EP3571387B1 - Hochdruckspeicher eines kraftstoffhochdruckeinspritzsystems - Google Patents

Hochdruckspeicher eines kraftstoffhochdruckeinspritzsystems Download PDF

Info

Publication number
EP3571387B1
EP3571387B1 EP18700566.5A EP18700566A EP3571387B1 EP 3571387 B1 EP3571387 B1 EP 3571387B1 EP 18700566 A EP18700566 A EP 18700566A EP 3571387 B1 EP3571387 B1 EP 3571387B1
Authority
EP
European Patent Office
Prior art keywords
chamber
conical
insert
pressure
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18700566.5A
Other languages
English (en)
French (fr)
Other versions
EP3571387A1 (de
Inventor
Philippe Allio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3571387A1 publication Critical patent/EP3571387A1/de
Application granted granted Critical
Publication of EP3571387B1 publication Critical patent/EP3571387B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8069Fuel injection apparatus manufacture, repair or assembly involving removal of material from the fuel apparatus, e.g. by punching, hydro-erosion or mechanical operation

Definitions

  • the present invention relates to a method for manufacturing a high-pressure accumulator for a high-pressure injection system, which is formed from a cylindrical body which delimits a high-pressure chamber, and connecting pieces which are provided with outlet passages for high-pressure liquid opening into the chamber and with a throttle to attenuate the pressure waves generated by downstream injectors.
  • Such a high-pressure accumulator of a high-pressure injection system which is shown in Figure 7 is shown is from the EP 1811165 A2 already known.
  • This rail 100 also called “high pressure accumulator”, is formed by a cylindrical body 111 made of thick forged steel which surrounds a high pressure chamber 112.
  • the body of the rail has outlet fittings 113 for connecting the high pressure lines, each of which is connected to an injector.
  • These connection pieces 113 are traversed by a bore 114 which opens into the chamber 112.
  • a drilled throttle 115 At the bottom of the bore at the connection with the chamber there is a drilled throttle 115.
  • This throttle 115 dampens the pressure waves that are generated in the high pressure liquid of the rail by the closing movements of the injector associated with each connection piece.
  • the orifice 115 created by the bore is sometimes called a "nozzle".
  • nozzles that are drilled into the rail, in the form of inserted nozzles.
  • These nozzles are inserted in the conventional way, i.e. by mastering the negative geometric play (form-fitting clamping) and using a press fit, whereby the insertion forces are controlled.
  • These inserted nozzles are only used for rails without autofrettage or with a low level of autofrettage, since the autofrettage causes residual deformations that make mastering the form-fitting clamping too critical. In this case, an expensive additional post-processing operation of the insertion diameter would be required after the autofrettage.
  • This known solution thus has numerous disadvantages.
  • the object of the present invention is to develop a method for producing a high-pressure accumulator for a high-pressure injection system, which makes it possible to effectively dampen the pressure waves that are generated in the rail by the closing of the injection valves of the downstream injectors, which at the same time is easy to create and creates a weak dispersion of attenuation between nozzles on the same rail or from different rails.
  • the present invention relates to a high-pressure accumulator for a high-pressure injection system for an internal combustion engine, which is formed from a cylindrical body which delimits a high-pressure chamber and connecting pieces.
  • One or more connectors are with one or more exit passages for one Provided high pressure liquid that open into the chamber.
  • a throttle is arranged in the outlet passage in order to attenuate the pressure waves of a downstream injector.
  • the connection pieces each have a passage with a chamber which receives an insert piece which is provided with the throttle.
  • the insert is arranged in the chamber in a force-locking manner by means of an autofrettage process of the high-pressure accumulator.
  • the manufacturing process of the rail is particularly simple and at the same time offers the advantage of being able to create precise and effective throttles for damping the pressure waves (pressure surges).
  • the high-pressure accumulator according to the invention is easy to manufacture and yet has a throttle with low tolerances.
  • the fixed connection of the insert in the high-pressure accumulator takes place in a simple manner and without the need for new or different means, since this fixed connection is made by the autofrettage of the rail.
  • the autofrettage of the rail is a well-known manufacturing process to ensure the fatigue behavior of the rail. This does not extend the production cycle.
  • the restrictor created outside the rail, allows easy manufacture by drilling and finishing operations outside the rail, without risk of foreign matter being introduced into the rail and by avoiding any problem of burrs; on the contrary, this enables smooth edges or roundings to be produced.
  • the passage of the insert pieces has a rounding at the confluence on the side of the high pressure chamber.
  • the passage in the insert is a stepped bore formed from a series of bores of decreasing diameter separated by conical functions. This results in a stepped throttle which enables the insert pieces to be better optimized with regard to the compromise attenuation / loss of the effectiveness of the system.
  • the series of holes of decreasing diameter is just one example of the complex geometry made possible by a nozzle that is machined separately from the rail.
  • the aim is to obtain an asymmetry in the pressure loss, i.e. less pressure loss in the direction which is useful for the injection and more pressure loss in the direction which only contributes to the damping.
  • the passage with the throttle has a conical entrance which forms a sealing seat for the autofrettage process.
  • connection piece has a conical entrance, also here in order to produce the tightness for the autofrettage.
  • the chamber is cylindrical and forms a shoulder with the bore that creates a sealing edge.
  • the insert has an outer surface with a cylindrical part with a large diameter in order to come into the cylindrical chamber with play during assembly. Furthermore, the insert has a small diameter part which protrudes freely in the bore of the connector, the two parts of the insert being connected by a conical segment intended to come against the edge of the connector.
  • the fitting has a conical chamber which is continued through a bore with a cross-section smaller than that of the small base of the conical chamber.
  • the throttle insert has a conical body with a length smaller than the length of the conical chamber and the cross section of its small base is larger than the cross section of the small base of the chamber, the conicity of the chamber and that of the conical Body are identical.
  • the surface of the conical chamber and / or that of the conical body has irregularities, bumps and raised or recessed geometrical shapes to increase the adhesion of the two surfaces in contact by autofrettage and also for better tightness in the case of autofrettage .
