EP3488948B1 - Verfahren zur analyse von fehlerursachen beim stranggiessen - Google Patents

Verfahren zur analyse von fehlerursachen beim stranggiessen Download PDF

Info

Publication number
EP3488948B1
EP3488948B1 EP18198707.4A EP18198707A EP3488948B1 EP 3488948 B1 EP3488948 B1 EP 3488948B1 EP 18198707 A EP18198707 A EP 18198707A EP 3488948 B1 EP3488948 B1 EP 3488948B1
Authority
EP
European Patent Office
Prior art keywords
casting
fault
process parameters
cast
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18198707.4A
Other languages
English (en)
French (fr)
Other versions
EP3488948A1 (de
Inventor
Esra Erdem-Hornauer
Thomas Heimann
Michael Hönig
Uwe Plociennik
Uwe Grafe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63762417&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3488948(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3488948A1 publication Critical patent/EP3488948A1/de
Application granted granted Critical
Publication of EP3488948B1 publication Critical patent/EP3488948B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations

Definitions

  • the invention relates to a method for determining the cause of casting defects in products cast in a continuous casting installation, in particular steel slabs.
  • FIGS. 1a and 1b schematically show different types of material defects that can be roughly differentiated into internal cracks and surface cracks.
  • the reference symbol S denotes a cast strand, slab, billet, bloom or round.
  • the Figure 1a shows various forms of internal cracks, such as so-called gusset cracks and triple-point cracks r1, narrow side cracks r2, half way cracks r3, segregation cracks r4, off-corner / corner cracks r5 and near-surface cracks r6.
  • Typical surface cracks are in the Figure 1b shown, for example transverse Edge cracks r7, longitudinal edge cracks r8, cross cracks r9 and longitudinal cracks / depressions r10.
  • the WO 2009/149680 A1 describes a method for predicting the formation of longitudinal cracks during continuous casting.
  • the EP 2 150 362 B1 describes a method for the detection and classification of surface defects on continuously cast slabs.
  • the detection and prediction of cracks in the material is not sufficient to determine the cause (s) of the error.
  • the cause of the error there is a lack of information about the location of the cracks, the load on the strand and weakening of the material in the continuous caster.
  • An object of the invention is to further improve the quality of continuously cast products, in particular steel slabs.
  • the method according to the invention serves to determine the causes of casting defects in products cast in a continuous casting installation.
  • the DE 10 2015 223 788 A1 describes a process for the continuous casting of a metal strand.
  • the US 2015/0343530 A1 describes systems and methods for monitoring casting processes.
  • Formulation means that the method according to the invention at least contributes to or makes it easier to find causes which can lead to casting errors.
  • the term "defect” here includes material defects of various types that were caused during the casting, in particular internal cracks and surface cracks. However, the method can also help to determine the causes of other defects, such as impurities, inhomogeneities in the material, etc., provided the defects are the result of the casting process in the continuous caster.
  • the cast product is preferably a cast steel slab, but may also be another strand product made of a metal, especially a metal alloy.
  • a defect in the continuously cast product is determined in a first step a).
  • the focus is therefore not on how errors can be recognized manually or automatically, but this is the starting point.
  • defects such as cracks, are found from micrographs of the product. It should be noted that the method naturally also includes those cases in which several defects are found in the continuously cast product. If the singular is chosen here, then this only serves to simplify the language.
  • process parameters are determined under which the product that has the previously found defect was cast.
  • the relevant process parameters can include one or more of the following parameters: dimension of the cast product, material of the cast product, cooling water distribution, cooling water quantity, pouring rate, overheating, pouring level.
  • the aim is to determine those process parameters that are required for the recalculation of the casting in accordance with step c) below.
  • Process parameters for all cast products are stored in a database or file, so that the determination in this case amounts to reading out the process parameters from the database or file.
  • step c) the simulation model can theoretically simulate the temperature distribution in the product during casting.
  • Alternative or further output variables can be the solidification course and / or the position of the sump tip and / or the temperature range sensitive to hot cracks (Brittle Temperature Range) and / or the ductility of the cast strand.
  • the theoretical recalculation of the casting is the basis for determining or identifying in a further step d) one or more positions in the continuous caster where the error is likely to have occurred.
  • the position can be determined particularly reliably if the simulation result is linked to properties of the error found in step a).
  • the defect is preferably classified according to step a) and / or characterizing features are determined, preferably the position of the defect in the product, the shape and / or size of the defect, for example the length of the crack.
  • the position of the origin of the error can thus be read off or calculated.
  • the geometry of the defect is localized in cross section after step a) and then the cross section is localized in the product.
  • the position of the occurrence of errors in the continuous casting installation is preferably drawn in a graphic representation of the casting process. However, it may also be sufficient to store the determined position in such a way that it can be assigned to the point of origin in the continuous caster, for example the segment in question.
  • the cause of the defect formation during casting can be found and the slab quality can be improved in future castings.
  • the process parameters can be checked at this point.
  • the cause of the error is thus preferably determined in a further step e), which follows step d).
  • the cause can be, for example, too much or too little cooling at the position in question, too much bulging or stretching of the strand-shaped product, an incorrect casting speed or an alloying error, etc.
  • a warning is preferably issued for a later casting and / or process parameters are set.
  • the position and the cause of the error determined from it can be fed to an online model. If there is now a likelihood of casting errors in later castings with comparable process conditions, a warning can be issued automatically.
  • automatic control of process parameters such as the casting speed, amount of water in the secondary cooling, etc., can be carried out with the aim of avoiding errors.
  • the process parameters are preferably corrected after step d).
  • the corrected process parameters can form the basis for one or more additional calculations with the aim of eliminating the cause of the error and / or optimize the process parameters.
  • the process parameters can be improved and issued as a recommendation for future castings, or used directly for adaptive control of the continuous caster.
