EP3529852B1 - Multilayer waveguide comprising at least one device for transition between the layers of this multilayer waveguide - Google Patents

Multilayer waveguide comprising at least one device for transition between the layers of this multilayer waveguide Download PDF

Info

Publication number
EP3529852B1
EP3529852B1 EP17783526.1A EP17783526A EP3529852B1 EP 3529852 B1 EP3529852 B1 EP 3529852B1 EP 17783526 A EP17783526 A EP 17783526A EP 3529852 B1 EP3529852 B1 EP 3529852B1
Authority
EP
European Patent Office
Prior art keywords
adaptation
channel
coupled
guide
channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17783526.1A
Other languages
German (de)
French (fr)
Other versions
EP3529852A1 (en
Inventor
Nicolas CAPET
Francesco FOGLIA MANZILLO
Karim TEKKOUK
Ronan Sauleau
Mauro Ettorre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Original Assignee
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
Universite de Rennes 1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES, Centre National de la Recherche Scientifique CNRS, Universite de Rennes 1 filed Critical Centre National dEtudes Spatiales CNES
Publication of EP3529852A1 publication Critical patent/EP3529852A1/en
Application granted granted Critical
Publication of EP3529852B1 publication Critical patent/EP3529852B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/024Transitions between lines of the same kind and shape, but with different dimensions between hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions

Definitions

  • the invention relates to a multilayer waveguide, that is to say a waveguide comprising several layers - in particular at least a plurality of layers formed of a dielectric material, said substrate -, superimposed on each other. , optionally with dielectric assembly interlayer layers, the various layers thus superimposed being etched so as to present guide channels in which an electromagnetic wave to be guided propagates.
  • the invention relates to a multilayer waveguide comprising a device for transition between two guide channels.
  • multilayer waveguides are known.
  • the different layers can in particular be formed of printed circuit boards held together by assembly devices such as adhesive films (assembly interlayers) or screws.
  • assembly devices such as adhesive films (assembly interlayers) or screws.
  • Such multilayer waveguides can be used in particular for the production of antennas.
  • At least two guide channels respectively extending in two distinct layers separated from each other by an intermediate dielectric layer each has an opening, the two openings of the two coupled guide channels facing each other and making it possible to transmit an electromagnetic wave through said intermediate dielectric layer and between these two coupled guide channels.
  • APRIL 2012 describes a waveguide comprising two printed circuit boards (PCB) superimposed via an adhesive film, each of the printed circuit boards having an array of coupling slots and channels formed from parallel rows of metal vias formed in the thickness of the plates.
  • the number of superimposed layers of a multilayer waveguide formed by etching and stacking printed circuit boards is limited, in practice from 10 to 20 layers depending on the technologies implemented.
  • the electromagnetic waves guided in these known multilayer waveguides undergo energy losses during their transmission between two coupled guide channels, resulting in particular from poor electrical contact, or even from the absence of electrical contact, between the channels. guides coupled.
  • the poor contact between the coupled guide channels results in a reflection of the electromagnetic waves and can also be the cause of parasitic radiation and energy losses, these drawbacks being amplified in the case of a misalignment. guide channels coupled during manufacture of the multilayer waveguide.
  • US 2015/0303541 describes a connection between a first waveguide of a first printed circuit board and a second waveguide of a second printed circuit board.
  • the two waveguides are formed by vias.
  • the first waveguide has an opening on one face of the first plate facing an opening of the second waveguide on a face of the second plate.
  • the connection includes an insulating film disposed between the two printed circuit boards.
  • a metal layer is disposed over the entire face of each plate having the opening of the waveguide on each side of the insulating film. The insulating film improves the transmission of electromagnetic waves.
  • the insulating film consists of a material which can be deformed under the effect of pressure so that the insulating film has a shape which adapts to the defects of the plates and to avoid a vacuum between these two plates so improve the connection between the first waveguide and the second waveguide.
  • the invention aims to overcome these drawbacks.
  • the invention therefore aims to provide a multilayer waveguide making it possible to ensure optimum transmission of the power of an electromagnetic wave guided between two layers of this multilayer waveguide.
  • the invention therefore aims to provide such a multilayer waveguide in which the electromagnetic energy transmission losses between coupled guide channels is minimized.
  • the invention also aims to provide such a multilayer waveguide with a simple and inexpensive structure.
  • the invention also aims to provide such a multilayer waveguide which is tolerant to manufacturing defects.
  • the invention also aims to provide such a multilayer waveguide comprising a device for transitioning between layers of this multilayer waveguide making it possible to increase the number of layers of this multilayer waveguide.
  • the coupled guide channels extend along said transmission direction at the level of the transition device.
  • the coupled guide channels extend along the same axis oriented in said direction of transmission.
  • the coupled guide channels extend along said direction of transmission but extend along an axis secant to said direction of transmission.
  • two coupled guide channels extend perpendicular to each other.
  • each adaptation channel of a waveguide depends in particular on the characteristics of the electromagnetic wave to be transmitted and on the characteristics of said intermediate dielectric layer.
  • the length of at least one adaptation wall of each adaptation channel is chosen so as to minimize the insertion losses of the transition device. More particularly, the shortest adaptation wall of each adaptation channel is the one whose length must be adapted. However, nothing prevents the length of each adaptation wall of an adaptation channel from being adapted.
  • the input impedance of a matching channel is the impedance of the terminal load brought back to the input of the matching channel.
  • the value of the impedance of the terminal load generally depends on the thickness and on the permittivity of the intermediate dielectric layer and on the permittivity of the superimposed layers forming guide channels.
  • each matching channel is adjusted so as to obtain an impedance at least substantially zero, ideally zero (short circuit), between the matching walls at the level of the coupling ends of two guide channels coupled to so as to improve the transmission of an electromagnetic wave while in particular minimizing energy losses.
  • the input impedance must be low to obtain a virtual perfect electrical conductor between the two coupled guide channels. Consequently, the design of a transition device according to the invention is simple and rapid.
  • the adaptation length l of each adaptation channel can be chosen between 0.1 ⁇ and 0.5 ⁇ , where ⁇ is the electromagnetic wavelength which propagates in this adaptation channel.
  • the length of each adaptation channel is generally less than the dimensions of the superimposed layers of the waveguide according to the invention.
  • the length of each matching channel is less than the length of the interlayer dielectric layer.
  • a transition device of a multilayer waveguide according to the invention makes it possible to minimize the transmission energy losses induced by the absence of electrical contact between two coupled guide channels.
  • a waveguide transition device according to the invention also makes it possible to minimize the reflection of the wave.
  • the minimization of the transmission energy losses of an electromagnetic wave is obtained over a wide frequency band (at least 30% of the central transmission frequency of the electromagnetic wave).
  • the transition device according to the invention makes it possible to obtain a transmission of an electromagnetic wave between two coupled guide channels similar to a transmission that can be obtained between guide channels which would be in electric contact.
  • the transition device therefore makes it possible to improve the transmission of electromagnetic waves between two coupled guide channels.
  • the transition device has the advantage of having a structure that is simple to manufacture and inexpensive.
  • a waveguide transition device is tolerant to manufacturing defects, an offset in the alignment of the coupled guide channels, and therefore of their walls. adaptation, resulting in very little energy loss compared to perfect alignment.
  • the coupled guide channels extend in two different superimposed layers of the multilayer electromagnetic waveguide.
  • the intermediate dielectric layer extends between two superimposed layers of the multilayer electromagnetic waveguide, no electrically conductive element allowing an electrical connection between these two superimposed layers being present between the latter.
  • the intermediate dielectric layer is present between said superposed layers and between the adaptation walls of the transition device. Said superimposed layers are therefore electrically isolated from one another.
  • each adaptation channel is intersecting with the direction of transmission, that is to say in particular that it is not parallel to the latter.
  • the angle formed between this longitudinal direction of an adaptation channel and the direction of transmission can be any but is preferably greater than 45 °, in particular greater than 60 °, more particularly between 80 ° and 90 °, values included .
  • the longitudinal direction of each adaptation channel is orthogonal to the direction of transmission.
  • the adaptation walls of each adaptation channel are orthogonal to the guide walls of the guide channels.
  • At least one transition device comprises a single adaptation channel extending on one side only from the coupled guide channels, in a longitudinal direction secant to the direction of transmission.
  • At least one transition device comprises at least two adaptation channels extending opposite to each other from the coupled guide channels, each adaptation channel extending along a longitudinal direction secant to the direction of transmission.
  • At least one transition device comprises at least four adaptation channels extending opposite each other in pairs from the coupled guide channels, distributed at 90 ° around the guide channels coupled, each adaptation channel extending in a longitudinal direction secant to the direction of transmission.
  • a waveguide according to the invention comprises several superimposed layers to form guide channels for an electromagnetic wave.
  • a waveguide according to the invention consists of at least one -notably a single-plurality of stacked layers superimposed on each other and fixed to each other in pairs. At least two layers include at least one lumen, the different lumens formed through the different layers being arranged so as to form guide channels within the waveguide. So, an electromagnetic wave can thus be guided in the different lights of each layer of the multilayer waveguide.
  • a waveguide according to the invention comprises at least one device for the transition between two coupled guide channels extending respectively through the thickness of two superimposed layers via an intermediate dielectric layer. The faces of the adjacent layers define a plane, called the main plane, the direction in thickness of the different layers being orthogonal to this main plane.
  • the direction of transmission is at least substantially orthogonal to the main plane of each layer.
  • a waveguide according to the invention is formed from a plurality of printed circuit boards (PCBs) stacked on top of each other by means of adhesive films.
  • PCBs printed circuit boards
  • Each printed circuit fabrication plate comprises at least one thickness of dielectric material, said substrate, and at least one thickness of electrically conductive material applied to at least one main face of the substrate.
  • Each adhesive film interposed between two printed circuit manufacturing plates constitutes an intermediate dielectric layer.
  • the guide channels can be formed at least in part by an etching / depositing process for printed circuit manufacturing plates.
  • Such an etching / deposition process makes it possible in particular to make holes through the thickness of each plate or the thickness of electrically conductive material of each plate and / or to deposit an electrically conductive material, such as copper, for form surface tracks of the substrate or vias or vias veneers (a via is a connection of electrically conductive material, generally in the form of a hollow or solid cylinder of revolution, formed in or through the thickness of at least a layer of dielectric solid material, cf. for example “Electromagnetics for High-Speed Analog and Digital Communication Circuits” by Ali M.Niknejad, published in 2007 ).
  • a waveguide according to the invention comprises several stacks of layers superimposed on one another, the different stacks being juxtaposed in pairs, one next to the other, at least one transition device being arranged between two juxtaposed stacks, that is to say between two coupled guide channels extending respectively in each stack and parallel to the main plane of the layers of each stack.
  • the direction of transmission is therefore parallel to the main plane of the layers of each stack, and the longitudinal direction of the adaptation channels can be orthogonal to the main plane of the layers of each stack.
  • each stack may in particular be formed of a plurality of printed circuit manufacturing plates stacked on top of each other by means of adhesive films. Other variant embodiments of each stack can be envisaged, for example as indicated above.
  • each adaptation wall of at least one adaptation channel is formed of a metal layer.
  • a metallic layer can be a metallic strip or a plurality of electrically conductive vias separated and juxtaposed parallel to one another.
  • an adaptation channel comprises two adaptation walls, each adaptation wall being formed by a metal blade.
  • an adaptation channel comprises two adaptation walls, each adaptation wall being formed by a plurality of electrically conductive vias.
  • an adaptation channel comprises a first adaptation wall formed by a metal strip and a second wall formed by a plurality of electrically conductive vias.
  • Such a plurality of juxtaposed vias is, from the point of view of the transmission of the electromagnetic wave, equivalent to a continuous metal plate, since the distance separating two adjacent vias is less than a predetermined distance depending on the wavelength of the electromagnetic wave.
  • the realization of a waveguide wall by juxtaposed vias has the advantage of allowing collective manufacture by rapid and economical etching / deposition processes, using traditional machines already widely in use on a scale. industrial.
  • each via of a matching wall extends along said intermediate dielectric layer from a coupling end of a guide channel coupled along the longitudinal direction of the channel. adaptation.
  • each via of a matching wall extends orthogonally to the longitudinal direction of the matching channel and to the direction of transmission.
  • the intermediate dielectric layer is interposed between two of said superimposed layers in which the coupled guide channels extend.
  • each matching wall extends between the intermediate dielectric layer and one of the preceding superimposed layers.
  • the intermediate dielectric layer is interposed between two layers of dielectric substrate in which the coupled guide channels extend. Further, each matching wall extends between the intermediate dielectric layer and one of the dielectric substrate layers.
  • each layer of a multilayer waveguide according to the invention in which extends a guide channel coupled comprises a thickness of a solid and rigid dielectric material, said substrate, common to the various layers of the waveguide superimposed on each other in pairs by means of an intermediate dielectric layer which may or may not be formed from the same substrate.
  • guide channels are described in the publication “A Multilayer LTCC Solution for Integrating 5G Access Point Antenna Modules”, F. Foglia Manzillo et al., In IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2272-2283, July 2016 .
  • the intermediate dielectric layer is placed between faces, called coupling faces, of two dielectric substrate layers.
  • the coupling ends of the guide channels open onto these coupling faces.
  • the adaptation walls of each adaptation channel are placed between a coupling face of one of the dielectric substrate layers comprising a coupled guide channel and the intermediate dielectric layer of the transition device.
  • the matching channels are parallel to the assembly faces of the dielectric substrate layers.
  • a waveguide transition device thus makes it possible to ensure electromagnetic wave transmission between guide channels coupled with several superimposed layers while minimizing energy losses.
  • each coupled guide channel is delimited by at least two electrically conductive walls, called guide walls, spaced apart from one another.
  • this guide channel is called a “parallel plate waveguide”.
  • each coupled guide channel is delimited by two by two parallel guide walls and arranged to form a polygonal - in particular rectangular - cross section of the coupled guide channel.
  • a guide channel can be qualified as a “rectangular waveguide” (often designated by the acronym RW, standing for “rectangular waveguide”).
  • RW standing for “rectangular waveguide”.
  • the adaptation walls of the transition device can be peripheral walls of the end of coupling of each guide channel.
  • a guide wall can be formed of a plurality of electrically conductive vias juxtaposed parallel to each other.
  • each guide wall of at least one coupled guide channel is a metal plate.
  • each guide wall of at least one coupled guide channel is formed of a plurality of electrically conductive vias.
  • At least one guide wall of at least one coupled guide channel is formed of a metal plate and at least one other guide wall of this coupled guide channel is formed of a plurality of electrically conductive vias.
  • a guide channel whose guide walls are formed by juxtaposed vias makes it possible to guide an electromagnetic wave in a manner similar to a guide channel whose guide walls are formed by metal plates.
  • the orientation of the vias is the same on two parallel guide walls of a coupled guide channel.
  • the vias are oriented in the same direction as that of a field E relating to the electromagnetic mode that one wishes to have in the guide channel.
  • the vias are oriented orthogonally to the direction of a field. E relating to the electromagnetic mode that one wishes to have in the guide channel.
  • the vias of at least one guide wall of at least one guide channel extend parallel to the direction of transmission.
  • the vias of the guide walls of two coupled guide channels are aligned with respect to each other which improves the transmission of an electromagnetic wave between these coupled guide channels.
  • the vias of at least one guide wall of at least one guide channel extend orthogonally to the direction of transmission.
  • the invention also extends to an antenna comprising at least one waveguide according to the invention.
  • an antenna according to the invention can be an antenna having a structure of the type called CTS, standing for “Continuous Transverse Stub” as described for example by US6101705 .
  • the invention also relates to a multilayer waveguide comprising a device for transitioning two guiding channels of the multilayer waveguide, a method of manufacturing such a multilayer waveguide and an antenna comprising such a waveguide.
  • Multilayer wave characterized in combination by all or part of the characteristics mentioned above or below.
  • a multilayer waveguide 20 according to the invention as shown in the figures 1 to 6 and 8 comprises at least two guide channels 21.
  • Each guide channel 21 extends longitudinally in a direction 22 of transmission and is delimited transversely by at least two electrically conductive walls, called guide walls 23, spaced from one another by a dielectric material 24. Thus, each guide channel 21 makes it possible to guide an electromagnetic wave between its guide walls 23.
  • the guide channels 21 have the same characteristic impedance Z C1 .
  • the guide walls 23 transversely delimiting a guide channel 21 are moreover, symmetrical in pairs with respect to a plane, called the transmission plane, parallel to these guide walls 23 and equidistant from the guide walls 23, this transmission plane being a median plane of the guide channel 21.
  • the dielectric material 24 interposed between two guide walls 23 of a guide channel 21 may be air or else any other suitable dielectric solid material.
  • the dielectric element 24 has a relative dielectric permittivity coefficient of between 1 and 10, nevertheless nothing prevents having such a coefficient greater than 10.
  • the guide channels 21 of the multilayer waveguide 20 are integrated in layers 25 of the same solid and rigid dielectric material, called the substrate, of the multilayer waveguide 20, superimposed two by two.
  • the substrate used is chosen according to the applications of the multilayer waveguide.
  • the substrate is generally an organic substrate of low relative dielectric permittivity, that is to say less than to 4.
  • the substrate can be a composite material formed from polytetrafluoroethylene and glass fibers such as RT / duroid® 5880 in order to transmit electromagnetic waves at high frequency.
  • each layer 25 is a printed circuit board (PCB) fabrication board.
  • PCB printed circuit board
  • Each layer 25 then comprises a thickness of dielectric material, said substrate, and a thickness of electrically conductive material applied to its two main faces of the substrate.
  • Each substrate layer 25 has at least one external face, called the coupling face, so that, when the substrate layers 25 are superimposed, a coupling face of a substrate layer 25 is opposite a coupling face. of another superimposed layer.
  • the coupling faces of the substrate layers 25 are plane and parallel to each other. Thus, the layers of the waveguide are more easily superimposed.
  • a multilayer waveguide according to the embodiment of the invention shown in figure 1 comprises two guide channels 21, called coupled guide channels 21, extending axially but being separated from one another so as to have an absence of electrical contact between these two guide channels 21.
  • One end, called the coupling end, of a coupled guide channel 21 is thus facing a coupling end of another guide channel 21 coupled so that an electromagnetic wave can be transmitted between these two channels 21 guides coupled.
  • the two coupled guide channels 21 are respectively integrated in two substrate layers 25 separated at a distance from one another.
  • An electromagnetic wave can then be transmitted between these two substrate layers 25 of the multilayer waveguide 20.
  • the substrate layers 25 of the multilayer waveguide 20 are thus superimposed so that the coupling ends of the guide channels 21 coupled to two superimposed substrate layers 25 are facing each other but distant from one another. the other.
  • the direction 22 of transmission is preferably orthogonal to the coupling face of each layer 25 of substrate.
  • each coupled guide channel 21 is delimited transversely by two guide walls 23.
  • the guide channel 21 is thus a waveguide with parallel plates.
  • each coupled guide channel 21 is delimited by two parallel metal plates 26 of the same dimensions.
  • the guide walls 23 delimiting the same side of two coupled guide channels 21 are placed on the same plane so that the two coupled guide channels 21 are perfectly aligned.
  • the multilayer waveguide 20 comprises, for each pair of coupled guide channels 21, a device 28 for transitioning the two coupled guide channels 21.
  • This transition device 28 comprises an intermediate dielectric layer 29 disposed between the two layers 25 of substrate comprising the coupled guide channels 21.
  • this intermediate dielectric layer 29 may be an adhesive film or a layer of adhesive making it possible to assemble the layers 25 of substrate one on top of the other.
  • the adhesive film may for example consist of a fabric pre-impregnated with resin.
  • the intermediate dielectric layer 29 has for example a relative dielectric permittivity coefficient of between 2 and 4, more particularly of the order of 2.5.
  • the intermediate dielectric layer 29 has a thickness smaller than the thickness of each of the two layers 25 of substrate which it connects. In particular, the thickness of the dielectric layer 29 is for example less than the length ⁇ of the electromagnetic wavelength which propagates in this same dielectric layer 29.
  • the intermediate dielectric layer 29 has a thickness less than ⁇ / 10, preferably less than ⁇ / 100.
  • the interlayer dielectric layer 29 may be formed of a layer of air. This layer of air can be unwanted, due to manufacturing errors, in particular during the manufacture of hollow waveguides.
  • the substrate layers 25 are then assembled to one another by a mechanical assembly device such as screws or else by pressing, for example.
  • the transition device 28 also comprises at least one adaptation channel 30 extending from the coupled guide channels, each adaptation channel 30 extending in a longitudinal direction secant to the direction of transmission, between the two layers. 25 comprising the two coupled guide channels 21.
  • each adaptation channel 30 is delimited by two electrically conductive walls, called adaptation walls 36, spaced from one another by the intermediate dielectric layer 29.
  • Each matching wall 36 extends between a substrate layer 25 comprising a coupled guide channel 21 and the intermediate dielectric layer 29.
  • at least one transition device comprises a single adaptation channel extending on one side only from the coupled guide channels, according to a longitudinal direction secant to the direction of transmission.
  • At least one transition device comprises at least two adaptation channels extending opposite to each other from the coupled guide channels, each adaptation channel extending in a secant longitudinal direction to the direction of transmission.
  • Each adaptation channel 30 extends in a longitudinal direction 31, secant to the transmission direction 22, over a predetermined length, called the adaptation length l, from the guide walls 23 of the guide channels 21 coupled at the level. coupling ends facing one another of the coupled guide channels 21, and moving away from these coupled guide channels 21.
  • a first adaptation channel 30 of the device 28 for transitioning two coupled guide channels 21 has a first adaptation wall 36 extending orthogonally to the direction 22 of transmission from a first guide wall 23. a first guide channel 21 coupled at its coupling end.
  • the first adaptation channel 30 comprises also a second adaptation wall 36 extending orthogonally to the direction 22 of transmission from a first guide wall 23 of a second guide channel 21 coupled at its coupling end, the first wall 23 of guiding the first guide channel 21 and the first guide wall 23 of the second guide channel 21 being placed on the same side of the transmission plane.
  • a second adaptation channel 30 of the transition device 28 has a first adaptation wall 36 extending orthogonally to the direction 22 of transmission from a second wall 23 for guiding the first guide channel 21 at its level. coupling end.
  • the first adaptation channel 30 also comprises a second adaptation wall 36 extending orthogonally to the direction 22 of transmission from a second guide wall 23 of the second guide channel 21 at its coupling end.
  • Each adaptation wall 36 can be formed by a blade, called the adaptation blade 32, electrically conductive.
  • Each adaptation blade 32 extends along the length of adaptation from a coupling end of an adaptation guide channel 21 and has a width equal to the width of this coupling end of this channel 21 guide.
  • a conductive adaptation blade 32 is orthogonal to the direction 22 of transmission.
  • the adaptation blades 32 may be disposed against the layers 25 of dielectric substrate.
  • a coupled guide channel 21 is delimited by two guide walls 23, each guide wall 23 being formed by a row of vias 27 juxtaposed so as to form a waveguide with parallel plates.
  • the vias 27 of the two guide walls 23 are preferably symmetrical to each other with respect to the transmission plane of the guide channel 21.
  • the vias 27 can be oriented in the direction 22 of transmission as shown figure 2 or on the contrary orthogonally to the direction 22 of transmission as shown figure 3 according to the electromagnetic mode that one wishes to have in the guide channel.
  • the vias 27 of a guide channel 21 are generally integrated in a layer 25 of dielectric substrate and pass right through the thickness thereof.
  • the vias are oriented orthogonally to the direction of a field E relating to the electromagnetic mode that one wishes to have in the guide channel.
  • the juxtaposed vias 27 forming a guide wall 23 are spaced from each other by a given distance, for example of the order of the diameter of the vias, so that a row of vias is similar to a metal wall with respect to a electromagnetic wave transmission.
  • the arrangement of the vias 27 of a guide wall 23 is for example described by J. Hirokawa and M. Ando, "Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates," IEEE Trans. Antennas Propag., Vol. 46, no. 5, pp. 625-630, May 1998 and by D. Deslanders, K. Wu, "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide" .IEEE Trans.
  • each adaptation wall 36 of each adaptation channel 30 is formed by a row of vias 33 juxtaposed parallel to each other and extending in the direction 31 longitudinal of the adaptation channel 30. More particularly, the vias 33 extend along said interlayer dielectric layer 29 from a coupling end of a coupled guide channel 21.
  • the guide channels 21 are delimited by two metal plates 26 parallel to each other and each adaptation wall 36 of each adaptation channel 30 is formed by a row of juxtaposed vias 33 parallel to each other and extending orthogonally to the longitudinal direction 31 of the adaptation channel 30 and to the transmission direction 22.
  • figure 7 represents an equivalent diagram of a multilayer waveguide according to the invention having two guide channels coupled by two adaptation channels.
  • Each adaptation channel 30 has a terminal load of impedance Z R , at its end in said longitudinal direction opposite to the coupled guide channels 21, which has a finite and non-zero value, representative of the phenomena of fringe fields and of radiation effects occurring at the ends of each adaptation channel opposite to the guide channels.
  • This terminal load is equivalent to a resistor in parallel with a capacitor at this end of the matching channel. This terminal load implies that each adaptation channel is not terminated by either a short circuit or an open circuit.
  • the adaptation length l of each adaptation channel is chosen to obtain an impedance of input Z AA ' , Z BB' of this adaptation channel at least substantially zero.
  • the input impedance Z AA ' , Z BB' of a matching channel is the impedance Z R of the terminal load brought back to the input AA ', BB' of the adaptation channel.
  • the value of the impedance Z R of this terminal load depends in particular on the thickness and on the permittivity of the intermediate dielectric layer and on the permittivity of the superimposed layers forming guide channels.
  • the adjustment of the adaptation length l of each adaptation channel makes it possible to obtain a low impedance, ideally zero (short circuit), between the two guide channels coupled so as to improve the transmission of an electromagnetic wave by minimizing in particular energy losses.
  • the adaptation length l of each adaptation channel can for example be chosen between 0.1 ⁇ and 0, 5 ⁇ , in particular between 0.2 ⁇ and 0.3 ⁇ . Consequently, the design of a transition device according to the invention is simple and rapid.
  • the layers 25 of substrate have the same relative permittivity ⁇ r 1 and all the waves are propagate according to the direction of propagation.
  • the figure 8 shows another equivalent diagram of a multilayer waveguide according to the invention having two guide channels coupled by two adaptation channels.
  • This equivalent scheme is valid for any thickness of the intermediate dielectric layer.
  • Each adaptation channel 30 has a terminal load of impedance Z R , at its end in said longitudinal direction opposite to the coupled guide channels 21, which has a finite and non-zero value, representative of the phenomena of fringe fields and of radiation effects occurring at the ends of each adaptation channel opposite to the guide channels.
  • This terminal load is equivalent to a resistor in parallel with a capacitor at this end of the matching channel.
  • the transition region between the matching channels and the guide channels is considered a junction of four four-port waveguides.
  • the coefficients of a distribution matrix [S] associated with this junction can be obtained by digital simulation.
  • the adaptation length l of each adaptation channel is then determined from these coefficients.
  • each adaptation channel 30 can be easily calculated, a transition device 28 can be designed quickly and simply.
  • a multilayer waveguide according to the embodiment shown in figure 9 comprises two parallelepipedal coupled guide channels 21.
  • each coupled guide channel 21 is delimited by four guide walls 23 which are parallel two by two and orthogonal two by two.
  • Such guide channels 21 thus form rectangular waveguides.
  • Each guide wall 23 is formed by a metal plate 26.
  • the transition device 28 then comprises four adaptation channels 30 between the two guide channels 21.
  • the four adaptation channels 30 are orthogonal two by two.
  • each adaptation wall 36 of an adaptation channel 30 is formed of a metal blade extending from a guide wall 23 of a coupled guide channel 21.
  • the walls 36 adaptation of the transition device 28 can be peripheral walls of the coupling ends of the guide channels.
  • the adaptation length l of two adaptation walls 36 of a first adaptation channel may be different from that of two adaptation walls 36 of a second adaptation channel orthogonal to the first adaptation channel.
  • a transition device 28 according to the invention makes it possible to improve the transmission of an electromagnetic wave between the coupled guide channels 21 while minimizing the energy losses, as well as the reflection of the electromagnetic waves transmitted between two coupled guide channels 21. .
  • it makes it possible to obtain in the two coupled guide channels 21 separated from one another a transmission of an electromagnetic wave similar to that which would be obtained with a continuous waveguide.
  • the frequency of the transmitted electromagnetic wave is 30 GHz.
  • the layers of the multilayer waveguides compared consist of a substrate with a relative permittivity equal to 2.2.
  • the results were obtained by software simulation with an electromagnetic solver 3D simulation software, namely ANSYS HFSS®, marketed by the company ANSYS, Inc., Canonsburg, Pennsylvania, USA
  • Other simulation software such as CST STUDIO SUITE® , marketed by the company CST of America®, Inc, Framingham, Massachussets, USA, or COMSOL Multiphysics®, marketed by the company COMSOL, Inc., Burlington, Massachussets, USA, or others, can be used.
  • a transmission coefficient of the order of -0.01dB and a reflection coefficient are obtained. of the order of -70dB.
  • a transmission coefficient of the order of of -4dB and a reflection coefficient of the order of -5dB With the case of a multilayer waveguide not in accordance with the invention comprising two superimposed guide channels not being in contact electrically, comprising an intermediate dielectric layer consisting of air 100 ⁇ m thick between two layers of the multilayer waveguide 20 and not comprising a transition device 28 according to the invention, a transmission coefficient of the order of of -4dB and a reflection coefficient of the order of -5dB.
  • a transmission coefficient is obtained of the order of - 0.04dB and a reflection coefficient of the order of -45dB.
  • a multilayer waveguide according to the embodiment of the invention shown in figure 1 comprising an adhesive film of 36 ⁇ m and relative permittivity of 2.6 as an intermediate dielectric layer 29 of the transition device 28, as well as adaptation blades 32 with an adaptation length l equal to 2 mm, a transmission coefficient of the order of - 0.01dB and a reflection coefficient of the order of -66dB.
  • a transition device 28 according to the invention is therefore robust with respect to misalignments of the coupled guide channels 21, which lead to little loss of energy.
  • a transmission coefficient of l is obtained. 'order of -0.03dB and a reflection coefficient of the order of -85dB.
  • a multilayer waveguide not in accordance with the invention comprising two guide channels of superimposed rectangular section which are not in electrical contact, comprising an intermediate dielectric layer made of air 100 ⁇ m thick between the two guide channels and do not include a transition device 28 according to the invention, each guide channel being delimited by four orthogonal guide walls two by two, one obtains a transmission coefficient of the order of -3dB and a reflection coefficient of l order of -5dB.
  • a transmission coefficient is obtained of the order of -0.04dB and a reflection coefficient of the order of -55dB.
  • the figures 10 to 13 present multilayer waveguides according to the invention which can be used as a basic block (assembly of guide channels coupled in a T shape, in particular for the dividers of power, and guide channels coupled perpendicular to each other) for the design of more complex structure multilayer waveguides, antennas.
  • the transition device 28 comprises two adaptation channels coupling the guide channel of the lower substrate layer to one end of the guide channel of the upper substrate layer.
  • the adaptation wall of the transition device 28 placed in contact with the coupling face of the upper substrate layer extends along the guide channel of the upper substrate layer so as to delimit it and to allow guiding an electromagnetic wave in this guide channel.
  • the figure 11 presents an alternative embodiment of the multilayer waveguide of the figure 10 , the transition device 28 comprising a single adaptation channel.
  • the multilayer waveguide comprises two layers 25 of substrate.
  • a first substrate layer called the lower substrate layer, comprises a guide channel extending in a direction of transmission.
  • a second substrate layer referred to as the upper substrate layer, comprises a guide channel extending orthogonally to the direction of transmission.
  • the single matching channel coupling the guide channel of the lower substrate layer to one end of the guide channel of the upper substrate layer, extends orthogonally to the direction of transmission away from the guide channel of the top substrate layer.
  • the guide channel of the upper substrate layer is delimited by a metallized wall disposed between the lower substrate layer and the interlayer dielectric layer extending along the two substrate layers of the multilayer waveguide so as to allow the guiding of an electromagnetic wave in the guide channel of the upper substrate layer while providing electrical contact with a guide wall of the guide channel of the lower substrate layer.
  • the guide channel of the upper substrate layer therefore partly comprises the intermediate dielectric layer.
  • the figure 12 presents a multilayer waveguide according to the invention making it possible to obtain a power divider with one input and two outputs.
  • the multilayer waveguide has four substrate layers, a first substrate layer comprising a guide channel extending in a transmission direction and being connected to a guide channel of a second superimposed substrate layer. at the first layer, the latter guide channel extending orthogonally to the direction of transmission.
  • a third substrate layer superimposed on the second substrate layer also comprises two coupled guide channels extending in the direction of transmission opening onto a coupling face of the third substrate layer.
  • One of the guide channels of the third substrate layer being connected to one end of the guide channel of the second substrate layer, and the other guide channel being connected to another end of this guide channel.
  • a fourth substrate layer 25 comprises two coupled guide channels extending in the direction of transmission, one of these guide channels being positioned facing a guide channel of the third substrate layer and the other channel. coupled guide channel of the fourth substrate layer being opposite the other guide channel of the third substrate layer.
  • a first transition device 28 is respectively placed between a first guide channel coupled to the fourth layer of substrate and the guide channel coupled opposite the latter to the third layer of substrate.
  • a second transition device 28 is respectively placed between the other guide channel coupled with the fourth layer of substrate and the guide channel coupled opposite the latter with the third layer of substrate.
  • the intermediate dielectric layer 29 is placed between the third substrate layer and the fourth substrate layer.
  • the transition devices 28 include two adaptation channels.
  • the adaptation channels are orthogonal to the direction of transmission.
  • the figure 13 presents a multilayer waveguide according to an alternative embodiment of the figure 12 .
  • the multilayer waveguide has two substrate layers, a first substrate layer, referred to as the lower substrate layer, comprising a first guide channel extending in a direction of transmission and being connected to a second guide channel of the lower substrate layer orthogonal to the direction of transmission.
  • a second substrate layer, called the upper substrate layer, comprises two guide channels.
  • a first guide channel of the upper substrate layer is coupled with one end of the second guide channel of the lower substrate layer.
  • the second guide channel is coupled to the other end of the second guide channel of the lower substrate layer.
  • the guide channels of the upper substrate layer are positioned opposite the ends of the second guide channel of the lower substrate layer.
  • a first transition device 28 is placed between the coupled first guide channel of the upper substrate layer and the second guide channel of the lower substrate layer.
  • a second transition device 28 is placed between the second coupled guide channel of the upper substrate layer and the second guide channel of the lower substrate layer.
  • the transition devices 28 include two adaptation channels.
  • the two transition devices 28 have a common adaptation wall between the ends of the second guide channel of the lower substrate layer so as to delimit this second guide channel and allow the guiding of an electromagnetic wave in this second channel of guidance between its ends.
  • the common adaptation wall is a metallized wall placed on the lower substrate layer.
  • the figure 14 presents a multilayer waveguide according to the invention comprising five substrate layers superimposed on each other making it possible to obtain a so-called candlestick supply network (see for example US 7,432,871 ).
  • a guide channel, extending in a direction of transmission, of the first substrate layer is coupled by a transition device to a guide channel, extending orthogonally to the direction of transmission, of a second substrate layer to the first substrate layer.
  • the device for transitioning between the first and the second substrate layer comprises two adaptation channels. Each of these adaptation channels has an adaptation wall extending along the guide channel of the second substrate layer so as to delimit it.
  • a first end of the guide channel of the second layer of substrate is coupled by a transition device to a first guide channel, extending in the direction of transmission, of a third layer of substrate.
  • a second end of the guide channel of the second substrate layer is coupled by another transition device to a second guide channel, extending in the direction of transmission, of the third substrate layer.
  • the transition devices between the second and the third substrate layers each have two adaptation channels, as shown in figure 11 .
  • a first guide channel of the third substrate layer is coupled to a first end of a first guide channel, extending orthogonally to the direction of transmission, of a fourth substrate layer, as shown in Fig. figure 12 .
  • a second guide channel of the third substrate layer is coupled to a first end of a second guide channel, extending orthogonally to the direction of transmission, of a fourth substrate layer.
  • a second end of the first guide channel of the fourth substrate layer is coupled by a transition device to a first guide channel, extending in the direction of transmission, of a fifth substrate layer. Furthermore, a second end of the second guide channel of the fourth substrate layer is coupled by a transition device to a second guide channel, extending in the direction of transmission, of the fifth substrate layer.
  • each transition device between the fourth and the fifth substrate layer comprises two adaptation channels.
  • Each guide channel of the fourth substrate layer is delimited by an adaptation wall of the adaptation channel with which it is associated.
  • a multilayer waveguide 20 according to the invention can be incorporated in an antenna as shown in figure 15 .
  • the antenna is made by adding radiating slits on the upper face of the multilayer waveguide 20 shown in figure 14 for example.
  • the figure 16 presents an alternative embodiment of the multilayer waveguide of the figure 14 .
  • This multilayer waveguide differs from the one presented in figure 14 in that the transition devices between the first substrate layer and the second substrate layer, between the third substrate layer and the fourth substrate layer and between the fourth substrate layer and the fifth substrate layer comprise a single channel d 'adaptation.
  • a multi-layered waveguide 20 according to the invention the layers 25 of which are printed circuit fabrication plates (PCB) can be manufactured by etching the adaptation walls 36 of the adaptation channels 30 on the thickness of material electrically. conductor applied to at least one main face of the substrate of each layer 25.
  • each adaptation wall 36 is formed of the electrically conductive material of the layers 25.
  • the guide walls 23, formed of vias 27 or metal plates 26 are manufactured in the layers 25 of the multilayer waveguide by methods known to those skilled in the art.
  • the layers 25 of the multi-layered waveguide 20 are assembled by interposing a dielectric interlayer 29 (film adhesive or air layer) between each of them.
  • a multilayer waveguide 20 according to the invention can also be produced by additive manufacturing of layers of polymer material and by depositing an electrically conductive material on at least one surface of the layers of polymer material.
  • the adaptation walls 36 of the adaptation channels 30 are then etched on the thickness of electrically conductive material applied.
  • the layers, once engraved, are then assembled together by gluing using an adhesive film.
  • a multilayer waveguide 20 according to the invention can also be produced from metal parts delimiting the guide channels and the adaptation channels.
  • the space between the metal parts defining the guide channels or the adaptation channels can be filled with air or else a dielectric foam.
  • a multilayer waveguide 20 according to the invention can therefore be manufactured using methods known to those skilled in the art.
  • the manufacture of a multilayer waveguide 20 is thus simple and quick to implement.
  • the tolerance to manufacturing defects of a multi-layered waveguide according to the invention makes it possible to facilitate manufacturing by accepting a margin of non-alignment of the coupled guide channels.
  • the invention therefore relates to a multilayer waveguide 20 comprising a device 28 for the transition of two guide channels 21 extending from a multilayer waveguide 20, each guide channel 21 comprising at least two electrically conductive walls.
  • the transition device 28 makes it possible to improve the transmission of electromagnetic waves between the guide channels 21, the transition device 28 comprising at least one adaptation channel 30, each adaptation channel 30 being delimited by two electrically conductive walls.
  • a multilayer waveguide, a method for manufacturing such a multilayer waveguide and an antenna according to the invention can be the subject of numerous variant embodiments with respect to the embodiments shown in the figures.
  • each guide wall can be formed from a plurality of juxtaposed rows of vias.
  • the guide channel 21 can be delimited by four guide walls 23, each guide wall 23 being formed of at least one row, in particular at least two adjacent rows of which the vias of a row are offset in the direction transmission with respect to the vias of another row of this guide wall 23, for example by three adjacent rows of vias 27 placed in staggered rows.
  • a multilayer waveguide according to the invention can comprise guide walls formed by at least one row of vias and adaptation walls formed by at least one other row of vias.
  • a multilayer waveguide according to the invention can be used in order to design radars, satellite systems, circuits and multilayer waveguide antennas operating down to millimeter waves.
  • a multilayer waveguide 20 according to the invention makes it possible in particular to produce antennas according to a CTS type structure as shown. figure 15 .