  • the cross-section of the part of the insert that comes into the bore is smaller than the cross-section of this bore so as not to be in contact therewith after the rail and the inserts have autofrettage.
  • connection area between the insert and the connector is reduced by the only contact area that can be tensioned by autofrettage.
  • the length of the part of the insert is smaller than the length of the bore, such that the confluence of the throttle is clearly removed from the confluence of the bore in the chamber.
  • the exit of the bore of the insert piece will be well above the confluence of the bore in the chamber and affects the pressure loss.
  • an insert piece with a throttle according to one of the embodiments described above is preferably arranged in each connection piece which leads to a downstream injector.
  • the invention relates to a rail or a high-pressure accumulator 1 of a high-pressure injection system in an internal combustion engine.
  • a common part of this rail is shown in axial section. The other components of the injection system are not shown.
  • the high-pressure accumulator 1 is a thick-walled cylindrical body 11 made of forged steel, which surrounds a high-pressure chamber 12, which is supplied with high-pressure fuel by the high-pressure pump in order to distribute the high-pressure fuel to the injection valves (injectors) which are controlled by the central control unit of the engine.
  • the closing and opening movements of the injectors generate compression and depression waves ("pressure surges"), which are transmitted by the high-pressure fluid into the line connecting the injector to the rail 1 and thus enter the rail.
  • pressure surges compression and depression waves
  • the cylindrical body 11 has connecting pieces for connection 13, which are each connected to the high-pressure chamber 12 through a passage 131 and to its injector through a high-pressure line.
  • the connection piece On the outside, the connection piece has a thread 132 in order to screw on the connection of the high-pressure line.
  • Figure 1 is limited to showing the conventional part of the rail with two connection pieces 13, one is empty and the other has an insert piece 2 with a throttle.
  • the rail 1 has as many connection pieces 13 and high-pressure fuel outlets as it has supplied injectors. All of these fittings 13 preferably have the same structure, and the following description will be limited to one of them.
  • the connector 13 on the right side of the Figure 1 shows its passage 131 without its insert with throttle 2; the connection piece 13 on the left side is equipped with the insert piece with throttle 2.
  • the insert with throttle 2 is shown in section Figure 2 shown separately.
  • the passage 131 in a fitting 13 after the alignment extending to the high pressure chamber 12 is formed from an entry cone 1311 followed by a cylindrical chamber / bore 1312 with a diameter larger than that of the downstream bore 1314 by one Form sealing edge 1313.
  • the passage 131 receives the insert with throttle 2.
  • the insert with throttle 2 has a cylindrical body 21 which is traversed by a stepped bore 22 which is formed from a series of bores of decreasing diameters 222, 224, 226 which are separated by conical connections 223, 225.
  • the entrance of the insert 2 has a conical shape 221 which creates a sealing seat, and the confluence of the last bore 226 into the chamber of the rail has a rounded edge or rounding 227.
  • the stepped bore 22 forms a throttle which is intended to attenuate the pressure waves (compression and depression) which are introduced into the high pressure liquid by the movements of the closing and opening of the injector.
  • the body 21 of the insert piece with its outer surface 23 of the insert piece 2 has a part with a large cross-section 231, which connects to a part with a small cross-section 233 by a conical connection 232 which forms a bearing surface to with the edge 1313 of the passage 131 to cooperate with the connector.
  • the outer surface 23 of the part 233 with a small cross section ends in a rounding 234.
  • the large diameter of the part 231 of the insert 2 is slightly smaller than that of the bore 1312 of the connector 13.
  • the small diameter of the part 233 is significantly smaller than that of the bore 1314 of the connector 13 downstream of the bore 1312, such that the insert 2, which is provided with the throttle, can be easily installed for assembly in the passage 131 of the connector 13 and the part 233 with a small cross-section does not come into contact with the wall of the passage 131 and in particular its bore 1314 is.
  • the stepped bore 1312/1314 makes it possible, although it is not necessary for the hydraulic function, to reduce the diameter of the bore at the level of its intersection with the high-pressure chamber 12.
  • the length of the part 233 of the insert 2 is smaller than the length of the bore 1314, such that the confluence of the throttle 226 is clearly removed from the confluence 1315 of the bore 1314 of the chamber 12.
  • the blocking of the insert 2 or its force-locking arrangement is carried out by autofrettage, as indicated below.
  • the rail 1 After the half cut of the Figure 3 the rail 1, if it is equipped with all insert pieces with throttle 2, is subjected to an autofrettage.
  • a closure which is not shown, is applied to each connection piece 13 against the conical seat 221 of the insert piece 2. This is how the conditions are created.
  • the clamping force F exerted in the axis xx during the autofrettage creates the tightness of the insert 2 (zone A) and also the tightness between the insert 2 and the passage 131 in zone B by the contact between the conical surface 232 of the Insert 2 and the edge 1313 of the connector 13.
  • This exposed area is upstream of the surface of the chamber 12 and the passage 131 of the fitting 13 (in the direction of exiting the high pressure fuel) in front of the insert 2, including the inner surface of the insert 2 and its outer surface upstream of the contact between its conical shoulder 232 and the Edge 1313 which separates the bore 1312 and the bore 1314 of the connection piece 13.
  • the surfaces opposite the insert 2 and the bore 1312 are not exposed to the high pressure liquid of the autofrettage, but are subject to the forces that are generated by this high pressure.
  • the very high autofrettage pressure plasticizes the inner layer of the exposed surface of the rail 1 and the insert 2, which is deformed to be pressed against the bore 1312 of the connector 13. After this very high autofrettage pressure has been applied, the connecting pieces 13 contract on each insert piece 2, which is thereby shrunk.
  • FIG 4 shows another embodiment of a rail 1a according to the invention, which is also limited to the conventional part of the rail with two connection pieces 13a, one is empty and the other has an insert piece with throttle 2a. All of these fittings 13a preferably have the same structure, so that their description will be limited to one of them.
  • the insert with throttle 2a is shown in section in Figure 5 shown separately.
