magnetic permeability (in particular ferromagnetic) having a general 'C' shape.
  • a third embodiment of the invention will be described below which is characterized by a magnetic escapement 118 without a stopper, the escape mobile 120 being directly magnetically coupled to the mechanical resonator 114 (shown schematically) whose balance 116 carries the magnetic elements 102 and 103.
  • the balance is associated with a hairspring 115.
  • the tourbillon cage 106 is shown schematically by a block to which is fixed one end of the hairspring and which carries the balance 116 and the mobile 120, which are arranged pivoting in the cage 106, respectively around two axes of rotation 8 and 28 as in the two previous embodiments.
  • the escapement mobile 120 rotates continuously and synchronously with the oscillation of the mechanical resonator (that is to say, the escape wheel rotates by a predetermined angular period during each period of oscillation of the balance 116) . It will be noted that the angular speed of the escapement mobile may exhibit a certain variation during each period of oscillation, in particular depending on whether one is in an energy accumulation phase or an energy transfer phase. .
  • the magnetic structure 126 is annular and formed alternately of annular sectors 128, in which are arranged magnets in magnetic repulsion with the magnets 102 and 103 when they appear alternately opposite these annular sectors, and of annular sectors 130 formed of a non-magnetic material, such as brass or aluminum.
  • Each pair of adjacent annular sectors defines an angular period of the magnetic structure.
  • the magnets of the magnetic structure 126 angularly have an increasing thickness in the direction opposite to the direction of rotation provided for the escape wheel set, so as to have an air gap which decreases between each of them and the magnet 102, 103 which passes above (when the exhaust mobile rotates) and also a magnetic flux which intensifies.
  • the Figure 14 represents curves level 134 for the magnetic potential energy in the magnetic escapement (here made up of the magnetic structure 126 and the two magnets 102 and 103 integral with the balance) as a function of the relative angular position of one or the other of the two magnets 102 and 103.
  • the mechanical resonator 114 oscillates, these two magnets oscillate with a phase shift of 180 °, each according to a path represented by the curve 140 in a reference frame of polar coordinates linked to the exhaust mobile.
  • Each annular sector 128 defines a set 128A of level curves, two successive sets 128A being separated by a sector 126A of zero magnetic potential energy defined by an annular sector 126.
  • the level curves 134 are increasing inwardly thereof. ci, i.e. the outer curve has less potential energy than the next curve inside the latter, and so on.
  • EP 2,891,930 describes magnetic escapements of the type selected in the context of the third embodiment.
  • the two magnets 102, 103 are located on a circle 132 of zero position.
  • the mechanical resonator oscillates, these two magnets alternately penetrate above the magnetic structure so that the balance is constantly magnetically coupled to this magnetic structure. So that these two magnets alternately experience the same coupling with the magnetic structure, they exhibit an angular shift of an odd number of angular half-periods of the magnetic structure.
  • the escapement mobile performs a rotation of a determined angular period for each period of oscillation of the balance.
  • the two magnets 102 and 103 mainly undergo a radial movement, relative to the axis of rotation 28 of the escape wheel set, when the balance oscillates. Preferably, their movement is oriented radially when they cross the zero position circle 132 (corresponding to the outer circle of the magnetic structure).
  • the two magnets 102 and 103 are alternately coupled to the magnetic structure so that they successively undergo magnetic coupling with one of the magnetized annular sectors 128.
  • the overall magnetic potential energy in l The magnetic escapement 118 is given by the contour lines 134 at the Figure 14 .
  • the magnetic escapement is arranged so as to present, during normal operation of the watch movement, alternately phases of energy accumulation, originating from a conversion of mechanical energy supplied by the barrel into magnetic potential energy in the magnetic escapement, and phases of transfer of energy accumulated in the magnetic escapement to the magnetic resonator.
  • the magnetic escapement defines upward angular ramps 136 for accumulating magnetic potential energy which the magnets 102 and 103 undergo alternately during the continuous rotation of the magnetic structure during successive energy accumulation phases during which they successively and partially climb these ascending angular ramps.
  • the magnetic interaction force between the magnets 102, 103 and the magnetic structure is oriented perpendicular to the level lines 134, these magnets then experience a magnetic force which is essentially perpendicular to the radius it forms with the axis of rotation 28
  • the magnetic structure 126 (and therefore the exhaust mobile) undergoes, during each energy accumulation phase, a couple of magnetic force, relative to its axis of rotation, having a direction opposite to that of 'a driving torque, applied by the barrel via the tourbillon cage to the escapement mobile.
  • the arrangement of the magnets 102, 103 and the magnetized annular sectors 128 is provided so that, in normal operating mode, the intensity of the magnetic force torque is lower than that of the driving torque, so that the cellphone exhaust can continue to rotate and rotate through a certain angle, thus allowing a build-up of potential energy in the magnetic escapement.
  • the magnetic escapement also defines descending radial ramps 138 of magnetic potential energy which the two magnets 102 and 103 descend alternately after having respectively climbed the ascending angular ramps 136.
  • descending a descending radial ramp is oriented perpendicular to the level lines 134, it then undergoes, during energy transfer phases, mainly a radial magnetic force, relative to the axis of rotation 28, during each alternation of the oscillation movement of the mechanical resonator and in the direction of this oscillation movement during this alternation, so that the magnetic escapement then converts into mechanical energy the magnetic potential energy accumulated in the preceding energy accumulation phase to be able to maintain the oscillation of the mechanical resonator.
  • the decrease in magnetic potential energy in the magnetic escapement therefore results mainly from a work of the radial magnetic force exerted alternately on each of the two magnetic elements, this work of the radial magnetic force being transmitted directly to the mechanical resonator, so that this mechanical resonator receives a pulse of mechanical energy in each alternation of its oscillation movement.
  • the descending radial ramps 138 extend over a certain angular distance so that the continuous movement of the escape wheel has no impact on the particular characteristics sought within the framework of the present invention.
  • the important thing is that the main radial force which is exerted alternately on each of the two magnets fixed to the balance hardly depends on any rotation of the escapement mobile. Indeed, we observe at the Figure 14 that the arrangement of the magnetic structure makes it possible to generate the energy pulses for the balance without rotation of the escapement mobile. If the latter stopped at the end of the energy accumulation phase, then the balance would nevertheless receive in the form of a pulse the same quantity of energy as that which it receives by undergoing during the energy transfer phases a some rotational movement.
  • a rocket (similar to the rocket 12 shown in the context of the first embodiment) incorporated into the watch movement makes it possible to equalize the torque supplied by the barrel to the tourbillon cage, so that the escapement mobile is subjected to a constant torque during normal operation of the watch movement.
  • a rocket makes it possible to obtain a stationary operating phase over the entire useful operating range of the watch movement, with the amplitude of oscillation of the balance which remains constant and sustain pulses. which provide the balance with the same amount of mechanical energy. All the benefit provided by a rocket for equalizing the torque of force in a conventional mechanical watch movement is brought to the timepiece according to this third embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromechanical Clocks (AREA)
  • Micromachines (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Electric Clocks (AREA)
  • Measurement Of Unknown Time Intervals (AREA)