Landscapes

  • Waveguides (AREA)
  • Waveguide Connection Structure (AREA)

Description

L'invention concerne un guide d'onde multicouche, c'est-à-dire un guide d'onde comprenant plusieurs couches -notamment au moins une pluralité de couches formées d'un matériau diélectrique, dit substrat-, superposées les unes aux autres, avec éventuellement des couches diélectriques intercalaires d'assemblage, les différentes couches ainsi superposées étant gravées de façon à présenter des canaux de guidage dans lesquels une onde électromagnétique à guider se propage. En particulier, l'invention concerne un guide d'onde multicouche comprenant un dispositif de transition entre deux canaux de guidage.The invention relates to a multilayer waveguide, that is to say a waveguide comprising several layers - in particular at least a plurality of layers formed of a dielectric material, said substrate -, superimposed on each other. , optionally with dielectric assembly interlayer layers, the various layers thus superimposed being etched so as to present guide channels in which an electromagnetic wave to be guided propagates. In particular, the invention relates to a multilayer waveguide comprising a device for transition between two guide channels.

On connaît différentes structures de guides d'onde multicouche. Les différentes couches peuvent notamment être formées de plaques de circuits imprimés maintenues assemblées entre elles par des dispositifs d'assemblage tels que des films adhésifs (couches intercalaires d'assemblage) ou des vis. De tels guides d'onde multicouche peuvent être utilisés en particulier pour la réalisation d'antennes.Different structures of multilayer waveguides are known. The different layers can in particular be formed of printed circuit boards held together by assembly devices such as adhesive films (assembly interlayers) or screws. Such multilayer waveguides can be used in particular for the production of antennas.