  • the passage 131a in the fitting 13a is formed from an entry cone 1311a followed by a conical chamber 1312a, the small base of which has a diameter greater than that of the downstream bore 1314a, to form an edge 1313a.
  • the conical chamber 1312a defines an insertion chamber of the "Morse cone” or equivalent cone type.
  • the passage 131a receives the insert with throttle 2a with a complementary shape by insertion.
  • the insert with restrictor 2a has a body 21a traversed by a stepped bore 22a formed by a series of bores of decreasing diameters 222a, 224a, 226a separated by conical connections 223a, 225a.
  • the inlet 221a of the insert 2a has a conical shape which creates a sealing seat, and the confluence of the last bore 226a into the chamber 12a of the rail 1a has a rounded edge or rounding 227a.
  • the stepped bore 22a forms a throttle which is intended to weaken the pressure waves which are introduced into the high-pressure liquid.
  • the outer surface 23a of the insert 2a has a conical part 231a of large diameter, the small base of which meets a cylindrical part 233a of small diameter through a conical connection 232a.
  • the outer surface 23a ends in a rounded portion 234a.
  • the conical part 231a has a conicity which is the same as that of the conical chamber 1312a of the connector 13, and a cross section which is in the conical Chamber 1312a can be received by insertion in such a way that the respective surfaces are in direct contact.
  • the cylindrical part 233a has a significantly smaller cross section than that of the bore 1314a of the connection piece 13a.
  • a closure which is not shown, is applied to each connection piece 13a against the conical seat 221a of the insert pieces 2a in order to create the tightness with respect to the outside of the bore 22a and the tightness between the conical surfaces of the parts 1312a and 231a.
  • a tension force F is exerted on the ball (not shown), which is supported and a compression zone C is created.
  • the force is transmitted to the conical contact zone between the conical part 231a of the insert 2a and the conical surface of the chamber 1312a of the connector 13a.
  • This exposed surface is the surface of the chamber 12a and the passage 131a of the fitting 13a upstream (in the exiting direction of the high pressure fuel) in front of the insert 2a, including the inner surface of the insert 2a and its outer surface upstream of contact between its conical surface 231a and the surface of the conical chamber 1312a.
  • the cross-section of the small base of the conical part 231a is larger than that of the small base of the conical chamber 1312a which meets the conical surface 1313a which forms the shoulder in such a way that the insert 2a can be clamped by insertion in combination with the autofrettage, without being in abutment against the shoulder 1313a, which would interfere with or limit the insertion.
  • conical surfaces of the parts 1312a or 231a could have grooves which increase the tightness during autofrettage and increase the residual axial force between the two parts / surfaces.
  • the surfaces in contact with the insert 2a and the bore 1312a are not exposed to the high pressure fluid of the autofrettage, but are subject to the forces generated.
  • the very high autofrettage pressure plasticizes the inner layer of the exposed surface of the rail 1a and the insert 2a, which is deformed to be pressed against the bore 1312a of the connector 13a. After this very high autofrettage pressure has been applied, the connecting pieces 13a contract on each insert piece 2a, which are thereby shrunk.
  • the forged steel of the rails 1, 1a has a minimum hardness of the order of 300 HB, which depends on the hardness of the pipe heads and the properties compatible with the expected result of the autofrettage.
  • the material of the insert 2, 2a has a hardness between 300 and 450 HV in order to have sufficient plasticization during the autofrettage and at the same time to retain sufficient residual elasticity to ensure sufficient residual pressure between the insert 2, 2a and the rail 1 To show 1a.
  • the plastic deformation ensures a residual contact between the insert with throttle 2, 2a and the rail 1, 1a.
  • the properties of the material of the insert piece with throttle are selected in order to ensure a sufficient residual force which holds the insert piece 2, 2a in place during the operation of the high pressure accumulator 1, 1a of the injection system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Hochdruckspeichers für ein Hochdruckeinspritzsystem, der aus einem zylindrischen Körper, der eine Hochdruckkammer begrenzt, und Anschlussstücken gebildet ist, die mit Austrittsdurchgängen für Hochdruckflüssigkeit, die in die Kammer münden, und mit einer Drossel versehen sind, um die Druckwellen abzuschwächen, die von nachgeschalteten Injektoren erzeugt werden.
  • Stand der Technik
  • Ein derartiger Hochdruckspeicher eines Hochdruckeinspritzsystems, das in Figur 7 dargestellt ist, ist aus der EP 1811165 A2 bereits bekannt. Dieses Rail 100, auch "Hochdruckspeicher" genannt, ist durch einen zylindrischen Körper 111 aus dickem geschmiedeten Stahl gebildet, der eine Hochdruckkammer 112 umgibt. Der Körper des Rails weist AustrittsAnschlussstücke 113 zum Anschließen der Hochdruckleitungen auf, die jeweils an einen Injektor angeschlossen sind. Diese Anschlussstücke 113 sind durch eine Bohrung 114 durchquert, die in die Kammer 112 mündet. Am Boden der Bohrung an der Verbindung mit der Kammer befindet sich eine gebohrte Drossel 115. Diese Drossel 115 dämpft die Druckwellen, die durch die Schließbewegungen des Injektors, der jedem Anschlussstück zugeordnet ist, in der Hochdruckflüssigkeit des Rails erzeugt werden. Die Drossel 115, die durch die Bohrung erzeugt ist, wird manchmal "Düse" genannt.
  • Diese Lösung ermöglicht zwar, die Druckwellen zu dämpfen, aber sie weist eine gewisse Anzahl von Nachteilen auf, insbesondere ist ihre Wirksamkeit relativ gering, da die Bohrung, die diese Drossel bildet, nicht ermöglicht, ausgearbeitete geometrische Formen zu erstellen.
  • Es ist auch nicht möglich, strenge Toleranzen einzuhalten; zudem erzeugt die Ausführung in der Form einer Bohrung auf Ebene der Einmündung des Durchgangs in die Kammer eine Kante, die starke Dispersionen bei der Dämpfung der Wellen erzeugt. Um das zu vermeiden, ist eine elektrochemische Verarbeitung der Kante der Einmündung der Bohrung notwendig, um sie abzurunden und die eventuellen Grate, oder einen Teil, der in die Kammer vorspringt, zu beseitigen, was ein schwieriger und folglich teurer Vorgang ist.
  • Nach dem Stand der Technik gibt es ebenfalls Alternativen zu den Düsen, die in das Rail gebohrt sind, in Form von eingesteckten Düsen. Diese Düsen werden auf herkömmliche Weise eingesteckt, das heißt durch das Beherrschen des negativen geometrischen Spiels (formschlüssige Klemmung) und die Verwendung eines Pressverbands, wobei die Einsteckkräfte kontrolliert werden. Diese eingesteckten Düsen werden nur für Rails ohne Autofrettage oder mit einer geringen Autofrettage verwendet, da die Autofrettage Restverformungen bewirkt, die die Beherrschung der formschlüssigen Klemmung zu kritisch machen. In diesem Fall wäre ein teurer zusätzlicher Nachbearbeitungsvorgang des Einsteckdurchmessers nach der Autofrettage erforderlich. Diese bekannte Lösung weist somit zahlreiche Nachteile auf.