Claims (11)

  1. Uhrmachereistück, das ein Uhrwerk (2) umfasst, das mit einem Tourbillon (4), das ein Rohwerk (6, 6A, 106) umfasst, das um eine Hauptachse drehend angeordnet ist, mit einem Federhaus, das angeordnet ist, um mechanische Energie zu speichern, und mit einem Räderwerk, das kinematisch das Rohwerk des Tourbillons mit dem Federhaus verbindet, ausgerüstet ist, wobei das Tourbillon einen mechanischen Resonator (14, 14B, 114), der aus einer Unruh (16, 16A, 116) und einer Spiralfeder gebildet wird, und eine Hemmungsvorrichtung trägt; wobei die Schwingungsfrequenz (Fo) des mechanischen Resonators im Wesentlichen gleich oder größer sechs Hertz (Fo>=6Hz) ist und es sich bei der Hemmungsvorrichtung um eine magnetischen Hemmung (18) handelt, die ein Hemmungsdrehteil (20, 20B, 20C, 120) umfasst, das aus einem Hemmungsritzel und mindestens einer Magnetstruktur (26, 40, 26C, 126) gebildet wird, welche eine allgemeine ringförmige Form aufweist, die auf einer Drehachse (28) des Hemmungsdrehteils zentriert ist, wobei diese magnetischen Hemmung weiter ein Magnetelement oder eine Vielzahl von Magnetelementen (32, 33, 32B, 32C, 33C, 102, 103) umfasst, wobei dieses Magnetelement oder jedes Magnetelement der Vielzahl von Magnetelementen derart angeordnet ist, um eine Schwingungsbewegung aufzuweisen, die mit der Schwingung des mechanischen Resonators synchron ist, und eine radiale Komponente ungleich null in Bezug auf die Drehachse aufweist, wobei das Magnetelement mit der mindestens einen Magnetstruktur gekoppelt ist, oder jedes Magnetelement der Vielzahl von Magnetelementen mindestens augenblicklich in periodischer Form mit der mindestens einen Magnetstruktur derart gekoppelt ist, dass das Hemmungsdrehteil bei jeder Schwingungsperiode der Unruh eine Drehung um eine bestimmte Winkelperiode ausführt; wobei die magnetische Hemmung derart angeordnet ist, um bei einem Normalbetrieb des Uhrwerks abwechselnd Phasen der Speicherung von Energie, die aus einer Umwandlung von mechanischer Energie, die von dem Federhaus bereitgestellt wird, in potenzielle magnetische Energie in der magnetischen Hemmung stammt, und Übertragungsphasen von in dem Federhaus gespeicherter Energie zum mechanischen Resonator aufzuweisen; wobei die magnetische Hemmung derart angeordnet ist, dass:
    - im Laufe jeder Phase der Speicherung von Energie, die mindestens eine Magnetstruktur ein magnetisches Kraftmoment in Bezug auf die Drehachse erfährt, das eine entgegengesetzte Richtung zu jenem eines Antriebsmoments aufweist, das über das Rohwerk des Tourbillons an dem Hemmungsdrehteil angelegt wird, und eine geringere Stärke als jene dieses Antriebsmoments, sodass sich das Hemmungsdrehteil um einen bestimmten Winkel dreht, um die Speicherung einer bestimmten potenziellen magnetischen Energie in der magnetischen Hemmung zu ermöglichen;
    - im Laufe jeder Übertragungsphase von Energie das Magnetelement oder jedes Magnetelement einer Einheit von Magnetelementen, die aus der Vielzahl von Magnetelementen in einer vorherigen Phase der Speicherung von Energie mit der mindestens einen Magnetstruktur gekoppelt war, im Laufe einer Halbschwingung seiner Schwingungsbewegung und in der Richtung der radialen Komponente dieser Schwingungsbewegung während dieser Halbschwingung eine radiale Magnetkraft in Bezug auf die Drehachse erfährt, sodass die magnetische Hemmung somit potenzielle magnetische Energie, die in der vorherigen Phase der Speicherung von Energie gespeichert worden ist, in mechanische Energie umwandelt, um die Schwingung des mechanischen Resonators aufrecht erhalten zu können.