Afin de guider des ondes électromagnétiques entre des couches distinctes d'un guide d'onde multicouche, au moins deux canaux de guidage, dits canaux de guidage couplés, s'étendant respectivement dans deux couches distinctes séparées l'une de l'autre d'une couche diélectrique intercalaire présentent chacun une ouverture, les deux ouvertures des deux canaux de guidage couplés étant en regard l'une de l'autre et permettant de transmettre une onde électromagnétique à travers ladite couche diélectrique intercalaire et entre ces deux canaux de guidage couplés.In order to guide electromagnetic waves between separate layers of a multilayer waveguide, at least two guide channels, called coupled guide channels, respectively extending in two distinct layers separated from each other by an intermediate dielectric layer each has an opening, the two openings of the two coupled guide channels facing each other and making it possible to transmit an electromagnetic wave through said intermediate dielectric layer and between these two coupled guide channels.

La publication « A Series Slot Array Antenna for 45° - Inclined Linear Polarization With SIW Technology » Dong-yeon Kim et al., IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 4, APRIL 2012 décrit un guide d'onde comprenant deux plaques de circuit imprimé (PCB) superposées par l'intermédiaire d'un film adhésif, chacune des plaques de circuits imprimés présentant un réseau de fentes de couplage et de canaux formés de rangées parallèles entre elles de vias métalliques ménagés dans l'épaisseur des plaques.The publication “A Series Slot Array Antenna for 45 ° - Inclined Linear Polarization With SIW Technology” Dong-yeon Kim et al., IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 4, APRIL 2012 describes a waveguide comprising two printed circuit boards (PCB) superimposed via an adhesive film, each of the printed circuit boards having an array of coupling slots and channels formed from parallel rows of metal vias formed in the thickness of the plates.

En pratique le nombre de couches superposées d'un guide d'onde multicouche formé par gravure et empilement de plaques de circuits imprimés est limité, en pratique de 10 à 20 couches en fonction des technologies mises en œuvre.In practice, the number of superimposed layers of a multilayer waveguide formed by etching and stacking printed circuit boards is limited, in practice from 10 to 20 layers depending on the technologies implemented.

Les ondes électromagnétiques guidées dans ces guides d'ondes multicouche connus subissent des pertes d'énergie lors de leur transmission entre deux canaux de guidage couplés, résultent notamment d'un mauvais contact électrique, voire de l'absence de contact électrique, entre les canaux de guidage couplés. En particulier, le mauvais contact entre les canaux de guidage couplés entraîne une réflexion des ondes électromagnétiques et peut aussi être à l'origine de radiations parasites et de pertes d'énergie, ces inconvénients étant amplifiés dans le cas d'un défaut d'alignement des canaux de guidage couplés lors de la fabrication du guide d'onde multicouche.The electromagnetic waves guided in these known multilayer waveguides undergo energy losses during their transmission between two coupled guide channels, resulting in particular from poor electrical contact, or even from the absence of electrical contact, between the channels. guides coupled. In particular, the poor contact between the coupled guide channels results in a reflection of the electromagnetic waves and can also be the cause of parasitic radiation and energy losses, these drawbacks being amplified in the case of a misalignment. guide channels coupled during manufacture of the multilayer waveguide.

En outre, les publications " Multibeam Pillbox Antenna With Low Sidelobe Level and High-Beam Crossover in SIW Technology Using the Split Aperture Decoupling Method",Karim Tekkouk, Mauro Ettorre, Erio Gandini and Ronan Sauleau, IEEE Trans. Antennas Propag., vol. 63, no. 11, 2015 et " Multibeam multi-layer leaky-wave siw pillbox antenna for millimeter-wave applications", M. Ettorre, R. Sauleau and L. Le Coq, , IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1093-1100, Apr. 2011 proposent des guides d'ondes multicouche assurant le contact électrique entre les canaux de guidage couplés mais ne convenant que pour un nombre limité de couches. De plus, l'empilement de ces couches superposées devient compliqué lorsque le nombre de couches superposées augmente.In addition, the publications " Multibeam Pillbox Antenna With Low Sidelobe Level and High-Beam Crossover in SIW Technology Using the Split Aperture Decoupling Method ", Karim Tekkouk, Mauro Ettorre, Erio Gandini and Ronan Sauleau, IEEE Trans. Antennas Propag., Vol. 63, no. 11, 2015 and " Multibeam multi-layer leaky-wave siw pillbox antenna for millimeter-wave applications ", M. Ettorre, R. Sauleau and L. Le Coq,, IEEE Trans. Antennas Propag., Vol. 59, no. 4, pp. 1093- 1100, Apr. 2011 propose multilayer waveguides ensuring electrical contact between the coupled guide channels but only suitable for a limited number of layers. In addition, the stacking of these superimposed layers becomes complicated when the number of superimposed layers increases.

Par ailleurs, US 2015/0303541 décrit une connexion entre un premier guide d'onde d'une première plaque de circuit imprimé et un deuxième guide d'onde d'une deuxième plaque de circuit imprimé. Les deux guides d'onde sont formés de vias. Le premier guide d'onde présente une ouverture sur une face de la première plaque en regard d'une ouverture du deuxième guide d'onde sur une face de la deuxième plaque. La connexion comprend un film isolant disposé entre les deux plaques de circuit imprimé. En outre, une couche métallique est disposée sur toute la face de chaque plaque présentant l'ouverture du guide d'onde de chaque côté du film isolant. Le film isolant permet d'améliorer la transmission des ondes électromagnétiques. En particulier, le film isolant est constitué d'un matériau déformable sous l'effet d'une pression de sorte que le film isolant présente une forme qui s'adapte aux défauts des plaques et pour éviter une présence de vide entre ces deux plaques afin d'améliorer la connexion entre le premier guide d'onde et le deuxième guide d'onde.Otherwise, US 2015/0303541 describes a connection between a first waveguide of a first printed circuit board and a second waveguide of a second printed circuit board. The two waveguides are formed by vias. The first waveguide has an opening on one face of the first plate facing an opening of the second waveguide on a face of the second plate. The connection includes an insulating film disposed between the two printed circuit boards. In addition, a metal layer is disposed over the entire face of each plate having the opening of the waveguide on each side of the insulating film. The insulating film improves the transmission of electromagnetic waves. In particular, the insulating film consists of a material which can be deformed under the effect of pressure so that the insulating film has a shape which adapts to the defects of the plates and to avoid a vacuum between these two plates so improve the connection between the first waveguide and the second waveguide.

L'invention vise à pallier ces inconvénients.The invention aims to overcome these drawbacks.

L'invention vise donc à proposer un guide d'onde multicouche permettant d'assurer une transmission optimale de la puissance d'une onde électromagnétique guidée entre deux couches de ce guide d'onde multicouche.The invention therefore aims to provide a multilayer waveguide making it possible to ensure optimum transmission of the power of an electromagnetic wave guided between two layers of this multilayer waveguide.

L'invention vise donc à proposer un tel guide d'onde multicouche dans lequel les pertes de transmission d'énergie électromagnétique entre canaux de guidage couplés est minimisée.The invention therefore aims to provide such a multilayer waveguide in which the electromagnetic energy transmission losses between coupled guide channels is minimized.

L'invention vise également à proposer un tel guide d'onde multicouche de structure simple et peu coûteuse.The invention also aims to provide such a multilayer waveguide with a simple and inexpensive structure.

L'invention vise également à proposer un tel guide d'onde multicouche qui soit tolérant aux défauts de fabrication.The invention also aims to provide such a multilayer waveguide which is tolerant to manufacturing defects.

L'invention vise également à proposer un tel guide d'onde multicouche comprenant un dispositif de transition entre des couches de ce guide d'onde multicouche permettant d'augmenter le nombre de couches de ce guide d'onde multicouche.The invention also aims to provide such a multilayer waveguide comprising a device for transitioning between layers of this multilayer waveguide making it possible to increase the number of layers of this multilayer waveguide.

Pour ce faire, l'invention concerne un guide d'onde électromagnétique multicouche comprenant plusieurs couches superposées formant des canaux de guidage d'une onde électromagnétique, et au moins un dispositif de transition comprenant au moins une couche diélectrique intercalaire entre deux canaux de guidage, dits canaux de guidage couplés, se prolongeant selon une direction de transmission d'une onde électromagnétique entre ces canaux de guidage couplés via le dispositif de transition, caractérisé en ce que :

  • chaque dispositif de transition comprend au moins un canal d'adaptation s'étendant à partir des canaux de guidage couplés, selon une direction longitudinale sécante à la direction de transmission,
  • chaque canal d'adaptation est délimité par au moins deux parois électriquement conductrices, dites parois d'adaptation, espacées l'une de l'autre par ladite couche diélectrique intercalaire dudit dispositif de transition, chaque paroi d'adaptation s'étendant selon la direction longitudinale le long de ladite couche diélectrique intercalaire à partir d'une extrémité, dite extrémité de couplage, d'un canal de guidage couplé, et au moins une paroi d'adaptation s'étendant selon la direction longitudinale sur une longueur choisie pour obtenir une impédance, dite impédance d'entrée, au moins sensiblement nulle entre les parois d'adaptation de ce canal d'adaptation au niveau des extrémités de couplage des canaux de guidage couplés pour optimiser la transmission d'une onde électromagnétique entre les deux canaux de guidage couplés.
To do this, the invention relates to a multilayer electromagnetic waveguide comprising several superimposed layers forming guide channels of an electromagnetic wave, and at least one transition device comprising at least one dielectric layer between two guide channels, said coupled guide channels, extending in a direction of transmission of an electromagnetic wave between these guide channels coupled via the transition device, characterized in that:
  • each transition device comprises at least one adaptation channel extending from the coupled guide channels, in a longitudinal direction secant to the direction of transmission,
  • each adaptation channel is delimited by at least two electrically conductive walls, called adaptation walls, spaced from one another by said intermediate dielectric layer of said transition device, each adaptation wall extending in the direction longitudinal along said intermediate dielectric layer from one end, called the coupling end, of a coupled guide channel, and at least one adaptation wall extending in the longitudinal direction over a length chosen to obtain a impedance, called the input impedance, at least substantially zero between the adaptation walls of this adaptation channel at the level of the coupling ends of the guide channels coupled to optimize the transmission of an electromagnetic wave between the two guide channels coupled.

Plus particulièrement, les canaux de guidage couplés se prolonge selon ladite direction de transmission au niveau du dispositif de transition. Ainsi, dans certains modes de réalisation de l'invention, les canaux de guidages couplés s'étendent selon un même axe orienté selon ladite direction de transmission. Dans d'autres modes de réalisation de l'invention, les canaux de guidage couplés se prolongent selon ladite direction de transmission mais s'étendent selon un axe sécant à ladite direction de transmission. Par exemple, dans certains modes de réalisation de l'invention, deux canaux de guidage couplés s'étendent perpendiculairement l'un par rapport à l'autre.More particularly, the coupled guide channels extend along said transmission direction at the level of the transition device. Thus, in certain embodiments of the invention, the coupled guide channels extend along the same axis oriented in said direction of transmission. In other embodiments of the invention, the coupled guide channels extend along said direction of transmission but extend along an axis secant to said direction of transmission. For example, in some embodiments of the invention, two coupled guide channels extend perpendicular to each other.

La longueur de chaque canal d'adaptation d'un guide d'onde selon l'invention dépend en particulier des caractéristiques de l'onde électromagnétique à transmettre et des caractéristiques de ladite couche diélectrique intercalaire.The length of each adaptation channel of a waveguide according to the invention depends in particular on the characteristics of the electromagnetic wave to be transmitted and on the characteristics of said intermediate dielectric layer.

En particulier, des phénomènes de champs de franges et d'effets de radiation surviennent aux extrémités de chaque canal d'adaptation opposées aux canaux de guidage et peuvent être représentés par une charge finie et non nulle, dite charge terminale, équivalente à une résistance en parallèle à un condensateur à cette extrémité du canal d'adaptation.In particular, phenomena of fringe fields and radiation effects occur at the ends of each adaptation channel opposite to the guide channels and can be represented by a finite load and non-zero, called a terminal load, equivalent to a resistance in parallel with a capacitor at this end of the adaptation channel.

En particulier, la longueur d'au moins une paroi d'adaptation de chaque canal d'adaptation est choisie de façon à minimiser les pertes d'insertion du dispositif de transition. Plus particulièrement, la paroi d'adaptation la moins longue de chaque canal d'adaptation est celle dont la longueur doit être adaptée. Néanmoins, rien n'empêche d'adapter la longueur de chaque paroi d'adaptation d'un canal d'adaptation.In particular, the length of at least one adaptation wall of each adaptation channel is chosen so as to minimize the insertion losses of the transition device. More particularly, the shortest adaptation wall of each adaptation channel is the one whose length must be adapted. However, nothing prevents the length of each adaptation wall of an adaptation channel from being adapted.

En particulier, l'impédance d'entrée d'un canal d'adaptation est l'impédance de la charge terminale ramenée à l'entrée du canal d'adaptation. La valeur de l'impédance de la charge terminale dépend en général de l'épaisseur et de la permittivité de la couche diélectrique intercalaire et de la permittivité des couches superposées formant des canaux de guidage.In particular, the input impedance of a matching channel is the impedance of the terminal load brought back to the input of the matching channel. The value of the impedance of the terminal load generally depends on the thickness and on the permittivity of the intermediate dielectric layer and on the permittivity of the superimposed layers forming guide channels.

Ainsi, la longueur de chaque canal d'adaptation est ajustée de façon à obtenir une impédance au moins sensiblement nulle, idéalement nulle (court-circuit), entre les parois d'adaptation au niveau des extrémités de couplage de deux canaux de guidage couplés de façon à améliorer la transmission d'une onde électromagnétique en minimisant en particulier les pertes d'énergie. En particulier, l'impédance d'entrée doit être faible pour obtenir un conducteur électrique parfait virtuel entre les deux canaux de guidage couplés. Par conséquent, la conception d'un dispositif de transition selon l'invention est simple et rapide.Thus, the length of each matching channel is adjusted so as to obtain an impedance at least substantially zero, ideally zero (short circuit), between the matching walls at the level of the coupling ends of two guide channels coupled to so as to improve the transmission of an electromagnetic wave while in particular minimizing energy losses. In particular, the input impedance must be low to obtain a virtual perfect electrical conductor between the two coupled guide channels. Consequently, the design of a transition device according to the invention is simple and rapid.

La longueur l d'adaptation de chaque canal d'adaptation peut être choisie entre 0,1λ et 0,5λ, où λ est la longueur d'onde électromagnétique qui se propage dans ce canal d'adaptation. Ainsi, la longueur de chaque canal d'adaptation est généralement inférieure aux dimensions des couches superposées du guide d'onde selon l'invention. En outre, la longueur de chaque canal d'adaptation est inférieure à la longueur de la couche diélectrique intercalaire.The adaptation length l of each adaptation channel can be chosen between 0.1λ and 0.5λ, where λ is the electromagnetic wavelength which propagates in this adaptation channel. Thus, the length of each adaptation channel is generally less than the dimensions of the superimposed layers of the waveguide according to the invention. In addition, the length of each matching channel is less than the length of the interlayer dielectric layer.

Un dispositif de transition d'un guide d'onde multicouche selon l'invention permet de minimiser les pertes d'énergie de transmission induites par l'absence de contact électrique entre deux canaux de guidage couplés. Un dispositif de transition d'un guide d'onde selon l'invention permet également de minimiser la réflexion de l'onde. De plus, la minimisation des pertes d'énergie de transmission d'une onde électromagnétique est obtenue sur une large bande de fréquence (au moins 30% de la fréquence centrale de transmission de l'onde électromagnétique).A transition device of a multilayer waveguide according to the invention makes it possible to minimize the transmission energy losses induced by the absence of electrical contact between two coupled guide channels. A waveguide transition device according to the invention also makes it possible to minimize the reflection of the wave. In addition, the minimization of the transmission energy losses of an electromagnetic wave is obtained over a wide frequency band (at least 30% of the central transmission frequency of the electromagnetic wave).

Ainsi, le dispositif de transition selon l'invention permet d'obtenir une transmission d'une onde électromagnétique entre deux canaux de guidage couplés similaire à une transmission pouvant être obtenue entre des canaux de guidage qui seraient en contact électriquement. Le dispositif de transition permet donc d'améliorer la transmission d'ondes électromagnétiques entre deux canaux de guidage couplés.Thus, the transition device according to the invention makes it possible to obtain a transmission of an electromagnetic wave between two coupled guide channels similar to a transmission that can be obtained between guide channels which would be in electric contact. The transition device therefore makes it possible to improve the transmission of electromagnetic waves between two coupled guide channels.

Le fait d'améliorer la transmission d'une onde électromagnétique entre deux canaux de guidage couplés permet d'augmenter considérablement le nombre de canaux de guidage et de couches du guide d'onde multicouche selon l'invention, et donc de faciliter la conception de tels guides d'onde multicouche et d'antennes comprenant de tels guides d'onde multicouche.The fact of improving the transmission of an electromagnetic wave between two coupled guide channels makes it possible to considerably increase the number of guide channels and of layers of the multilayer waveguide according to the invention, and therefore to facilitate the design of such multilayer waveguides and antennas comprising such multilayer waveguides.

En outre, le dispositif de transition présente l'avantage de posséder une structure simple à fabriquer et peu coûteuse.In addition, the transition device has the advantage of having a structure that is simple to manufacture and inexpensive.

Par ailleurs, il a été constaté qu'un dispositif de transition d'un guide d'onde selon l'invention est tolérant aux défauts de fabrication, un décalage dans l'alignement des canaux de guidage couplés, et donc de leurs parois d'adaptation, n'entraînant que très peu de pertes d'énergie par rapport à un alignement parfait.Furthermore, it has been observed that a waveguide transition device according to the invention is tolerant to manufacturing defects, an offset in the alignment of the coupled guide channels, and therefore of their walls. adaptation, resulting in very little energy loss compared to perfect alignment.

Plus particulièrement les canaux de guidage couplés s'étendent dans deux couches superposées différentes du guide d'onde électromagnétique multicouche. En outre, la couche diélectrique intercalaire s'étend entre deux couches superposées du guide d'onde électromagnétique multicouche, aucun élément conducteur d'électricité permettant une connexion électrique entre ces deux couches superposées n'étant présent entre ces dernières. Ainsi, seule la couche diélectrique intercalaire est présente entre lesdites couches superposées et entre les parois d'adaptation du dispositif de transition. Lesdites couches superposées sont donc isolées électriquement l'une de l'autre.More particularly, the coupled guide channels extend in two different superimposed layers of the multilayer electromagnetic waveguide. In addition, the intermediate dielectric layer extends between two superimposed layers of the multilayer electromagnetic waveguide, no electrically conductive element allowing an electrical connection between these two superimposed layers being present between the latter. Thus, only the intermediate dielectric layer is present between said superposed layers and between the adaptation walls of the transition device. Said superimposed layers are therefore electrically isolated from one another.

La direction longitudinale de chaque canal d'adaptation est sécante avec la direction de transmission, c'est-à-dire en particulier qu'elle n'est pas parallèle à cette dernière. L'angle formé entre cette direction longitudinale d'un canal d'adaptation et la direction de transmission peut être quelconque mais est de préférence supérieur à 45°, notamment supérieur à 60°, plus particulièrement compris entre 80° et 90°, valeurs incluses. Ainsi, dans certains modes de réalisation selon l'invention, la direction longitudinale de chaque canal d'adaptation est orthogonale à la direction de transmission. Ainsi, les parois d'adaptation de chaque canal d'adaptation sont orthogonales aux parois de guidage des canaux de guidage.The longitudinal direction of each adaptation channel is intersecting with the direction of transmission, that is to say in particular that it is not parallel to the latter. The angle formed between this longitudinal direction of an adaptation channel and the direction of transmission can be any but is preferably greater than 45 °, in particular greater than 60 °, more particularly between 80 ° and 90 °, values included . Thus, in certain embodiments according to the invention, the longitudinal direction of each adaptation channel is orthogonal to the direction of transmission. Thus, the adaptation walls of each adaptation channel are orthogonal to the guide walls of the guide channels.

Dans certains modes de réalisation d'un guide d'onde selon l'invention, au moins un dispositif de transition comprend un unique canal d'adaptation s'étendant d'un côté uniquement à partir des canaux de guidage couplés, selon une direction longitudinale sécante à la direction de transmission.In certain embodiments of a waveguide according to the invention, at least one transition device comprises a single adaptation channel extending on one side only from the coupled guide channels, in a longitudinal direction secant to the direction of transmission.

En variante ou en combinaison au moins un dispositif de transition comprend au moins deux canaux d'adaptation s'étendant à l'opposé l'un de l'autre à partir des canaux de guidage couplés, chaque canal d'adaptation s'étendant selon une direction longitudinale sécante à la direction de transmission.As a variant or in combination at least one transition device comprises at least two adaptation channels extending opposite to each other from the coupled guide channels, each adaptation channel extending along a longitudinal direction secant to the direction of transmission.