  • the recommended changes to the process parameters can include, for example, the casting speed, cooling in the various segments of the system, soft reduction, employment, etc. The proposed changes will not take effect until the next casting.
  • One or more of the method steps described are preferably carried out on a computer basis, this applies in particular to method step c).
  • the Figure 2 shows schematically and simplified a continuous caster, the structure of which is referred to as a "vertical bending system", since the caster is first guided vertically downward by means of a strand guide, then deflected along an arc and transported horizontally.
  • the continuous casting plant 10 is used to produce a metallic product 11 and for this purpose comprises a mold 12 and an adjoining strand guide 14, along which a strand S of the metallic product 11, preferably emerging downward from the mold 12, is transported in a conveying direction F.
  • a strand S of the metallic product 11 preferably emerging downward from the mold 12
  • Below the mold 12 and on both sides of the strand are several support rollers 2 arranged, for cooling the rod S spray water 4 is applied or sprayed onto the strand S.
  • the strand S is marked with the reference line 5
  • the strand still has a liquid sump.
  • the bottom tip of the strand S is identified by the reference number 6.
  • Downstream of the sump tip 6 is the strand S at the point in the Figure 2 is marked with the reference line 7, completely solidified. Downstream of the sump tip 6, water cooling is also provided along the strand guide 14, which is identified by the reference line 8.
  • the strand guide 14 of the continuous casting plant 10 comprises a straightening area I, through which the strand S is deflected completely in the horizontal direction.
  • the strand guide 14 further comprises a bending region II, through which the strand S, after it has emerged from the mold 12, is deflected in the direction of the horizontal.
  • the straightening range I and the bending range II are shown in the Figure 2 each symbolized simply by dashed rectangles.
  • the solidification front denotes the transition between the liquid core of strand S and the strand shell, which has already solidified.
  • the front region of the solidification front as seen in the conveying direction F of the strand S, is referred to as the sump tip 6 as set out above. Since the strand first solidifies on the surface and the temperature increases from the outside inwards, the liquid core has approximately the shape of a wedge in the conveying direction, the tip of the wedge being the sump tip 6.
  • the susceptibility to hot cracking of a material is described by the temperature range BTR (Brittle Temperature Range), which is generally located in the transition area between the liquid core of strand S and the strand shell.
  • the upper limit of the BTR is called LIT (Liquid Impenetrable Temperature).
  • the lower limit of the BTR is the ZST (Zero Strength Temperature).
  • Various methods and models are known with which the BTR can be determined for the specific material, for example using the Scheil-Gulliver model.
  • the aim is to find the position of the crack formation within the continuous casting installation for cracks found, usually from micrographs. In this way, the cause of the crack formation can be determined and the slab quality can be improved in future castings.
  • the starting point are defects, such as cracks or other defects, which are discovered on cast slabs in a first step S1.
  • defects such as cracks or other defects, which are discovered on cast slabs in a first step S1.
  • One or more errors can be found, for example, on a micrograph or by means of a Baumann deduction (sulfur impression).
  • Baumann deduction sufur impression
  • step S2 characteristic properties of the fault found (analogously several faults) are determined.
  • step S3 the geometry of the defect in the cross section of the slab can be determined and, in step S3, the relevant cross section can be localized in the slab.
  • Errors found can be stored in the input mask of a software, for example, with length, position and, if necessary, alternative or other characterizing features. This can be done manually or algorithmically.
  • the casting length, melt number, sequence number and / or casting time of the product in which one or more defects were found, any existing micrographs, etc. are preferably stored.
  • a recalculation (replay) of the casting that led to the error is carried out using a casting model.
  • the recalculation is carried out using the process parameters determined from the previous step S4.
  • the location where the error originated can be graphically represented, for example in a diagram.
  • the fault position can be drawn in or otherwise stored in the graphical representations, for example of the strand shell growth, so that the position of the fault origin can be read off or calculated.
  • a re-calculation with corrected process data can be carried out beforehand according to step S7 with the aim of eliminating the cause of the error.
  • the process parameters can be optimized and given as a recommendation for future castings, or used directly for adaptive control of the continuous caster.
  • the recommended changes to the process parameters can include casting speed, cooling in the various segments of the facility, soft reduction, employment, etc. The proposed changes will not take effect until the next casting.
  • the crack position can be shown in the representation of the strand shell growth or saved in some other way. Since internal cracks generally occur on the solidification front, the position of the crack formation within the continuous casting installation 100 can be found, as in the diagram in FIG Figure 4 shown as an example of a strand of LowCarbon and with a dimension of 2,600 x 224.5 mm.
  • the location of an internal crack can be determined more precisely.
  • the crack occurs between 5.5 and 9 m below the pouring level.
  • the Figure 6 shows an example of the position of the formation of an internal crack, entered in the roll diagram of a continuous caster 100.
  • the crack was between 20 and 30 mm from the slab edge. Because internal cracks in the Usually arise on the solidification front, the bending area of the system, segment 1, can be recognized as the location of the crack formation.
  • the display of the time-based process data controls whether there were stationary or non-stationary casting conditions.
  • the determination of the positions of the crack formation is more difficult than in the case of stationary casting conditions. Accordingly, measures to prevent cracking are preferably carried out on samples that have been cast under stationary casting conditions.
  • Tracing the origin of a crack by recalculating the casting using the corresponding process parameters can be used in various ways to improve the casting quality.
  • a first stage of expansion the positions and any causes of cracks determined from them can be fed to an online model. If there is now a likelihood of casting errors in later castings with comparable process conditions, a warning can be issued automatically.
  • automatic control of the casting speed, amounts of water in the secondary cooling and / or other process parameters can be carried out with the aim of preventing crack formation avoid.
  • rules can be created and sent to the online model. With a comparable later casting, the online model can then issue warnings or adaptively control the process parameters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft ein Verfahren zur Ursachenbestimmung von Gießfehlern bei in einer Stranggießanlage gegossenen Produkten, insbesondere Brammen aus Stahl.