  • Aufgabe der Erfindung
  • Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren zur Herstellung eines Hochdruckspeichers für ein Hochdruckeinspritzsystem zu entwickeln, der es ermöglicht, die Druckwellen wirksam zu dämpfen, die in dem Rail durch das Schließen der Einspritzventile der nachgeschalteten Injektoren erzeugt werden, der gleichzeitig einfach zu erstellen ist und eine schwache Dispersion der Dämpfung zwischen Düsen des gleichen Rails oder von verschiedenen Rails erzeugt.
  • Darstellung und Vorteile der Erfindung
  • Zu diesem Zweck betrifft die vorliegende Erfindung einen Hochdruckspeicher für ein Hochdruckeinspritzsystem für eine Brennkraftmaschine, der aus einem zylindrischen Körper, der eine Hochdruckkammer begrenzt, und Anschlussstücken gebildet ist. Eines bzw. mehrere Anschlussstücke sind mit einer bzw. mehreren Austrittsdurchgängen für eine Hochdruckflüssigkeit versehen, die in die Kammer münden. In dem Austrittsdurchgang ist eine Drossel angeordnet, um die Druckwellen eines nachgeschalteten Injektors abzuschwächen. Die Anschlussstücke weisen am Ausgang jeweils einen Durchgang mit einer Kammer auf, die ein Einsatzstück aufnimmt, das mit der Drossel versehen ist. Das Einsatzstück ist in der Kammer kraftschlüssig durch einen Autofrettage-Prozess des Hochdruckspeichers angeordnet.
  • Aufgabe der Erfindung ist ebenfalls die Herstellung eines Hochdruckspeichers, wobei dieses Verfahren dadurch gekennzeichnet ist, dass
    • durch Fräsen eine Kammer in dem Austrittsdurchgang von jedem Anschlussstück erstellt wird,
    • ein Einsatzstück erstellt wird, das von einer Drossel durchquert ist, wobei der Außendurchmesser des Einsatzstücks an jenen der Kammer angepasst wird,
    • ein Einsatzstück in jeder Kammer installiert wird,
    • die Dichtheit der Einsatzstücke und jene des Eintritts der Anschlussstücke erstellt wird und
    • das auf diese Weise zusammengebaute Rail einem Autofrettagedruck ausgesetzt wird, um die Innenfläche des Rails zu behandeln und die Einsatzstücke in der Kammer der Anschlussstücke zu kraftschlüssig anzuordnen.
  • Wie bereits oben angegeben, ist das Herstellungsverfahren des Rails besonders einfach und bietet gleichzeitig den Vorteil, präzise und wirksame Drosseln für die Dämpfung der Druckwellen (Druckschläge) erstellen zu können.
  • Der Hochdruckspeicher gemäß der Erfindung ist einfach herzustellen und weist dennoch eine Drossel mit geringen Toleranzen auf. Die feste Verbindung des Einsatzstücks in dem Hochdruckspeicher erfolgt auf einfache Weise und ohne, dass neue oder andere Mittel erforderlich sind, da diese feste Verbindung durch die Autofrettage des Rails erfolgt. Die Autofrettage des Rails ist ein bekannter Fertigungsprozess, um das Ermüdungsverhalten des Rails zu gewährleisten. Dies verlängert nicht den Produktionszyklus.
  • Die Drossel, die außerhalb des Rails erstellt ist, ermöglicht eine einfache Herstellung durch Bohr- und Endbearbeitungsvorgänge außerhalb des Rails, ohne Gefahr zu laufen, dass Fremdkörper in das Rail eingeführt werden und indem jegliches Problem von Graten vermieden wird; dies ermöglicht im Gegenteil das Herstellen von glatten Kanten oder Abrundungen.
  • Somit weist der Durchgang der Einsatzstücke eine Abrundung an der Einmündung auf der Seite der Hochdruckkammer auf.
  • Nach einem anderen vorteilhaften Merkmal ist der Durchgang in dem Einsatzstück eine Stufenbohrung, die aus einer Reihe von Bohrungen mit abnehmendem Durchmesser gebildet ist, die durch konische Funktionen getrennt sind. Somit ergibt sich eine stufenförmige Drossel, die ermöglicht, die Einsatzstücke in Bezug auf den Kompromiss Dämpfung/Verlust der Wirksamkeit des Systems besser zu optimieren.
  • Die Reihe von Bohrungen mit abnehmendem Durchmesser ist nur ein Beispiel von komplexer Geometrie, die durch eine Düse ermöglicht wird, die getrennt von dem Rail bearbeitet wird. Ziel ist es, eine Asymmetrie des Druckverlustes zu erhalten, das heißt weniger Druckverlust in die Richtung, die für die Einspritzung nützlich ist, und mehr Druckverlust in die Richtung, die nur zu der Dämpfung beiträgt.
  • Nach einem anderen Merkmal weist der Durchgang mit der Drossel einen konischen Eingang auf, der einen Dichtsitz für den Autofrettagevorgang bildet.
  • Nach einem anderen Merkmal weist das Anschlussstück einen konischen Eingang auf, auch hier, um die Dichtheit für die Autofrettage herzustellen.
  • Nach einem noch spezifischeren Merkmal ist die Kammer zylindrisch und bildet mit der Bohrung eine Schulter, die eine Dichtkante erstellt. Das Einsatzstück weist eine Außenfläche mit einem zylindrischen Teil mit großem Durchmesser auf, um bei der Montage mit Spiel in die zylindrische Kammer zu kommen. Weiterhin weist das Einsatzstück einen Teil mit kleinem Durchmesser auf, der in der Bohrung des Anschlussstücks frei vorsteht, wobei die zwei Teile des Einsatzstücks durch ein konisches Segment verbunden sind, das dazu bestimmt ist, gegen die Kante des Anschlussstücks zu kommen.
  • Nach einem anderen Merkmal weist das Anschlussstück eine konische Kammer auf, die sich durch eine Bohrung mit einem Querschnitt, der kleiner als jener der kleinen Basis der konischen Kammer ist, fortsetzt. Und das Einsatzstück mit Drossel weist einen konischen Körper mit einer Länge auf, die kleiner als die Länge der konischen Kammer ist, und der Querschnitt seiner kleinen Basis ist größer als der Querschnitt der kleinen Basis der Kammer, wobei die Konizität der Kammer und jene des konischen Körpers identisch sind.
  • Vorteilhafterweise weist in dem Fall der konischen Kammer die Oberfläche der konischen Kammer und/oder jene des konischen Körpers Ungleichheiten, Unebenheiten und erhabene oder vertiefte geometrische Formen zum Erhöhen des Haftvermögens der zwei Flächen in Kontakt durch Autofrettage und auch für eine bessere Dichtheit bei der Autofrettage auf.
  • Nach einem anderen Merkmal ist der Querschnitt des Teils des Einsatzstücks, der in die Bohrung kommt, kleiner als der Querschnitt dieser Bohrung, um mit dieser nach Autofrettage des Rails und der Einsatzstücke nicht in Kontakt zu sein.
  • Auf diese Weise wird die Verbindungsfläche zwischen dem Einsatzstück und dem Anschlussstück durch die einzige Kontaktfläche reduziert, die durch Autofrettage gespannt werden kann.
  • Nach einem anderen Merkmal ist die Länge des Teils des Einsatzstücks kleiner als die Länge der Bohrung, derart, dass die Einmündung der Drossel deutlich von der Einmündung der Bohrung in der Kammer entfernt ist. Somit wird der Ausgang der Bohrung des Einsatzstücks deutlich über der Einmündung der Bohrung in der Kammer sein und beeinflusst den Druckverlust.
  • Weist der Hochdruckspeicher mehrere Anschlussstücke auf, so sind vorzugsweise in jedem Anschlussstück, welches zu einem nachgeschalteten Injektor führt, ein Einsatzstück mit einer Drossel nach einer der oben beschriebenen Ausführungen angeordnet.
  • Zeichnungen
  • Die vorliegende Erfindung wird im Folgenden anhand von Ausführungsbeispielen näher beschrieben werden, die in den beigefügten Zeichnungen dargestellt sind, in denen:
    • die Figur 1 eine axiale Schnittansicht eines Teils eines Hochdruckspeichers eines Hochdruckeinspritzsystems ist,
    • die Figur 2 eine axiale Schnittansicht eines Einsatzstücks mit Drossel für den Hochdruckspeicher der Figur 1 ist,