En variante ou en combinaison au moins un dispositif de transition comprend au moins quatre canaux d'adaptation s'étendant à l'opposé deux à deux les uns des autres à partir des canaux de guidage couplés, répartis à 90° autour des canaux de guidage couplés, chaque canal d'adaptation s'étendant selon une direction longitudinale sécante à la direction de transmission.As a variant or in combination at least one transition device comprises at least four adaptation channels extending opposite each other in pairs from the coupled guide channels, distributed at 90 ° around the guide channels coupled, each adaptation channel extending in a longitudinal direction secant to the direction of transmission.

Un guide d'onde selon l'invention comprend plusieurs couches superposées pour former des canaux de guidage d'une onde électromagnétique.A waveguide according to the invention comprises several superimposed layers to form guide channels for an electromagnetic wave.

En particulier, dans certains modes de réalisation, un guide d'onde selon l'invention est constitué d'au moins une -notamment une seule-pluralité de couches empilées superposées les unes sur les autres et fixées les unes aux autres deux à deux. Au moins deux couches comprennent au moins une lumière, les différentes lumières ménagées à travers les différentes couches étant agencées de façon à former des canaux de guidage au sein du guide d'onde. Ainsi, une onde électromagnétique peut ainsi être guidée dans les différentes lumières de chaque couche du guide d'onde multicouche. En particulier, un guide d'onde selon l'invention comprend au moins un dispositif de transition entre deux canaux de guidage couplés s'étendant respectivement à travers l'épaisseur de deux couches superposées par l'intermédiaire d'une couche diélectrique intercalaire. Les faces des couches adjacentes définissent un plan, dit plan principal, la direction en épaisseur des différentes couches étant orthogonale à ce plan principal. De préférence, la direction de transmission est au moins sensiblement orthogonale au plan principal de chaque couche. Rien n'empêche cependant que la direction de transmission soit non orthogonale, plus ou moins inclinée par rapport à la normale au plan principal de chaque couche, c'est-à-dire par rapport à la direction de l'épaisseur de chaque couche.In particular, in certain embodiments, a waveguide according to the invention consists of at least one -notably a single-plurality of stacked layers superimposed on each other and fixed to each other in pairs. At least two layers include at least one lumen, the different lumens formed through the different layers being arranged so as to form guide channels within the waveguide. So, an electromagnetic wave can thus be guided in the different lights of each layer of the multilayer waveguide. In particular, a waveguide according to the invention comprises at least one device for the transition between two coupled guide channels extending respectively through the thickness of two superimposed layers via an intermediate dielectric layer. The faces of the adjacent layers define a plane, called the main plane, the direction in thickness of the different layers being orthogonal to this main plane. Preferably, the direction of transmission is at least substantially orthogonal to the main plane of each layer. However, nothing prevents the direction of transmission from being non-orthogonal, more or less inclined with respect to the normal to the main plane of each layer, that is to say with respect to the direction of the thickness of each layer.

Dans certains de ces modes de réalisation, un guide d'onde selon l'invention est formé d'une pluralité de plaques de fabrication de circuit imprimé (PCB) empilées les unes sur les autres par l'intermédiaire de films adhésifs. Chaque plaque de fabrication de circuit imprimé comprend au moins une épaisseur de matériau diélectrique, dit substrat, et au moins une épaisseur de matériau électriquement conducteur appliquée sur au moins une face principale du substrat. Chaque film adhésif interposé entre deux plaques de fabrication de circuits imprimés constitue une couche diélectrique intercalaire. Les canaux de guidage peuvent être formés au moins pour partie par un procédé de gravure/dépôt des plaques de fabrication de circuits imprimés. Un tel procédé de gravure/dépôt permet en particulier de réaliser des trous à travers l'épaisseur de chaque plaque ou de l'épaisseur de matériau électriquement conducteur de chaque plaque et/ou de déposer un matériau électriquement conducteur, tel que du cuivre, pour former des pistes en surface du substrat ou des vias ou de placages de vias (un via est une connexion en matériau électriquement conducteur, en général en forme de cylindre de révolution creux ou plein, ménagée dans ou à travers l'épaisseur d'au moins une couche de matériau solide diélectrique, cf. par exemple « Electromagnetics for High-Speed Analog and Digital Communication Circuits » de Ali M.Niknejad, publié en 2007 ). D'autres variantes de réalisation peuvent être envisagées, par exemple par superposition de couches de matériau diélectrique (dit substrat), fixées les unes aux autres mais à distance les unes des autres, une couche d'air étant ménagée entre chaque couche de substrat, cette couche d'air constituant une couche diélectrique intercalaire. Cette couche d'air peut être non voulue, due à des erreurs de fabrication, en particulier lors de la fabrication de guides d'onde creux. Cette couche d'air entraîne des pertes de transmission d'ondes électromagnétiques entre deux canaux de guidage en l'absence d'un dispositif de transition selon l'invention. Le dispositif de transition selon l'invention permet donc de minimiser les pertes de transmission d'ondes électromagnétiques entre deux canaux de guidage couplés liées à cette couche d'air.In some of these embodiments, a waveguide according to the invention is formed from a plurality of printed circuit boards (PCBs) stacked on top of each other by means of adhesive films. Each printed circuit fabrication plate comprises at least one thickness of dielectric material, said substrate, and at least one thickness of electrically conductive material applied to at least one main face of the substrate. Each adhesive film interposed between two printed circuit manufacturing plates constitutes an intermediate dielectric layer. The guide channels can be formed at least in part by an etching / depositing process for printed circuit manufacturing plates. Such an etching / deposition process makes it possible in particular to make holes through the thickness of each plate or the thickness of electrically conductive material of each plate and / or to deposit an electrically conductive material, such as copper, for form surface tracks of the substrate or vias or vias veneers (a via is a connection of electrically conductive material, generally in the form of a hollow or solid cylinder of revolution, formed in or through the thickness of at least a layer of dielectric solid material, cf. for example “Electromagnetics for High-Speed Analog and Digital Communication Circuits” by Ali M.Niknejad, published in 2007 ). Other variant embodiments can be envisaged, for for example by superposition of layers of dielectric material (said substrate), fixed to each other but at a distance from each other, an air layer being provided between each substrate layer, this air layer constituting an intermediate dielectric layer. This layer of air can be unwanted, due to manufacturing errors, in particular during the manufacture of hollow waveguides. This layer of air causes losses in transmission of electromagnetic waves between two guide channels in the absence of a transition device according to the invention. The transition device according to the invention therefore makes it possible to minimize the transmission losses of electromagnetic waves between two guide channels coupled linked to this layer of air.

Dans certains modes de réalisation un guide d'onde selon l'invention comprend plusieurs empilements de couches superposées les unes sur les autres, les différents empilements étant juxtaposés deux à deux l'un à côté de l'autre, au moins un dispositif de transition étant ménagé entre deux empilements juxtaposés, c'est-à-dire entre deux canaux de guidage couplés s'étendant respectivement dans chaque empilement et parallèlement au plan principal des couches de chaque empilement. Dans ces modes de réalisation, la direction de transmission est donc parallèle au plan principal des couches de chaque empilement, et la direction longitudinale des canaux d'adaptation peut être orthogonale au plan principal des couches de chaque empilement. Là encore, chaque empilement peut être en particulier formé d'une pluralité de plaques de fabrication de circuits imprimés empilées les unes sur les autres par l'intermédiaire de films adhésifs. D'autres variantes de réalisation de chaque empilement peuvent être envisagées par exemple comme indiqué ci-dessus.In certain embodiments, a waveguide according to the invention comprises several stacks of layers superimposed on one another, the different stacks being juxtaposed in pairs, one next to the other, at least one transition device being arranged between two juxtaposed stacks, that is to say between two coupled guide channels extending respectively in each stack and parallel to the main plane of the layers of each stack. In these embodiments, the direction of transmission is therefore parallel to the main plane of the layers of each stack, and the longitudinal direction of the adaptation channels can be orthogonal to the main plane of the layers of each stack. Here again, each stack may in particular be formed of a plurality of printed circuit manufacturing plates stacked on top of each other by means of adhesive films. Other variant embodiments of each stack can be envisaged, for example as indicated above.

Dans certains modes de réalisation selon l'invention, chaque paroi d'adaptation d'au moins un canal d'adaptation est formée d'une couche métallique. Par exemple, une couche métallique peut être une lame métallique ou une pluralité de vias électriquement conducteurs séparés et juxtaposés parallèles les uns aux autres. Ainsi, un canal d'adaptation comprend deux parois d'adaptation, chaque paroi d'adaptation étant formée par une lame métallique. Dans certaines variantes de réalisation, un canal d'adaptation comprend deux parois d'adaptation, chaque paroi d'adaptation étant formée par une pluralité de vias électriquement conducteurs. Dans certaines autres variantes de réalisation, un canal d'adaptation comprend une première paroi d'adaptation formée par une lame métallique et une deuxième paroi formée par une pluralité de vias électriquement conducteurs.In certain embodiments according to the invention, each adaptation wall of at least one adaptation channel is formed of a metal layer. For example, a metallic layer can be a metallic strip or a plurality of electrically conductive vias separated and juxtaposed parallel to one another. Thus, an adaptation channel comprises two adaptation walls, each adaptation wall being formed by a metal blade. In some variant embodiments, an adaptation channel comprises two adaptation walls, each adaptation wall being formed by a plurality of electrically conductive vias. In certain other variant embodiments, an adaptation channel comprises a first adaptation wall formed by a metal strip and a second wall formed by a plurality of electrically conductive vias.

En particulier, on sait qu'une telle pluralité de vias juxtaposés est, du point de vue de la transmission de l'onde électromagnétique, équivalente à une lame métallique continue, dès lors que la distance séparant deux vias adjacents est inférieure à une distance prédéterminée dépendant de la longueur d'onde de l'onde électromagnétique. La réalisation d'une paroi de guide d'onde par des vias juxtaposés présente l'avantage de permettre une fabrication collective par des procédés de gravure/dépôt rapides et économiques, à l'aide de machines traditionnelles déjà largement en exploitation à l'échelle industrielle.In particular, it is known that such a plurality of juxtaposed vias is, from the point of view of the transmission of the electromagnetic wave, equivalent to a continuous metal plate, since the distance separating two adjacent vias is less than a predetermined distance depending on the wavelength of the electromagnetic wave. The realization of a waveguide wall by juxtaposed vias has the advantage of allowing collective manufacture by rapid and economical etching / deposition processes, using traditional machines already widely in use on a scale. industrial.

Dans certains modes de réalisation de l'invention, chaque via d'une paroi d'adaptation s'étend le long de ladite couche diélectrique intercalaire à partir d'une extrémité de couplage d'un canal de guidage couplé selon la direction longitudinale du canal d'adaptation.In some embodiments of the invention, each via of a matching wall extends along said intermediate dielectric layer from a coupling end of a guide channel coupled along the longitudinal direction of the channel. adaptation.

En outre, dans certains autres modes de réalisation, chaque via d'une paroi d'adaptation s'étend orthogonalement à la direction longitudinale du canal d'adaptation et à la direction de transmission.Further, in certain other embodiments, each via of a matching wall extends orthogonally to the longitudinal direction of the matching channel and to the direction of transmission.

Dans certains modes de réalisation d'un guide d'onde selon l'invention, la couche diélectrique intercalaire est interposée entre deux desdites couches superposées dans lesquelles s'étendent les canaux de guidage couplés. En outre, chaque paroi d'adaptation s'étend entre la couche diélectrique intercalaire et l'une des précédentes couches superposées.In certain embodiments of a waveguide according to the invention, the intermediate dielectric layer is interposed between two of said superimposed layers in which the coupled guide channels extend. In addition, each matching wall extends between the intermediate dielectric layer and one of the preceding superimposed layers.

En particulier, dans certains de ces modes de réalisation d'un guide d'onde selon l'invention, la couche diélectrique intercalaire est interposée entre deux couches de substrat diélectrique dans lesquelles s'étendent les canaux de guidage couplés. En outre, chaque paroi d'adaptation s'étend entre la couche diélectrique intercalaire et l'une des couches de substrat diélectrique.In particular, in some of these embodiments of a waveguide according to the invention, the intermediate dielectric layer is interposed between two layers of dielectric substrate in which the coupled guide channels extend. Further, each matching wall extends between the intermediate dielectric layer and one of the dielectric substrate layers.

Dans certains modes de réalisation, chaque couche d'un guide d'onde multicouche selon l'invention dans laquelle s'étend un canal de guidage couplé comprend une épaisseur d'un matériau diélectrique solide et rigide, dit substrat, commun aux différentes couches du guide d'onde superposées les unes aux autres deux à deux par l'intermédiaire d'une couche diélectrique intercalaire qui peut ou non être formée du même substrat. Par exemple, de tels canaux de guidage sont décrits dans la publication « A Multilayer LTCC Solution for Integrating 5G Access Point Antenna Modules », F. Foglia Manzillo et al., in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2272-2283, July 2016 .In certain embodiments, each layer of a multilayer waveguide according to the invention in which extends a guide channel coupled comprises a thickness of a solid and rigid dielectric material, said substrate, common to the various layers of the waveguide superimposed on each other in pairs by means of an intermediate dielectric layer which may or may not be formed from the same substrate. For example, such guide channels are described in the publication “A Multilayer LTCC Solution for Integrating 5G Access Point Antenna Modules”, F. Foglia Manzillo et al., In IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2272-2283, July 2016 .

En particulier, la couche diélectrique intercalaire est disposée entre des faces, dites faces de couplage, de deux couches de substrat diélectrique. En outre, les extrémités de couplage des canaux de guidage débouchent sur ces faces de couplage. Ainsi, les parois d'adaptation de chaque canal d'adaptation sont placées entre une face de couplage d'une des couches de substrat diélectrique comprenant un canal de guidage couplé et la couche diélectrique intercalaire du dispositif de transition. Dans ces modes de réalisation, les canaux d'adaptation sont parallèles aux faces d'assemblage des couches de substrat diélectrique.In particular, the intermediate dielectric layer is placed between faces, called coupling faces, of two dielectric substrate layers. In addition, the coupling ends of the guide channels open onto these coupling faces. Thus, the adaptation walls of each adaptation channel are placed between a coupling face of one of the dielectric substrate layers comprising a coupled guide channel and the intermediate dielectric layer of the transition device. In these embodiments, the matching channels are parallel to the assembly faces of the dielectric substrate layers.

Un dispositif de transition d'un guide d'onde selon l'invention permet ainsi d'assurer une transmission d'onde électromagnétique entre des canaux de guidage couplés de plusieurs couches superposées en minimisant les pertes d'énergie.A waveguide transition device according to the invention thus makes it possible to ensure electromagnetic wave transmission between guide channels coupled with several superimposed layers while minimizing energy losses.

Par ailleurs, chaque canal de guidage couplé est délimité par au moins deux parois électriquement conductrices, dites parois de guidage, espacées l'une de l'autre. Ainsi, lorsqu'un canal de guidage couplé est délimité uniquement par deux parois de guidage, ce canal de guidage est dit « guide d'onde à plaques parallèles ». Ainsi, il est possible d'obtenir un mode de propagation transverse électrique-magnétique quasi-TEM dans de tels canaux de guidage couplés.Furthermore, each coupled guide channel is delimited by at least two electrically conductive walls, called guide walls, spaced apart from one another. Thus, when a coupled guide channel is delimited only by two guide walls, this guide channel is called a “parallel plate waveguide”. Thus, it is possible to obtain a quasi-TEM transverse electric-magnetic propagation mode in such coupled guide channels.

Dans certains modes de réalisation, chaque canal de guidage couplé est délimité par des parois de guidage parallèles deux à deux et agencées pour former une section droite transversale polygonale - notamment rectangulaire-du canal de guidage couplé. Un tel canal de guidage peut être qualifié de « guide d'onde rectangulaire » (souvent désigné par l'acronyme RW, de l'anglais « rectangular waveguide »). Ainsi, il est possible d'obtenir un mode de propagation transverse électrique TE10 dans un tel canal de guidage. Dans certains modes de réalisation d'un guide d'onde multicouche selon l'invention présentant des canaux de guidage couplés formant des guides d'onde rectangulaires, les parois d'adaptation du dispositif de transition peuvent êtres de parois périphériques de l'extrémité de couplage de chaque canal de guidage.In some embodiments, each coupled guide channel is delimited by two by two parallel guide walls and arranged to form a polygonal - in particular rectangular - cross section of the coupled guide channel. Such a guide channel can be qualified as a “rectangular waveguide” (often designated by the acronym RW, standing for “rectangular waveguide”). Thus, it is possible to obtain a propagation mode transverse electric TE 10 in such a guide channel. In certain embodiments of a multilayer waveguide according to the invention having coupled guide channels forming rectangular waveguides, the adaptation walls of the transition device can be peripheral walls of the end of coupling of each guide channel.

Par exemple, une paroi de guidage peut être formée d'une pluralité de vias électriquement conducteurs juxtaposés parallèles les uns aux autres.For example, a guide wall can be formed of a plurality of electrically conductive vias juxtaposed parallel to each other.

Ainsi, dans certains modes de réalisation, chaque paroi de guidage d'au moins un canal de guidage couplé est une plaque métallique.Thus, in some embodiments, each guide wall of at least one coupled guide channel is a metal plate.

Dans certaines variantes de réalisation, chaque paroi de guidage d'au moins un canal de guidage couplé est formée d'une pluralité de vias électriquement conducteurs.In certain variant embodiments, each guide wall of at least one coupled guide channel is formed of a plurality of electrically conductive vias.

Dans certaines autres variantes de réalisation, au moins une paroi de guidage d'au moins un canal de guidage couplé est formée d'une plaque métallique et au moins une autre paroi de guidage de ce canal de guidage couplé est formée d'une pluralité de vias électriquement conducteurs.In certain other variant embodiments, at least one guide wall of at least one coupled guide channel is formed of a metal plate and at least one other guide wall of this coupled guide channel is formed of a plurality of electrically conductive vias.

Un canal de guidage dont les parois de guidage sont formées par des vias juxtaposés permet de guider une onde électromagnétique de façon similaire à un canal de guidage dont les parois de guidage sont formées par des plaques métalliques. L'orientation des vias est la même sur deux parois de guidage parallèles d'un canal de guidage couplé. En particulier, lorsqu'un canal de guidage est un guide d'onde rectangulaire les vias sont orientés dans la même direction que celle d'un champ E relatif au mode électromagnétique que l'on souhaite avoir dans le canal de guidage. En outre, lorsqu'un canal de guidage est un guide d'onde à plaque parallèle, les vias sont orientés orthogonalement à la direction d'un champ E relatif au mode électromagnétique que l'on souhaite avoir dans le canal de guidage.A guide channel whose guide walls are formed by juxtaposed vias makes it possible to guide an electromagnetic wave in a manner similar to a guide channel whose guide walls are formed by metal plates. The orientation of the vias is the same on two parallel guide walls of a coupled guide channel. In particular, when a guide channel is a rectangular waveguide the vias are oriented in the same direction as that of a field E relating to the electromagnetic mode that one wishes to have in the guide channel. Further, when a guide channel is a parallel plate waveguide, the vias are oriented orthogonally to the direction of a field. E relating to the electromagnetic mode that one wishes to have in the guide channel.

En particulier, dans certains modes de réalisation, les vias d'au moins une paroi de guidage d'au moins un canal de guidage s'étendent parallèlement à la direction de transmission.In particular, in certain embodiments, the vias of at least one guide wall of at least one guide channel extend parallel to the direction of transmission.

Par ailleurs, de préférence, les vias des parois de guidage de deux canaux de guidage couplés sont alignés les uns par rapport aux autres ce qui permet d'améliorer la transmission d'une onde électromagnétique entre ces canaux de guidage couplés.Furthermore, preferably, the vias of the guide walls of two coupled guide channels are aligned with respect to each other which improves the transmission of an electromagnetic wave between these coupled guide channels.

En outre, dans certains autres modes de réalisation, les vias d'au moins une paroi de guidage d'au moins un canal de guidage s'étendent orthogonalement à la direction de transmission.Furthermore, in certain other embodiments, the vias of at least one guide wall of at least one guide channel extend orthogonally to the direction of transmission.

L'invention s'étend également à une antenne comprenant au moins un guide d'onde selon l'invention.The invention also extends to an antenna comprising at least one waveguide according to the invention.

En particulier, une antenne selon l'invention peut être une antenne présentant une structure du type dit CTS, de l'anglais « Continuous Transverse Stub » telle que décrite par exemple par US6101705 .In particular, an antenna according to the invention can be an antenna having a structure of the type called CTS, standing for “Continuous Transverse Stub” as described for example by US6101705 .