  • Hintergrund der Erfindung
  • Beim Stranggießen von Metallen, insbesondere Stahl, können bei der Abkühlung und Verfestigung des Strangs Risse im Material entstehen, die zu Qualitätseinbußen oder sogar Ausschuss führen. Die Figuren 1a und 1b zeigen schematisch verschiedene Arten von Materialfehlern, die grob in Innenrisse und Oberflächenrisse unterschieden werden können.
  • In den Figuren 1a und 1b bezeichnet das Bezugszeichen S einen gegossenen Strang, Bramme, Knüppel, Vorblock oder Rund. Die Figur 1a zeigt verschiedene Formen von Innenrissen, so beispielsweise sogenannte Zwickelrisse und Triplepunktrisse r1, Schmalseitenrisse r2, Half Way Cracks r3, Seigerungsrisse r4, Off-Corner/Eck-Risse r5 und oberflächennahe Risse r6. Typische Oberflächenrisse sind in der Figur 1b gezeigt, so beispielsweise querverlaufende Kantenrisse r7, längsverlaufende Kantenrisse r8, Querrisse r9 und Längsrisse/Depressionen r10.
  • Das Analysieren von Fehlerursachen, die zu den obigen und anderen Materialdefekten führen, ist bei stranggegossenen Produkten schwierig und zeitaufwendig. Die WO 2009/149680 A1 beschreibt ein Verfahren zur Vorhersage der Entstehung von Längsrissen beim Stranggießen. Die EP 2 150 362 B1 beschreibt ein Verfahren zur Erkennung und Klassifizierung von Oberflächenfehlern auf stranggegossenen Brammen.
  • Das Erkennen und Vorhersagen von Rissen im Material ist in vielen Fällen jedoch nicht ausreichend, um die Fehlerursache(n) zu bestimmen. So fehlt es beispielsweise an Informationen zum Entstehungsort der Risse, zur Belastung des Stranges und Schwächung des Werkstoffes in der Stranggießanlage. Um die Ursache der Fehler bzw. den Entstehungsmechanismus von Fehlern im konkreten Fall zu ermitteln, kann es zudem hilfreich sein, die Prozessdaten, Informationen des Anlagenzustandes, werkstoffspezifische Informationen usw. zu verknüpfen.
  • Darstellung der Erfindung
  • Eine Aufgabe der Erfindung besteht darin, die Qualität stranggegossener Produkte, insbesondere Brammen aus Stahl, weiter zu verbessern.
  • Gelöst wird die Aufgabe mit einem Verfahren mit den Merkmalen des Anspruchs 1. Vorteilhafte Weiterbildungen folgen aus den Unteransprüchen, der folgenden Darstellung der Erfindung sowie der Beschreibung bevorzugter Ausführungsbeispiele.
  • Das erfindungsgemäße Verfahren dient der Ursachenbestimmung von Gießfehlern bei in einer Stranggießanlage gegossenen Produkten. Diese
  • Die DE 10 2015 223 788 A1 beschreibt ein Verfahren zum Stranggießen eines Metallstranges. Die US 2015/0343530 A1 beschreibt Systeme und Verfahren zum Überwachen von Gießprozessen.
  • Formulierung beinhaltet, dass das erfindungsgemäße Verfahren zum Auffinden von Ursachen, die zu Gießfehlern führen können, zumindest beiträgt oder dieses erleichtert. Die Bezeichnung "Fehler" umfasst hierbei Materialdefekte verschiedener Art, die während des Gießens verursacht wurden, insbesondere Innenrisse und Oberflächenrisse. Allerdings kann das Verfahren auch Ursachen anderer Defekte, wie etwa Verunreinigungen, Inhomogenitäten im Material usw., zu ermitteln helfen, sofern die Fehler das Resultat des Gießprozesses in der Stranggießanlage sind.
  • Das gegossene Produkt ist vorzugsweise eine gegossene Bramme aus Stahl, kann jedoch auch ein anderes strangförmiges Produkt aus einem Metall, insbesondere einer Metalllegierung, sein.
  • Gemäß dem erfindungsgemäßen Verfahren wird in einem ersten Schritt a) ein Fehler im stranggegossenen Produkt festgestellt. Der Fokus liegt somit nicht darin, wie Fehler manuell oder automatisch erkannt werden können, sondern dies ist der Ausgangspunkt. In der Regel werden Fehler, wie etwa Risse, aus Schliffbildern des Produkts gefunden. Es sei darauf hingewiesen, dass das Verfahren selbstverständlich auch jene Fälle umfasst, in denen mehrere Fehler im stranggegossenen Produkt festgestellt werden. Wenn hierbei die Einzahl gewählt wird, dann dient dies nur der sprachlichen Vereinfachung.
  • In einem zweiten Schritt b) werden Prozessparameter ermittelt, unter denen das Produkt, das den zuvor aufgefundenen Fehler aufweist, gegossen wurde. Die relevanten Prozessparameter können einen oder mehrere der folgenden Parameter umfassen: Abmessung des gegossenen Produkts, Material des gegossenen Produkts, Kühlwasserverteilung, Kühlwassermenge, Gießgeschwindigkeit, Überhitzung, Gießspiegel. Ziel ist es, diejenigen Prozessparameter zu ermitteln, die für das Nachrechnen des Gusses gemäß dem nachfolgenden Schritt c) erforderlich sind. Typischerweise werden die Prozessparameter für alle Gießprodukte in einer Datenbank oder Datei gespeichert, so dass das Ermitteln in diesem Fall auf ein Auslesen der Prozessparameter aus der Datenbank oder Datei hinausläuft.
  • Die so ermittelten Prozessparameter dienen nun als Eingangsgrößen, mit denen der Guss des Produkts, das den Fehler aufweist, mittels eines Simulationsmodells nachgerechnet wird. Dies ist der oben erwähnte Schritt c). Das Simulationsmodell kann beispielsweise die Temperaturverteilung im Produkt während des Gießens theoretisch nachbilden. Alternative oder weitere Ausgabegrößen können der Erstarrungsverlauf und/oder die Lage der Sumpfspitze und/oder der Heißriss empfindliche Temperaturbereich (Brittle Temperature Range) und/oder die Duktilität des gegossenen Strangs sein.
  • Das theoretische Nachrechnen des Gusses ist die Grundlage dafür, in einem weiteren Schritt d) einen oder mehrere Positionen in der Stranggießanlage zu ermitteln oder zu identifizieren, an denen der Fehler wahrscheinlich entstanden ist. Besonders zuverlässig kann die Position ermittelt werden, wenn das Simulationsergebnis mit Eigenschaften des im Schritt a) aufgefundenen Fehlers verknüpft wird. Zu diesem Zweck wird der Fehler nach dem Schritt a) vorzugsweise klassifiziert und/oder es werden charakterisierende Merkmale ermittelt, vorzugsweise die Lage des Fehlers im Produkt, die Form und/oder Größe des Fehlers, etwa die Länge des Risses. Die Position der Fehlerentstehung kann somit abgelesen oder berechnet werden. Gemäß einem bevorzugten Ausführungsbeispiel werden nach dem Schritt a) die Geometrie des Fehlers im Querschnitt lokalisiert und anschließend der Querschnitt im Produkt lokalisiert. Vorzugsweise wird die Position der Fehlerentstehung in der Stranggießanlage in eine grafische Darstellung des Gießprozesses eingezeichnet. Allerdings kann es auch ausreichend sein, die ermittelte Position so zu speichern, dass sie dem Entstehungsort in der Stranggießanlage, etwa dem betreffenden Segment, zugeordnet werden kann.
  • Gemäß dem beschriebenen Verfahren kann die Ursache der Fehlerentstehung beim Gießen aufgefunden und die Brammenqualität bei zukünftigen Güssen verbessert werden. So ist es bei einem Folgeguss mit gleichen oder ähnlichen Prozessparametern nun möglich, durch eine Änderung der Prozesswerte, z.B. der Kühlung und/oder Gießgeschwindigkeit, die Fehlergefahr an den kritischen Positionen zu vermindern.
  • Wenn die Position der Fehlerentstehung in der Stranggießanlage bekannt ist, können die Prozessparameter an dieser Stelle geprüft werden. Vorzugsweise wird somit in einem weiteren Schritt e), der dem Schritt d) nachfolgt, die Ursache des Fehlers ermittelt. Die Ursache kann beispielsweise eine zu starke oder zu schwache Kühlung an der betreffenden Position sein, eine zu starke Ausbauchung oder Dehnung des strangförmigen Produkts, eine falsche Gießgeschwindigkeit oder auch ein Legierungsfehler usw..