    • die Figur 3 eine schematische Halbschnittansicht der Ausführungsform des Hochdruckspeichers der Figur 1 ist,
    • die Figur 4 eine axiale Schnittansicht einer anderen Ausführungsform eines Hochdruckspeichers eines Einspritzsystems nach der Erfindung ist,
    • die Figur 5 ein Axialschnitt des Einsatzstücks mit Drossel für den Hochdruckspeicher der Figur 4 ist,
    • die Figur 6 eine Halbschnittansicht ist, die die Montage des Einsatzstücks mit Drossel in einem Anschlussstück des Hochdruckspeichers der Figur 4 erklärt,
    • die Figur 7 eine Querschnittansicht eines bekannten Rails bzw. Hochdruckspeichers ist.
    Beschreibung der Ausführungsformen der Erfindung
  • Nach der Figur 1 betrifft die Erfindung ein Rail bzw. einen Hochdruckspeicher 1 einer Hochdruckeinspritzanlage in einer Brennkraftmaschine. Ein üblicher Teil dieses Rails ist im Axialschnitt dargestellt. Die anderen Komponenten der Einspritzanlage sind nicht dargestellt.
  • Der Hochdruckspeicher 1 ist ein dickwandiger zylindrischer Körper 11 aus geschmiedeten Stahl, der eine Hochdruckkammer 12 umgibt, die von der Hochdruckpumpe mit Hochdruckkraftstoff versorgt wird, um den Hochdruckkraftstoff auf die Einspritzventile (Injektoren) zu verteilen, die durch die zentrale Steuereinheit des Motors gesteuert werden.
  • Die Bewegung des Schließens und jene des Öffnens der Injektoren erzeugen Kompressions- und Depressionswellen ("Druckschläge"), die von der Hochdruckflüssigkeit in die Leitung übertragen werden, die den Injektor mit dem Rail 1 verbindet, und somit in das Rail gelangen.
  • Der zylindrische Körper 11 weist Anschlussstücke zum Anschließen 13 auf, die jeweils durch einen Durchgang 131 an die Hochdruckkammer 12 und durch eine Hochdruckleitung an ihren Injektor angeschlossen sind. Außen weist das Anschlussstück ein Gewinde 132 auf, um den Anschluss der Hochdruckleitung anzuschrauben.
  • Das Beispiel der Figur 1 beschränkt sich darauf, den herkömmlichen Teil des Rails mit zwei Anschlussstücken 13, eines ist leer und das andere weist ein Einsatzstück 2 mit Drossel auf, darzustellen. Das Rail 1 weist ebenso viele Anschlussstücke 13 und Hochdruckkraftstoff-Austritte auf, wie es versorgte Injektoren aufweist. All diese Anschlussstücke 13 weisen vorzugsweise die gleiche Struktur auf und die nachfolgende Beschreibung wird sich auf eine von ihnen beschränken.
  • Das Anschlussstück 13 auf der rechten Seite der Figur 1 zeigt ihren Durchgang 131 ohne ihr Einsatzstück mit Drossel 2; das Anschlussstück 13 auf der linken Seite ist mit dem Einsatzstück mit Drossel 2 ausgestattet.
  • Das Einsatzstück mit Drossel 2 ist im Schnitt in Figur 2 gesondert dargestellt.
  • Nach der Figur 1 ist der Durchgang 131 in einem Anschlussstück 13 nach der Ausrichtung, die zu der Hochdruckkammer 12 verläuft, aus einem Eintrittskonus 1311 gebildet, auf den eine zylindrische Kammer/Bohrung 1312 mit einem Durchmesser folgt, der größer als jener der nachgelagerten Bohrung 1314 ist, um eine Dichtkante 1313 zu bilden. Der Durchgang 131 nimmt das Einsatzstück mit Drossel 2 auf.
  • Nach der Figur 2 weist das Einsatzstück mit Drossel 2 einen zylindrischen Körper 21 auf, der von einer Stufenbohrung 22 durchquert ist, die aus einer Reihe von Bohrungen mit abnehmenden Durchmessern 222, 224, 226 gebildet ist, die durch konische Verbindungen 223, 225 getrennt sind. Der Eingang des Einsatzstücks 2 weist eine konische Form 221 auf, die einen Dichtsitz erstellt, und die Einmündung der letzten Bohrung 226 in die Kammer des Rails weist eine abgerundete Kante oder eine Abrundung 227 auf.
  • Die Stufenbohrung 22 bildet eine Drossel, die dazu bestimmt ist, die Druckwellen (Kompression und Depression) abzuschwächen, die durch die Bewegungen des Schließens und des Öffnens des Injektors in die Hochdruckflüssigkeit eingeleitet werden.
  • Der Körper 21 des Einsatzstücks mit seiner Außenfläche 23 des Einsatzstücks 2 weist einen Teil mit großem Querschnitt 231 auf, der sich an einen Teil mit kleinem Querschnitt 233 durch eine konische Verbindung 232 anschließt, die eine Auflagefläche bildet, um mit der Kante 1313 des Durchgangs 131 des Anschlussstücks zusammenzuwirken. Die Außenfläche 23 des Teils 233 mit kleinem Querschnitt endet in einer Abrundung 234. Der große Durchmesser des Teils 231 des Einsatzstücks 2 ist leicht kleiner als jener der Bohrung 1312 des Anschlussstücks 13. Der kleine Durchmesser des Teils 233 ist deutlich kleiner als jener der Bohrung 1314 des Anschlussstücks 13 nachgelagert nach der Bohrung 1312, derart, dass sich das Einsatzstück 2, das mit der Drossel versehen ist, für die Montage mühelos in dem Durchgang 131 des Anschlussstücks 13 installieren lässt und der Teil 233 mit kleinem Querschnitt nicht in Kontakt mit der Wand des Durchgangs 131 und insbesondere ihrer Bohrung 1314 ist. Die Stufenbohrung 1312/1314 ermöglicht, obwohl sie für die hydraulische Funktion nicht notwendig ist, den Durchmesser der Bohrung auf Ebene ihrer Überschneidung mit der Hochdruckkammer 12 zu reduzieren. Die Länge des Teils 233 des Einsatzstücks 2 ist kleiner als die Länge der Bohrung 1314, derart, dass die Einmündung der Drossel 226 deutlich von der Einmündung 1315 der Bohrung 1314 der Kammer 12 entfernt ist.
  • Diese Anmerkung in Bezug auf die Länge eines Teils des Einsatzstücks und der Bohrung des Anschlussstücks lässt sich auch auf die zweite Ausführungsform anwenden, die in der Folge beschrieben wird.
  • Das Blockieren des Einsatzstücks 2 bzw. seine kraftschlüssige Anordnung erfolgt durch Autofrettage, wie im Folgenden angegeben.
  • Nach dem Halbschnitt der Figur 3 wird das Rail 1, wenn es mit allen Einsatzstücken mit Drossel 2 ausgestattet ist, einer Autofrettage unterworfen. Dazu wird auf jedes Anschlussstück 13 ein Verschluss, der nicht dargestellt ist, gegen den konischen Sitz 221 des Einsatzstücks 2 aufgebracht. Auf diese Weise werden die Auflagen erstellt. Die Spannkraft F, die in der Achse xx während der Autofrettage ausgeübt wird, erstellt die Dichtheit des Einsatzstücks 2 (Zone A) und auch die Dichtheit zwischen dem Einsatzstück 2 und dem Durchgang 131 in der Zone B durch den Kontakt zwischen der konischen Oberfläche 232 des Einsatzstücks 2 und der Kante 1313 des Anschlussstücks 13.
  • Auf diese Weise wird die Fläche der Bohrungen 131 und des Einsatzstücks 2 begrenzt, die dem Autofrettage-Hochdruck der Flüssigkeit, die in das Rail eingeführt wird, ausgesetzt werden wird.
  • Diese ausgesetzte Fläche ist die Fläche der Kammer 12 und des Durchgangs 131 des Anschlussstücks 13 vorgelagert (in der austretenden Richtung des Hochdruckkraftstoffs) vor dem Einsatzstück 2, einschließlich der Innenfläche des Einsatzstücks 2 und ihrer Außenfläche vorgelagert vor dem Kontakt zwischen ihrer konischen Schulter 232 und der Kante 1313, die die Bohrung 1312 und die Bohrung 1314 des Anschlussstücks 13 trennt. Mit anderen Worten sind die Flächen gegenüber dem Einsatzstück 2 und der Bohrung 1312 nicht der Hochdruckflüssigkeit der Autofrettage ausgesetzt, sondern unterliegen den Kräften, die durch diesen Hochdruck erzeugt werden. Somit plastifiziert der sehr hohe Autofrettage-Druck die Innenschicht der ausgesetzten Fläche des Rails 1 und des Einsatzstücks 2, die verformt wird, um gegen die Bohrung 1312 des Anschlussstücks 13 gepresst zu werden. Nach dem Aufbringen dieses sehr hohen Autofrettage-Drucks ziehen sich die Anschlussstücke 13 auf jedes Einsatzstück 2 zusammen, das dadurch geschrumpft wird.
  • Die Figur 4 zeigt eine andere Ausführungsform eines Rails 1a nach der Erfindung, die ebenfalls auf den herkömmlichen Teil des Rails mit zwei Anschlussstücken 13a, eine ist leer und die andere weist ein Einsatzstück mit Drossel 2a auf, beschränkt ist. All diese Anschlussstücke 13a weisen vorzugsweise die gleiche Struktur derart auf, dass sich ihre Beschreibung auf eine von ihnen beschränken wird.
  • Das Einsatzstück mit Drossel 2a ist im Schnitt in Figur 5 gesondert dargestellt.
  • Nach der Figur 4 und der Ausrichtung, die zu der Hochdruckkammer 12a verläuft, ist der Durchgang 131a in dem Anschlussstück 13a aus einem Eintrittskonus 1311a gebildet, auf den eine konische Kammer 1312a folgt, deren kleine Basis einen Durchmesser aufweist, der größer als jener der nachgelagerten Bohrung 1314a ist, um eine Kante 1313a zu bilden. Die konische Kammer 1312a bildet eine Einsteckkammer vom Typ des "Morsekonus" oder des äquivalenten Konus. Der Durchgang 131a nimmt das Einsatzstück mit Drossel 2a mit komplementärer Form durch Einstecken auf.
  • Nach der Figur 5 weist das Einsatzstück mit Drossel 2a einen Körper 21a auf, der von einer Stufenbohrung 22a durchquert ist, die aus einer Reihe von Bohrungen mit abnehmenden Durchmessern 222a, 224a, 226a gebildet ist, die durch konische Verbindungen 223a, 225a getrennt sind. Der Eingang 221a des Einsatzstücks 2a weist eine konische Form auf, die einen Dichtsitz erstellt, und die Einmündung der letzten Bohrung 226a in die Kammer 12a des Rails 1a weist eine abgerundete Kante oder eine Abrundung 227a auf. Die Stufenbohrung 22a bildet eine Drossel, die dazu bestimmt ist, die Druckwellen abzuschwächen, die in die Hochdruckflüssigkeit eingeleitet werden.
  • Die Außenfläche 23a des Einsatzstücks 2a weist einen konischen Teil 231a mit großem Durchmesser auf, dessen kleine Basis durch eine konische Verbindung 232a auf einen zylindrischen Teil 233a mit kleinem Durchmesser trifft. Die Außenfläche 23a endet in einer Abrundung 234a. Der konische Teil 231a weist eine Konizität, die jener der konischen Kammer 1312a des Anschlussstücks 13 gleich ist, und einen Querschnitt auf, der in der konischen Kammer 1312a durch Einstecken derart aufgenommen werden kann, dass die jeweiligen Flächen direkt anliegen.
  • Der zylindrische Teil 233a weist einen deutlich kleineren Querschnitt als jenen der Bohrung 1314a des Anschlussstücks 13a auf.
  • Nach dem Halbschnitt der Figur 6 wird das Rail la, wenn es mit allen Einsatzstücken mit Drossel 2a ausgestattet ist, einer Autofrettage wie jener, die für die erste Ausführungsform beschrieben worden ist, die in den Figuren 1-3 dargestellt ist, unterworfen.
  • Dazu wird auf jedes Anschlussstück 13a ein Verschluss, der nicht dargestellt ist, gegen den konischen Sitz 221a der Einsatzstücke 2a aufgebracht, um die Dichtheit in Bezug auf die Außenseite der Bohrung 22a und die Dichtheit zwischen den konischen Flächen der Teile 1312a und 231a zu erstellen.
  • Dazu wird eine Spannkraft F auf die Kugel, die nicht dargestellt ist, ausgeübt, die sich aufstützt und eine Kompressionszone C erstellt. Die Kraft wird auf die konische Kontaktzone zwischen dem konischen Teil 231a des Einsatzstücks 2a und der konischen Fläche der Kammer 1312a des Anschlussstücks 13a übertragen.
  • Auf diese Weise wird die Fläche der Bohrungen 131a und des Einsatzstücks 2a begrenzt, die dem Autofrettage-Hochdruck der Flüssigkeit, die in das Rail eingeführt wird, ausgesetzt werden wird.
  • Diese ausgesetzte Fläche ist die Fläche der Kammer 12a und des Durchgangs 131a des Anschlussstücks 13a vorgelagert (in der austretenden Richtung des Hochdruckkraftstoffs) vor dem Einsatzstück 2a, einschließlich der Innenfläche des Einsatzstücks 2a und ihrer Außenfläche vorgelagert vor dem Kontakt zwischen ihrer konischen Fläche 231a und der Fläche der konischen Kammer 1312a. Der Querschnitt der kleinen Basis des konischen Teils 231a ist größer als jener der kleinen Basis der konischen Kammer 1312a, die auf die konische Fläche 1313a trifft, die die Schulter derart bildet, dass das Einsatzstück 2a durch Einstecken in Kombination mit der Autofrettage festgeklemmt werden kann, ohne in Anlage gegen die Schulter 1313a zu sein, was das Einstecken stören oder begrenzen würde.
  • Es ist festzustellen, dass die konischen Flächen der Teile 1312a oder 231a Rillen aufweisen könnten, die die Dichtheit während der Autofrettage verstärken und die Restaxialkraft zwischen den zwei Teilen/Flächen erhöhen.
  • Die Flächen in Kontakt mit dem Einsatzstück 2a und der Bohrung 1312a sind der Hochdruckflüssigkeit der Autofrettage nicht ausgesetzt, sondern unterliegen den erzeugten Kräften. Der sehr hohe Autofrettage-Druck plastifiziert die Innenschicht der ausgesetzten Fläche des Rails 1a und des Einsatzstücks 2a, die verformt wird, um gegen die Bohrung 1312a des Anschlussstücks 13a gepresst zu werden. Nach dem Aufbringen dieses sehr hohen Autofrettage-Drucks ziehen sich die Anschlussstücke 13a auf jedes Einsatzstück 2a zusammen, die dadurch geschrumpft werden.
  • Der geschmiedete Stahl der Rails 1, 1a weist eine Mindesthärte in der Größenordnung von 300 HB auf, die von der Härte der Rohrleitungsköpfe und den Eigenschaften abhängt, die mit dem erwarteten Ergebnis der Autofrettage vereinbar sind.
  • Das Material des Einsatzstück 2, 2a weist eine Härte auf, die zwischen 300 und 450 HV liegt, um eine ausreichende Plastifizierung während der Autofrettage aufzuweisen und dabei gleichzeitig ausreichend Restelastizität zu bewahren, um einen ausreichenden Restdruck zwischen der Einsatzstück 2, 2a und dem Rail 1, 1a aufzuweisen.
  • Das Verfahren zur Herstellung des Rails 1, 1a nach der Erfindung besteht darin:
    • das Einsatzstück 2, 2a mit Spiel und ohne eine große Kraft ausüben zu müssen in dem Anschlussstück 13, 13a unterzubringen,
    • die auf diese Weise erstellte Anordnung festzuklemmen, um dann einen Druckunterschied zwischen dem Innendurchmesser und dem Außendurchmesser des Einsatzstücks 2, 2a aufzuweisen, und
    • eine plastische Verformung des Einsatzstücks 2, 2a und des Rails 1, 1a zu erzeugen.
  • Die plastische Verformung gewährleistet einen Restkontakt zwischen des Einsatzstücks mit Drossel 2, 2a und dem Rail 1, 1a.
  • Die Eigenschaften des Materials des Einsatzstücks mit Drossel werden ausgewählt, um eine ausreichende Restkraft zu gewährleisten, die das Einsatzstück 2, 2a während des Betriebs des Hochdruckspeichers 1, 1a des Einspritzsystems an Ort und Stelle hält.
  • Nomenklatur der wichtigsten Elemente ohne die Suffixe "a" von Ausnahmen abgesehen
  • 1
    Rail
    11 Körper
    12 Hochdruckkammer
    13 Anschlussstück
    131 Durchgang
    1311 Eintrittskonus
    1312 zylindrische Kammer
    1312a konische Kammer
    1313 Dichtkante
    1314 Bohrung
    132 Außengewinde
    2
    Einsatzstück mit Drossel
    21 zylindrischer Körper
    21a konischer Körper
    22 Stufenbohrung
    221 Eintrittskonus
    222 Bohrung mit großem Durchmesser
    223 konische Verbindung
    224 Bohrung mit mittlerem Durchmesser
    225 konische Verbindung
    226 Bohrung mit kleinem Durchmesser
    227 Abrundung
    23 Außenfläche
    231 zylindrischer Teil mit großem Durchmesser
    231a konischer Teil mit großem Durchmesser
    232 konische Verbindung
    233 zylindrischer Teil mit kleinem Durchmesser
    234 Abrundung

Claims (10)

  1. Verfahren zur Herstellung eines Hochdruckspeichers für ein Hochdruckeinspritzsystem, das aus einem zylindrischen Körper (11), der eine Hochdruckkammer (12, 12a) begrenzt, und Anschlussstücken (13, 13a) gebildet ist, die mit Austrittsdurchgängen (131, 131a), die in die Hochdruckkammer (12, 12a) münden, versehen sind, wobei in zumindest einem Austrittsdurchgang (131, 131a) eine Drossel (22, 22a) angeordnet ist, um die Druckwellen abzuschwächen, die von einem dem Anschlussstück (13, 13a) nachgeschalteten Injektor erzeugt wird,
    dadurch gekennzeichnet, dass
    - durch Fräsen eine Kammer (1312, 1312a) in dem Austrittsdurchgang (131, 131a) von jedem Anschlussstück (13, 13a) erstellt wird,
    - ein Einsatzstück (2, 2a) erstellt wird, das von einer Drossel (22, 22a) durchquert ist, wobei der Außendurchmesser des Einsatzstücks an jenen der Kammer (1312, 1312a) angepasst wird,
    - ein Einsatzstück (2, 2a) in jeder Kammer installiert wird,
    - die Dichtheit der Einsatzstücke (2, 2a) und jene des Eintritts der Anschlussstücke (13, 13a) erstellt wird, und
    - der auf diese Weise zusammengebaute Hochdruckspeicher (1, 1a) einem Autofrettagedruck ausgesetzt wird, um die Innenflächen des Hochdruckspeichers zu behandeln und die Einsatzstücke (2, 2a) in der Kammer (1312, 1312a) der Anschlussstücke (13, 13a) kraftschlüssig anzuordnen.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Durchgang (22, 22a) des Einsatzstücks (2, 2a) eine Abrundung (227, 227a) an der Einmündung auf der Seite der Hochdruckkammer (12, 12a) aufweist.
  3. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Durchgang in dem Einsatzstück (2, 2a) eine Stufenbohrung (22, 22a) ist, die aus einer Reihe von Bohrungen mit abnehmendem Durchmesser (222, 222a, 224, 224a, 226, 226a) gebildet ist, die durch konische Funktionen (223, 223a, 225, 225a) getrennt sind.
  4. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Durchgang mit der Drossel (22, 22a) einen konischen Eingang (221, 221a) aufweist, der einen Dichtsitz bildet.
  5. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Anschlussstück (13, 13a) einen konischen Eingang (1311, 1311a) aufweist.
  6. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    - die Kammer (1312) zylindrisch ist und mit der Bohrung (1314) eine Schulter (1313) bildet, die eine Dichtkante erstellt,
    - das Einsatzstück (2) eine Außenfläche (23) mit einem zylindrischen Teil mit großem Durchmesser, um bei der Montage mit Spiel in die zylindrische Kammer (1312) zu kommen, und einem Teil mit kleinem Durchmesser (233) aufweist, der in der Bohrung (1314) des Anschlussstücks (13) frei vorsteht,
    - wobei die zwei Teile (231, 233) des Einsatzstücks (2) durch ein konisches Segment (233) verbunden sind, das dazu bestimmt ist, gegen die Kante (1313) des Anschlussstücks (13) zu kommen.
  7. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    - das Anschlussstück (13a) eine konische Kammer (1312a) aufweist, die sich durch eine Bohrung (1314a) mit einem Querschnitt, der kleiner als jener der kleinen Basis der konischen Kammer (1312a) ist, fortsetzt, und
    - das Einsatzstück mit Drossel (2a) einen konischen Körper (231a) mit einer Länge aufweist, die kleiner als die Länge der konischen Kammer (1312a) ist, und der Querschnitt seiner kleinen Basis größer als der Querschnitt der kleinen Basis der Kammer (1312a) ist,
    - wobei die Konizität der Kammer (1312a) und jene des konischen Körpers (231a) identisch sind.
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet, dass
    die Oberfläche der konischen Kammer (1312a) und/oder jene des konischen Körpers (231a) Ungleichheiten, Unebenheiten und erhabene oder vertiefte geometrische Formen aufweist, um die Dichtheit bei der Autofrettage in Kombination mit dem Konus zu erhöhen, die ermöglicht, den Anpressdruck zu gewährleisten.
  9. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Querschnitt des Teils (233, 233a) des Einsatzstücks (2, 2a), der in die Bohrung (1314, 1314a) kommt, kleiner als der Querschnitt dieser Bohrung ist, um mit dieser nach Autofrettage des Rails (1, 1a) und des Einsatzstücks (2, 2a) nicht in Kontakt zu sein.
  10. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Länge des Teils (233, 233a) des Einsatzstücks (2, 2a) kleiner als die Länge der Bohrung (1314, 1314a) ist, derart, dass die Einmündung der Drossel (226, 226a) deutlich von der Einmündung der Bohrung (1314, 1314a) in der Kammer (12, 12a) entfernt ist.
EP18700566.5A 2017-01-19 2018-01-15 Hochdruckspeicher eines kraftstoffhochdruckeinspritzsystems Active EP3571387B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1750420A FR3061934B1 (fr) 2017-01-19 2017-01-19 Rampe de systeme d'injection de carburant a haute pression
PCT/EP2018/050822 WO2018134144A1 (de) 2017-01-19 2018-01-15 Hochdruckspeicher eines kraftstoffhochdruckeinspritzsystems