L'invention s'étend également à un procédé de fabrication d'un guide d'onde électromagnétique multicouche comprenant plusieurs couches superposées formant des canaux de guidage d'une onde électromagnétique, et au moins un dispositif de transition comprenant au moins une couche diélectrique intercalaire entre deux canaux de guidage, dits canaux de guidage couplés, se prolongeant selon une direction de transmission d'une onde électromagnétique entre ces canaux de guidage couplés via le dispositif de transition, caractérisé en ce que le dispositif de transition est fabriqué de sorte que :

  • chaque dispositif de transition comprend au moins un canal d'adaptation s'étendant à partir des canaux de guidage couplés, selon une direction longitudinale sécante à la direction de transmission,
  • chaque canal d'adaptation est délimité par au moins deux parois électriquement conductrices, dites parois d'adaptation, espacées l'une de l'autre par ladite couche diélectrique intercalaire dudit dispositif de transition, chaque paroi d'adaptation s'étendant selon la direction longitudinale le long de ladite couche diélectrique intercalaire à partir d'une extrémité, dite extrémité de couplage, d'un canal de guidage couplé, et au moins une paroi d'adaptation s'étendant selon la direction longitudinale sur une longueur choisie pour obtenir une impédance, dite impédance d'entrée, au moins sensiblement nulle entre les parois d'adaptation de ce canal d'adaptation au niveau des extrémités de couplage des canaux de guidage couplés pour optimiser la transmission d'une onde électromagnétique entre les deux canaux de guidage couplés.
The invention also extends to a method of manufacturing a multilayer electromagnetic waveguide comprising several superimposed layers forming guide channels of an electromagnetic wave, and at least one transition device comprising at least one intermediate dielectric layer. between two guide channels, called coupled guide channels, extending in a direction of transmission of an electromagnetic wave between these guide channels coupled via the transition device, characterized in that the transition device is manufactured so that:
  • each transition device comprises at least one adaptation channel extending from the coupled guide channels, in a longitudinal direction secant to the direction of transmission,
  • each adaptation channel is delimited by at least two electrically conductive walls, called adaptation walls, spaced from one another by said intermediate dielectric layer of said transition device, each adaptation wall extending in the direction longitudinal along said intermediate dielectric layer from one end, called the coupling end, of a coupled guide channel, and at least one adaptation wall extending in the longitudinal direction over a length chosen to obtain a impedance, called input impedance, at least substantially zero between the matching walls of this matching channel at the coupling ends of the guide channels coupled to optimize the transmission of an electromagnetic wave between the two coupled guide channels.

L'invention concerne également un guide d'onde multicouche comprenant un dispositif de transition de deux canaux de guidage du guide d'onde multicouche, un procédé de fabrication d'un tel guide d'onde multicouche et une antenne comprenant un tel guide d'onde multicouche caractérisés en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après.The invention also relates to a multilayer waveguide comprising a device for transitioning two guiding channels of the multilayer waveguide, a method of manufacturing such a multilayer waveguide and an antenna comprising such a waveguide. Multilayer wave characterized in combination by all or part of the characteristics mentioned above or below.

D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre non limitatif et qui se réfère aux figures annexées dans lesquelles :

  • les figures 1 à 5 sont des vues schématiques en perspective de guides d'onde multicouche selon cinq modes de réalisation de l'invention,
  • la figure 6 est une vue schématique en coupe longitudinale du guide d'onde multicouche de la figure 1 dont les canaux de guidage ne sont pas parfaitement alignés,
  • la figure 7 est un premier schéma du circuit équivalent d'un guide d'onde multicouche selon l'invention comprenant deux canaux de guidage et un dispositif d'adaptation,
  • la figure 8 est un deuxième schéma du circuit équivalent d'un guide d'onde multicouche selon l'invention comprenant deux canaux de guidage et un dispositif d'adaptation,
  • la figure 9 est une vue schématique en perspective d'un guide d'onde multicouche selon un sixième mode de réalisation de l'invention,
  • les figures 10 et 11 sont des vues schématiques en coupe longitudinale d'un guide d'onde multicouche selon différents modes de réalisation présentant deux canaux de guidage s'étendant orthogonalement l'un par rapport à l'autre,
  • les figures 12 et 13 sont des vues schématiques en coupe longitudinale d'un guide d'onde multicouche selon différents modes de réalisation adapté pour former un diviseur de puissance,
  • la figure 14 est une vue schématique en coupe longitudinale d'un guide d'onde multicouche selon un mode de réalisation selon l'invention comprenant cinq couches de substrat formant un réseau multicouche d'alimentation dit en chandelier,
  • la figure 15 est une vue schématique en coupe dans l'épaisseur d'un exemple d'une partie de structure d'antenne selon l'invention à fentes rayonnantes,
  • la figure 16 est une vue schématique en coupe longitudinale d'un guide d'onde multicouche selon un autre mode de réalisation selon l'invention comprenant cinq couches de substrat formant un réseau multicouche d'alimentation dit en chandelier.
Other aims, characteristics and advantages of the invention will become apparent on reading the following description given without limitation and which refers to the appended figures in which:
  • the figures 1 to 5 are schematic perspective views of multilayer waveguides according to five embodiments of the invention,
  • the figure 6 is a schematic longitudinal sectional view of the multilayer waveguide of the figure 1 whose guide channels are not perfectly aligned,
  • the figure 7 is a first diagram of the equivalent circuit of a multilayer waveguide according to the invention comprising two guide channels and an adaptation device,
  • the figure 8 is a second diagram of the equivalent circuit of a multilayer waveguide according to the invention comprising two guide channels and an adaptation device,
  • the figure 9 is a schematic perspective view of a multilayer waveguide according to a sixth embodiment of the invention,
  • the figures 10 and 11 are schematic views in longitudinal section of a multilayer waveguide according to different embodiments having two guide channels extending orthogonally with respect to one another,
  • the figures 12 and 13 are schematic views in longitudinal section of a multilayer waveguide according to different embodiments suitable for forming a power divider,
  • the figure 14 is a schematic view in longitudinal section of a multilayer waveguide according to an embodiment according to the invention comprising five layers of substrate forming a multilayer supply network called candlestick,
  • the figure 15 is a schematic cross-sectional view in the thickness of an example of a part of an antenna structure according to the invention with radiating slots,
  • the figure 16 is a schematic longitudinal sectional view of a multilayer waveguide according to another embodiment according to the invention comprising five substrate layers forming a multilayer supply network called a candlestick.

Un guide d'onde 20 multicouche selon l'invention tel que représenté sur les figures 1 à 6 et 8 comprend au moins deux canaux 21 de guidage.A multilayer waveguide 20 according to the invention as shown in the figures 1 to 6 and 8 comprises at least two guide channels 21.

Chaque canal 21 de guidage s'étend longitudinalement selon une direction 22 de transmission et est délimité transversalement par au moins deux parois électriquement conductrices, dites parois 23 de guidage, espacées l'une de l'autre par un matériau 24 diélectrique. Ainsi, chaque canal 21 de guidage permet de guider une onde électromagnétique entre ses parois 23 de guidage. Les canaux 21 de guidage présentent une même impédance caractéristique ZC1.Each guide channel 21 extends longitudinally in a direction 22 of transmission and is delimited transversely by at least two electrically conductive walls, called guide walls 23, spaced from one another by a dielectric material 24. Thus, each guide channel 21 makes it possible to guide an electromagnetic wave between its guide walls 23. The guide channels 21 have the same characteristic impedance Z C1 .

Les parois 23 de guidage délimitant transversalement un canal 21 de guidage sont par ailleurs, symétriques deux à deux par rapport à un plan, dit plan de transmission, parallèle à ces parois 23 de guidage et équidistant des parois 23 de guidage, ce plan de transmission étant un plan médian du canal 21 de guidage.The guide walls 23 transversely delimiting a guide channel 21 are moreover, symmetrical in pairs with respect to a plane, called the transmission plane, parallel to these guide walls 23 and equidistant from the guide walls 23, this transmission plane being a median plane of the guide channel 21.

Le matériau 24 diélectrique interposé entre deux parois 23 de guidage d'un canal 21 de guidage peut être de l'air ou bien tout autre matériau solide diélectrique approprié. Par exemple, l'élément 24 diélectrique présente un coefficient de permittivité diélectrique relative compris entre 1 et 10, néanmoins rien n'empêche d'avoir un tel coefficient supérieur à 10.The dielectric material 24 interposed between two guide walls 23 of a guide channel 21 may be air or else any other suitable dielectric solid material. For example, the dielectric element 24 has a relative dielectric permittivity coefficient of between 1 and 10, nevertheless nothing prevents having such a coefficient greater than 10.

Dans certains modes de réalisation les canaux 21 de guidage du guide d'onde 20 multicouche sont intégrés dans des couches 25 d'un même matériau diélectrique solide et rigide, dit substrat, du guide d'onde 20 multicouche, superposées deux à deux. Le substrat utilisé est choisi en fonction des applications du guide d'onde multicouche. En particulier, le substrat est généralement un substrat organique de faible permittivité diélectrique relative, c'est-à-dire inférieure à 4. Par exemple, le substrat peut être un matériau composite formé de polytétrafluoroéthylène et de fibres de verre tel que le RT/duroid ® 5880 afin de transmettre des ondes électromagnétiques à haute fréquence. Le substrat peut également être une mousse diélectrique dont la permittivité diélectrique relative est proche de celle de l'air (εr = 1).In certain embodiments, the guide channels 21 of the multilayer waveguide 20 are integrated in layers 25 of the same solid and rigid dielectric material, called the substrate, of the multilayer waveguide 20, superimposed two by two. The substrate used is chosen according to the applications of the multilayer waveguide. In particular, the substrate is generally an organic substrate of low relative dielectric permittivity, that is to say less than to 4. For example, the substrate can be a composite material formed from polytetrafluoroethylene and glass fibers such as RT / duroid® 5880 in order to transmit electromagnetic waves at high frequency. The substrate can also be a dielectric foam whose relative dielectric permittivity is close to that of air ( ε r = 1).

En particulier, dans certains de ces modes de réalisation, chaque couche 25 est une plaque de fabrication de circuit imprimé (PCB). Chaque couche 25 comprend alors une épaisseur de matériau diélectrique, dit substrat, et une épaisseur de matériau électriquement conducteur appliquée sur ses deux faces principales du substrat.In particular, in some of these embodiments, each layer 25 is a printed circuit board (PCB) fabrication board. Each layer 25 then comprises a thickness of dielectric material, said substrate, and a thickness of electrically conductive material applied to its two main faces of the substrate.

Chaque couche 25 de substrat présente au moins une face externe, dite face de couplage, de sorte que, lorsque les couches 25 de substrat sont superposées, une face de couplage d'une couche 25 de substrat est en regard d'une face de couplage d'une autre couche superposée. De préférence, les faces de couplage des couches 25 de substrat sont planes et parallèles entre elles. Ainsi, les couches du guide d'onde sont plus facilement superposables.Each substrate layer 25 has at least one external face, called the coupling face, so that, when the substrate layers 25 are superimposed, a coupling face of a substrate layer 25 is opposite a coupling face. of another superimposed layer. Preferably, the coupling faces of the substrate layers 25 are plane and parallel to each other. Thus, the layers of the waveguide are more easily superimposed.

Un guide d'onde multicouche selon le mode de réalisation de l'invention représenté à la figure 1, comprend deux canaux 21 de guidage, dits canaux 21 de guidage couplés, se prolongeant axialement mais étant séparés l'un de l'autre de façon à avoir une absence de contact électrique entre ces deux canaux 21 de guidage. Une extrémité, dite extrémité de couplage, d'un canal 21 de guidage couplé est ainsi en regard d'une extrémité de couplage d'un autre canal 21 de guidage couplé de sorte qu'une onde électromagnétique peut être transmise entre ces deux canaux 21 de guidage couplés.A multilayer waveguide according to the embodiment of the invention shown in figure 1 , comprises two guide channels 21, called coupled guide channels 21, extending axially but being separated from one another so as to have an absence of electrical contact between these two guide channels 21. One end, called the coupling end, of a coupled guide channel 21 is thus facing a coupling end of another guide channel 21 coupled so that an electromagnetic wave can be transmitted between these two channels 21 guides coupled.

En particulier, les deux canaux 21 de guidage couplés sont intégrés respectivement dans deux couches 25 de substrat séparées à distance l'une de l'autre. Une onde électromagnétique peut alors être transmise entre ces deux couches 25 de substrat du guide d'onde 20 multicouche. Les couches 25 de substrat du guide d'onde 20 multicouche sont ainsi superposées de sorte que les extrémités de couplage des canaux 21 de guidage couplés de deux couches 25 de substrat superposées sont en regard l'une de l'autre mais distante l'une de l'autre.In particular, the two coupled guide channels 21 are respectively integrated in two substrate layers 25 separated at a distance from one another. An electromagnetic wave can then be transmitted between these two substrate layers 25 of the multilayer waveguide 20. The substrate layers 25 of the multilayer waveguide 20 are thus superimposed so that the coupling ends of the guide channels 21 coupled to two superimposed substrate layers 25 are facing each other but distant from one another. the other.

La direction 22 de transmission est, de préférence, orthogonale à la face de couplage de chaque couche 25 de substrat.The direction 22 of transmission is preferably orthogonal to the coupling face of each layer 25 of substrate.

En outre, chaque canal 21 de guidage couplé est délimité transversalement par deux parois 23 de guidage. Le canal 21 de guidage est ainsi un guide d'onde à plaques parallèles. En particulier, chaque canal 21 de guidage couplé est délimité par deux plaques 26 métalliques parallèles et de mêmes dimensions.In addition, each coupled guide channel 21 is delimited transversely by two guide walls 23. The guide channel 21 is thus a waveguide with parallel plates. In particular, each coupled guide channel 21 is delimited by two parallel metal plates 26 of the same dimensions.

Plus particulièrement, les parois 23 de guidage délimitant un même côté de deux canaux 21 de guidage couplés sont placées sur un même plan de façon à ce que les deux canaux 21 de guidage couplés soient parfaitement alignés.More particularly, the guide walls 23 delimiting the same side of two coupled guide channels 21 are placed on the same plane so that the two coupled guide channels 21 are perfectly aligned.

Le guide d'onde 20 multicouche comprend, pour chaque paire de canaux 21 de guidage couplé, un dispositif 28 de transition des deux canaux 21 de guidage couplés. Ce dispositif 28 de transition comprend une couche 29 diélectrique intercalaire disposée entre les deux couches 25 de substrat comprenant les canaux 21 de guidage couplés.The multilayer waveguide 20 comprises, for each pair of coupled guide channels 21, a device 28 for transitioning the two coupled guide channels 21. This transition device 28 comprises an intermediate dielectric layer 29 disposed between the two layers 25 of substrate comprising the coupled guide channels 21.

En particulier, cette couche 29 diélectrique intercalaire peut être un film adhésif ou une couche de colle permettant d'assembler les couches 25 de substrat l'une sur l'autre. Le film adhésif peut par exemple être constitué d'un tissu pré-imprégné de résine. La couche 29 diélectrique intercalaire présente par exemple un coefficient de permittivité diélectrique relative compris entre 2 et 4, plus particulièrement de l'ordre de 2,5. La couche 29 diélectrique intercalaire présente une épaisseur plus faible que l'épaisseur de chacune des deux couches 25 de substrat qu'elle relie. En particulier, l'épaisseur de la couche 29 diélectrique est par exemple inférieure à la longueur λ d'onde électromagnétique qui se propage dans cette même couche 29 diélectrique. Par exemple, pour transmettre une onde entre deux canaux de guidage couplé à une fréquence de 30GHz, la couche 29 diélectrique intercalaire présente une épaisseur inférieure à λ/10, de préférence inférieure à λ/100.In particular, this intermediate dielectric layer 29 may be an adhesive film or a layer of adhesive making it possible to assemble the layers 25 of substrate one on top of the other. The adhesive film may for example consist of a fabric pre-impregnated with resin. The intermediate dielectric layer 29 has for example a relative dielectric permittivity coefficient of between 2 and 4, more particularly of the order of 2.5. The intermediate dielectric layer 29 has a thickness smaller than the thickness of each of the two layers 25 of substrate which it connects. In particular, the thickness of the dielectric layer 29 is for example less than the length λ of the electromagnetic wavelength which propagates in this same dielectric layer 29. For example, to transmit a wave between two guide channels coupled to a frequency of 30 GHz, the intermediate dielectric layer 29 has a thickness less than λ / 10, preferably less than λ / 100.

En variante, la couche 29 diélectrique intercalaire peut être formée d'une couche d'air. Cette couche d'air peut être non voulue, due à des erreurs de fabrication, en particulier lors de la fabrication de guides d'onde creux. Les couches 25 de substrat sont alors assemblées l'une à l'autre par un dispositif d'assemblage mécanique tel que des vis ou bien par pressage par exemple.Alternatively, the interlayer dielectric layer 29 may be formed of a layer of air. This layer of air can be unwanted, due to manufacturing errors, in particular during the manufacture of hollow waveguides. The substrate layers 25 are then assembled to one another by a mechanical assembly device such as screws or else by pressing, for example.

Le dispositif 28 de transition comprend également au moins un canal 30 d'adaptation s'étendant à partir des canaux de guidage couplés, chaque canal 30 d'adaptation s'étendant selon une direction longitudinale sécante à la direction de transmission, entre les deux couches 25 comprenant les deux canaux 21 de guidage couplés. En outre, chaque canal 30 d'adaptation est délimité par deux parois électriquement conductrices, dites parois 36 d'adaptation, espacées l'une de l'autre par la couche 29 diélectrique intercalaire. Chaque paroi 36 d'adaptation s'étend entre une couche 25 de substrat comprenant un canal 21 de guidage couplé et la couche 29 diélectrique intercalaire. Ainsi, dans certains modes de réalisation d'un guide d'onde selon l'invention, au moins un dispositif de transition comprend un unique canal d'adaptation s'étendant d'un côté uniquement à partir des canaux de guidage couplés, selon une direction longitudinale sécante à la direction de transmission.The transition device 28 also comprises at least one adaptation channel 30 extending from the coupled guide channels, each adaptation channel 30 extending in a longitudinal direction secant to the direction of transmission, between the two layers. 25 comprising the two coupled guide channels 21. In addition, each adaptation channel 30 is delimited by two electrically conductive walls, called adaptation walls 36, spaced from one another by the intermediate dielectric layer 29. Each matching wall 36 extends between a substrate layer 25 comprising a coupled guide channel 21 and the intermediate dielectric layer 29. Thus, in certain embodiments of a waveguide according to the invention, at least one transition device comprises a single adaptation channel extending on one side only from the coupled guide channels, according to a longitudinal direction secant to the direction of transmission.

En variante ou en combinaison, comme représenté sur les figures 1 à 6, au moins un dispositif de transition comprend au moins deux canaux d'adaptation s'étendant à l'opposé l'un de l'autre à partir des canaux de guidage couplés, chaque canal d'adaptation s'étendant selon une direction longitudinale sécante à la direction de transmission.As a variant or in combination, as shown in the figures 1 to 6 , at least one transition device comprises at least two adaptation channels extending opposite to each other from the coupled guide channels, each adaptation channel extending in a secant longitudinal direction to the direction of transmission.

Chaque canal 30 d'adaptation s'étend selon une direction 31 longitudinale, sécante à la direction 22 de transmission, sur une longueur prédéterminée, dite longueur l d'adaptation, à partir des parois 23 de guidage des canaux 21 de guidage couplés au niveau des extrémités de couplage en regard l'une de l'autre des canaux 21 de guidage couplés, et en s'éloignant de ces canaux 21 de guidage couplés.Each adaptation channel 30 extends in a longitudinal direction 31, secant to the transmission direction 22, over a predetermined length, called the adaptation length l, from the guide walls 23 of the guide channels 21 coupled at the level. coupling ends facing one another of the coupled guide channels 21, and moving away from these coupled guide channels 21.

En particulier, un premier canal 30 d'adaptation du dispositif 28 de transition de deux canaux 21 de guidage couplés présente une première paroi 36 d'adaptation s'étendant orthogonalement à la direction 22 de transmission à partir d'une première paroi 23 de guidage d'un premier canal 21 de guidage couplé au niveau de son extrémité de couplage. Le premier canal 30 d'adaptation comprend également une deuxième paroi 36 d'adaptation s'étendant orthogonalement à la direction 22 de transmission à partir d'une première paroi 23 de guidage d'un deuxième canal 21 de guidage couplé au niveau de son extrémité de couplage, la première paroi 23 de guidage du premier canal 21 de guidage et la première paroi 23 de guidage du deuxième canal 21 de guidage étant placées d'un même côté du plan de transmission.In particular, a first adaptation channel 30 of the device 28 for transitioning two coupled guide channels 21 has a first adaptation wall 36 extending orthogonally to the direction 22 of transmission from a first guide wall 23. a first guide channel 21 coupled at its coupling end. The first adaptation channel 30 comprises also a second adaptation wall 36 extending orthogonally to the direction 22 of transmission from a first guide wall 23 of a second guide channel 21 coupled at its coupling end, the first wall 23 of guiding the first guide channel 21 and the first guide wall 23 of the second guide channel 21 being placed on the same side of the transmission plane.