  • Vorzugsweise werden auf der Grundlage der so ermittelten Ursache des Fehlers zu einem späteren Guss eine Warnung ausgegeben und/oder Prozessparameter eingestellt. So können die Position und daraus ermittelte Fehlerursache beispielsweise einem Online-Modell zugeführt werden. Falls nun bei späteren Güssen mit vergleichbaren Prozessbedingungen die Wahrscheinlichkeit von Gießfehlern besteht, kann automatisch eine Warnung ausgegeben werden. Alternativ oder zusätzlich kann eine automatische Regelung von Prozessparametern, etwa der Gießgeschwindigkeit, Wassermenge in der Sekundärkühlung usw., erfolgen, mit dem Ziel Fehler zu vermeiden.
  • Vorzugsweise erfolgt nach dem Schritt d) eine Korrektur der Prozessparameter. Die korrigierten Prozessparameter können die Grundlage für eine oder mehrere weitere Nachrechnungen bilden, mit dem Ziel die Fehlerursache zu beheben und/oder die Prozessparameter zu optimieren. Auf diese oder andere Weise können die Prozessparameter verbessert und für zukünftige Güsse als Empfehlung ausgegeben oder direkt zur adaptiven Regelung der Stranggießanlage genutzt werden. Die empfohlenen Änderungen an den Prozessparametern können beispielsweise die Gießgeschwindigkeit, Kühlung in den verschiedenen Segmenten der Anlage, Softreduktion, Anstellung usw. umfassen. Die vorgeschlagenen Änderungen werden frühestens beim nächsten Guss wirksam.
  • Vorzugsweise werden ein oder mehrere der dargelegten Verfahrensschritte computerbasiert durchgeführt, dies gilt insbesondere für den Verfahrensschritt c).
  • Weitere Vorteile und Merkmale der vorliegenden Erfindung sind aus der folgenden Beschreibung bevorzugter Ausführungsbeispiele ersichtlich. Die dort beschriebenen Merkmale können alleinstehend oder in Kombination mit einem oder mehreren der oben dargelegten Merkmale realisiert werden, insofern sich die Merkmale nicht widersprechen. Die folgende Beschreibung der bevorzugten Ausführungsbeispiele erfolgt mit Bezug auf die begleitenden Zeichnungen.
  • Kurze Beschreibung der Figuren
    • Die Figuren 1a und 1b zeigen schematisch verschiedene Arten von Materialfehlern, die in Innenrisse (Figur 1a) und Oberflächenrisse (Figur 1b) unterschieden werden.
    • Die Figur 2 zeigt schematisch eine beispielhafte Stranggießanlage, die als "Senkrecht-Abbiegeanlage" konzipiert ist.
    • Die Figur 3 zeigt einen beispielhaften Ablaufplan zur Fehlervermeidung.
    • Die Figuren 4 und 5 zeigen Diagramme zur Bestimmung der Rissentstehung in einer Stranggießanlage.
    • Die Figur 6 zeigt beispielhaft die Position der Entstehung eines Innenrisses, eingetragen in das Rollenschema einer Stranggießanlage.
    • Die Figur 7 zeigt beispielhaft die Position einer Rissentstehung, eingetragen in ein Diagramm der Ausbauchung und Dehnung.
    • Die Figur 8 ist ein Diagramm, das einen beispielhaften Duktilitätsverlauf in der Strangmitte zeigt.
    Detaillierte Beschreibung bevorzugter Ausführungsbeispiele
  • Im Folgenden werden bevorzugte Ausführungsbeispiele anhand der Figuren beschrieben. Dabei sind gleiche, ähnliche oder gleichwirkende Elemente mit identischen Bezugszeichen versehen, und auf eine wiederholende Beschreibung dieser Elemente wird teilweise verzichtet, um Redundanzen zu vermeiden.
  • Die Figur 2 zeigt schematisch und vereinfacht eine Stranggießanlage, deren Aufbau als "Senkrecht-Abbiegeanlage" bezeichnet wird, da der Gießstrang mittels einer Strangführung zunächst vertikal nach unten geführt, anschließend entlang eines Bogens umgelenkt und horizontal weitertransportiert wird.
  • Der Aufbau und die Funktionsweise der Stranggießanlage der Figur 2 im Detail: Die Stranggießanlage 10 dient zum Herstellen eines metallischen Produkts 11 und umfasst hierzu eine Kokille 12 und eine sich daran anschließende Strangführung 14, entlang der ein aus der Kokille 12 vorzugsweise nach unten austretender Strang S des metallischen Produkts 11 in einer Förderrichtung F transportiert wird. Unterhalb der Kokille 12 und beiderseits des Stranges sind mehrere Stützrollen 2 angeordnet, wobei zur Kühlung des Stanges S Spritzwasser 4 auf den Strang S ausgebracht bzw. gespritzt wird. An der Stelle, wo in Figur 2 der Strang S mit der Bezugslinie 5 markiert ist, weist der Strang noch einen flüssigen Sumpf auf. Die Sumpfspitze des Stranges S ist mit dem Bezugszeichen 6 gekennzeichnet. Stromabwärts der Sumpfspitze 6 ist der Strang S an der Stelle, die in der Figur 2 mit der Bezugslinie 7 markiert ist, vollständig durcherstarrt. Stromabwärts der Sumpfspitze 6 ist entlang der Strangführung 14 ebenfalls eine Wasserkühlung vorgesehen, die mit der Bezugslinie 8 gekennzeichnet ist.
  • Die Strangführung 14 der Stranggießanlage 10 umfasst einen Richtbereich I, durch den der Strang S vollständig in die horizontale Richtung umgelenkt wird. Ferner umfasst die Strangführung 14 einen Biegebereich II, durch den der Strang S, nachdem er aus der Kokille 12 ausgetreten ist, in Richtung der Horizontalen umgelenkt wird. Der Richtbereich I und der Biegebereich II sind in der Darstellung der Figur 2 jeweils vereinfacht durch gestrichelte Rechtecke symbolisiert.
  • Innenrisse (r1 bis r6, vgl. Figur 1a) im Strang S können dann entstehen, wenn an der Erstarrungsfront Spannungen auftreten und sich die Strangschale verformt. Die Erstarrungsfront bezeichnet den Übergang zwischen dem flüssigen Kern des Strangs S und der Strangschale, die bereits durcherstarrt ist. Der vordere Bereich der Erstarrungsfront, in Förderrichtung F des Strangs S gesehen, wird wie oben dargelegt als Sumpfspitze 6 bezeichnet. Da der Strang zuerst an der Oberfläche erstarrt und die Temperatur von außen nach innen zunimmt, hat der flüssige Kern in Förderrichtung ungefähr die Form eines Keils, wobei die Spitze des Keils die Sumpfspitze 6 ist. Die Heißrissanfälligkeit eines Werkstoffes wird durch den Temperaturbereich BTR (Brittle Temperature Range) beschrieben, der sich im Allgemeinen im Übergangsbereich zwischen dem flüssigen Kern des Strangs S und der Strangschale befindet.
  • Die obere Grenze des BTR wird als LIT (Liquid Impenetrable Temperature) bezeichnet. Die untere Grenze des BTR ist die ZST (Zero Strength Temperature). Es sind verschiedene Verfahren und Modelle bekannt, mit denen sich für den konkreten Werkstoff der BTR ermitteln lässt, so etwa mittels des Scheil-Gulliver-Modells.
  • Im Unterschied zu den oben betrachteten Innenrissen entstehen Oberflächenrisse (r7 bis r10, vgl. Figur 1b) hauptsächlich durch mechanische Belastungen beim Gießen. Die Krümmungsänderung im Biegebereich I der Strangführung 2 und im sich daran anschließenden Richtbereich II führen zu Dehnungen, was bei zu niedrigen Oberflächentemperaturen zur Rissbildung führen kann. Ein Maß der Rissanfälligkeit an der Oberfläche des Strangs S ist die temperaturabhängige Brucheinschnürung (Duktilität) des Werkstoffes. Unterhalb einer werkstoffabhängigen Duktilität steigt die Rissgefahr an. So liegt die kritische Duktilitätstemperatur beispielsweise bei einem Medium Carbon Werkstoff bei ca. 860 °C, bei einem Röhrenstahl (API) bei ca. 960 °C. Der Duktilitätsabfall hängt unter anderem von der Größe und der Menge von Ausscheidungen und der Phasenumwandlung ab.
  • Um die Rissgefahr im Innern des Strangs S und an dessen Oberfläche zu verringern, ist es das Ziel, für gefundene Risse, in der Regel aus Schliffbildern, die Position der Rissentstehung innerhalb der Stranggießanlage zu finden. Auf diese Weise kann die Ursache der Rissentstehung ermittelt und die Brammenqualität bei zukünftigen Güssen verbessert werden.
  • Im Folgenden wird ein Verfahren zum Auffinden der Position der Rissentstehung in der Stranggießanlage gemäß einem Ausführungsbeispiel mit Bezug auf Figur 3 gegeben:
    Ausgangspunkt sind Fehler, etwa Risse oder andere Defekte, die gemäß einem ersten Schritt S1 an gegossenen Brammen entdeckt werden. Das Auffinden eines oder mehrerer Fehler kann beispielsweise auf einem Schliffbild oder durch einen Baumannabzug (Schwefelabdruck) erfolgen. Es kommt hierbei jedoch nicht darauf an, mit welchem konkreten Verfahren und mit welchen Hilfsmitteln Fehler im gegossenen Material aufgefunden werden.