  2. Uhrmachereistück nach Anspruch 1, dadurch gekennzeichnet, dass die magnetische Hemmung ein Gesperr (30, 30B, 30C) umfasst, das augenblicklich bei jeder Halbschwingung der Schwingung des magnetischen Resonators diesen mechanischen Resonator mit dem Hemmungsdrehteil (20, 20B, 20C) koppelt, wobei das Gesperr das Magnetelement oder die Vielzahl von Magnetelementen trägt und, wenn der mechanische Resonator (14, 14B) schwingt, eine Hin-und-Her-Bewegung erfährt, die durch Ruhephasen unterbrochen ist, in denen das Gesperr abwechselnd in zwei Ruhepositionen angehalten wird; dadurch, dass die mindestens eine Magnetstruktur in den beiden Ruhepositionen des Gesperrs jeweils eine erste Kurve potenzieller magnetischer Energie (66) und eine zweite Kurve potenzieller magnetischer Energie (68), beide in Abhängigkeit von dem Winkel des Hemmungsdrehteils definiert, und die jeweils Folgendes aufweisen:
    - ansteigende Abschnitte (PC1, PC2) zur magnetischen Interaktion zwischen der mindestens einen Magnetstruktur und dem Magnetelement oder der Vielzahl von Magnetelementen, die, aus der Vielzahl von Magnetelementen, mit der mindestens einen Magnetstruktur in der entsprechenden Ruheposition des Gesperrs gekoppelt sind, wobei diese ansteigenden Abschnitte derart konfiguriert sind, um bei dem Normalbetrieb zyklisch und periodisch durch dieses Magnetelement oder durch diese Einheit von Magnetelementen erklommen werden zu können, und
    - Magnetsperren (BM1, BM2), die jeweils den ansteigenden Abschnitten folgen, wobei diese Magnetsperren derart angeordnet sind, um einen Winkelvorschub des Hemmungsdrehteils zu stoppen, während sich das Gesperr in der entsprechenden Ruheposition befindet;
    wobei die ansteigenden Abschnitte der ersten Kurve potenzieller magnetischer Energie jeweils in Bezug auf die ansteigenden Abschnitte der zweiten Kurve potenzieller magnetischer Energie versetzt sind, wobei jede Magnetsperre einer von der ersten und der zweiten Kurve potenzieller magnetischer Energie winkelig zwischen zwei aufeinanderfolgenden Magnetsperren der anderen dieser ersten und zweiten Kurve potenzieller magnetischer Energie gelegen ist; wobei die magnetische Hemmung derart angeordnet ist, dass:
    - die Phasen der Speicherung von Energie hauptsächlich und jeweils in den aufeinanderfolgenden Ruhephasen des Gesperrs auftreten,
    - bei jeder Phase der Speicherung von Energie das Magnetelement oder die Einheit von Magnetelementen, die aus der Vielzahl von Magnetelementen mit der mindestens einen Magnetstruktur gekoppelt sind, in der Lage ist, mindestens teilweise einen der ansteigenden Abschnitte bei einer bestimmten Drehung des Hemmungsdrehteils zu erklimmen,
    - die ansteigenden Abschnitte der ersten und zweiten Kurve potenzieller magnetischer Energie bei dem Normalbetrieb jeweils und abwechselnd mindestens teilweise bei den aufeinanderfolgenden Phasen der Speicherung von Energie erklommen werden können;
    und dadurch, dass die magnetische Hemmung weiter derart angeordnet ist, dass:
    - die Übertragungsphasen von Energie jeweils in den aufeinanderfolgenden Halbschwingungen der Hin-und-Her-Bewegung des Gesperrs auftreten,
    - diese magnetische Hemmung beim Normalbetrieb im Allgemeinen eine Verringerung an magnetischer potenzieller Energie (D1, D2) bei jeder der aufeinanderfolgenden Halbschwingungen der Hin-und-Her-Bewegung des Gesperrs erfährt, und
    - die Verringerung an magnetischer potenzieller Energie in der magnetischen Hemmung in erster Linie aus einer Arbeit der radialen magnetischen Kraft (FR1, FR2) resultiert, die auf das Magnetelement oder auf jedes Magnetelement der Einheit von Magnetelementen ausgeübt wird, die aus der Vielzahl von Magnetelementen in der vorherigen Ruhephase mit der mindestens einen Magnetstruktur gekoppelt waren, wobei diese Arbeit der radialen magnetischen Kraft somit dem Gesperr bereitgestellt wird, das angeordnet ist, um sie hauptsächlich auf den mechanischen Resonator zu übertragen, sodass dieser mechanische Resonator einen mechanischen Energieimpuls bei jeder Halbschwingung der der Hin-und-Her-Bewegung dieses Gesperrs empfängt.