Publications (2)

Publication Number Publication Date
EP3571387A1 EP3571387A1 (de) 2019-11-27
EP3571387B1 true EP3571387B1 (de) 2021-07-21

Family

ID=58455276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18700566.5A Active EP3571387B1 (de) 2017-01-19 2018-01-15 Hochdruckspeicher eines kraftstoffhochdruckeinspritzsystems

Country Status (6)

Country Link
EP (1) EP3571387B1 (de)
JP (1) JP6855582B2 (de)
KR (1) KR20190103390A (de)
CN (1) CN110234865B (de)
FR (1) FR3061934B1 (de)
WO (1) WO2018134144A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210231087A1 (en) * 2018-07-26 2021-07-29 Liebherr-Components Deggendorf Gmbh Connecting piece for a fuel injector of an internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3110202B1 (fr) * 2020-05-14 2024-04-26 Duncha France Dispositif d’injection de carburant comprenant un insert gicleur

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1811165A2 (de) * 2006-01-20 2007-07-25 Denso Corporation Gemeinsame Kraftstoffleitung mit Öffnung

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2322921B (en) * 1997-03-03 2001-09-12 Usui Kokusai Sangyo Kk Common rail and method of manufacturing the same
JP4061803B2 (ja) * 2000-01-26 2008-03-19 株式会社デンソー 蓄圧式燃料噴射装置
JP2002322965A (ja) * 2001-04-25 2002-11-08 Otics Corp コモンレール
US6742504B2 (en) * 2002-06-21 2004-06-01 International Engine Intellectual Property Company, Llc Pressure wave attenuator for a rail
JP4737013B2 (ja) * 2006-02-20 2011-07-27 株式会社デンソー コモンレール
DE102006014035A1 (de) * 2006-03-27 2007-10-04 Siemens Ag Kraftstoffeinspritzsystem mit Kraftstoffhochdruckspeicher
US7603985B2 (en) * 2007-01-25 2009-10-20 Denso Corporation Common rail
JP2014178012A (ja) * 2013-03-15 2014-09-25 Kayaba Ind Co Ltd 流体絞り部材

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1811165A2 (de) * 2006-01-20 2007-07-25 Denso Corporation Gemeinsame Kraftstoffleitung mit Öffnung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210231087A1 (en) * 2018-07-26 2021-07-29 Liebherr-Components Deggendorf Gmbh Connecting piece for a fuel injector of an internal combustion engine
US11542902B2 (en) * 2018-07-26 2023-01-03 Liebherr-Components Deggendorf Gmbh Connecting piece for a fuel injector of an internal combustion engine

Also Published As

Publication number Publication date
JP2020505548A (ja) 2020-02-20
WO2018134144A1 (de) 2018-07-26
KR20190103390A (ko) 2019-09-04
JP6855582B2 (ja) 2021-04-07
CN110234865B (zh) 2022-05-24
EP3571387A1 (de) 2019-11-27
FR3061934A1 (fr) 2018-07-20
FR3061934B1 (fr) 2019-06-07
CN110234865A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
DE10060785A1 (de) Kraftstoffeinspritzrohr für Dieselmotoren
WO2002001066A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP3571387B1 (de) Hochdruckspeicher eines kraftstoffhochdruckeinspritzsystems
WO2010086330A1 (de) Geometrie zur festigkeitssteigerung bei bohrungsverschneidungen im hochdruckbereich
WO2000001937A2 (de) Druckventil
DE19710891A1 (de) Druckventil
DE10220339A1 (de) Kraftstoffverteilungsrohr für Kraftfahrzeug-Einspritzeinrichtungen, insbesondere für Common-Rail-Systeme
DE10315967A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10143511B4 (de) Speichereinspritzsystem mit Drosseleinrichtung
DE102020203650A1 (de) Komponente für eine Einspritzanlage und Einspritzanlage für gemischverdichtende, fremdgezündete Brennkraftmaschinen
EP1040270A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102010053082A1 (de) Fluidarmatur
DE102015009153A1 (de) Herstellungsverfahren eines Leitungsbauteils
DE102007019076A1 (de) Verteilerrohr, insbesondere für ein Common Rail Einspritzsystem eines Dieselmotors
WO2021078447A1 (de) Innendruckbelastetes bauteil, insbesondere für die kraftstoffeinspritzung bei einem verbrennungsmotor
DE102007054830B4 (de) Hydraulischer Anschluss für ein Fluidelement und Verfahren zu seiner Herstellung
DE10260302A1 (de) Verfahren zum Bearbeiten einer Kante eines hochdruckfesten Bauteils , insbesondere zum hydro-erosiven Verrunden einer Kante sowie und Vorrichtung hierzu
EP2347115B1 (de) Injektor zur einspritzung von mit hochdruck beaufschlagtem kraftstoff in den brennraum einer brennkraftmaschine
WO2014122052A1 (de) Bauelement mit ineinandermündenden hochdruckbohrungen
WO2009062463A1 (de) Rohrleitung
DE102015212868A1 (de) Innendruckbelastetes Bauteil
DE102005063545B4 (de) Hochdruckverschraubung mit Durchflussbegrenzungsanordnung
DE102005010738A1 (de) Durchflussbegrenzungsanordnung
DE102011018429A1 (de) Vorrichtung zum Zuführen von Kraftstoff zu Einspritzventilen einer Brennkraftmaschine
EP1880100B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200716

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210311

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006211

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1412813

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211021

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211021

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006211

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

26N No opposition filed

Effective date: 20220422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220115

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220115

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1412813

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210721

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240322

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240124

Year of fee payment: 7