  • Anschließend werden charakteristische Eigenschaften des aufgefundenen Fehlers (analog mehrere Fehler) ermittelt. So kann gemäß Schritt S2 die Geometrie des Fehlers im Querschnitt der Brammer ermittelt werden und gemäß Schritt S3 der betreffende Querschnitt in der Bramme lokalisiert werden. Gefundene Fehler können etwa in der Eingabemaske einer Software mit Länge, Position und ggf. alternativen oder weiteren charakterisierenden Merkmalen hinterlegt werden. Dies kann manuell oder algorithmisch erfolgen. Zusätzlich werden vorzugsweise die Gießlänge, Schmelzennummer, Sequenznummer und/oder Gießzeit des Produkts, in dem ein oder mehrere Fehler gefunden wurden, ggf. vorhandene Schliffbilder usw. abgespeichert.
  • Für jeden Guss einer Stranggießanlage werden üblicherweise alle Prozessdaten, wie zum Beispiel Strangabmessungen, Analyse, Wassermengen, Gießgeschwindigkeit, Überhitzung, Gießspiegel usw. in einer Datenbank oder in Datenfiles abgespeichert. Mit den oben erfassten Daten zum Fehler (Gießlänge, Schmelzennummer usw.) ist es nun in einem nächsten Schritt S4 beispielsweise mittels einer Software möglich, für den betreffenden Fehler automatisch die zugehörigen Prozessdaten zu ermitteln.
  • In einem sich daran anschließenden Schritt S5 wird mittels eines Gießmodels eine Nachrechnung (Replay) des Gusses, der zu dem Fehler geführt hat, durchgeführt. Die Nachrechnung wird mit den aus dem vorigen Schritt S4 ermittelten Prozessparametern durchgeführt.
  • Durch die Verknüpfung der Position der Fehler im stranggegossenen Produkt S und den theoretisch ermittelten Temperatur- und Erstarrungsverläufen können Rückschlüsse auf den möglichen Entstehungsort des Fehlers in der Stranggießanlage gezogen werden. Dies wird vorzugsweise algorithmisch mittels eines Computerprogramms durchgeführt. So erfolgt darin beispielsweise die Zuordnung: Anzahl der auszuwertenden Fehler; Beschreibung des Fehlertyps; Lage des Fehlers; Position und Abmessung des Fehlers, etwa Länge des Risses; Zuordnung von betroffener Anlagenposition (Segment) und Prozessdaten. Anschließend erfolgt für die entsprechenden Brammen die oben im Schritt S5 genannte Nachrechnung (Replay) der abgespeicherten Prozessdaten mit einem Simulationsmodell, wie etwa dem DSC (Dynamic Solidification Control) der SMS group.
  • Gemäß einem weiteren Schritt S6 kann der ermittelte Entstehungsort des Fehlers grafisch dargestellt, etwa in ein Diagramm, eingezeichnet werden. So kann in den graphischen Darstellungen, zum Beispiel des Strangschalenwachstums, die Fehlerposition eingezeichnet oder anderweitig gespeichert werden, so dass die Position der Fehlerentstehung abgelesen oder berechnet werden kann. Bei einem Folgeguss mit gleichen oder ähnlichen Prozesswerten ist es nun möglich, durch eine Änderung der Prozesswerte, z.B. der Kühlung und/oder Gießgeschwindigkeit, die Fehlergefahr an den kritischen Positionen zu vermindern.
  • Zuvor kann gemäß einem Schritt S7 eine Nachrechnung (Replay) mit korrigierten Prozessdaten erfolgen, mit dem Ziel die Fehlerursache zu beheben.
  • Auf diese oder andere Weise können die Prozessparameter optimiert und für zukünftige Güsse als Empfehlung ausgegeben oder direkt zur adaptiven Regelung der Stranggießanlage genutzt werden. Die empfohlenen Änderungen an den Prozessparametern können beispielsweise die Gießgeschwindigkeit, Kühlung in den verschiedenen Segmenten der Anlage, Softreduktion, Anstellung usw. umfassen. Die vorgeschlagenen Änderungen werden frühestens beim nächsten Guss wirksam.
  • Bei einer erfolgreichen Nachrechnung oder Simulation mit verbesserten oder optimierten Prozessdaten können diese neuen Prozessdaten gemäß dem Schritt S8 für den nächsten Guss verwendet werden.
  • Es folgen Beispiele zur Analyse und Rückverfolgung von Rissen:
    Zur Erkennung von Innenrissen kann in der Darstellung des Strangschalenwachstums die Rissposition eingezeichnet oder anderweitig gespeichert werden. Da Innenrisse in der Regel an der Erstarrungsfront entstehen, kann so die Position der Rissentstehung innerhalb der Stranggießanlage 100 gefunden werden, wie in dem Diagramm der Figur 4 beispielhaft für einen Strang aus LowCarbon und mit einer Abmessung von 2.600 x 224,5 mm gezeigt.
  • Wenn neben dem Verlauf der Strangschalendicke in der Stranggießanlage 100 auch der für Heißrisse kritische Temperaturbereich (BTR) berechnet wird, kann der Entstehungsort eines Innenrisses exakter bestimmt werden. Im Beispiel der Figur 5, die wie die Figur 4 ein Diagramm zur Bestimmung der Entstehungsposition eines Innenrisses ist, entsteht der Riss zwischen 5.5 und 9 m unterhalb des Gießspiegels.
  • Die Figur 6 zeigt beispielhaft die Position der Entstehung eines Innenrisses, eingetragen in das Rollenschema einer Stranggießanlage 100. Der Riss lag zwischen 20 und 30 mm von der Brammenkante entfernt. Da Innenrisse in der Regel an der Erstarrungsfront entstehen, kann als Ort der Rissentstehung der Biegebreich der Anlage, Segment 1 erkannt werden.
  • In der Figur 7 ist der Ort der Rissentstehung in ein Diagramm der Ausbauchung und Dehnung eingetragen. Es ist zu erkennen, dass die Rissursache in diesem Fall nicht an einer zu großen Ausbauchung liegen kann.
  • In der Figur 8 ist der Duktilitätsverlauf in der Strangmitte dargestellt. Am Ende des Richtbereiches sinkt die Duktilität unter 70% ab. Dort können Oberflächenrisse entstehen.
  • Durch die Darstellung der zeitbasierten Prozessdaten, wie Gießgeschwindigkeit, Gießtemperatur und Sekundärwasser, mit den daraus resultierenden Temperaturen, Strangschalendicken und der Sumpfspitzenposition erfolgt die Kontrolle, ob stationäre oder nicht stationäre Gießbedingungen vorlagen. Bei nicht stationären Gießbedingungen ist die Ermittlung der Positionen der Rissentstehung schwieriger als bei stationären Gießbedingungen. Demnach werden Maßnahmen zur Rissvermeidung vorzugsweise an Proben vorgenommen, die unter stationären Gießbedingungen gegossen wurden.
  • Die Rückverfolgung der Entstehungsposition eines Risses, indem der Guss mittels der entsprechenden Prozessparameter nachgerechnet wird, kann auf verschiedene Weise zur Verbesserung der Gießqualität genutzt werden. So können in einer ersten Ausbaustufe die Positionen und ggf. daraus ermittelten Rissursachen einem Online-Modell zugeführt werden. Falls nun bei späteren Güssen mit vergleichbaren Prozessbedingungen die Wahrscheinlichkeit von Gießfehlern besteht, kann automatisch eine Warnung ausgegeben werden. In einer nächsten Ausbaustufe kann eine automatische Regelung der Gießgeschwindigkeit, Wassermengen in der Sekundärkühlung und/oder anderer Prozessparameter durchgeführt werden, mit dem Ziel, die Rissentstehung zu vermeiden. Zu diesem Zweck können Regeln erstellt und an das Online-Modell gesendet werden. Bei einem vergleichbaren späteren Guss kann das Online-Modell dann Warnungen ausgeben oder eine adaptive Regelung der Prozessparameter vornehmen.
  • Soweit anwendbar, können alle einzelnen Merkmale, die in den Ausführungsbeispielen dargestellt sind, miteinander kombiniert und/oder ausgetauscht werden, ohne den Bereich der Erfindung, wie in den beigefügten Ansprüchen definiert, zu verlassen.
  • Bezugszeichenliste
  • 2
    Stützrollen
    4
    Spritzwasser
    5
    Flüssiger Sumpf
    6
    Sumpfspitze
    7
    Durcherstarrter Abschnitt des Strangs
    8
    Wasserkühlung
    10
    Stranggießanlage
    11
    Metallisches Produkt
    12
    Kokille
    14
    Strangführung
    I
    Richtbereich
    II
    Biegebereich
    S
    Strang/Bramme
    F
    Förderrichtung
    r1 bis r10
    Arten von Innenrissen und Oberflächenfehlern
    S1 bis S8
    Verfahrensschritte eines Ausführungsbeispiels