  3. Uhrmachereistück nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Tourbillon weiter ein Zwischendrehteil (74) trägt, dessen Zwischenrad (76) mit dem Hemmungsritzel (24) eingreift, und dessen Zwischenritzel (78) mit einem Rad eines zweiten Haltestiftes (80) eingreift, das das Uhrwerk umfasst, wobei das Zwischendrehteil ein Drehteil zur Verringerung der Drehfrequenz des Hemmungsdrehteils ist und derart angeordnet ist, dass das Rohwerk des Tourbillons eine Umdrehung um sich selbst pro Minute ausführt.
  4. Uhrmachereistück nach Anspruch 3, dadurch gekennzeichnet, dass die Schwingungsfrequenz (Fo) des mechanischen Resonators einen Wert aufweist, der zwischen inklusive acht Hertz und zwölf Hertz (8Hz=<Fo=<12Hz) gelegen ist.
  5. Uhrmachereistück nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Drehfrequenz (FRot) des Hemmungsdrehteils einen Wert aufweist, der zwischen inklusive einem Viertel und einem Sechzehntel der Schwingungsfrequenz (Fo) des mechanischen Resonators (Fo/4<= FRot<=Fo/16) gelegen ist.
  6. Uhrmachereistück nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die magnetische Hemmung mindestens zwei ähnliche Magnetelemente (32, 33) aufweist, die auf einer selben Seite der Magnetstruktur (26) gelegen sind, und die beide gleichzeitig mit dieser Magnetstruktur derart gekoppelt sind, dass sich ihre jeweiligen magnetischen Kopplungen addieren.
  7. Uhrmachereistück nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die magnetische Hemmung mindestens ein Paar ähnlicher Magnetelemente (32C, 33C) umfasst, die jeweils oberhalb und unterhalb der Magnetstruktur (26C) gelegen sind, und die beide gleichzeitig mit dieser Magnetstruktur derart gekoppelt sind, dass sich ihre jeweiligen magnetischen Kopplungen addieren.
  8. Uhrmachereistück nach einem der Ansprüche 1 bis 6, wobei die Magnetstruktur eine erste Magnetstruktur (26) ist; dadurch gekennzeichnet, dass das Hemmungsdrehteil eine zweite Magnetstruktur (40) umfasst, die eine Symmetrieebene mit der ersten Magnetstruktur aufweist, und die auf Abstand zu dieser letzteren gelegen ist, um es dem Magnetelement oder jedem Magnetelement der Vielzahl von Magnetelementen (32, 33) zu ermöglichen, bei der Schwingungsbewegung mindestens augenblicklich zwischen der ersten und zweiten Magnetstruktur gelegen zu sein.
  9. Uhrmachereistück nach Anspruch 8, dadurch gekennzeichnet, dass die erste Magnetstruktur und die zweite Magnetstruktur jeweils aus einem ersten Dauermagneten und einem zweiten Dauermagneten gebildet ist, die jeweils eine axiale Magnetisierung und eine selbe Polarität aufweisen; und dadurch, dass das Magnetelement oder jedes Magnetelement der Vielzahl von Magnetelementen (32, 33) durch einen Dauermagneten gebildet wird, der eine axiale Magnetisierung und eine umgekehrte Polarität in Bezug auf den ersten und zweiten Magneten aufweist, um bei einer magnetischen Kopplung mit jeder der ersten und zweiten Magnetstruktur eine magnetische Abstoßkraft zu erfahren.
  10. Uhrmachereistück nach Anspruch 9, dadurch gekennzeichnet, dass das Hemmungsdrehteil (20) eine erste ferromagnetische Struktur (44) und eine zweite ferromagnetische Struktur (46) trägt, die jeweils die erste und zweite Magnetstruktur (26, 40) der beiden Außenseiten der Einheit dieser ersten und zweiten Magnetstrukturen abdecken, um somit eine Schirmung der ersten und zweiten Magnetstrukturen und jedes Magnetelements zu bilden, wenn dieses letztere zwischen diesen gelegen ist, und somit magnetisch mit diesen gekoppelt ist.
  11. Uhrmachereistück nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Unruh (16A) magnetisch in das Rohwerk (6A) des Tourbillons gedreht wird, das zu diesem Zweck zwei magnetische Lager (84, 86) umfasst.
EP19173161.1A 2018-06-07 2019-05-07 Uhr, die ein tourbillon umfasst Active EP3579058B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18176488 2018-06-07