Un deuxième canal 30 d'adaptation du dispositif 28 de transition présente une première paroi 36 d'adaptation s'étendant orthogonalement à la direction 22 de transmission à partir d'une deuxième paroi 23 de guidage du premier canal 21 de guidage au niveau de son extrémité de couplage. Le premier canal 30 d'adaptation comprend également une deuxième paroi 36 d'adaptation s'étendant orthogonalement à la direction 22 de transmission à partir d'une deuxième paroi 23 de guidage du deuxième canal 21 de guidage au niveau de son extrémité de couplage.A second adaptation channel 30 of the transition device 28 has a first adaptation wall 36 extending orthogonally to the direction 22 of transmission from a second wall 23 for guiding the first guide channel 21 at its level. coupling end. The first adaptation channel 30 also comprises a second adaptation wall 36 extending orthogonally to the direction 22 of transmission from a second guide wall 23 of the second guide channel 21 at its coupling end.

Chaque paroi 36 d'adaptation peut être formée par une lame, dite lame 32 d'adaptation, électriquement conductrice. Chaque lame 32 d'adaptation s'étend selon la longueur l d'adaptation à partir d'une extrémité de couplage d'un canal 21 de guidage d'adaptation et présente une largeur égale à la largeur de cette extrémité de couplage de ce canal 21 de guidage. De préférence, une lame 32 conductrice d'adaptation est orthogonale à la direction 22 de transmission.Each adaptation wall 36 can be formed by a blade, called the adaptation blade 32, electrically conductive. Each adaptation blade 32 extends along the length of adaptation from a coupling end of an adaptation guide channel 21 and has a width equal to the width of this coupling end of this channel 21 guide. Preferably, a conductive adaptation blade 32 is orthogonal to the direction 22 of transmission.

Les lames 32 d'adaptation peuvent être disposées contre les couches 25 de substrat diélectrique.The adaptation blades 32 may be disposed against the layers 25 of dielectric substrate.

Dans une variante de réalisation représentée à la figure 2 un canal 21 de guidage couplé est délimité par deux parois 23 de guidage, chaque paroi 23 de guidage étant formée par une rangée de vias 27 juxtaposés de façon à former un guide d'onde à plaques parallèles. Les vias 27 des deux parois 23 de guidage sont de préférence symétriques les uns des autres par rapport au plan de transmission du canal 21 de guidage. Les vias 27 peuvent être orientés selon la direction 22 de transmission comme représenté figure 2 ou au contraire orthogonalement à la direction 22 de transmission comme représenté figure 3 selon le mode électromagnétique que l'on souhaite avoir dans le canal de guidage. Les vias 27 d'un canal 21 de guidage sont généralement intégrés dans une couche 25 de substrat diélectrique et en traversent l'épaisseur de part en part. En particulier, lorsqu'un canal de guidage est un guide d'onde à plaque parallèle, les vias sont orientés orthogonalement à la direction d'un champ E relatif au mode électromagnétique que l'on souhaite avoir dans le canal de guidage.In an alternative embodiment shown in figure 2 a coupled guide channel 21 is delimited by two guide walls 23, each guide wall 23 being formed by a row of vias 27 juxtaposed so as to form a waveguide with parallel plates. The vias 27 of the two guide walls 23 are preferably symmetrical to each other with respect to the transmission plane of the guide channel 21. The vias 27 can be oriented in the direction 22 of transmission as shown figure 2 or on the contrary orthogonally to the direction 22 of transmission as shown figure 3 according to the electromagnetic mode that one wishes to have in the guide channel. The vias 27 of a guide channel 21 are generally integrated in a layer 25 of dielectric substrate and pass right through the thickness thereof. In particular, when a guide channel is a parallel plate waveguide, the vias are oriented orthogonally to the direction of a field E relating to the electromagnetic mode that one wishes to have in the guide channel.

Les vias 27 juxtaposés formant une paroi 23 de guidage sont espacés les uns des autres par une distance donnée, par exemple de l'ordre du diamètre des vias, de sorte qu'une rangée de vias est similaire à une paroi métallique par rapport à une transmission d'onde électromagnétique. En particulier l'agencement des vias 27 d'une paroi 23 de guidage est par exemple décrit par J. Hirokawa and M. Ando, "Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates," IEEE Trans. Antennas Propag., vol. 46, no. 5, pp. 625-630, May 1998 et par D. Deslandes, K. Wu,"Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide".IEEE Trans. on Microwave Theory and Techniques, 2006, vol. 54,no. 6, pp. 2516-2526 , ou encore par F. Foglia Manzillo et al., "A Multilayer LTCC Solution for Integrating 5G Access Point Antenna Modules," in IEEE Transactions on Microwave Theory and Techniques, 20 vol. 64, no. 7, pp. 2272-2283, July 2016 ..The juxtaposed vias 27 forming a guide wall 23 are spaced from each other by a given distance, for example of the order of the diameter of the vias, so that a row of vias is similar to a metal wall with respect to a electromagnetic wave transmission. In particular the arrangement of the vias 27 of a guide wall 23 is for example described by J. Hirokawa and M. Ando, "Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates," IEEE Trans. Antennas Propag., Vol. 46, no. 5, pp. 625-630, May 1998 and by D. Deslandes, K. Wu, "Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide" .IEEE Trans. on Microwave Theory and Techniques, 2006, vol. 54, no. 6, pp. 2516-2526 , or by F. Foglia Manzillo et al., “A Multilayer LTCC Solution for Integrating 5G Access Point Antenna Modules,” in IEEE Transactions on Microwave Theory and Techniques, 20 vol. 64, no. 7, pp. 2272-2283, July 2016 ..

Dans une variante de réalisation représentée à la figure 4 les canaux 21 de guidage sont délimités par deux plaques 26 métalliques parallèles entre elles et chaque paroi 36 d'adaptation de chaque canal 30 d'adaptation est formée par une rangée de vias 33 juxtaposés parallèles les uns aux autres et s'étendant selon la direction 31 longitudinale du canal 30 d'adaptation. Plus particulièrement, les vias 33 s'étendent le long de ladite couche 29 diélectrique intercalaire à partir d'une extrémité de couplage d'un canal 21 de guidage couplé.In an alternative embodiment shown in figure 4 the guide channels 21 are delimited by two metal plates 26 parallel to each other and each adaptation wall 36 of each adaptation channel 30 is formed by a row of vias 33 juxtaposed parallel to each other and extending in the direction 31 longitudinal of the adaptation channel 30. More particularly, the vias 33 extend along said interlayer dielectric layer 29 from a coupling end of a coupled guide channel 21.

Dans une variante de réalisation représentée à la figure 5, les canaux 21 de guidage sont délimités par deux plaques 26 métalliques parallèles entre elles et chaque paroi 36 d'adaptation de chaque canal 30 d'adaptation est formée par une rangée de vias 33 juxtaposés parallèles les uns aux autres et s'étendant orthogonalement à la direction 31 longitudinale du canal 30 d'adaptation et à la direction 22 de transmission.In an alternative embodiment shown in figure 5 , the guide channels 21 are delimited by two metal plates 26 parallel to each other and each adaptation wall 36 of each adaptation channel 30 is formed by a row of juxtaposed vias 33 parallel to each other and extending orthogonally to the longitudinal direction 31 of the adaptation channel 30 and to the transmission direction 22.

Plus particulièrement, la figure 7 représente un schéma équivalent d'un guide d'onde multicouche selon l'invention présentant deux canaux de guidage couplés par deux canaux d'adaptation.More particularly, the figure 7 represents an equivalent diagram of a multilayer waveguide according to the invention having two guide channels coupled by two adaptation channels.

Les formules données ci-après sont valables pour des guides d'onde multicouche présentant deux canaux de guidage couplés de type guide d'onde à plaques parallèles et lorsque l'épaisseur de la couche diélectrique intercalaire est inférieure à la longueur d'onde des ondes électromagnétique dans les canaux de guidages.The formulas given below are valid for multilayer waveguides having two guide channels coupled of the parallel plate waveguide type and when the thickness of the intermediate dielectric layer is less than the wavelength of the waves. electromagnetic in the guide channels.

Chaque canal 30 d'adaptation présente une charge terminale d'impédance ZR, à son extrémité selon ladite direction longitudinale opposée aux canaux 21 de guidage couplés, qui a une valeur finie et non nulle, représentative des phénomènes de champs de franges et d'effets de radiation survenant aux extrémités de chaque canal d'adaptation opposées aux canaux de guidage. Cette charge terminale est équivalente à une résistance en parallèle à un condensateur à cette extrémité du canal d'adaptation. Cette charge terminale implique que chaque canal 30 d'adaptation n'est terminé ni par un court-circuit ni par un circuit ouvert.Each adaptation channel 30 has a terminal load of impedance Z R , at its end in said longitudinal direction opposite to the coupled guide channels 21, which has a finite and non-zero value, representative of the phenomena of fringe fields and of radiation effects occurring at the ends of each adaptation channel opposite to the guide channels. This terminal load is equivalent to a resistor in parallel with a capacitor at this end of the matching channel. This terminal load implies that each adaptation channel is not terminated by either a short circuit or an open circuit.

Lorsque la permittivité relative ε r1 des couches 25 et la permittivité relative ε r2 de la couche 29 diélectrique intercalaire sont égales à 1, l'impédance ZR de la charge terminale peut être donnée par la formule Z R = 1 G + jB ,

Figure imgb0001
ZR G = 1 Z c 0 πt 2 λ 0
Figure imgb0002
et B = 1 Z c 0 t λ 0 ln 2 0 γt ,
Figure imgb0003
avec Z c 0 = η 0 t W ,
Figure imgb0004
η 0 étant l'impédance d'une onde électromagnétique dans le vide, e∼2,718, γ∼1,781, λ 0 la longueur d'onde de l'onde transmise dans le vide, t étant l'épaisseur de la couche 29 de diélectrique intercalaire et W étant la largeur du canal d'adaptation (voir N. Marcuvitz, Waveguide Handbook, 3rd ed. New York, NY, USA: McGraw-Hill, 1951 ).When the relative permittivity ε r 1 of the layers 25 and the relative permittivity ε r 2 of the intermediate dielectric layer 29 are equal to 1, the impedance Z R of the terminal load can be given by the formula Z R = 1 G + jB ,
Figure imgb0001
Z R where G = 1 Z vs 0 πt 2 λ 0
Figure imgb0002
and B = 1 Z vs 0 t λ 0 ln 2 0 γt ,
Figure imgb0003
with Z vs 0 = η 0 t W ,
Figure imgb0004
η 0 being the impedance of an electromagnetic wave in vacuum, e ∼2.718, γ ∼1.781, λ 0 the wavelength of the wave transmitted in vacuum, t being the thickness of the dielectric layer 29 spacer and W being the width of the adaptation channel (see N. Marcuvitz, Waveguide Handbook, 3rd ed. New York, NY, USA: McGraw-Hill, 1951 ).

Afin d'optimiser la transmission de l'onde électromagnétique entre deux canaux de guidage, la longueur l d'adaptation de chaque canal d'adaptation, et donc d'au moins une paroi d'adaptation, est choisie pour obtenir une impédance d'entrée ZAA' , ZBB' de ce canal d'adaptation au moins sensiblement nulle. En particulier, l'impédance d'entrée ZAA' , ZBB' d'un canal d'adaptation est l'impédance ZR de la charge terminale ramenée à l'entrée AA', BB' du canal d'adaptation. La valeur de l'impédance ZR de cette charge terminale dépend en particulier de l'épaisseur et de la permittivité de la couche diélectrique intercalaire et de la permittivité des couches superposées formant des canaux de guidage.In order to optimize the transmission of the electromagnetic wave between two guide channels, the adaptation length l of each adaptation channel, and therefore of at least one adaptation wall, is chosen to obtain an impedance of input Z AA ' , Z BB' of this adaptation channel at least substantially zero. In particular, the input impedance Z AA ' , Z BB' of a matching channel is the impedance Z R of the terminal load brought back to the input AA ', BB' of the adaptation channel. The value of the impedance Z R of this terminal load depends in particular on the thickness and on the permittivity of the intermediate dielectric layer and on the permittivity of the superimposed layers forming guide channels.

L'impédance d'entrée ZAA' et ZBB' de chaque canal d'adaptation peut être définie par la formule Z AA = Z BB = Z c 2 Z R + jZ c 2 tan β 2 l Z c 2 + jZ R tan β 2 l ,

Figure imgb0005
Z c2 est l'impédance caractéristique de chaque canal d'adaptation, avec Z c 2 = η 0 t ε r 2 W ,
Figure imgb0006
β 2 = 2 π λ 0 ε r 2 ,
Figure imgb0007
et ε r2 est la permittivité relative de la couche 29 diélectrique intercalaire.The input impedance Z AA ' and Z BB' of each matching channel can be defined by the formula Z AA = Z BB = Z vs 2 Z R + jZ vs 2 tan β 2 l Z vs 2 + jZ R tan β 2 l ,
Figure imgb0005
where Z c 2 is the characteristic impedance of each matching channel, with Z vs 2 = η 0 t ε r 2 W ,
Figure imgb0006
β 2 = 2 π λ 0 ε r 2 ,
Figure imgb0007
and ε r 2 is the relative permittivity of the interlayer dielectric layer 29.

Le coefficient de réflexion S 11 d'entrée d'un premier canal de guidage et le coefficient de réflexion S 22 de sortie d'un deuxième canal de guidage couplé au premier canal de guidage peuvent être obtenus par la formule : S 11 = S 22 = Z AA Z AA + Z c 1 ,

Figure imgb0008
Z c1 est l'impédance caractéristique de chaque canal de guidage, avec Z c 1 = η 0 t ε r 1 W ,
Figure imgb0009
et ε r1 est la permittivité relative des couches 25.The input reflection coefficient S 11 of a first guide channel and the output reflection coefficient S 22 of a second guide channel coupled to the first guide channel can be obtained by the formula: S 11 = S 22 = Z AA Z AA + Z vs 1 ,
Figure imgb0008
where Z c 1 is the characteristic impedance of each guide channel, with Z vs 1 = η 0 t ε r 1 W ,
Figure imgb0009
and ε r 1 is the relative permittivity of layers 25.

L'ajustement de la longueur l d'adaptation de chaque canal d'adaptation permet d'obtenir une impédance faible, idéalement nulle (court-circuit), entre les deux canaux de guidage couplés de façon à améliorer la transmission d'une onde électromagnétique en minimisant en particulier les pertes d'énergie. Afin d'obtenir une impédance d'entrée nulle entre deux canaux de guidage couplés de type guide d'onde à plaques parallèles, la longueur l d'adaptation de chaque canal d'adaptation peut par exemple être choisie entre 0,1λ et 0,5λ, notamment entre 0,2λ et 0,3λ. Par conséquent, la conception d'un dispositif de transition selon l'invention est simple et rapide.The adjustment of the adaptation length l of each adaptation channel makes it possible to obtain a low impedance, ideally zero (short circuit), between the two guide channels coupled so as to improve the transmission of an electromagnetic wave by minimizing in particular energy losses. In order to obtain a zero input impedance between two guide channels coupled of waveguide type with parallel plates, the adaptation length l of each adaptation channel can for example be chosen between 0.1λ and 0, 5λ, in particular between 0.2λ and 0.3λ. Consequently, the design of a transition device according to the invention is simple and rapid.

Les formules données ci-dessus sont valables que pour certains modes de réalisation selon l'invention dans lesquels un seul mode TEM se propage dans les canaux de guidage, les couches 25 de substrat présentent une même permittivité relative ε r1 et toutes les ondes se propagent selon la direction de propagation.The formulas given above are valid that for certain embodiments according to the invention in which a single TEM mode propagates in the guide channels, the layers 25 of substrate have the same relative permittivity ε r 1 and all the waves are propagate according to the direction of propagation.

La figure 8 représente un autre schéma équivalent d'un guide d'onde multicouche selon l'invention présentant deux canaux de guidage couplés par deux canaux 30 d'adaptation. Ce schéma équivalent est valable pour toute épaisseur de la couche diélectrique intercalaire. Chaque canal 30 d'adaptation présente une charge terminale d'impédance ZR, à son extrémité selon ladite direction longitudinale opposée aux canaux 21 de guidage couplés, qui a une valeur finie et non nulle, représentative des phénomènes de champs de franges et d'effets de radiation survenant aux extrémités de chaque canal d'adaptation opposées aux canaux de guidage. Cette charge terminale est équivalente à une résistance en parallèle à un condensateur à cette extrémité du canal d'adaptation. En outre, la région de transition entre les canaux d'adaptation et les canaux de guidage est considérée comme une jonction de quatre guides d'onde à quatre ports. Les coefficients d'une matrice [S] de répartition associée à cette jonction peuvent être obtenus par simulation numérique. La longueur l d'adaptation de chaque canal d'adaptation est ensuite déterminée à partir de ces coefficients.The figure 8 shows another equivalent diagram of a multilayer waveguide according to the invention having two guide channels coupled by two adaptation channels. This equivalent scheme is valid for any thickness of the intermediate dielectric layer. Each adaptation channel 30 has a terminal load of impedance Z R , at its end in said longitudinal direction opposite to the coupled guide channels 21, which has a finite and non-zero value, representative of the phenomena of fringe fields and of radiation effects occurring at the ends of each adaptation channel opposite to the guide channels. This terminal load is equivalent to a resistor in parallel with a capacitor at this end of the matching channel. Further, the transition region between the matching channels and the guide channels is considered a junction of four four-port waveguides. The coefficients of a distribution matrix [S] associated with this junction can be obtained by digital simulation. The adaptation length l of each adaptation channel is then determined from these coefficients.

La longueur de chaque canal 30 d'adaptation pouvant être calculée facilement, un dispositif 28 de transition peut être conçu rapidement et simplement.Since the length of each adaptation channel 30 can be easily calculated, a transition device 28 can be designed quickly and simply.

Un guide d'onde multicouche selon le mode de réalisation représenté à la figure 9 comprend deux canaux 21 de guidage couplés parallélépipédiques. En particulier, chaque canal 21 de guidage couplé est délimité par quatre parois 23 de guidage parallèles deux à deux et orthogonales deux à deux. De tels canaux 21 de guidage forment ainsi des guides d'onde rectangulaires. Chaque paroi 23 de guidage est formée par une plaque 26 métallique. Le dispositif 28 de transition comprend alors quatre canaux 30 d'adaptation entre les deux canaux 21 de guidage. Les quatre canaux 30 d'adaptation sont orthogonaux deux à deux. En particulier, chaque paroi 36 d'adaptation d'un canal 30 d'adaptation est formée d'une lame métallique s'étendant à partir d'une paroi 23 de guidage d'un canal 21 de guidage couplé.A multilayer waveguide according to the embodiment shown in figure 9 comprises two parallelepipedal coupled guide channels 21. In particular, each coupled guide channel 21 is delimited by four guide walls 23 which are parallel two by two and orthogonal two by two. Such guide channels 21 thus form rectangular waveguides. Each guide wall 23 is formed by a metal plate 26. The transition device 28 then comprises four adaptation channels 30 between the two guide channels 21. The four adaptation channels 30 are orthogonal two by two. In particular, each adaptation wall 36 of an adaptation channel 30 is formed of a metal blade extending from a guide wall 23 of a coupled guide channel 21.

Dans une variante de réalisation, lorsque les canaux 21 de guidage couplés forment des guides d'onde rectangulaires, les parois 36 d'adaptation du dispositif 28 de transition peuvent êtres de parois périphériques des extrémités de couplage des canaux de guidage.In an alternative embodiment, when the coupled guide channels 21 form rectangular waveguides, the walls 36 adaptation of the transition device 28 can be peripheral walls of the coupling ends of the guide channels.

La longueur l d'adaptation de deux parois 36 d'adaptation d'un premier canal d'adaptation peut être différente de celle de deux parois 36 d'adaptation d'un deuxième canal d'adaptation orthogonal au premier canal d'adaptation.The adaptation length l of two adaptation walls 36 of a first adaptation channel may be different from that of two adaptation walls 36 of a second adaptation channel orthogonal to the first adaptation channel.

Un dispositif 28 de transition selon l'invention permet d'améliorer la transmission d'une onde électromagnétique entre les canaux 21 de guidage couplés en minimisant les pertes d'énergie, ainsi que la réflexion des ondes électromagnétiques transmises entre deux canaux 21 de guidage couplés. En particulier, il permet d'obtenir dans les deux canaux 21 de guidage couplés séparés l'un de l'autre une transmission d'une onde électromagnétique similaire à celle qui serait obtenue avec un guide d'onde continu.A transition device 28 according to the invention makes it possible to improve the transmission of an electromagnetic wave between the coupled guide channels 21 while minimizing the energy losses, as well as the reflection of the electromagnetic waves transmitted between two coupled guide channels 21. . In particular, it makes it possible to obtain in the two coupled guide channels 21 separated from one another a transmission of an electromagnetic wave similar to that which would be obtained with a continuous waveguide.

Dans l'ensemble des exemples décrits ci-dessous, la fréquence de l'onde électromagnétique transmise est de 30GHz. Les couches des guides d'onde multicouche comparés sont constituées d'un substrat de permittivité relative égale à 2,2. Les résultats ont été obtenus par simulation logicielle avec un logiciel de simulation 3D solveur électromagnétique, à savoir ANSYS HFSS®, commercialisé par la société ANSYS, Inc., Canonsburg, Pennsylvania, U.S.A.. D'autres logiciels de simulation tels que CST STUDIO SUITE®, commercialisé par la société CST of America®, Inc, Framingham, Massachussets, USA, ou COMSOL Multiphysics®, commercialisé par la société COMSOL, Inc., Burlington, Massachussets, USA, ou autres, peuvent être utilisés.In all of the examples described below, the frequency of the transmitted electromagnetic wave is 30 GHz. The layers of the multilayer waveguides compared consist of a substrate with a relative permittivity equal to 2.2. The results were obtained by software simulation with an electromagnetic solver 3D simulation software, namely ANSYS HFSS®, marketed by the company ANSYS, Inc., Canonsburg, Pennsylvania, USA Other simulation software such as CST STUDIO SUITE® , marketed by the company CST of America®, Inc, Framingham, Massachussets, USA, or COMSOL Multiphysics®, marketed by the company COMSOL, Inc., Burlington, Massachussets, USA, or others, can be used.

EXEMPLE COMPARATIF 1COMPARATIVE EXAMPLE 1

Avec un guide d'onde multicouche non conforme à l'invention comprenant deux canaux de guidage superposés en contact électriquement l'un avec l'autre, on obtient un coefficient de transmission de l'ordre de -0,01dB et un coefficient de réflexion de l'ordre de -70dB.With a multilayer waveguide not in accordance with the invention comprising two superimposed guide channels in electric contact with one another, a transmission coefficient of the order of -0.01dB and a reflection coefficient are obtained. of the order of -70dB.

EXEMPLE COMPARATIF 2COMPARATIVE EXAMPLE 2

Avec le cas d'un guide d'onde multicouche non conforme à l'invention comprenant deux canaux de guidage superposés n'étant pas en contact électriquement, comprenant une couche diélectrique intercalaire constituée d'air de 100µm d'épaisseur entre deux couches du guide d'onde 20 multicouche et ne comprenant pas de dispositif 28 de transition selon l'invention, on obtient un coefficient de transmission de l'ordre de -4dB et un coefficient de réflexion de l'ordre de -5dB.With the case of a multilayer waveguide not in accordance with the invention comprising two superimposed guide channels not being in contact electrically, comprising an intermediate dielectric layer consisting of air 100 μm thick between two layers of the multilayer waveguide 20 and not comprising a transition device 28 according to the invention, a transmission coefficient of the order of of -4dB and a reflection coefficient of the order of -5dB.

EXEMPLE 3EXAMPLE 3

Avec un guide d'onde multicouche selon le mode de réalisation de l'invention représenté à la figure 1, comprenant une couche 29 diélectrique intercalaire constituée d'air de 100µm d'épaisseur entre deux couches du guide d'onde 20 multicouche, et des lames 32 d'adaptation de longueur l d'adaptation égale à 2mm, on obtient un coefficient de transmission de l'ordre de - 0,04dB et un coefficient de réflexion de l'ordre de -45dB.With a multilayer waveguide according to the embodiment of the invention shown in figure 1 , comprising an intermediate dielectric layer 29 consisting of air 100 μm thick between two layers of the multilayer waveguide 20, and adaptation plates 32 of adaptation length l equal to 2 mm, a transmission coefficient is obtained of the order of - 0.04dB and a reflection coefficient of the order of -45dB.

EXEMPLE 4EXAMPLE 4

Avec un guide d'onde multicouche selon le mode de réalisation de l'invention représenté à la figure 2 et pour une même configuration que celle décrite pour le guide d'onde multicouche selon l'invention de l'exemple 3, on obtient un coefficient de transmission de l'ordre de -0,05dB et un coefficient de réflexion de l'ordre de -44dB.With a multilayer waveguide according to the embodiment of the invention shown in figure 2 and for the same configuration as that described for the multilayer waveguide according to the invention of Example 3, a transmission coefficient of the order of -0.05 dB and a reflection coefficient of the order of -44dB.

EXEMPLE 5EXAMPLE 5

Avec un guide d'onde multicouche selon le mode de réalisation de l'invention représenté à la figure 1 comprenant un film adhésif de 36µm et de permittivité relative de 2,6 comme couche 29 diélectrique intercalaire du dispositif 28 de transition, ainsi que des lames 32 d'adaptation de longueur l d'adaptation égale à 2mm, on obtient un coefficient de transmission de l'ordre de - 0,01dB et un coefficient de réflexion de l'ordre de -66dB.With a multilayer waveguide according to the embodiment of the invention shown in figure 1 comprising an adhesive film of 36 μm and relative permittivity of 2.6 as an intermediate dielectric layer 29 of the transition device 28, as well as adaptation blades 32 with an adaptation length l equal to 2 mm, a transmission coefficient of the order of - 0.01dB and a reflection coefficient of the order of -66dB.

EXEMPLE 6EXAMPLE 6

Dans le cas d'un guide d'onde multicouche tel que décrit dans l'exemple 3 et présentant comme représenté à la figure 6 un écart d'alignement de 0,2mm entre les deux canaux 21 de guidage couplés, on obtient un coefficient de transmission de l'ordre de -0,05dB et un coefficient de réflexion inférieure à -20dB.In the case of a multilayer waveguide as described in example 3 and having, as shown in figure 6 an alignment deviation of 0.2mm between the two coupled guide channels 21, a transmission coefficient of the order of -0.05dB and a reflection coefficient of less than -20dB are obtained.

Un dispositif 28 de transition selon l'invention est donc robuste vis-à-vis des défauts d'alignement des canaux 21 de guidage couplés, qui entraînent peu de perte d'énergie.A transition device 28 according to the invention is therefore robust with respect to misalignments of the coupled guide channels 21, which lead to little loss of energy.

EXEMPLE COMPARATIF 7COMPARATIVE EXAMPLE 7

Avec un guide d'onde multicouche non conforme à l'invention comprenant deux canaux de guidage à section rectangulaire superposés en contact électriquement, chaque canal de guidage étant délimité par quatre parois de guidage orthogonales deux à deux, on obtient un coefficient de transmission de l'ordre de -0,03dB et un coefficient de réflexion de l'ordre de -85dB.With a multilayer waveguide not in accordance with the invention comprising two guide channels of rectangular cross-section superimposed in electric contact, each guide channel being delimited by four orthogonal guide walls two by two, a transmission coefficient of l is obtained. 'order of -0.03dB and a reflection coefficient of the order of -85dB.

EXEMPLE COMPARATIF 8COMPARATIVE EXAMPLE 8

Avec un guide d'onde multicouche non conforme à l'invention comprenant deux canaux de guidage à section rectangulaire superposés qui ne sont pas en contact électriquement, comprenant une couche diélectrique intercalaire constituée d'air de 100µm d'épaisseur entre les deux canaux de guidage et ne comprennent pas de dispositif 28 de transition selon l'invention, chaque canal de guidage étant délimité par quatre parois de guidage orthogonales deux à deux, on obtient un coefficient de transmission de l'ordre de -3dB et un coefficient de réflexion de l'ordre de -5dB.With a multilayer waveguide not in accordance with the invention comprising two guide channels of superimposed rectangular section which are not in electrical contact, comprising an intermediate dielectric layer made of air 100 μm thick between the two guide channels and do not include a transition device 28 according to the invention, each guide channel being delimited by four orthogonal guide walls two by two, one obtains a transmission coefficient of the order of -3dB and a reflection coefficient of l order of -5dB.

EXEMPLE 9EXAMPLE 9

Dans le cas d'un guide d'onde multicouche selon le mode de réalisation de l'invention représenté à la figure 8 comprenant une couche d'air de 100µm d'épaisseur à titre de couche 29 diélectrique intercalaire entre les deux couches 25 du guide d'onde 20 multicouche, ainsi que des lames 32 d'adaptation de longueurs l d'adaptation égales à 2,6mm pour deux premiers canaux d'adaptation opposés l'un à l'autre et 0,25mm pour deux autres canaux d'adaptation opposés l'un à l'autre et orthogonaux aux deux premiers canaux d'adaptation, on obtient un coefficient de transmission de l'ordre de -0,04dB et un coefficient de réflexion de l'ordre de -55dB.In the case of a multilayer waveguide according to the embodiment of the invention shown in figure 8 comprising an air layer 100 μm thick as dielectric layer 29 intermediate between the two layers 25 of the multilayer waveguide 20, as well as adaptation plates 32 of adaptation lengths equal to 2.6 mm for two first adaptation channels opposite to each other and 0.25mm for two other adaptation channels opposite to each other and orthogonal to the first two adaptation channels, a transmission coefficient is obtained of the order of -0.04dB and a reflection coefficient of the order of -55dB.

Les figures 10 à 13 présentent des guides d'onde multicouche selon l'invention pouvant être utilisés comme bloc de base (assemblage de canaux de guidage couplés selon une forme de T, notamment pour les diviseurs de puissance, et de canaux de guidage couplés perpendiculaires l'un par rapport à l'autre) pour la conception de guides d'onde multicouche de structure plus complexe, d'antennes.The figures 10 to 13 present multilayer waveguides according to the invention which can be used as a basic block (assembly of guide channels coupled in a T shape, in particular for the dividers of power, and guide channels coupled perpendicular to each other) for the design of more complex structure multilayer waveguides, antennas.

En particulier, la figure 10 présente un guide d'onde multicouche selon l'invention comprend deux couches 25 de substrat dont une première couche de substrat, dite couche de substrat inférieure, comprend un canal de guidage s'étendant selon une direction de transmission et une deuxième couche de substrat, dite couche de substrat supérieure, comprend un canal de guidage s'étendant orthogonalement à la direction de transmission. Le dispositif 28 de transition comprend deux canaux d'adaptation couplant le canal de guidage de la couche de substrat inférieure à une extrémité du canal de guidage de la couche de substrat supérieure. En particulier, la paroi d'adaptation du dispositif 28 de transition placée au contact de la face de couplage de la couche de substrat supérieure s'étend le long du canal de guidage de la couche de substrat supérieure de façon à le délimiter et à permettre le guidage d'une onde électromagnétique dans ce canal de guidage.In particular, the figure 10 presents a multilayer waveguide according to the invention comprises two substrate layers of which a first substrate layer, called the lower substrate layer, comprises a guide channel extending in a direction of transmission and a second substrate layer, said upper substrate layer, comprises a guide channel extending orthogonally to the direction of transmission. The transition device 28 comprises two adaptation channels coupling the guide channel of the lower substrate layer to one end of the guide channel of the upper substrate layer. In particular, the adaptation wall of the transition device 28 placed in contact with the coupling face of the upper substrate layer extends along the guide channel of the upper substrate layer so as to delimit it and to allow guiding an electromagnetic wave in this guide channel.

La figure 11 présente une variante de réalisation du guide d'onde multicouche de la figure 10, le dispositif 28 de transition comprenant un unique canal d'adaptation. En particulier, le guide d'onde multicouche comprend deux couches 25 de substrat. Une première couche de substrat, dite couche de substrat inférieure, comprend un canal de guidage s'étendant selon une direction de transmission. Une deuxième couche de substrat, dite couche de substrat supérieure, comprend un canal de guidage s'étendant orthogonalement à la direction de transmission. L'unique canal d'adaptation, couplant le canal de guidage de la couche de substrat inférieure à une extrémité du canal de guidage de la couche de substrat supérieure, s'étend orthogonalement à la direction de transmission à l'opposé du canal de guidage de la couche de substrat supérieure. Le canal de guidage de la couche de substrat supérieure est délimité par une paroi métallisée disposée entre la couche de substrat inférieure et la couche diélectrique intercalaire s'étendant le long des deux couches de substrat du guide d'onde multicouche de façon à permettre le guidage d'une onde électromagnétique dans le canal de guidage de la couche de substrat supérieure tout en assurant le contact électrique avec une paroi de guidage du canal de guidage de la couche de substrat inférieure. Le canal de guidage de la couche de substrat supérieure comprend donc en partie la couche diélectrique intercalaire.The figure 11 presents an alternative embodiment of the multilayer waveguide of the figure 10 , the transition device 28 comprising a single adaptation channel. In particular, the multilayer waveguide comprises two layers 25 of substrate. A first substrate layer, called the lower substrate layer, comprises a guide channel extending in a direction of transmission. A second substrate layer, referred to as the upper substrate layer, comprises a guide channel extending orthogonally to the direction of transmission. The single matching channel, coupling the guide channel of the lower substrate layer to one end of the guide channel of the upper substrate layer, extends orthogonally to the direction of transmission away from the guide channel of the top substrate layer. The guide channel of the upper substrate layer is delimited by a metallized wall disposed between the lower substrate layer and the interlayer dielectric layer extending along the two substrate layers of the multilayer waveguide so as to allow the guiding of an electromagnetic wave in the guide channel of the upper substrate layer while providing electrical contact with a guide wall of the guide channel of the lower substrate layer. The guide channel of the upper substrate layer therefore partly comprises the intermediate dielectric layer.

La figure 12 présente un guide d'onde multicouche selon l'invention permettant d'obtenir un diviseur de puissance à une entrée et deux sorties. En particulier, le guide d'onde multicouche présente quatre couches 25 de substrat, une première couche de substrat comprenant un canal de guidage s'étendant selon une direction de transmission et étant relié à un canal de guidage d'une deuxième couche de substrat superposée à la première couche, ce dernier canal de guidage s'étendant orthogonalement à la direction de transmission. Une troisième couche de substrat superposée à la deuxième couche de substrat comprend également deux canaux de guidage couplés s'étendant selon la direction de transmission débouchant sur une face de couplage de la troisième couche de substrat. Un des canaux de guidage de la troisième couche de substrat étant relié à une extrémité du canal de guidage de la deuxième couche de substrat, et l'autre canal de guidage étant relié à une autre extrémité de ce canal de guidage. Une quatrième couche 25 de substrat comprend deux canaux de guidage couplé s'étendant selon la direction de transmission, l'un de ces canaux de guidage étant positionné en regard d'un canal de guidage de la troisième couche de substrat et l'autre canal de guidage couplé de la quatrième couche de substrat étant en regard de l'autre canal de guidage de la troisième couche de substrat. Un premier dispositif 28 de transition est respectivement placé entre un premier canal de guidage couplé de la quatrième couche de substrat et le canal de guidage couplé en regard de ce dernier de la troisième couche de substrat. Un deuxième dispositif 28 de transition est respectivement placé entre l'autre canal de guidage couplé de la quatrième couche de substrat et le canal de guidage couplé en regard de ce dernier de la troisième couche de substrat. En particulier, la couche 29 diélectrique intercalaire est placée entre la troisième couche de substrat et la quatrième couche de substrat. Les dispositifs 28 de transition comprennent deux canaux d'adaptation. En outre, les canaux d'adaptation sont orthogonaux à la direction de transmission.The figure 12 presents a multilayer waveguide according to the invention making it possible to obtain a power divider with one input and two outputs. In particular, the multilayer waveguide has four substrate layers, a first substrate layer comprising a guide channel extending in a transmission direction and being connected to a guide channel of a second superimposed substrate layer. at the first layer, the latter guide channel extending orthogonally to the direction of transmission. A third substrate layer superimposed on the second substrate layer also comprises two coupled guide channels extending in the direction of transmission opening onto a coupling face of the third substrate layer. One of the guide channels of the third substrate layer being connected to one end of the guide channel of the second substrate layer, and the other guide channel being connected to another end of this guide channel. A fourth substrate layer 25 comprises two coupled guide channels extending in the direction of transmission, one of these guide channels being positioned facing a guide channel of the third substrate layer and the other channel. coupled guide channel of the fourth substrate layer being opposite the other guide channel of the third substrate layer. A first transition device 28 is respectively placed between a first guide channel coupled to the fourth layer of substrate and the guide channel coupled opposite the latter to the third layer of substrate. A second transition device 28 is respectively placed between the other guide channel coupled with the fourth layer of substrate and the guide channel coupled opposite the latter with the third layer of substrate. In particular, the intermediate dielectric layer 29 is placed between the third substrate layer and the fourth substrate layer. The transition devices 28 include two adaptation channels. In addition, the adaptation channels are orthogonal to the direction of transmission.

La figure 13 présente un guide d'onde multicouche selon une variante de réalisation de la figure 12. Le guide d'onde multicouche présente deux couches 25 de substrat, une première couche de substrat, dite couche de substrat inférieure, comprenant un premier canal de guidage s'étendant selon une direction de transmission et étant relié à un deuxième canal de guidage de la couche de substrat inférieure orthogonal à la direction de transmission. Une deuxième couche de substrat, dite couche de substrat supérieure, comprend deux canaux de guidage.The figure 13 presents a multilayer waveguide according to an alternative embodiment of the figure 12 . The multilayer waveguide has two substrate layers, a first substrate layer, referred to as the lower substrate layer, comprising a first guide channel extending in a direction of transmission and being connected to a second guide channel of the lower substrate layer orthogonal to the direction of transmission. A second substrate layer, called the upper substrate layer, comprises two guide channels.

Un premier canal de guidage de la couche de substrat supérieure est couplé avec une extrémité du deuxième canal de guidage de la couche de substrat inférieure. Le deuxième canal de guidage est couplé à l'autre extrémité du deuxième canal de guidage de la couche de substrat inférieure. Pour ce faire, les canaux de guidage de la couche de substrat supérieure sont positionnés en regard des extrémités du deuxième canal de guidage de la couche de substrat inférieure. Un premier dispositif 28 de transition est placé entre le premier canal de guidage couplé de la couche de substrat supérieure et le deuxième canal de guidage de la couche de substrat inférieure. Un deuxième dispositif 28 de transition est placé entre le deuxième canal de guidage couplé de la couche de substrat supérieure et le deuxième canal de guidage de la couche de substrat inférieure. Les dispositifs 28 de transition comprennent deux canaux d'adaptation. Les deux dispositifs 28 de transition présente une paroi d'adaptation commune entre les extrémités du deuxième canal de guidage de la couche de substrat inférieure de façon à délimiter ce deuxième canal de guidage et permettre le guidage d'une onde électromagnétique dans ce deuxième canal de guidage entre ses extrémités. En particulier, la paroi d'adaptation commune est une paroi métallisée placée sur la couche de substrat inférieure.A first guide channel of the upper substrate layer is coupled with one end of the second guide channel of the lower substrate layer. The second guide channel is coupled to the other end of the second guide channel of the lower substrate layer. To do this, the guide channels of the upper substrate layer are positioned opposite the ends of the second guide channel of the lower substrate layer. A first transition device 28 is placed between the coupled first guide channel of the upper substrate layer and the second guide channel of the lower substrate layer. A second transition device 28 is placed between the second coupled guide channel of the upper substrate layer and the second guide channel of the lower substrate layer. The transition devices 28 include two adaptation channels. The two transition devices 28 have a common adaptation wall between the ends of the second guide channel of the lower substrate layer so as to delimit this second guide channel and allow the guiding of an electromagnetic wave in this second channel of guidance between its ends. In particular, the common adaptation wall is a metallized wall placed on the lower substrate layer.

La figure 14 présente un guide d'onde multicouche selon l'invention comprenant cinq couches de substrat superposées les unes sur les autres permettant d'obtenir un réseau d'alimentation dit en chandelier (voir par exemple US 7 432 871 ). Un canal de guidage, s'étendant selon une direction de transmission, de la première couche de substrat est couplé par un dispositif de transition à un canal de guidage, s'étendant orthogonalement à la direction de transmission, d'une deuxième couche de substrat à la première couche de substrat. Le dispositif de transition entre la première et la deuxième couche de substrat comprend deux canaux d'adaptation. Chacun de ces canaux d'adaptation présente une paroi d'adaptation s'étendant le long du canal de guidage de la deuxième couche de substrat de façon à le délimiter. Une première extrémité du canal de guidage de la deuxième couche de substrat est couplée par un dispositif de transition à un premier canal de guidage, s'étendant selon la direction de transmission, d'une troisième couche de substrat. Une deuxième extrémité du canal de guidage de la deuxième couche de substrat est couplée par un autre dispositif de transition à un deuxième canal de guidage, s'étendant selon la direction de transmission, de la troisième couche de substrat. Les dispositifs de transition entre la deuxième et la troisième couches de substrat présentent chacun deux canaux d'adaptation, tel que représenté à la figure 11. Un premier canal de guidage de la troisième couche de substrat est couplé à une première extrémité d'un premier canal de guidage, s'étendant orthogonalement à la direction de transmission, d'une quatrième couche de substrat, comme représenté à la figure 12. De même, un deuxième canal de guidage de la troisième couche de substrat est couplé à une première extrémité d'un deuxième canal de guidage, s'étendant orthogonalement à la direction de transmission, d'une quatrième couche de substrat. Une deuxième extrémité du premier canal de guidage de la quatrième couche de substrat est couplée par un dispositif de transition à un premier canal de guidage, s'étendant selon la direction de transmission, d'une cinquième couche de substrat. En outre, une deuxième extrémité du deuxième canal de guidage de la quatrième couche de substrat est couplée par un dispositif de transition à un deuxième canal de guidage, s'étendant selon la direction de transmission, de la cinquième couche de substrat. En particulier, chaque dispositif de transition entre la quatrième et la cinquième couche de substrat comprend deux canaux d'adaptation. Chaque canal de guidage de la quatrième couche de substrat est délimité par une paroi d'adaptation du canal d'adaptation auquel il est associé.The figure 14 presents a multilayer waveguide according to the invention comprising five substrate layers superimposed on each other making it possible to obtain a so-called candlestick supply network (see for example US 7,432,871 ). A guide channel, extending in a direction of transmission, of the first substrate layer is coupled by a transition device to a guide channel, extending orthogonally to the direction of transmission, of a second substrate layer to the first substrate layer. The device for transitioning between the first and the second substrate layer comprises two adaptation channels. Each of these adaptation channels has an adaptation wall extending along the guide channel of the second substrate layer so as to delimit it. A first end of the guide channel of the second layer of substrate is coupled by a transition device to a first guide channel, extending in the direction of transmission, of a third layer of substrate. A second end of the guide channel of the second substrate layer is coupled by another transition device to a second guide channel, extending in the direction of transmission, of the third substrate layer. The transition devices between the second and the third substrate layers each have two adaptation channels, as shown in figure 11 . A first guide channel of the third substrate layer is coupled to a first end of a first guide channel, extending orthogonally to the direction of transmission, of a fourth substrate layer, as shown in Fig. figure 12 . Likewise, a second guide channel of the third substrate layer is coupled to a first end of a second guide channel, extending orthogonally to the direction of transmission, of a fourth substrate layer. A second end of the first guide channel of the fourth substrate layer is coupled by a transition device to a first guide channel, extending in the direction of transmission, of a fifth substrate layer. Furthermore, a second end of the second guide channel of the fourth substrate layer is coupled by a transition device to a second guide channel, extending in the direction of transmission, of the fifth substrate layer. In particular, each transition device between the fourth and the fifth substrate layer comprises two adaptation channels. Each guide channel of the fourth substrate layer is delimited by an adaptation wall of the adaptation channel with which it is associated.

Un guide d'onde 20 multicouche selon l'invention peut être incorporé dans une antenne tel que représenté à la figure 15. L'antenne est réalisée en ajoutant des fentes rayonnantes sur la face supérieure du guide d'onde 20 multicouche représenté à la figure 14 par exemple.A multilayer waveguide 20 according to the invention can be incorporated in an antenna as shown in figure 15 . The antenna is made by adding radiating slits on the upper face of the multilayer waveguide 20 shown in figure 14 for example.

La figure 16 présente une variante de réalisation du guide d'onde multicouche de la figure 14. Ce guide d'onde multicouche diffère de celui présenté à la figure 14 en ce que les dispositifs de transition entre la première couche de substrat et la deuxième couche de substrat, entre la troisième couche de substrat et la quatrième couche de substrat et entre la quatrième couche de substrat et la cinquième couche de substrat comprennent un unique canal d'adaptation.The figure 16 presents an alternative embodiment of the multilayer waveguide of the figure 14 . This multilayer waveguide differs from the one presented in figure 14 in that the transition devices between the first substrate layer and the second substrate layer, between the third substrate layer and the fourth substrate layer and between the fourth substrate layer and the fifth substrate layer comprise a single channel d 'adaptation.

Un guide d'onde 20 multicouche selon l'invention dont les couches 25 sont des plaques de fabrication de circuit imprimé (PCB) peut être fabriqué en gravant les parois 36 d'adaptation des canaux 30 d'adaptation sur l'épaisseur de matériau électriquement conducteur appliquée sur au moins une face principale du substrat de chaque couche 25. Ainsi, chaque paroi 36 d'adaptation est formée du matériau électriquement conducteur des couches 25. Les parois 23 de guidage, formées de vias 27 ou de plaques 26 métalliques sont fabriqués dans les couches 25 du guide d'onde multicouche par des méthodes connus de l'homme du métier. Lorsque la fabrication des parois 36 d'adaptation et des parois 23 de guidage sur chaque couche 25 du guide d'onde 20 multicouche est terminée, les couches 25 du guide d'onde 20 multicouche sont assemblées en interposant une couche 29 diélectrique intercalaire (film adhésif ou couche d'air) entre chacune d'elles.A multi-layered waveguide 20 according to the invention, the layers 25 of which are printed circuit fabrication plates (PCB) can be manufactured by etching the adaptation walls 36 of the adaptation channels 30 on the thickness of material electrically. conductor applied to at least one main face of the substrate of each layer 25. Thus, each adaptation wall 36 is formed of the electrically conductive material of the layers 25. The guide walls 23, formed of vias 27 or metal plates 26 are manufactured in the layers 25 of the multilayer waveguide by methods known to those skilled in the art. When the fabrication of the matching walls 36 and of the guide walls 23 on each layer 25 of the multi-layered waveguide 20 is completed, the layers 25 of the multi-layered waveguide 20 are assembled by interposing a dielectric interlayer 29 (film adhesive or air layer) between each of them.

Un guide d'onde 20 multicouche selon l'invention peut également être réalisé par fabrication additive de couches en matériau polymère et par dépôt d'un matériau électriquement conducteur sur au moins une surface des couches en matériau polymère. Les parois 36 d'adaptation des canaux 30 d'adaptation sont ensuite gravées sur l'épaisseur de matériau électriquement conducteur appliquée. Les couches, une fois gravées, sont ensuite assemblées entre elles par collage à l'aide d'un film adhésif.A multilayer waveguide 20 according to the invention can also be produced by additive manufacturing of layers of polymer material and by depositing an electrically conductive material on at least one surface of the layers of polymer material. The adaptation walls 36 of the adaptation channels 30 are then etched on the thickness of electrically conductive material applied. The layers, once engraved, are then assembled together by gluing using an adhesive film.

Un guide d'onde 20 multicouche selon l'invention peut également être réalisé à partir de pièces métalliques délimitant les canaux de guidage et les canaux d'adaptation. L'espace entre les pièces métalliques définissant les canaux de guidage ou bien les canaux d'adaptation peut être rempli par de l'air ou bien une mousse diélectrique.A multilayer waveguide 20 according to the invention can also be produced from metal parts delimiting the guide channels and the adaptation channels. The space between the metal parts defining the guide channels or the adaptation channels can be filled with air or else a dielectric foam.

Un guide d'onde 20 multicouche selon l'invention peut donc être fabriqué avec des méthodes connus de l'homme du métier. La fabrication d'un guide d'onde 20 multicouche est ainsi simple et rapide à mettre en œuvre.A multilayer waveguide 20 according to the invention can therefore be manufactured using methods known to those skilled in the art. The manufacture of a multilayer waveguide 20 is thus simple and quick to implement.

Par ailleurs, un tel procédé de fabrication peut être mis en œuvre pour une production en série de guides d'onde multicouche selon l'invention.Furthermore, such a manufacturing method can be implemented for mass production of multilayer waveguides according to the invention.

En outre, la tolérance aux défauts de fabrication d'un guide d'onde 20 multicouche selon l'invention permet de faciliter la fabrication en acceptant une marge de non-alignement des canaux de guidage couplés.In addition, the tolerance to manufacturing defects of a multi-layered waveguide according to the invention makes it possible to facilitate manufacturing by accepting a margin of non-alignment of the coupled guide channels.

L'invention concerne donc un guide d'onde 20 multicouche comprenant un dispositif 28 de transition de deux canaux 21 de guidage se prolongeant d'un guide d'onde 20 multicouche, chaque canal 21 de guidage comprenant au moins deux parois électriquement conductrices. Le dispositif 28 de transition permet d'améliorer la transmission des ondes électromagnétiques entre les canaux 21 de guidage, le dispositif 28 de transition comprenant au moins un canal 30 d'adaptation, chaque canal 30 d'adaptation étant délimité par deux parois électriquement conductrices.The invention therefore relates to a multilayer waveguide 20 comprising a device 28 for the transition of two guide channels 21 extending from a multilayer waveguide 20, each guide channel 21 comprising at least two electrically conductive walls. The transition device 28 makes it possible to improve the transmission of electromagnetic waves between the guide channels 21, the transition device 28 comprising at least one adaptation channel 30, each adaptation channel 30 being delimited by two electrically conductive walls.

Un guide d'onde multicouche, un procédé de fabrication d'un tel guide d'onde multicouche et une antenne selon l'invention peuvent faire l'objet de nombreuses variantes de réalisation par rapport aux modes de réalisations représentés sur les figures.A multilayer waveguide, a method for manufacturing such a multilayer waveguide and an antenna according to the invention can be the subject of numerous variant embodiments with respect to the embodiments shown in the figures.

En particulier, chaque paroi de guidage peut être formée d'une pluralité de rangées juxtaposées de vias. Par exemple, le canal 21 de guidage peut être délimité par quatre parois 23 de guidage, chaque paroi 23 de guidage étant formée d'au moins une rangée, notamment au moins deux rangées adjacentes dont les vias d'une rangée sont décalés selon la direction de transmission par rapport aux vias d'une autre rangée de cette paroi 23 de guidage, par exemple par trois rangées adjacentes de vias 27 placés en quinconce.In particular, each guide wall can be formed from a plurality of juxtaposed rows of vias. For example, the guide channel 21 can be delimited by four guide walls 23, each guide wall 23 being formed of at least one row, in particular at least two adjacent rows of which the vias of a row are offset in the direction transmission with respect to the vias of another row of this guide wall 23, for example by three adjacent rows of vias 27 placed in staggered rows.

En outre, un guide d'onde multicouche selon l'invention peut comprendre des parois de guidages formées par au moins une rangée de vias et des parois d'adaptation formées par au moins une autre rangée de vias.In addition, a multilayer waveguide according to the invention can comprise guide walls formed by at least one row of vias and adaptation walls formed by at least one other row of vias.

Un guide d'onde 20 multicouche selon l'invention peut être utilisé afin de concevoir des radars, des systèmes satellitaires, des circuits et des antennes à guides d'ondes multicouche opérantes jusqu'à des ondes millimétriques. En particulier, un guide d'onde 20 multicouche selon l'invention permet notamment de réaliser des antennes selon une structure de type CTS telle que représentée figure 15.A multilayer waveguide according to the invention can be used in order to design radars, satellite systems, circuits and multilayer waveguide antennas operating down to millimeter waves. In particular, a multilayer waveguide 20 according to the invention makes it possible in particular to produce antennas according to a CTS type structure as shown. figure 15 .

Claims (12)

  1. A multilayer electromagnetic waveguide (20) comprising several superimposed layers (25) forming channels (21) for guiding an electromagnetic wave, and at least one transition device (28) comprising at least one interlayer dielectric layer (29) between two guiding channels (21), called coupled guiding channels, prolonging according to a transmission direction (22) of an electromagnetic wave between these coupled guiding channels (21) via the transition device (28):
    - each transition device (28) comprises at least one adaptation channel extending from the coupled guiding channels (21), according to a longitudinal direction (31) intersecting the transmission direction (22),
    - each adaptation channel (30) is delimited by at least two electrically conductive walls, called adaptation walls (36), spaced from one another by said interlayer dielectric layer (29) of said transition device (28), each adaptation wall (36) extending according to the longitudinal direction (31) along said interlayer dielectric layer (29) from an end, called coupling end, of a coupled guiding channel (21), and at least one adaptation wall extending according to the longitudinal direction (31) over a length selected between 0.1λ and 0.5λ to obtain an impedance, called input impedance, at least substantially zero between the adaptation walls (36) of this adaptation channel (30) at the coupling ends of the coupled guiding channels (21) to optimize the transmission of an electromagnetic wave between the two coupled guiding channels (21).
  2. The waveguide according to claim 1, characterized in that the longitudinal direction (31) of each adaptation channel is orthogonal to the transmission direction (22).
  3. The waveguide according to any one of claims 1 or 2, characterized in that at least one adaptation wall (36) of at least one adaptation channel (30) is a metal blade (32).
  4. The waveguide according to any of claims 1 to 3, characterized in that at least one adaptation wall (36) of at least one adaptation channel (30) is formed of a plurality of electrically conductive vias juxtaposed parallel to each other.
  5. The waveguide according to claim 4, characterized in that the vias (33) extend along said interlayer dielectric layer (29) from a coupling end (21) of a coupled guiding channel.
  6. The waveguide according to claim 4, characterized in that the vias (33) extend along said interlayer dielectric layer (29) orthogonally to the longitudinal direction (31) of the adaptation channel (30) and to the transmission direction (22).
  7. The waveguide according to any of claims 1 to 6, characterized in that the interlayer dielectric layer (29) is interposed between two of said superimposed layers (25) in which the coupled guiding channels (21) extend and in that each adaptation wall (32) extends between the interlayer dielectric layer (29) and one of the preceding superimposed layers (25).
  8. The waveguide according to any of claims 1 to 7, characterized in that each coupled guiding channel (21) is delimited by at least two electrically conductive walls spaced from one another, called guiding walls (23).
  9. The waveguide according to any of claims 1 to 8, characterized in that each coupled guiding channel (21) is delimited by guiding walls (23) parallel in pairs and arranged to form a polygonal transverse straight section of the coupled guiding channel (21).
  10. The waveguide according to any one of claims 1 to 9, characterized in that at least one transition device (28) comprises at least two adaptation channels extending opposite one another.
  11. An antenna characterized in that it comprises at least one waveguide according to any of claims 1 to 10.
  12. A method for manufacturing a multilayer electromagnetic waveguide (20) comprising several superimposed layers (25) forming channels (21) for guiding an electromagnetic wave, and at least one transition device (28) comprising at least one interlayer dielectric layer (29) between two guiding channels (21), called coupled guiding channels, prolonging according to a transmission direction (22) of an electromagnetic wave between these coupled guiding channels (21) via the transition device (28), the transition device (28) is manufactured so that:
    - each transition device (28) comprises at least one adaptation channel extending from the coupled guiding channels (21), according to a longitudinal direction (31) intersecting the transmission direction (22),
    - each adaptation channel (30) is delimited by at least two electrically conductive walls, called adaptation walls (36), spaced from one another by said interlayer dielectric layer (29) of said transition device (28), each adaptation wall (36) extending according to the longitudinal direction (31) along said interlayer dielectric layer (29) from an end, called coupling end, of a coupled guiding channel (21), and at least one adaptation wall extending in the longitudinal direction (31) over a length selected between 0.1λ and 0.5λ to obtain an impedance, called input impedance, at least substantially zero between the adaptation walls (36) of this adaptation channel (30) at the coupling ends of the coupled guiding channels (21) to optimize the transmission of an electromagnetic wave between the two coupled guiding channels (21).
EP17783526.1A 2016-10-21 2017-10-16 Multilayer waveguide comprising at least one device for transition between the layers of this multilayer waveguide Active EP3529852B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1660249A FR3057999B1 (en) 2016-10-21 2016-10-21 MULTILAYER WAVEGUIDE COMPRISING AT LEAST ONE DEVICE FOR TRANSITION BETWEEN LAYERS OF THIS MULTILAYER WAVEGUIDE
PCT/EP2017/076359 WO2018073176A1 (en) 2016-10-21 2017-10-16 Multilayer waveguide comprising at least one device for transition between the layers of this multilayer waveguide

Publications (2)

Publication Number Publication Date
EP3529852A1 EP3529852A1 (en) 2019-08-28
EP3529852B1 true EP3529852B1 (en) 2020-09-09

Family

ID=58162726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17783526.1A Active EP3529852B1 (en) 2016-10-21 2017-10-16 Multilayer waveguide comprising at least one device for transition between the layers of this multilayer waveguide

Country Status (5)

Country Link
US (1) US10879577B2 (en)
EP (1) EP3529852B1 (en)
ES (1) ES2834080T3 (en)
FR (1) FR3057999B1 (en)
WO (1) WO2018073176A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102434808B1 (en) * 2020-11-19 2022-08-22 광주과학기술원 Optical Phase Array Antenna Based On Optical Waveguide Type With Double Grating Structure and LIDAR including the same
FR3127642B1 (en) * 2021-09-28 2024-04-19 Commissariat Energie Atomique Integrated waveguide microcircuit
EP4235956A1 (en) 2022-02-28 2023-08-30 Centre national de la recherche scientifique Multilayer waveguide structures for radiofrequency antennas, radiofrequency antennas comprising the same
FR3141002A1 (en) 2022-10-13 2024-04-19 Thales Quasi-optical beamformer including two reflectors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6101705A (en) 1997-11-18 2000-08-15 Raytheon Company Methods of fabricating true-time-delay continuous transverse stub array antennas
US6515562B1 (en) * 1998-04-23 2003-02-04 Kyocera Corporation Connection structure for overlapping dielectric waveguide lines
WO2006022104A1 (en) * 2004-08-24 2006-03-02 Murata Manufacturing Co., Ltd. Transmission line connection structure and transmitter/receiver
US7432871B2 (en) 2005-03-08 2008-10-07 Raytheon Company True-time-delay feed network for CTS array
US20130012145A1 (en) * 2010-03-24 2013-01-10 Nec Corporation Radio module and manufacturing method therefor
KR101761920B1 (en) * 2011-02-16 2017-07-26 삼성전기주식회사 Dielectric waveguide antenna
JP6348761B2 (en) * 2014-04-17 2018-06-27 パナソニック株式会社 Board to board connection structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2834080T3 (en) 2021-06-16
US20190319327A1 (en) 2019-10-17
FR3057999B1 (en) 2019-07-19
FR3057999A1 (en) 2018-04-27
EP3529852A1 (en) 2019-08-28
WO2018073176A1 (en) 2018-04-26
US10879577B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
EP3529852B1 (en) Multilayer waveguide comprising at least one device for transition between the layers of this multilayer waveguide
EP2510574B1 (en) Microwave transition device between a microstrip line and a rectangular waveguide
EP0064313B1 (en) Circularly polarised microwave radiating element and flat microwave antenna using an array of such elements
EP0089084B1 (en) Flat microwave antenna structure
EP3073569B1 (en) Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix
EP0108463B1 (en) Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements
EP0213646B1 (en) Modular microwave antenna units and antenna comprising such units
EP0481417A1 (en) Device for feeding an antenna element radiating two orthogonal polarisations
EP0205212A1 (en) Modular microwave antenna units and antenna composed of such units
CA2314826A1 (en) Stacked antenna with resonant structures and multifrequency radiocommunication device including this antenna
EP3602689B1 (en) Electromagnetic antenna
CA2869648A1 (en) Compact, polarizing power distributor, network of several distributors, compact radiating element and flat antenna comprising such a distributor
EP4012834B1 (en) Antenna source for an array antenna with direct radiation, radiating panel and antenna comprising a plurality of antenna sources
FR2997236A1 (en) COMPACT SLIT ANTENNA
EP1042845B1 (en) Antenna
EP0082751B1 (en) Microwave radiator and its use in an electronically scanned antenna
EP0048195B1 (en) Microwave directional coupler between rectangular waveguide and triplate strip line
FR3040242A1 (en) DIVIDER / COMBINER SYSTEM FOR MICROWAVE WAVE
EP0333568A1 (en) Multi-way combiner/divider
EP2802036B1 (en) Longitudinal displacement passive phase shifter
FR2990591A1 (en) METHOD OF MAKING A LINE-SLIT ON A MULTILAYER SUBSTRATE AND MULTI-LAYER PRINTED CIRCUIT COMPRISING AT LEAST ONE LINE-SLIT REALIZED ACCORDING TO SAID METHOD AND USED AS AN INSULATED SLOT OR ANTENNA
EP3840124B1 (en) Antenna with leaky wave in afsiw technology
EP2432072B1 (en) Wideband balun on a multilayer circuit for a network antenna
WO2019110651A1 (en) Microwave component and associated manufacturing process
EP0465994A1 (en) Microwave triplate module

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200528

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1312706

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017023417

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1312706

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017023417

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2834080

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201016

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230914

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231019 AND 20231025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230915

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231114

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231010

Year of fee payment: 7

Ref country code: DE

Payment date: 20230915

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017023417

Country of ref document: DE

Owner name: UNIVERSITE DE RENNES, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL D'ETUDES SPATIALES (CNES), PARIS, FR; CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX, FR; UNIVERSITE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017023417

Country of ref document: DE

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, FR

Free format text: FORMER OWNERS: CENTRE NATIONAL D'ETUDES SPATIALES (CNES), PARIS, FR; CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX, FR; UNIVERSITE RENNES 1, RENNES, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602017023417

Country of ref document: DE

Owner name: CENTRE NATIONAL D'ETUDES SPATIALES (CNES), FR

Free format text: FORMER OWNERS: CENTRE NATIONAL D'ETUDES SPATIALES (CNES), PARIS, FR; CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, PARIS CEDEX, FR; UNIVERSITE RENNES 1, RENNES, FR