Claims (10)

  1. Verfahren zur Ursachenbestimmung von Gießfehlern bei in einer Stranggießanlage (100) gegossenen Produkten (S), insbesondere Brammen aus Stahl, das aufweist:
    a) Feststellen eines Fehlers (r1 - r10) in einem stranggegossenen Produkt (S);
    b) Ermitteln von Prozessparametern, unter denen das Produkt (S) gegossen wurde;
    c) Nachrechnen des Gusses gemäß den Prozessparametern mit einem Simulationsmodell;
    d) Ermitteln einer oder mehrerer Positionen in der Stranggießanlage (100), an denen der Fehler (r1 - r10) wahrscheinlich entstanden ist, aus einer Verknüpfung eines im Schritt c) gewonnenen Simulationsergebnisses mit Eigenschaften des im Schritt a) aufgefundenen Fehlers.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nach dem Schritt a) der Fehler (r1 - r10) klassifiziert wird und/oder charakterisierende Merkmale, vorzugsweise Lage des Fehlers im Produkt, Form und/oder Größe des Fehlers, ermittelt werden.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass nach dem Schritt a) die Geometrie des Fehlers (r1 - r10) im Querschnitt lokalisiert wird und anschließend der Querschnitt im Produkt (S) lokalisiert wird.
  4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Prozessparameter einen oder mehrere der folgenden Parameter umfassen: Abmessung des gegossenen Produkts, Material des gegossenen Produkts, Kühlwasserverteilung, Kühlwassermenge, Gießgeschwindigkeit, Überhitzung, Gießspiegel.
  5. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass im Schritt c) der Erstarrungsverlauf und/oder die Lage der Sumpfspitze (6) und/oder Temperaturverläufe im gegossenen Strang und/oder der Heißriss empfindliche Temperaturbereich (Brittle Temperature Range) und/oder die Duktilität ermittelt werden.
  6. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass nach dem Schritt d) in einem weiteren Schritt e) die Ursache des Fehlers (r1 - r10) ermittelt wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass auf der Grundlage der Ursache des Fehlers zu einem späteren Guss eine Warnung ausgegeben und/oder Prozessparameter eingestellt oder geregelt werden.
  8. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass nach dem Schritt d) eine Korrektur der Prozessparameter stattfindet.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass nach der Korrektur der Prozessparameter eine Nachrechnung mit den korrigierten Prozessparametern erfolgt.
  10. Verfahren nach einem der vorigen Ansprüche, dadurch gekennzeichnet, dass eine oder mehrere der im Schritt d) ermittelten Positionen in einem Diagramm, vorzugsweise einer graphischen Darstellungen des Strangschalenwachstums, dargestellt werden.
EP18198707.4A 2017-11-24 2018-10-04 Verfahren zur analyse von fehlerursachen beim stranggiessen Active EP3488948B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017221086.9A DE102017221086A1 (de) 2017-11-24 2017-11-24 Verfahren zur Analyse von Fehlerursachen beim Stranggießen