Publications (2)

Publication Number Publication Date
EP3579058A1 EP3579058A1 (de) 2019-12-11
EP3579058B1 true EP3579058B1 (de) 2021-09-15

Family

ID=62563079

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19173161.1A Active EP3579058B1 (de) 2018-06-07 2019-05-07 Uhr, die ein tourbillon umfasst

Country Status (4)

Country Link
US (1) US11640141B2 (de)
EP (1) EP3579058B1 (de)
JP (1) JP6871973B2 (de)
CN (1) CN110579954B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663868B1 (de) 2018-12-07 2021-09-08 Montres Breguet S.A. Uhrwerk, das ein tourbillon mit einem festen magnetischen rad umfasst
EP3882711A1 (de) * 2020-03-18 2021-09-22 The Swatch Group Research and Development Ltd Uhrwerk, das mit einer uhrhemmung mit einem magnetischen system ausgestattet ist
EP4047425A1 (de) * 2021-02-19 2022-08-24 Montres Breguet S.A. Vorrichtung zum vorübergehenden anhalten des betriebs einer mechanischen uhr
EP4105734A3 (de) * 2021-06-15 2023-03-15 Montres Breguet S.A. Mikromechanischer mechanismus, der mit einem schlag-betätigungssystem ausgestattet ist, insbesondere für uhren

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH510285A (fr) * 1969-10-22 1971-03-31 Far Fab Assortiments Reunies Echappement à ancre pour pièce d'horlogerie
CH688298B5 (fr) 1995-02-16 1998-01-30 Nat Electronics Consolidated L Pièce d'horlogerie électrique, notamment montre-bracelet.
EP0973076B1 (de) * 1998-07-16 2008-02-13 ETA SA Manufacture Horlogère Suisse Uhr mit Tourbillon
JP4607966B2 (ja) * 2004-10-26 2011-01-05 エルヴェーエムアッシュ スイス マニュファクチュール エスアー 腕時計用の調速機構、及び、当該調速機構を有する機械式ムーブメント
EP1698949A1 (de) * 2005-03-03 2006-09-06 Audemars Piguet (Renaud et Papi) SA Automatische Aufziehenvorrichtung zum Antreiben der Energiequelle eines tragbaren Gerät
CH697932B9 (de) * 2005-07-25 2009-05-15 Progress Watch Corp Uhr mit mehreren Tourbillons zur direkten Anzeige der Zeit.
CH705118B1 (fr) * 2007-12-27 2012-12-31 Chopard Technologies Sa Mouvement horloger comportant un organe réglant à fréquence d'oscillation élevée.
CH701490A1 (fr) * 2009-07-17 2011-01-31 Franck Mueller Watchland S A Tourbillon a roue d'echappement fixe.
EP2410387B1 (de) * 2010-07-19 2016-07-06 Nivarox-FAR S.A. Unruh mit Trägheitsregulierung ohne Einsatzteil
EP2450758B1 (de) 2010-11-09 2017-01-04 Montres Breguet SA Magnetischer Drehzapfen und elektrostatischer Dhrerzapfen
EP2790067A1 (de) * 2013-04-12 2014-10-15 Montres Breguet SA Hemmungssystem für einen Spiralunruh-Schwinger
CH707990B1 (fr) 2013-04-24 2017-11-15 Lvmh Swiss Mft Sa Mouvement de montre mécanique comportant un tourbillon et un organe réglant magnétique.
JP6143185B2 (ja) * 2013-09-04 2017-06-07 セイコーインスツル株式会社 動作安定機構、ムーブメントおよび機械式時計
EP2887157B1 (de) * 2013-12-23 2018-02-07 The Swatch Group Research and Development Ltd. Optimierte uhrhemmung
RU2670236C2 (ru) 2013-12-23 2018-10-19 Те Свотч Груп Рисерч Энд Дивелопмент Лтд Устройство регулирования угловой скорости колесного узла в часовом механизме, включающем магнитный спусковой механизм
EP2998801A1 (de) * 2014-09-19 2016-03-23 The Swatch Group Research and Development Ltd. Magnetische Ankerhemmung, und Gangeinstellvorrichtung eines Uhrwerks
CH710487B1 (fr) 2014-12-03 2018-08-31 Nivarox Sa Mécanisme de tourbillon pour mouvement horloger.
GB2533960A (en) * 2015-01-09 2016-07-13 Robert Haylett Kevin An escapement comprising a magnetically braked escape wheel and a tuned mechanical resonator for time keeping in clocks, watches, chronometers and other
CH711219A2 (fr) 2015-06-16 2016-12-30 Montres Breguet Sa Dispositif magnétique de pivotement d'un arbre dans un mouvement horloger.
CH711220A2 (fr) 2015-06-16 2016-12-30 Montres Breguet Sa Dispositif magnétique de pivotement d'un arbre dans un mouvement horloger.
EP3128380B1 (de) * 2015-08-04 2018-11-21 ETA SA Manufacture Horlogère Suisse Uhreinstellmechanismus mit magnetisch synchronisierten dreharmen
EP3136187B1 (de) * 2015-08-31 2018-02-28 Glashütter Uhrenbetrieb GmbH Mechanisches uhrwerk mit einem tourbillon
JP6653181B2 (ja) * 2016-01-21 2020-02-26 セイコーインスツル株式会社 トゥールビヨン、ムーブメント及び時計
EP3208667A1 (de) 2016-02-18 2017-08-23 The Swatch Group Research and Development Ltd Magnetisches hemmungsdrehteil eines uhrwerks
CH712973B1 (de) * 2016-09-23 2023-12-29 Bucherer Ag Tourbillon und Uhr mit Tourbillon.

Also Published As

Publication number Publication date
CN110579954A (zh) 2019-12-17
JP2019211479A (ja) 2019-12-12
CN110579954B (zh) 2021-06-18
US11640141B2 (en) 2023-05-02
EP3579058A1 (de) 2019-12-11
US20190377302A1 (en) 2019-12-12
JP6871973B2 (ja) 2021-05-19

Similar Documents

Publication Publication Date Title
EP3579058B1 (de) Uhr, die ein tourbillon umfasst
CH715049B1 (fr) Pièce d&#39;horlogerie comprenant un tourbillon.
EP3130966B1 (de) Mechanisches uhrwerk, das mit einem bewegungsrückkopplungssysteme ausgestattet ist
EP2115536B1 (de) Uhrwerk
EP2990885B1 (de) Mechanisches Uhrwerk mit magnetischem Hemmungsmechanismus
EP2790068B1 (de) Hemmungssystem für einen Spiralunruh-Schwinger
EP2891930A2 (de) Vorrichtung zur Regulierung der Winkelgeschwindigkeit einer Triebfeder in einem Uhrwerk, das einen magnetischen Hemmungsmechanismus umfasst
EP3365734B1 (de) Oszillator für eine mechanische uhrwerksbewegung
EP3087435A2 (de) Vorrichtung zur steuern der winkelgeschwindigkeit eines räderwerks in einem uhrwerk und mit einem magnetischen uhranker
EP2450756B1 (de) Antischwingungsvorrichtung für Uhrenhemmungsmechanismus
EP3070537A1 (de) Zeitbasiseinheit, die eine hemmung mit direktimpuls und konstanter kraft umfasst
EP3602206B1 (de) Mechanische uhr, die ein uhrwerk mit verbesserter ganggenauigkeit durch eine korrekturvorrichtung umfasst
EP3620867A1 (de) Uhr, die einen mechanischen oszillator umfasst, dessen durchschnittliche frequenz mit der eines elektronischen referenzoszillators synchronisiert ist
EP3602207A1 (de) Uhr mit einer durch eine korrekturvorrichtung verbesserten mechanischen bewegung
CH710863B1 (fr) Mécanisme de stabilisation de fréquence, mouvement et pièce d&#39;horlogerie mécanique.
EP3842876A1 (de) Uhr, die mit einem mechanischen uhrwerk und einer vorrichtung zur korrektur der angezeigten stunde ausgestattet ist
EP3265879B1 (de) Zeitmessendes uhrwerk mit einem regler mit dreidimensionaler magnetischer resonanz
EP3663868B1 (de) Uhrwerk, das ein tourbillon mit einem festen magnetischen rad umfasst
EP3502798B1 (de) Uhrwerksanordnung, die einen mechanischen oszillator umfasst, der mit einer einstellvorrichtung verbunden ist
EP3882713B1 (de) Uhrwerk, das mit einer uhrhemmung mit einem magnetischen system ausgestattet ist
EP3882712B1 (de) Mechanisches uhrwerk, dass mit einer uhrhemmung mit einem elastisch deformierbaren anker ausgestattet ist
CH713636A2 (fr) Pièce d&#39;horlogerie mécanique comprenant un mouvement dont la marche est améliorée par un dispositif de correction.
EP3944027B1 (de) Tragbares gerät, insbesondere armbanduhr, das mit einer stromquellevorrichtung mit einem elektromechanischen wandler ausgestattet ist
EP2189855B1 (de) Tourbillon-Mechanismus
CH709755B1 (fr) Mécanisme d&#39;horlogerie muni d&#39;un résonateur diapason.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200612

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210507

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019007648

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1430959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1430959

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019007648

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

26N No opposition filed

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220507

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230420

Year of fee payment: 5

Ref country code: DE

Payment date: 20230419

Year of fee payment: 5

Ref country code: CH

Payment date: 20230602

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190507