Publications (2)

Publication Number Publication Date
EP3488948A1 EP3488948A1 (de) 2019-05-29
EP3488948B1 true EP3488948B1 (de) 2020-01-08

Family

ID=63762417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18198707.4A Active EP3488948B1 (de) 2017-11-24 2018-10-04 Verfahren zur analyse von fehlerursachen beim stranggiessen

Country Status (2)

Country Link
EP (1) EP3488948B1 (de)
DE (1) DE102017221086A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0909598A1 (de) 1996-05-13 1999-04-21 Ebis Corporation Verfrahren und vorrichtung zum stranggiessen
JP2004082150A (ja) 2002-08-26 2004-03-18 Furukawa Electric Co Ltd:The 連続鋳造方法
WO2008128504A1 (de) 2007-04-24 2008-10-30 Sms Siemag Ag Verfahren zur erkennung und klassifizierung von oberflächenfehlern auf stranggegossenen brammen
CN103706774A (zh) 2012-09-29 2014-04-09 宝钢不锈钢有限公司 一种甄别不锈钢板坯表面夹渣、裂纹缺陷的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4816130B2 (ja) * 2006-02-22 2011-11-16 Jfeスチール株式会社 鋼の連続鋳造鋳片の製造方法および鋳片の表層欠陥手入システム。
DE102008028481B4 (de) 2008-06-13 2022-12-08 Sms Group Gmbh Verfahren zur Vorhersage der Entstehung von Längsrissen beim Stranggießen
CA2937228C (en) * 2014-01-31 2019-11-19 Nippon Steel & Sumitomo Metal Corporation Method, apparatus, and program for determining casting state in continuous casting
US20150343530A1 (en) * 2014-05-30 2015-12-03 Elwha Llc Systems and methods for monitoring castings
DE102015223788A1 (de) * 2015-11-30 2017-06-01 Sms Group Gmbh Verfahren zum Stranggießen eines Metallstranges und durch dieses Verfahren erhaltener Gießstrang

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0909598A1 (de) 1996-05-13 1999-04-21 Ebis Corporation Verfrahren und vorrichtung zum stranggiessen
JP2004082150A (ja) 2002-08-26 2004-03-18 Furukawa Electric Co Ltd:The 連続鋳造方法
WO2008128504A1 (de) 2007-04-24 2008-10-30 Sms Siemag Ag Verfahren zur erkennung und klassifizierung von oberflächenfehlern auf stranggegossenen brammen
CN103706774A (zh) 2012-09-29 2014-04-09 宝钢不锈钢有限公司 一种甄别不锈钢板坯表面夹渣、裂纹缺陷的方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"4th European Continuous Casting Conference", IRONMAKING AND STEELMAKING, vol. 30, no. 2, 2003, XP055749103
A. S. NORMANTON: "Developments in online surface and internal quality forecasting of continuously cast semis", IRONMAKING AND STEELMAKING, vol. 31, no. 5, 2004, pages 376 - 382, XP055749119
B. PATRICK, CRACK PREVENTION IN CONTINUOUS CASTING, 1998, XP055749107, ISBN: 92-828-4902-3
KURT HERZOG ET AL.: "The digitalization of the steel industry with examples from continuous casting automation", 174TH ISIJ MEETING, 6 September 2017 (2017-09-06), XP055749097
LIFENG ZHANG ET AL.: "Control of Transverse Corner Cracks on Low-Carbon Steel Slabs", SLABS. JOM, vol. 66, 2014, pages 1711 - 1720, XP035388575, DOI: 10.1007/s11837-014-1112-y
MICHAEL RIEDLER: "Thermische Abbildung einer Stranggießanlage für große Rundformate und Verifizierung der Modellergebnisse", MASTERARBEIT, 2012, XP055749113
PETER JUZA ET AL.: "Introducing the next level of quality in continuous casting automation", METEC INSTEELCON 2011, 27 June 2011 (2011-06-27), Düsseldorf D2, XP055749094
SEBASTIAN MICHELIC ET AL.: "DEVELOPMENT, IMPLEMENTATION AND VERIFICATION OF A TRANSIENT NUMERIC SOLIDIFICATION MODEL OF A CONTINUOUS BLOOM CASTER AT VOESTALPINE STAHL DONAWITZ", 7TH EUROPEAN CONTINUOUS CASTING CONFERENCE, 2011, XP055749110
WOLFGANG OBERAIGNER ET AL.: "Improvement of slab quality at ThyssenKrupp Steel Europe through Dynacs 3D strand cooling model", ECCC, EUROPEAN CONTINUOUS CASTING CONFERENCE, vol. 8, 2014, pages 1191 - 1201, XP055749092
ZHIQIANG HANE ZHIQIANG HAN ET AL.: "Prediction and Analysis on Formation of Internal Cracks in Continuously Cast Slabs by Mathematical Models", ISIJ INTERNATIONAL, vol. 41, no. 12, 2001, pages 1473 - 1480, XP055749109

Also Published As

Publication number Publication date
DE102017221086A1 (de) 2019-05-29
EP3488948A1 (de) 2019-05-29

Similar Documents

Publication Publication Date Title
EP3096896B1 (de) Verfahren zur optimierten herstellung von metallischen stahl- und eisenlegierungen in warmwalz- und grobblechwerken mittels eines gefügesimulators, -monitors und/oder -modells
EP3184202B1 (de) Verfahren zum stranggiessen eines metallstranges
WO2005068109A1 (de) Verfahren und einrichtung zum bestimmen der lage der sumpfspitze im giessstrang beim stranggiessen von flüssigen metallen, insbesondere von flüssigen stahlwerkstoffen
AT525791B1 (de) Überwachungsverfahren für eine Stranggießkokille mit Aufbau einer Datenbank
EP2346631B1 (de) Verfahren und vorrichtung zur steuerung der erstarrung eines giessstranges in einer stranggiessanlage beim anfahren des giessprozesses
EP1289691B1 (de) Verfahren zum stranggiessen eines metallstranges
EP2588257A1 (de) Betriebsverfahren für ein walzwerk zum walzen von flachem walzgut mit walzenverschleissprognose
EP1324845B1 (de) Verfahren zum betreiben einer anlage der grundstoffindustrie
AT509895A1 (de) Stranggiesseinrichtung
DE102010050647A1 (de) Anlage und Verfahren zum Gießen und Walzen von Metall
DE102019208736A1 (de) Verfahren zum Gießen eines Gießstrangs in einer Stranggießanlage
DE10310357A1 (de) Gießwalzanlage zur Erzeugen eines Stahlbandes
EP3488948B1 (de) Verfahren zur analyse von fehlerursachen beim stranggiessen
DE102020209794A1 (de) Verfahren zur Steuerung oder Regelung der Temperatur eines Gießstrangs in einer Stranggießanlage
EP3441157B1 (de) Verfahren und anlage zum stranggiessen eines metallischen produkts
WO2003045607A2 (de) Verfahren zum stranggiessen
EP3173166B1 (de) Verfahren und vorrichtung zum einstellen der breite eines stranggegossenen metallstrangs
DE3126385C2 (de) Verfahren zum Stranggießen von Stahlbrammen
DE102008015845B3 (de) Bimetallband zur Herstellung von Sägeblättern, Sägebändern oder Streichrakeln
DE102015215328A1 (de) Verfahren zum Stranggießen eines Metallstrangs und zum Bestimmen des Schrumpfs eines stranggegossenen Metallstrangs
DE102011077454A1 (de) Stranggießanlage
EP3171997B1 (de) Verfahren zur herstellung eines metallischen produkts
EP0116030B1 (de) Verfahren zum Überwachen einer Bogenstranggiessanlage
WO2017202420A1 (de) Verfahren zur verbesserung des verschleissverhaltens von anlagenkomponenten bei der weiterverarbeitung von hochlegierten stählen sowie anlage zur verarbeitung dieser hochlegierten stähle
EP2295170A2 (de) Verfahren und Stranggießvorrichtung zum Verformen eines gießwarmen Stranges aus Metall, insbesondere aus Stahl oder stahlwerkstoffen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20181004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190702

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018000623

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1222070

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200531

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200409

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502018000623

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

26 Opposition filed

Opponent name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH

Effective date: 20201008

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201004

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLAO Information deleted related to despatch of communication that opposition is rejected

Free format text: ORIGINAL CODE: EPIDOSDREJ1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PLAO Information deleted related to despatch of communication that opposition is rejected

Free format text: ORIGINAL CODE: EPIDOSDREJ1

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231026

Year of fee payment: 6

Ref country code: DE

Payment date: 20231020

Year of fee payment: 6

Ref country code: AT

Payment date: 20231020

Year of fee payment: 6

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO