EP3173166B1 - Verfahren und vorrichtung zum einstellen der breite eines stranggegossenen metallstrangs - Google Patents

Verfahren und vorrichtung zum einstellen der breite eines stranggegossenen metallstrangs Download PDF

Info

Publication number
EP3173166B1
EP3173166B1 EP16200278.6A EP16200278A EP3173166B1 EP 3173166 B1 EP3173166 B1 EP 3173166B1 EP 16200278 A EP16200278 A EP 16200278A EP 3173166 B1 EP3173166 B1 EP 3173166B1
Authority
EP
European Patent Office
Prior art keywords
width
continuous casting
metal strip
mould
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16200278.6A
Other languages
English (en)
French (fr)
Other versions
EP3173166A1 (de
Inventor
Uwe Plociennik
Thomas Heimann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3173166A1 publication Critical patent/EP3173166A1/de
Application granted granted Critical
Publication of EP3173166B1 publication Critical patent/EP3173166B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/168Controlling or regulating processes or operations for adjusting the mould size or mould taper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/05Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds into moulds having adjustable walls

Definitions

  • the invention relates to a method for adjusting the width of a continuously cast by a mold metal strand in a continuous casting plant according to the preamble of claim 1, and a corresponding device according to the preamble of claim 17.
  • the width B of a metal strand can be adjusted with adjustable narrow sides of the mold.
  • the metal strand In the area of secondary cooling, ie below or downstream of the mold, the metal strand is guided by means of rollers arranged parallel to the broad side of the strand. This ensures the thickness d of the metal strand.
  • the narrow sides of the metal strand have in the area below the mold usually a short support, consisting of only a few pairs of rollers following this support begins the spreading of the metal strand .. Due to the ferrostatic pressure, the metal strand spreads and bulges thus in the area below the mold in the width direction, ie transverse to the casting direction. The spread of the metal strand can reach several percent of the nominal width.
  • the Japanese patent application JP S 61232049 discloses a method for adjusting the width of a continuous casting mold. Specifically, the target width of the mold, the changes in the mold width at the beginning and at the end of a continuous casting process and the casting speed is input as a parameter into a computing unit, which calculates suitable manipulated variables for actuators for setting the mold width from these input parameters. This allows high-speed casting, in which the variations in the mold width are reduced, even if otherwise the mold width varies greatly during continuous casting.
  • EP 2 762 251 B1 discloses a method for casting a metal strand, in which a width correction for the metal strand is calculated as a function of a determined volumetric flow difference from the measured actual value and the measured nominal value of the volume flow of a liquid metal in a regulator, taking into account the thickness of the metal strand to be cast and the casting speed , Subsequently, the calculated width correction is output as a manipulated variable to an actuator for adjusting at least one narrow side of the continuous casting mold, so that there is a change in the width B of the metal strand to be cast.
  • a disadvantage of the method according to EP 2 762 251 B1 is that for this purpose the knowledge of the volume flow of the liquid metal is necessary, which makes a corresponding flow sensor or the like required at an outlet opening of the continuous casting mold.
  • EP 0 947 265 A2 discloses a generic method having the features of the preamble of claim 1, and a generic device having the features of the preamble of claim 17.
  • the invention has for its object to optimize the continuous casting of a metal strand to the effect that by a suitable setting of Narrow sides of the continuous casting mold as accurate as possible width tolerance for the metal strand, especially at the end of the continuous casting is guaranteed.
  • a method according to the present invention is for adjusting the width of a continuously cast by a mold metal strand in a continuous casting plant.
  • a width correction for the metal strand is calculated and output as a manipulated variable for adjusting at least one narrow side of the mold.
  • Based on a Breitungsmodells is calculated by a computing device, the width of the metal strand or a slab formed therefrom at the end of the continuous casting taking into account at least one calculation parameter and compared with a predetermined setpoint, wherein at least one narrow side of the mold depending on the calculated width for the end of the continuous casting of the metal strand is set.
  • both narrow sides of the mold are set here.
  • the adjustment of the at least one narrow side of the mold can be made regulated, for which purpose a corresponding control circuit is set up in the computing device.
  • a width of the metal strand or a slab formed therefrom is determined at at least one measuring point, using a measuring device suitable for this purpose.
  • the measuring point is located at a predetermined and preferably small distance from the outlet opening of the mold, namely within the strand guide of a continuous casting in its upper part, preferably at a distance of 4 - 12 meters to the exit opening of the mold. More preferably, this distance can also be 5-8 meters.
  • the width of a continuously cast metal strand, or the width of slabs formed therefrom determined by a bulge of the narrow side and the spread of the metal strand within the strand guide, as well as by the thermal Shrinkage of the metal strand from the pouring mirror until it reaches room temperature.
  • the cause of the change in width of the continuously cast metal strand lies in the ferrostatic load of the liquid melt in the interior of the metal strand.
  • the tendency of the increase of a width due to the ferrostatic load is substantially greater than the counteracting shrinkage, which results from the density change of the metal strand as a result of its temperature decrease or -kühlkühlung.
  • the spreading of a continuously cast metal strand or slab formed therefrom i. the resulting width in the fully solidified state compared to the width at which the metal strand leaves the exit opening of the mold, depending on the type of steel used.
  • the spread is greater than the shrinkage, except for very hard steels (e.g., C100) where this is reversed.
  • the spread is strongly dependent on the geometry of the metal strand. This manifests itself in the fact that thick metal strands have a much stronger preparation than thin metal strands.
  • the invention is based on the essential finding that it is possible with the calculation based on the Breitungsmodells to determine the actual width of the metal strand or a slab formed therefrom, which adjusts itself at the end of the continuous casting, exactly.
  • the calculation in the Breitungsmodell takes place in dependence on at least one calculation parameter, which may be a process parameter of the casting process and / or a material-specific size.
  • a control signal is generated by the computing device, with which an actuator is controlled, which with the at least one narrow side of the mold is in operative connection. As a result, then said setting of the mold narrow side.
  • end of the continuous casting plant is also to be understood in terms of time. In other words, this is a time when the metal strand or one formed from it Slab is completely cooled, in which case no further change in the width of the cast product occurs. In this regard, it is irrelevant whether the metal strand is already separated into a slab. In any case, with the Breitungsmodell according to the present invention, a resulting width of the metal strand or a slab formed therefrom is calculated, namely for a time when the metal strand or the slab have cooled so far that their width assumes a constant value.
  • the width of the metal strand or a slab formed therefrom can be calculated exactly at the end of the continuous casting.
  • a measurement of the width of the metal strand or a slab by a measuring device is not necessary here.
  • the possibly variable boundary conditions during the continuous casting process e.g. As a result of using another type of steel, changing the geometry of the metal strand or changing the cooling conditions or the like, can be detected solely by the at least one calculation parameter, depending on the Breitungsmodell the width of the metal strand or a slab is calculated.
  • the spreading of the metal strand or a slab formed therefrom is calculated in the Breitungsmodell as a function of at least one calculation parameter, this calculation parameter at least the physical properties of the material of the metal strand, the temperature of the metal in the mold, the casting speed of the metal strand, the overheating and / or the geometry of the metal strand comprises.
  • this one calculation parameter can be determined during the continuous casting process in real time ("online"), whereby rapid reactions to possible process changes are ensured.
  • the employment of the mold narrow side is thus based on the Breitungsmodells, for which, inter alia, the temperature measurements in the narrow sides of the mold and the heat flows discharged via the Kokillenkühlement can be considered for all Kokilleneat.
  • the water supply to the mold narrow sides can be predetermined for the secondary cooling.
  • the measuring point at which the width of the metal strand or a slab formed therefrom is determined using a measuring device suitable for this purpose, additionally also be arranged at the end of the continuous casting or outside thereof.
  • the width at the measuring point By measuring the width at the measuring point, it is thus possible to determine the width of the metal strand or a slab formed therefrom, i. the change in the width of the metal strand or a slab at this measuring point in comparison to the width of the metal strand has at the outlet opening of the mold determined.
  • the resulting measured value, which is recorded at the at least one measuring point is then passed to the computing device, and then taken into account for the calculation with the Breitungsmodell.
  • the measured value which is recorded by the measuring device at the measuring point for the width of the metal strand or a slab formed therefrom then serves as a further calculation parameter for the calculation in the spreading model.
  • the Breitungsmodell comprises a thermodynamic model and a mathematical-physical model, these models are coupled together. Specifically, by means of the thermodynamic model, temperatures and strand shell thicknesses of the metal strand are determined at each position of the metal strand in the continuous casting plant. By means of the mathematical - physical model, a creep of the metal strand is determined. Preferably, the values calculated by the thermodynamic model for the subsequent calculation by the mathematical-physical model are taken into account here.
  • the thermodynamic model to the mathematical-physical model, it is possible to calculate the spread for the metal strand or slab formed therefrom, based on this and, as explained, taking into account a predetermined target value for the width at least to set a narrow side of the mold.
  • a narrow side of the mold is understood that either a distance of this narrow side on their Whole length is changed with respect to the opposite narrow side of the mold, ie increased or decreased, wherein an angle of the surface of this narrow side remains unchanged with respect to the vertical.
  • a surface of this at least one narrow side of the mold in the course of said setting can also be changed with respect to a vertical, whereby the angle of the surface of this narrow side is changed with respect to the vertical.
  • the narrow side is "tilted” with respect to the vertical. This is also referred to as "taping" in the field of continuous casting.
  • the present invention it is possible, the always occurring in the continuous casting of a metal strand in the course of continuous casting propagation by calculating the width, which is expected at the end of the continuous casting, and a corresponding adjustment of the width of the mold, ie by changing the distance the narrow sides of the mold, suitable to compensate, so that in particular at the end of the continuous casting, if there is already cooled, the metal strand, to ensure an accurate measure of the width of the cooled metal strand.
  • the further advantage that the setting of at least one narrow side of the mold during the production process z. B. to changed process parameters and / or other materials from which the metal strand is poured, can be adjusted. This then leads to considerable material savings and to a shortened production time.
  • a computing device for the calculation of the width of the metal strand at the end of the continuous casting a computing device is provided, which is provided with the Breitungsmodell, wherein the width, which has been calculated for the metal strand at the end of the continuous casting, is then compared by means of the computing device with a predetermined target value. Based on this and depending on the calculated for the end of the continuous casting width of the metal strand is then set as explained above, the at least one narrow side of the mold. It is advantageous in this case if the computing device is operated in such a way that the setting of the at least one narrow side of the mold is regulated as a function of the calculated width for the end of the continuous casting machine, ie. H. by providing a corresponding control loop in the computing device. Such a regulation of the employment of the at least one narrow side can react very quickly to changes during the production process during the continuous casting of a metal strand, for example to changed temperatures of the molten metal and / or to changed casting speeds.
  • state changes of the entire metal strand in a thermodynamic model are calculated in a mathematical simulation model, including a heat conduction equation. On the basis of this, it is then possible to draw conclusions about the temperature of the metal strand along the continuous casting plant, and thus in the casting direction of the metal strand.
  • the Breitungsmodell preferably formed by a coupling of a thermodynamic model with a mathematical-physical model, and the information about the casting process, the course of the propagation of the metal strand within the strand guide and in particular for the end of a continuous casting plant can be calculated with great accuracy.
  • process changes such as the casting temperature or casting speed or the secondary cooling and immediately initiate a width adjustment of the mold. This is ensured by calculating the differential changes for the occurring process variations in the Breitungs model. If such process changes occur, you can now very quickly the change of the expected width to the width adjustment as "pre-control" will be conducted.
  • the adjustment of the at least one narrow side of the mold can also be effected as a function of the temperature of the molten metal within the mold.
  • the temperature of the metal within the mold is detected by the temperature of at least one side wall of the mold, preferably characterized in that drawn by the heat flows through the Kokillenkühlement on at least one Kokillenseite a conclusion on the temperature of the liquid metal within the mold.
  • the width of the metal strand in individual cross-sectional segments along the casting direction can be calculated on the basis of the Breitungsmodells.
  • the strains that are transverse to the casting direction for the individual cross-sectional segments of the metal strand d. H. set in a width of the metal strand, added up, and then calculated on the basis of which or the width of the metal strand or the width of the end of the continuous casting or determined.
  • the Breitungsmodell or its mathematical-physical model, take into account a creep.
  • the so-called simplified Garofalo creep approach is suitable or proven.
  • the Breitungsmodell is generally a creep for the secondary creep in the solidified part of the metal strand suitable.
  • material-specific parameters of the metal strand and / or the process temperature of the metal strand are when using the Breitungsmodells and Kriechensatzes for secondary creep during continuous casting. This is preferably done "on-line” and thus in real-time during the continuous casting process to allow for rapid adjustments to eventual process changes.
  • a shrinkage of the metal strand along the casting direction can be taken into account in the Breitungsmodell.
  • its shrinkage can preferably be calculated in individual cross-sectional segments along the casting direction, which leads to a high degree of accuracy of calculation.
  • a setting and / or pitch for the at least one narrow side of the mold can be determined on the basis of the Breitungsmodells. This is particularly advantageous for a planned change in the casting speed with which the metal strand is cast.
  • the employment of the at least one narrow side of the mold, and possibly also the employment speed selected for this purpose can be calculated as a function of an overheating of the liquid metal, a secondary cooling and / or an analysis change.
  • the temperature of the melt or the liquid metal within the mold or in the upstream Thundish be permanently determined or calculated by means of a ladle and distributor model. By temporary temperature measurements of the melt in the pan or in a distributor, the ladle and distributor model is adapted.
  • an apparatus for adjusting the width of a continuous metal casting by a mold in a continuous casting machine comprising a computing device in which a latitudinal model is set up and based on which, depending on at least one calculation parameter, the width the metal strand or a slab formed therefrom is calculated at the end of the continuous casting plant and compared with a predetermined desired value, wherein the computing device subsequently generates a control signal.
  • the device further comprises an actuator which is in operative connection with at least one narrow side of the mold and which can be actuated by the actuating signal to at least one Set narrow side of the mold, and at least one measuring device with which a width of the metal strand or a slab formed therefrom at a measuring point, which is arranged at a predetermined distance from the outlet opening of the mold, can be measured.
  • This measuring device is disposed within the strand guide of the continuous casting in the upper part and preferably at a short distance from Kokillenunterkante. This leads to a further improved accuracy with respect to the determination of the spread of the metal strand or a slab formed therefrom.
  • At least one measuring device can also be arranged at the end of the continuous casting plant or outside thereof.
  • two measuring devices are provided, of which one as described within the strand guide, and the other at the end of the continuous casting or are arranged outside thereof.
  • Another advantage of such a measuring device arises in the case when along the continuous casting unforeseen disturbances such. with the cooling water supply or similar should occur - by the measuring device, in particular in an arrangement at the end of the continuous casting or outside of it, then it is possible in such a fault case to measure the actual width of the metal strand or a slab formed therefrom at the end of the continuous casting process, then at least as explained adjust a narrow side in the mold accordingly. In this way, the disturbances can then be compensated, at least temporarily, for example in order to obtain e.g. finish a production cycle in an orderly manner.
  • the present invention aims to calculate the resulting expansion of a continuously cast metal strand, possibly also taking into account its shrinkage, in particular for the end of a continuous casting plant, in order to adjust at least one narrow side of a mold of the continuous casting plant accordingly. This is particularly important in the case when the width of the metal strand or of slabs formed therefrom after cooling must be within a narrow tolerance specified by the customer.
  • the temperature distribution for a continuously cast metal strand depends, inter alia, on the enthalpy curve, which can be calculated, for example, on the basis of Gibbs energies.
  • This temperature distribution is in the diagram of Fig. 1 represented, namely over the strand length and as a function of the distance from the casting mirror. In each case, the temperatures in the strand center are shown on the surface and in the core. In addition, the average temperature is shown. The solidus and liquidus lines indicate where solidification of the metal strand occurs.
  • the calculation of the temperature distribution, as in the diagram of Fig. 1 shown with the help of Gibbs energy can with a Procedures are carried out which DE 10 2011 082 158 A1 is known.
  • the temperature distribution which prevails inside a continuously cast metal strand is calculated by means of a temperature calculation model based on a dynamic temperature control, for example the DSC ( Dynamic Solidification Control) .
  • the total enthalpy can be calculated from the sum of the free molar enthalpy (Gibbs energies) of all present in the material of the metal strand existing phases and / or phase components.
  • Fig. 2 shows in a simplified schematic representation of a continuous casting plant 20 for continuous casting of a metal strand 10, with this continuous casting 20, a method according to the invention can be performed.
  • the continuous casting plant 20 is equipped with a computer device 120 or computing device, wherein this computing device 120 is equipped with a temperature calculation model designed as a metallurgical process model, which has or is based on a temperature control.
  • the temperature calculation model for example the DSC ( Dynamic Solidification Control) already mentioned above, the temperature distribution prevailing inside a metal strand cast from liquid metal can be calculated.
  • the aforementioned metallurgical process model is part of a spreading model BM that is set up in the computing device 120.
  • the Breitungsmodell BM includes both a thermodynamic model TM for determining the temperatures and the strand shell thicknesses of the metal strand 10 and a mathematical-physical model MPM for determining the creep of the metal strand 10, wherein the models TM and MPM are coupled together ( Fig. 3 ).
  • the metal strand 10 has a liquid or swampy portion 14 before its solidification in the core.
  • a Sump tip 16 which defines the solidification length of the metal strand 10, formed in a, considered in the casting direction, end portion of a secondary cooling 22.
  • a plurality of roller segments 24 or generally segments are arranged for its deformation and support, which are provided with support rollers or strand guide rollers 26 and formed hydraulically adjustable.
  • the strand guide rollers 26 are adjustable and partially formed rotationally driven.
  • the continuous casting plant 20 has a distribution vessel or casting distributor 28 and a continuous casting mold 130 connected thereto. From a ladle 32 molten steel runs in the G confuseverteiler 28 and from there into the mold 130. Below the mold 130, a plurality of strand guide rollers 26 are provided for supporting an upper and lower side of the metal strand 10, wherein the metal strand in this area initially has a very thin strand shell. The metal strand 10 then passes through a circular arc-shaped area, and then runs out in a straightening zone and can e.g. be separated in slabs in a downstream scissors or flame cutting machine.
  • a resulting width of a metal strand 10 is calculated at this end 21, as a basis for a subsequent adjustment of at least one narrow side of the mold 130th Das
  • the metal strand 10 is cooled and essentially solidified, wherein the metal strand 10 may also already be singulated into individual slabs.
  • the measuring device 100 may be arranged at a measuring point 102, namely below an outlet opening 132 of the mold 130 and at a comparatively small distance therefrom, by the width of the Metal strand 10 at this point to measure. Additionally or alternatively, a measuring device 100 may also be arranged at a measuring point 104, namely at the end 21 of the continuous casting plant 20 or outside thereof, in order to measure the width of the thoroughly solidified and cooled metal strand 10 or the width of a slab formed therefrom. With regard to the arrangement of a measuring device 100 may be noted that the associated measuring point is located at a predetermined distance from the outlet opening 132 of the mold 130.
  • the measuring device 100 is connected by a signal line 122 to the above-mentioned computing device 120, so that the measured at the measuring point 102, 104 width of the metal strand 10 is transmitted to the computing device 120.
  • the signal line 122 it should be pointed out that this can either be a physical signal line or a suitable radio link or the like.
  • Fig. 3 shows in principle and greatly simplified a device 1 according to the present invention, with the explained above at the measuring point 102, for example in a continuous casting 20 of Fig. 2 , the width B of a metal strand 10 can be measured.
  • the width of the metal strand 10 or a slab formed therefrom can also be determined at the measuring point 104, namely at the end 21 of the continuous casting plant 20.
  • the device 1 comprises a measuring device 100, which at the measuring point 102 or 104 (see. Fig. 2 ), and the computing device 120 to which the measuring device 100 is connected via the signal line 122.
  • a change in the width of the metal strand 10 at the measuring point 102, or a change in the width of the metal strand 10 or a slab formed therefrom at the measuring point 104, compared to the width of the metal strand 10 at the outlet opening 132 of the mold 130, are determined.
  • the computational device 120 has the breadth model BM based on which the width of the Metal strand 10 at the end 21 of the continuous casting 20 (see. Fig. 2 ) is calculated and compared with a predetermined setpoint value, wherein the computing device 120 subsequently generates an actuating signal thereto.
  • This control signal is transmitted via a further signal line 122 to a standing with at least one narrow side 134 of the mold 130 in operative connection actuator 136, whereby then the narrow side 134 of the mold 130 is suitably employed.
  • Fig. 4 shows in principle simplified, the two narrow sides 134 of the mold 130, which are spaced apart by a distance A.
  • the distance A between these narrow sides 134 can be suitably changed, thereby affecting the width of the metal strand 10 at the outlet opening 132 of the mold 130.
  • it is also possible to change the inclination of a narrow side 134 with respect to the vertical V as it is simplified in principle in the representation of Fig. 5 is shown.
  • an upper edge of the narrow side 134 can be displaced by a distance N with respect to the lower edge of the narrow side 134, so that a surface of the narrow side 134 encloses an angle with the vertical V.
  • Fig. 6 2 shows simplified cross-sectional views of a continuously cast metal strand 10, and illustrates the increase of the metal strand 10 in its width B as a result of propagation.
  • the areas I in the middle of Fig. 6 the width change of the metal strand 10 as a result of Wreitung or a creep of the material.
  • the areas II in the lower part of Fig. 6 illustrate a change in width of the metal strand 10 due to spreading and bulging.
  • the invention now works as follows: In the continuous casting of a metal strand 10 is calculated by the computing device 120 based on the Breitungsmodells BM, the width of the metal strand 10 or a slab formed therefrom for the end 21 of the continuous casting 20 and compared with a predetermined setpoint, then at least one narrow side 134 of the mold 130 through an associated actuator 136 is suitably set, namely as a function of the calculated for the end 21 of the continuous casting width B of the metal strand 10th
  • the at least the physical properties of the material of the metal strand, the temperature of the metal in the mold 130, the casting rate of the metal strand 10, overheating and the geometry of the metal strand 10th include.
  • the reference character "140" is to be understood that from the Breitungsmodell BM in the computing device 120, a change in the process parameters of the continuous casting process, such as overheating, casting speed and water cooling, can be considered, and then in the control of the actuator 136 for hiring the at least one narrow side 134 flows.
  • a measuring device 100 may be provided at the measuring point 102 and at the measuring point 104 in order there to determine the width of the metal strand 10 (at the measuring point 102) or the width of the metal strand 10 or a slab formed therefrom (at the measuring point 104). With the width measurement by the measuring device 100 can thus be determined a change in the width of the metal strand 10 or a slab at the respective measuring point 102, 104 compared to the width of the metal strand 10 at the outlet opening 132 of the mold 130, and then with a predetermined setpoint for the width of the metal strand 10 or a slab formed therefrom. In this case, the measured value generated by the measuring device 100 then forms for the width of the metal strand 10 or a slab formed therefrom another calculation parameter for the calculation in the Breitungsmodell BM.
  • a bulge II of the metal strand 10 can be minimized, possibly in conjunction with a suitable adaptation of the water cooling in the secondary cooling 22, and possibly in conjunction with a Adaptation of a cooling of the narrow sides 134 of the mold 130.
  • Fig. 7 shows a diagram for defining the width proportion of the metal strand 10 at the position of the measuring point 102, for example, for two different casting speeds (with v1> v2). It can be seen that the increase in width decreases steadily with increasing distance from the casting mirror or from the outlet opening 132 of the mold 130 and, for example, does not increase any further at a distance of 15 meters from the casting mirror or proceeds from there to constant.
  • Fig. 8 shows a diagram illustrating the course of the propagation of the metal strand 10 within the strand guide in the continuous casting 20 of Fig. 2 , where the graph G1 represents the spread and the graph G2 represents the shrinkage of the metal strand 10.
  • FIG. 9 and Fig. 10 In each case diagrams are shown with which the calculation of the expansion of the metal strand 10 based on the Breitungsmodells according to the present invention is illustrated, this being for a variation of the casting speed ( Fig. 9 , with v1> v2) or for a variation of overheating ( Fig. 10 , with overheating H1> overheating H2).
  • FIG. 12 is a flow chart illustrating the above-described aspects of the present invention again.
  • the parameters a, b, c and d shown herein, which govern the mathematical-physical model MPM, may be the parameters of the Garofalo approach and its regression coefficients.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Einstellen der Breite eines durch eine Kokille stranggegossenen Metallstrangs in einer Stranggießanlage nach dem Oberbegriff von Anspruch 1, und eine entsprechende Vorrichtung nach dem Oberbegriff von Anspruch 17.
  • Beim Stranggießen von Metallen in einer Stranggießanlage kann die Breite B eines Metallstrangs mit verstellbaren Schmalseiten der Kokille eingestellt werden. Im Bereich der Sekundärkühlung, also unterhalb bzw. stromabwärts der Kokille, wird der Metallstrang mit Hilfe parallel zur Breitseite des Strangs angeordneten Rollen geführt. Dadurch wird die Dicke d des Metallstrangs gewährleistet. Die Schmalseiten des Metallstrangs haben im Bereich unterhalb der Kokille in der Regel eine kurze Stützung, bestehend aus nur wenigen Rollenpaaren im Anschluss an diese Stützung beginnt die Breitung des Metallstrangs.. Infolge des ferrostatischen Druckes breitet und baucht sich der Metallstrang somit im Bereich unterhalb der Kokille in Breitenrichtung, also quer zur Gießrichtung, aus. Die Breitung des Metallstrangs kann mehrere Prozent der nominellen Breite erreichen.
  • In den Fachartikeln "Numerical Simulation of Slab Broadening in Continuous Casting of Steel", Intech, Chapter 23, 2012 und "Effect of Casting Speed on Slab Broadening in Continuous Casting", steel research int. 82, No. 11, 2011 von Jian-Xun Fu und Wenig-Sing Hwang werden Numerische Simulationen durchgeführt, die den Stranggießprozeß in Bezug auf die unerwünschte Breitung des Metallstrangs simulieren.
  • Die japanische Patentanmeldung JP S 61232049 offenbart ein Verfahren zum Einstellen der Breite einer Stranggießkokille. Konkret werden die Sollbreite der Kokille, die Veränderungen der Kokillenbreite zu Beginn und am Ende eines Stranggießvorgangs sowie die Gießgeschwindigkeit als Parameter in eine Recheneinheit eingegeben, welche aus diesen Eingangsparametern geeignete Stellgrößen für Stellglieder zum Einstellen der Kokillenbreite errechnet. Dadurch wird ein Hochgeschwindigkeitsgießen ermöglicht, bei dem die Schwankungen der Kokillenbreite reduziert werden, auch wenn ansonsten die Kokillenbreite beim Stranggießen stark schwankt.
  • EP 2 762 251 B1 offenbart ein Verfahren zum Gießen eines Metallstrangs , bei dem eine Breitenkorrektur für den Metallstrang in Abhängigkeit einer ermittelten Volumenstromregeldifferenz aus dem gemessenen Istwert und dem gemessenen Sollwert des Volumenstroms eines flüssigen Metalls in einem Regler berechnet wird, unter Berücksichtigung der Dicke des zu gießenden Metallstrangs und der Gießgeschwindigkeit. Anschließend wird die berechnete Breitenkorrektur als Stellgröße an ein Stellglied zum Verstellen mindestens einer Schmalseite der Stranggießkokille ausgegeben, so dass eine Änderung der Breite B des zu gießenden Metallstrangs erfolgt. Nachteilig bei dem Verfahren gemäß
    EP 2 762 251 B1 ist, dass hierzu die Kenntnis des Volumenstroms des flüssigen Metalls notwendig ist, was einen entsprechenden Durchflusssensor oder dergleichen an einer Austrittsöffnung der Stranggießkokille erforderlich macht.
  • EP 0 947 265 A2 offenbart ein gattungsgemäßes Verfahren mit den Merkmalen des Oberbegriffs von Anspruch 1, und eine gattungsgemäße Vorrichtung mit den Merkmalen des Oberbegriffs von Anspruch 17.
  • Aus US 5 205 345 A ist ein Verfahren zum Einstellen der Breite einer durch eine Kokille stranggegossene Metallbramme in einer Stranggießanlage bekannt. Hierbei werden Temperatur, Geschwindigkeit und ferrostatischer Druck periodisch gemessen, wobei ein Computer aus diesen Werten einen Korrekturfaktor für die Kokillenbreite berechnet und Kokillenstellglieder entsprechend ansteuert.
  • Entsprechend liegt der Erfindung die Aufgabe zugrunde, das Stranggießen eines Metallstrangs dahingehend zu optimieren, dass durch eine geeignete Einstellung der Schmalseiten der Stranggießkokille eine möglichst genaue Breitentoleranz für den Metallstrang, insbesondere am Ende der Stranggießanlage gewährleistet ist.
  • Die obige Aufgabe wird durch ein Verfahren mit den Merkmalen von Anspruch 1, und durch eine Vorrichtung mit den Merkmalen von Anspruch 17, gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen definiert.
  • Ein Verfahren nach der vorliegenden Erfindung dient zum Einstellen der Breite eines durch eine Kokille stranggegossenen Metallstrangs in einer Stranggießanlage. Bei diesem Verfahren wird eine Breitenkorrektur für den Metallstrang berechnet und als Stellgröße zum Verstellen mindestens einer Schmalseite der Kokille ausgegeben. Auf Grundlage eines Breitungsmodells wird durch eine Recheneinrichtung die Breite des Metallstrangs oder einer daraus gebildeten Bramme am Ende der Stranggießanlage unter Berücksichtigung zumindest eines Berechnungsparameters berechnet und mit einem vorbestimmten Sollwert verglichen, wobei zumindest eine Schmalseite der Kokille in Abhängigkeit der für das Ende der Stranggießanlage berechneten Breite des Metallstrangs eingestellt wird. Vorzugsweise werden hierbei beide Schmalseiten der Kokille eingestellt. Hierbei kann die Einstellung der zumindest einen Schmalseite der Kokille geregelt vorgenommen werden, wobei zu diesem Zweck in der Recheneinrichtung ein entsprechender Regelkreis eingerichtet ist. Eine Breite des Metallstrangs oder einer daraus gebildeten Bramme wird an zumindest einer Messstelle bestimmt, unter Verwendung einer hierzu geeigneten Messeinrichtung. Die Messstelle befindet sich dabei in einem vorbestimmten und vorzugsweise geringen Abstand zur Austrittsöffnung der Kokille, nämlich innerhalb der Strangführung einer Stranggießanlage in deren oberen Teil, vorzugsweise in einer Entfernung von
    4 - 12 Metern zur Austrittsöffnung der Kokille. Weiter bevorzugt kann diese Entfernung auch 5-8 Meter betragen.
  • Im Zusammenhang mit der vorliegenden Erfindung ist zu verstehen, dass sich die Breite eines stranggegossenen Metallstrangs, bzw. die Breite von hieraus gebildeten Brammen, sich bestimmt durch eine Ausbauchung der Schmalseite und durch die Breitung des Metallstrangs innerhalb der Strangführung, sowie durch den thermischen Schrumpf des Metallstrangs vom Gießspiegel bis zum Erreichen der Raumtemperatur. Die Ursache für die Breitenänderung des stranggegossenen Metallstrangs liegt in der ferrostatischen Last der flüssigen Schmelze im Innern des Metallstrangs. Hierbei ist die Tendenz der Zunahme einer Breite in Folge der ferrostatischen Last wesentlich größer als der entgegenwirkende Schrumpf, der sich durch die Dichteänderung des Metallstrangs in Folge von dessen Temperaturabnahme bzw. -abkühlung ergibt.
  • Im Allgemeinen ist die Breitung eines stranggegossenen Metallstrangs oder einer hieraus gebildeten Bramme, d.h. deren resultierende Breite im vollständig erstarrten Zustand im Vergleich zu der Breite, mit der der Metallstrang die Austrittsöffnung der Kokille verlässt, vom verwendeten Stahltyp abhängig. Bei den meisten Stählen ist die Breitung größer als der Schrumpf, mit Ausnahme von sehr harten Stählen (z.B. C100), bei denen dies umgekehrt ist. Des weiteren ist die Breitung stark von der Geometrie des Metallstrangs abhängig. Dies äußert sich darin, dass dicke Metallstränge eine wesentlich stärkere Bereitung aufweisen als dünne Metallstränge.
  • Der Erfindung liegt die wesentliche Erkenntnis zugrunde, dass es mit der Berechnung auf Grundlage des Breitungsmodells möglich ist, die tatsächliche Breite des Metallstrangs oder einer daraus gebildeten Bramme, die sich am Ende der Stranggießanlage einstellt, exakt zu bestimmen. Die Berechnung in dem Breitungsmodell erfolgt in Abhängigkeit von zumindest einem Berechnungsparameter, bei dem es sich um einen Prozessparameter des Gießprozesses und/oder um eine werkstoffspezifische Größe handeln kann. Durch einen Vergleich der hiermit berechneten Breite mit einem Sollwert für die Breite, der für den Metallstrang bzw. eine daraus gebildete Bramme am Ende des Stranggießprozesses vorgegeben ist, wird dann von der Recheneinrichtung ein Stellsignal erzeugt, mit dem ein Stellglied angesteuert wird, das mit der zumindest einen Schmalseite der Kokille in Wirkverbindung steht. Hierdurch erfolgt dann die besagte Einstellung der Kokillen-Schmalseite.
  • An dieser Stelle darf darauf hingewiesen werden, dass "Ende der Stranggießanlage" auch in zeitlicher Hinsicht zu verstehen ist. Anders ausgedrückt, handelt es sich hierbei um einen Zeitpunkt, zu dem der Metallstrang oder eine daraus gebildete Bramme vollständig erkaltet ist, wobei dann keine weitere Änderung der Breite des Gießproduktes eintritt. In dieser Hinsicht ist es unbeachtlich, ob der Metallstrang bereits zu einer Bramme vereinzelt ist. Jedenfalls wird mit dem Breitungsmodell nach der vorliegenden Erfindung eine resultierende Breite des Metallstrangs oder einer daraus gebildeten Bramme berechnet, nämlich für einen Zeitpunkt, wenn der Metallstrang bzw. die Bramme soweit abgekühlt sind, dass deren Breite einen konstanten Wert annimmt.
  • Wie erläutert, kann nach der vorliegenden Erfindung auf Grundlage des Breitungsmodells die Breite des Metallstrangs oder einer hieraus gebildeten Bramme am Ende der Stranggießanlage exakt berechnet werden. Ein Vermessen der Breite des Metallstrangs bzw. einer Bramme durch eine Messeinrichtung ist hierbei nicht notwendig. Die ggf. veränderlichen Randbedingungen während des Stranggießprozesses, die z.B. in Folge von Verwendung einer anderen Stahlsorte, Veränderung der Geometrie des Metallstrangs oder Veränderung der Kühlbedingungen oder dergleichen eintreten, können allein durch den zumindest einen Berechnungsparameter erfasst werden, in Abhängigkeit dessen mit dem Breitungsmodell die Breite des Metallstrangs bzw. einer Bramme berechnet wird.
  • In vorteilhafter Weiterbildung der Erfindung wird in dem Breitungsmodell die Breitung des Metallstrangs oder einer daraus gebildeten Bramme in Abhängigkeit zumindest eines Berechnungsparameters berechnet, wobei dieser Berechnungsparameter wenigstens die physikalischen Eigenschaften des Werkstoffs des Metallstrangs, die Temperatur des Metalls in der Kokille, die Gießgeschwindigkeit des Metallstrangs, die Überhitzung und/oder die Geometrie des Metallstrangs umfasst. Zweckmäßigerweise kann dieser eine Berechnungsparameter während des Stranggießprozesses in Echtzeit ("online") ermittelt werden, wodurch schnelle Reaktionen auf mögliche Prozessänderungen sichergestellt sind. Die Anstellung der Kokillen-Schmalseite wird somit auf Grundlage des Breitungsmodells , für das u. a. die Temperaturmessungen in den Schmalseiten der Kokille und die abgeführten Wärmeströme über das Kokillenkühlwasser für alle Kokillenseiten berücksichtigt werden können. Des Weiteren kann für die Sekundärkühlung die Wasserbeaufschlagung der Kokillen-Schmalseiten vorgegeben sein.
  • In vorteilhafter Weiterbildung der Erfindung kann die Messstelle, an der die Breite des Metallstrangs oder einer daraus gebildeten Bramme unter Verwendung einer hierzu geeigneten Messeinrichtung bestimmt wird, zusätzlich auch am Ende der Stranggießanlage oder außerhalb davon angeordnet sein.
  • Durch die Messung der Breite an der Messstelle kann somit die Breitung des Metallstrangs bzw. einer hieraus gebildeten Bramme, d.h. die Veränderung der Breite des Metallstrangs bzw. einer Bramme an dieser Messstelle im Vergleich zu der Breite, die der Metallstrangs an der Austrittsöffnung der Kokille aufweist, bestimmt werden. Der resultierende Messwert, der an der zumindest einen Messstelle aufgenommen wird, wird dann an die Recheneinrichtung geleitet, und anschließend für die Berechnung mit dem Breitungsmodell berücksichtigt. Anders ausgedrückt, dient dann der Messwert, der durch die Messeinrichtung an der Messstelle für die Breite des Metallstrangs bzw. einer hieraus gebildeten Bramme aufgenommen wird, als weiterer Berechnungsparameter für die Berechnung in dem Breitungsmodell.
  • In vorteilhafter Weiterbildung der Erfindung umfasst das Breitungsmodell ein thermodynamisches Modell und ein mathematisch-physikalisches Modell, wobei diese Modelle miteinander gekoppelt sind. Im Einzelnen werden mittels des thermodynamischen Modells Temperaturen und Strangschalendicken des Metallstrangs an jeder Position des Metallstrangs in der Stranggießanlage bestimmt. Mittels des mathematisch - physikalischen Modells wird ein Kriechen des Metallstrangs bestimmt. Vorzugsweise werden hierbei die mittels des thermodynamischen Modells berechneten Werte für die anschließende Berechnung durch das mathematisch - physikalische Modell berücksichtigt. Durch die Kopplung des thermodynamischen Modells mit dem mathematisch-physikalischen Modell ist es somit möglich, die Breitung für den Metallstrang bzw. einer hieraus gebildeten Bramme zu berechnen, um auf Grundlage dessen und, wie erläutert, unter Berücksichtigung mit einem vorbestimmten Sollwert für die Breite zumindest eine Schmalseite der Kokille einzustellen.
  • Es darf darauf hingewiesen werden, dass unter Einstellung einer Schmalseite der Kokille verstanden wird, dass entweder ein Abstand dieser Schmalseite über ihrer gesamten Länge bezüglich der gegenüberliegenden Schmalseite der Kokille verändert wird, d. h. vergrößert oder vermindert wird, wobei ein Winkel der Oberfläche dieser Schmalseite bezüglich der Vertikalen unverändert bleibt. Ergänzend oder alternativ hierzu kann eine Oberfläche dieser zumindest einen Schmalseite der Kokille im Zuge der besagten Einstellung auch bezüglich einer Vertikalen verändert werden, wodurch der Winkel der Oberfläche diese Schmalseite bezüglich der Vertikalen verändert wird. Anders ausgedrückt, wird die Schmalseite bezüglich der Vertikalen "gekippt". Dies wird auf dem Gebiet des Stranggießens auch als "Tapern" bezeichnet. Diese beiden Einstellmöglichkeiten können im Rahmen der vorliegenden Erfindung auch überlagert werden. Dies bedeutet, dass bei einer Breitenänderung der Kokille, wenn also zumindest eine Schmalseite der Kokille in ihrem Abstand bezüglich der gegenüberliegenden Schmalseite verändert wird, gegebenenfalls auch der Taper, d. h. der Winkel dieser Schmalseite bezüglich der Vertikalen an der Austrittsöffnung der Kokille, geändert wird, um ein stetes Anliegen der Metallschmelze an der Kokillenwand und damit eine gute Kühlung zu gewährleisten und ein Ablösen der Schmelze von der Kokillenwand zu verhindern.
  • Durch die vorliegende Erfindung ist es möglich, die beim Stranggießen eines Metallstrangs im Verlauf der Stranggießanlage stets auftretende Breitung durch eine Berechnung der Breite, die am Ende der Stranggießanlage zu erwarten ist, und eine entsprechende Einstellung der Breite der Kokille, d. h. durch eine Veränderung des Abstands der Schmalseiten der Kokille, geeignet zu kompensieren, so dass insbesondere am Ende der Stranggießanlage, wenn dort der Metallstrang bereits abgekühlt ist, ein genaues Maß für die Breite des abgekühlten Metallstrangs zu gewährleisten. Neben einer verbesserten Genauigkeit für die resultierende Breite des Metallstrangs am Ende der Stranggießanlage ergibt sich durch die Erfindung der weitere Vorteil, dass die Einstellung der zumindest einen Schmalseite der Kokille auch während des Produktionsprozesses z. B. an geänderte Prozessparameter und/oder andere Werkstoffe, aus denen der Metallstrang gegossen wird, angepasst werden kann. Dies führt dann zu beträchtlichen Materialeinsparungen und zu einer verkürzten Produktionszeit.
  • Für die Berechnung der Breite des Metallstrangs am Ende der Stranggießanlage ist eine Recheneinrichtung vorgesehen, die mit dem Breitungsmodell versehen ist, wobei die Breite, die für den Metallstrang am Ende der Stranggießanlage berechnet worden ist, anschließend mittels der Recheneinrichtung mit einem vorbestimmten Sollwert verglichen wird. Auf Grundlage dessen und in Abhängigkeit der für das Ende der Stranggießanlage berechneten Breite des Metallstrangs wird dann wie oben erläutert die zumindest eine Schmalseite der Kokille eingestellt. Von Vorteil ist hierbei, wenn die Recheneinrichtung derart betrieben wird, dass die Einstellung der zumindest einen Schmalseite der Kokille in Abhängigkeit der berechneten Breite für das Ende der Stranggießanlage geregelt wird, d. h. durch Vorsehen eines entsprechenden Regelkreises in der Recheneinrichtung. Durch eine solche Regelung der Anstellung der zumindest einen Schmalseite kann sehr schnell auf Änderungen während des Produktionsprozesses beim Stranggießen eines Metallstrangs reagiert werden, zum Beispiel auf geänderte Temperaturen der Metallschmelze und/oder auf veränderte Gießgeschwindigkeiten.
  • In vorteilhafter Weiterbildung der Erfindung werden in dem thermodynamischen Modell Zustandsänderungen des gesamten Metallstrangs in einem mathematischen Simulationsmodell, beinhaltend eine Wärmeleitungsgleichung, berechnet. Auf Grundlage dessen ist dann ein Rückschluss auf die Temperatur des Metallstrangs entlang der Stranggießanlage, und somit in Gießrichtung des Metallstrangs, möglich.
  • An dieser Stelle darf nochmals darauf hingewiesen werden, dass nach der vorliegenden Erfindung mit dem Breitungsmodell, vorzugsweise gebildet durch eine Kopplung eines thermodynamischen Modells mit einem mathematisch-physikalischen Modell, und den Informationen zum Gießprozess der Verlauf der Breitung des Metallstrangs innerhalb der Strangführung und insbesondere für das Ende einer Stranggießanlage mit großer Genauigkeit berechnet werden kann. Somit wird es möglich, auf Prozess-Änderungen wie die Gießtemperatur oder Gießgeschwindigkeit oder der Sekundärkühlung schnell zu reagieren und sofort eine Breitenanstellung der Kokille einzuleiten. Dies ist dadurch gewährleistet, dass in dem Breitungsmodell die differentiellen Änderungen für die auftretenden Prozess-Variationen berechnet werden. Treten solche Prozess-Änderungen auf, kann nun sehr schnell die Änderung der zu erwartenden Breite an die Breitenanstellung als "Vorsteuerung" geleitet werden. Wie oben bereits erläutert, erfolgt zur Regelung der Breitenanstellung der zumindest einen Schmalseite eine Messung an der vorbestimmten Messstelle unterhalb der Kokille. Durch den Vergleich zwischen dieser Messung und der Breitungsberechnung kann auf die zu erwartende Breite des Metallstrangs am Ende der Stranggießanlage geschlossen werden.
  • In vorteilhafter Weiterbildung der Erfindung kann die Einstellung der zumindest einen Schmalseite der Kokille auch in Abhängigkeit der Temperatur der Metallschmelze innerhalb der Kokille erfolgen. Zu diesem Zweck wird die Temperatur des Metalls innerhalb der Kokille durch die Temperatur zumindest einer Seitenwand der Kokille erfasst, vorzugsweise dadurch, dass durch die abgeführten Wärmeströme über das Kokillenkühlwasser an zumindest einer Kokillenseite ein Rückschluss auf die Temperatur des flüssigen Metalls innerhalb der Kokille gezogen wird.
  • In vorteilhafter Weiterbildung der Erfindung kann anhand des Breitungsmodells die Breite des Metallstrangs in einzelnen Querschnittssegmenten entlang von dessen Gießrichtung berechnet werden. Hierbei werden die Dehnungen, die sich für die einzelnen Querschnittssegmente des Metallstrangs quer zur Gießrichtung, d. h. in einer Breite des Metallstrangs einstellen, aufaddiert, und auf Grundlage dessen dann die Breitung des Metallstrangs bzw. dessen Breite für das Ende der Stranggießanlage berechnet bzw. bestimmt.
  • In vorteilhafter Weiterbildung der Erfindung kann das Breitungsmodell, bzw. dessen mathematisch-physikalisches Modell, einen Kriechansatz berücksichtigen. Diesbezüglich darf darauf verwiesen werden, dass hierfür der sogenannte vereinfachte Garofalo-Kriechansatz geeignet bzw. bewährt ist. Jedenfalls ist für das Breitungsmodell allgemein ein Kriechansatz für das sekundäre Kriechen im erstarrten Teil des Metallstrangs geeignet.
  • In vorteilhafter Weiterbildung der Erfindung werden bei Anwendung des Breitungsmodells und des Kriechansatzes für sekundäres Kriechen werkstoffspezifische Parameter des Metallstrangs und/oder die Prozesstemperatur des Metallstrangs während des Stranggießens berücksichtigt. Dies erfolgt vorzugsweise "online" und somit in Echtzeit während des Stranggießprozesses, um schnelle Anpassungen an eventuelle Prozessänderungen zu ermöglichen.
  • In vorteilhafter Weiterbildung der Erfindung kann in dem Breitungsmodell auch ein Schrumpf des Metallstrangs entlang von dessen Gießrichtung berücksichtigt werden. In gleicher Weise wie bei der Bestimmung der Breitung des Metallstrangs kann dessen Schrumpf vorzugsweise in einzelnen Querschnittssegmenten entlang der Gießrichtung berechnet werden, was zu einer hohen Berechnungsgenauigkeit führt.
  • In vorteilhafter Weiterbildung der Erfindung können auf Grundlage des Breitungsmodells auch eine Anstellung und/oder Anstellgeschwindigkeit für die zumindest eine Kokillen-Schmalseite bestimmt werden. Dies ist insbesondere bei einer geplanten Änderung der Gießgeschwindigkeit, mit der der Metallstrang vergossen wird, von Vorteil. In gleicher Weise kann auch die Anstellung der zumindest einen Kokillen-Schmalseite, und ggf. auch die hierzu gewählte Anstellungsgeschwindigkeit, in Abhängigkeit einer Überhitzung des flüssigen Metalls, einer Sekundärkühlung und/oder einem Analysenwechsel berechnet werden. Hierbei ist die Temperatur der Schmelze bzw. des flüssigen Metalls innerhalb der Kokille oder im vorgelagerten Thundish permanent zu bestimmen oder mittels eines Pfannen- und Verteilermodells zu berechnen. Durch temporäre Temperaturmessungen der Schmelze in der Pfanne bzw. in einem Verteiler wird das Pfannen- und Verteilermodell adaptiert.
  • Zur Lösung der obigen Aufgabe ist nach der vorliegenden Erfindung auch eine Vorrichtung zum Einstellen der Breite eines durch eine Kokille stranggegossenen Metallstrangs in einer Stranggießanlage vorgesehen, umfassend eine Recheneinrichtung, in der ein Breitungsmodell eingerichtet ist und auf Grundlage dessen in Abhängigkeit von zumindest einem Berechnungsparameter die Breite des Metallstrangs oder einer daraus gebildeten Bramme am Ende der Stranggießanlage berechnet und mit einem vorbestimmten Sollwert verglichen wird, wobei die Recheneinrichtung im Anschluss hieran ein Stellsignal erzeugt. Die Vorrichtung umfasst weiter ein mit zumindest einer Schmalseite der Kokille in Wirkverbindung stehendes Stellglied, das durch das Stellsignal angesteuert werden kann, um zumindest eine Schmalseite der Kokille einzustellen, und zumindest eine Messeinrichtung , mit der eine Breite des Metallstrangs oder einer daraus gebildeten Bramme an einer Messstelle, die in einem vorbestimmten Abstand zur Austrittsöffnung der Kokille angeordnet ist, gemessen werden kann. Diese Messeinrichtung ist innerhalb der Strangführung der Stranggießanlage in deren oberen Teil und vorzugsweise in geringer Entfernung zur Kokillenunterkante angeordnet. Dies führt zu einer nochmals verbesserten Genauigkeit in Bezug auf die Bestimmung der Breitung des Metallstrangs oder einer hieraus gebildeten Bramme.
  • In vorteilhafter Weiterbildung der erfindungsgemäßen Vorrichtung kann zumindest eine Messeinrichtung auch am Ende der Stranggießanlage oder außerhalb davon angeordnet sein. Für diesen Fall sind zwei Messeinrichtungen vorgesehen, von denen die eine wie erläutert innerhalb der Strangführung, und die andere am Ende der Stranggießanlage oder außerhalb davon angeordnet sind.
  • Ein weiterer Vorteil einer solchen Messeinrichtung ergibt sich für den Fall, wenn entlang der Stranggießanlage unvorhergesehene Störungen wie z.B. mit der Kühlwasserzufuhr o.ä. auftreten sollten - durch die Messeinrichtung, insbesondere bei einer Anordnung am Ende der Stranggießanlage oder außerhalb davon, ist es dann in solch einem Störungsfall möglich, die tatsächliche Breite des Metallstrangs oder einer hieraus gebildeten Bramme am Ende des Stranggießprozesses zu messen, um dann wie erläutert zumindest eine Schmalseite in der Kokille entsprechend einzustellen. Hierdurch können dann die Störungen zumindest vorübergehend kompensiert werden, um z.B. einen Produktionszyklus geordnet zu beenden.
  • Bezüglich der Einstellung der zumindest einen Schmalseite der Kokille, die mit der erfindungsgemäßen Vorrichtung möglich ist, darf zur Vermeidung von Wiederholungen auf die obigen Erläuterungen bezüglich der Einstellmöglichkeiten für die zumindest eine Schmalseite nach dem erfindungsgemäßen Verfahren verwiesen werden.
  • Nachstehend sind Ausführungsbeispiele der Erfindung anhand einer schematisch vereinfachten Zeichnung im Detail beschrieben.
  • Es zeigen:
  • Fig. 1
    ein Diagramm für den Verlauf der Temperatur in einem stranggegossenen Metallstrang in Abhängigkeit des Abstands vom Gießspiegel, errechnet auf Basis der vorliegenden Erfindung und zu deren Durchführung,
    Fig. 2
    eine schematisch vereinfachte Darstellung einer zur Durchführung des erfindungsgemäßen Verfahrens eingerichteten Stranggießanlage,
    Fig. 3
    eine prinzipiell vereinfachte Darstellung einer erfindungsgemäßen Vorrichtung, die bei der Stranggießanlage von Fig. 2 zur Durchführung der Erfindung vorgesehen ist,
    Fig. 4
    eine prinzipiell vereinfachte Darstellung von Schmalseiten einer Kokille von Fig. 2, zur Veranschaulichung der Veränderung eines Abstands der Stranggießanlage 20 zwischen diesen Schmalseiten,
    Fig. 5
    eine prinzipiell vereinfachte Darstellung einer Schmalseite einer Kokille der Stranggießanlage 20 von Fig. 2, zur Veranschaulichung der Veränderung einer Neigung dieser Kokille,
    Fig. 6
    vereinfachte Querschnittsansichten eines stranggegossenen Metallstrangs, zur Veranschaulichung der Breitung des Metallstrangs,
    Fig. 7
    ein Diagramm zur Veranschaulichung eines Breitenanteils an der Position einer Messstelle, an welcher die Breitung eines Metallstrangs erfindungsgemäß gemessen wird,
    Fig. 8
    ein Diagramm zur Veranschaulichung eines Verlaufs der Breite eines Metallstrangs innerhalb der Strangführung einer Stranggießanlage von Fig. 2,
    Fig. 9
    ein Diagramm zur Veranschaulichung einer Berechnung der Breitung eines Metallstrangs auf Grundlage des Breitungsmodells nach der vorliegenden Erfindung, für eine Variation der Gießgeschwindigkeit,
    Fig. 10
    ein Diagramm zur Veranschaulichung einer Berechnung der Breitung eines Metallstrangs auf Grundlage des Breitungsmodells nach der vorliegenden Erfindung, für eine Variation der Überhitzung der Metallschmelze, und
    Fig. 11
    ein Flussdiagramm zur Veranschaulichung des erfindungsgemäßen Verfahrens.
  • Beim Erstarren eines stranggegossenen Metallstrangs 10 in einer Stranggießanlage 20 (vgl. Fig. 2) nimmt die Durchschnittstemperatur des Metallstrangs nach Verlassen der Kokille stetig ab. In Folge einer Verringerung des spezifischen Volumens des Metalls bei sinkender Temperatur schrumpft der Metallstrang zusammen. Gleichzeitig nimmt die Breite des stranggegossenen Metallstrangs während des Gießprozesses innerhalb der Strangführung einer Stranggießanlage zu, nämlich wegen der ferrostatischen Last innerhalb des Metallstrangs und als Folge eines Kriechens des Materials bzw. eines Kriechprozesses innerhalb des Metallstrangs. Hierbei kann, in Abhängigkeit der verwendeten Stahlsorte, die Breitung um einige Faktoren größer sein als der Schrumpf. Der Breitungseffekt ist auch abhängig vom Werkstoff bzw. des zu vergießenden flüssigen Metalls und seines Erstarrungsgefüges, der ferrostatischen Last, sowie von Prozessparametern, wie Gießgeschwindigkeit, Überhitzung Sekundärkühlung und der Strangdicke
  • Die vorliegende Erfindung stellt darauf ab, die resultierende Breitung eines stranggegossenen Metallstrangs, ggf. auch unter Berücksichtigung von dessen Schrumpf, insbesondere für das Ende einer Stranggießanlage zu berechnen, um in Abhängigkeit hiervon zumindest eine Schmalseite einer Kokille der Stranggießanlage entsprechend einzustellen. Dies ist insbesondere für den Fall von Bedeutung, wenn die Breite des Metallstrangs bzw. von hieraus gebildeten Brammen nach der Abkühlung in einer vom Kunden vorgegebenen engen Toleranz liegen muss.
  • Die Temperaturverteilung für einen stranggegossenen Metallstrang hängt u.a. vom Enthalpieverlauf ab, welcher z.B. auf Grundlage von Gibbs-Energien berechnet werden kann. Diese Temperaturverteilung ist im Diagramm von Fig. 1 dargestellt, nämlich über der Stranglänge und in Abhängigkeit des Abstands vom Gießspiegel. Es sind jeweils die Temperaturen in der Strangmitte an dessen Oberfläche und im Kern gezeigt. Außerdem ist die mittlere Temperatur dargestellt. Die Solidus- und Liquidus-Linien geben an, an welcher Stelle es zu einer Durcherstarrung des Metallstrangs kommt. Die Berechnung der Temperaturverteilung, wie in dem Diagramm von Fig. 1 dargestellt, mit Hilfe der Gibbs-Energie kann mit einem Verfahren erfolgen, welches aus DE 10 2011 082 158 A1 bekannt ist. Hierbei wird die Temperaturverteilung, die im Inneren eines stranggegossenen Metallstrangs herrscht, mittels eines auf einer dynamischen Temperatur-Regelung beruhenden Temperaturberechnungsmodells, wie z.B. das DSC (Dynamic Solidification Control), berechnet. Hierbei kann die Gesamtenthalpie aus der Summe der freien molaren Enthalpieen (Gibbs'schen Energien) aller im Material des Metallstrangs aktuellen vorhandenen Phasen und/oder Phasenanteile berechnet werden.
  • Fig. 2 zeigt in schematisch vereinfachter Darstellung eine Stranggießanlage 20 zum Stranggießen eines Metallstrangs 10, wobei mit dieser Stranggießanlage 20 ein erfindungsgemäßes Verfahren durchgeführt werden kann. Zu diesem Zweck ist die Stranggießanlage 20 mit einer Rechnereinrichtung 120 bzw. Recheneinrichtung ausgestattet, wobei diese Recheneinrichtung 120 mit einem als metallurgisches Prozessmodell ausgebildeten Temperaturberechnungsmodell ausgestattet ist, das eine Temperaturregelung aufweist oder darauf beruht. Mit dem Temperaturberechnungsmodell, z.B. dem vorstehend bereits genannten DSC (Dynamic Solidification Control) kann die Temperaturverteilung berechnet werden, die im Inneren eines aus flüssigem Metall gegossenen Metallstrangs herrscht.
  • Das vorstehend genannte metallurgische Prozessmodell ist Teil eines Breitungsmodells BM, das in der Recheneinrichtung 120 eingerichtet ist. Vorzugsweise umfasst das Breitungsmodell BM sowohl ein thermodynamisches Modell TM zur Bestimmung der Temperaturen und der Strangschalendicken des Metallstrangs 10 als auch ein mathematisch-physikalisches Modell MPM zur Bestimmung des Kriechens des Metallstrangs 10, wobei die Modelle TM und MPM miteinander gekoppelt sind (Fig. 3).
  • Der Metallstrang 10 weist vor seiner Durcherstarrung im Kern einen flüssigen bzw. sumpfigen Anteil 14 auf. In dem Ausführungsbeispiel gemäß Fig. 2 ist eine Sumpfspitze 16, die die Erstarrungslänge des Metallstrangs 10 definiert, in einem, in Gießrichtung betrachteten, Endbereich einer Sekundärkühlung 22 ausgebildet. An dem Metallstrang 10 sind zu dessen Verformung und Stützung eine Mehrzahl von Rollensegmenten 24 oder allgemein Segmente angeordnet, die mit Stützrollen oder Strangführungsrollen 26 versehen und hydraulisch verstellbar ausgebildet sind. Die Strangführungsrollen 26 sind anstellbar und teilweise drehangetrieben ausgebildet.
  • Die Stranggießanlage 20 weist ein Verteilergefäß bzw. Gießverteiler 28 und eine daran angeschlossene Stranggießkokille 130 auf. Aus einer Gießpfanne 32 läuft Stahlschmelze in den Gießverteiler 28 und von dort aus in die Kokille 130. Unterhalb der Kokille 130 sind eine Mehrzahl von Strangführungsrollen 26 zur Abstützung einer Ober- und Unterseite des Metallstrangs 10 vorgesehen bzw. angeordnet, wobei der Metallstrang in diesem Bereich zunächst eine sehr dünne Strangschale aufweist. Der Metallstrang 10 durchläuft anschließend einen kreisbogenförmigen Bereich, und läuft dann in einer Richtzone aus und kann z.B. in einer nachgeordneten Schere oder Brennschneidmaschine in Brammen getrennt werden.
  • In der Fig. 2 ist mit dem Bezugszeichen "21" stark vereinfacht ein Ende der Stranggießanlage 20 symbolisiert, wobei mittels der Erfindung u.a. eine resultierende Breite eines Metallstrangs 10 an diesem Ende 21 berechnet wird, als Grundlage für eine nachfolgende Einstellung von zumindest einer Schmalseite der Kokille 130. An dem Ende 21 der Stranggießanlage 20 ist der Metallstrang 10 abgekühlt und im Wesentlichen durcherstarrt, wobei der Metallstrang 10 auch bereits zu einzelnen Brammen vereinzelt sein kann.
  • Erfindungsgemäß ist bei der Stranggießanlage 20 von Fig. 2 zumindest eine Messeinrichtung 100 vorgesehen. Die Messeinrichtung 100 kann an einer Messstelle 102, nämlich unterhalb einer Austrittsöffnung 132 der Kokille 130 und in vergleichsweise geringem Abstand hierzu angeordnet sein, um die Breite des Metallstrangs 10 an dieser Stelle zu messen. Ergänzend oder alternativ kann eine Messeinrichtung 100 auch an einer Messstelle 104, nämlich am Ende 21 der Stranggießanlage 20 oder außerhalb davon angeordnet sein, um die Breite des durcherstarrten und abgekühlten Metallstrangs 10 oder die Breite einer hieraus gebildeten Bramme zu messen. In Bezug auf die Anordnung einer Messeinrichtung 100 darf darauf hingewiesen werden, dass die zugeordnete Messstelle sich in einem vorbestimmten Abstand zur Austrittsöffnung 132 der Kokille 130 befindet. Die Messeinrichtung 100 ist durch eine Signalleitung 122 an die vorstehend bereits genannte Recheneinrichtung 120 angeschlossen, so dass die an der Messstelle 102, 104 gemessene Breite des Metallstrangs 10 an die Recheneinrichtung 120 übermittelt wird. Bezüglich der Signalleitung 122 darf darauf hingewiesen werden, dass es sich hierbei entweder um eine physische Signalleitung oder um eine geeignete Funkstrecke oder dergleichen handeln kann.
  • Fig. 3 zeigt prinzipiell und stark vereinfacht eine Vorrichtung 1 nach der vorliegenden Erfindung, mit der wie vorstehend erläutert an der Messstelle 102, zum Beispiel bei einer Stranggießanlage 20 von Fig. 2, die Breite B eines Metallstrangs 10 gemessen werden kann. Ergänzend kann die Breite des Metallstrangs 10 oder einer hieraus gebildeten Bramme auch an der Messstelle 104, nämlich am Ende 21 der Stranggießanlage 20 bestimmt werden. Hierzu umfasst die Vorrichtung 1 eine Messeinrichtung 100, die an der Messstelle 102 bzw. 104 (vgl. Fig. 2) positioniert sein kann, und die Recheneinrichtung 120, mit der die Messeinrichtung 100 über die Signalleitung 122 verbunden ist. Entsprechend kann mit der Recheneinrichtung 120 eine Veränderung der Breite des Metallstrangs 10 an der Messstelle 102, bzw. eine Veränderung der Breite des Metallstrangs 10 oder einer hieraus gebildeten Bramme an der Messstelle 104, im Vergleich zu der Breite, die der Metallstrang 10 an der Austrittsöffnung 132 der Kokille 130 aufweist, bestimmt werden.
  • Für die Zwecke der vorliegenden Erfindung ist in der Recheneinrichtung 120 das Breitungsmodell BM eingerichtet, auf Grundlage dessen die Breite des Metallstrangs 10 an dem Ende 21 der Stranggießanlage 20 (vgl. Fig. 2) berechnet und mit einem vorbestimmten Sollwert verglichen wird, wobei die Recheneinrichtung 120 im Anschluss hieran ein Stellsignal erzeugt. Dieses Stellsignal wird über eine weitere Signalleitung 122 an ein mit zumindest einer Schmalseite 134 der Kokille 130 in Wirkverbindung stehendes Stellglied 136 übertragen, wodurch dann die Schmalseite 134 der Kokille 130 geeignet angestellt wird.
  • Fig. 4 zeigt prinzipiell vereinfacht die beiden Schmalseiten 134 der Kokille 130, die durch einen Abstand A zueinander beabstandet sind. Mittels einer Ansteuerung durch ein Stellglied 136 kann der Abstand A zwischen diesen Schmalseiten 134 geeignet geändert werden, um dadurch die Breite des Metallstrangs 10 an der Austrittsöffnung 132 der Kokille 130 zu beeinflussen. Optional ist es hierbei auch möglich, die Neigung einer Schmalseite 134 bezüglich der Vertikalen V zu verändern, wie es prinzipiell vereinfacht in der Darstellung von Fig. 5 gezeigt ist. Hierbei kann beispielsweise ein oberer Rand der Schmalseite 134 um eine Strecke N bezüglich des unteren Rands der Schmalseite 134 verschoben werden, so dass eine Oberfläche der Schmalseite 134 mit der Vertikalen V einen Winkel einschließt.
  • Fig. 6 zeigt vereinfacht Querschnittsansichten eines stranggegossenen Metallstrangs 10, und verdeutlicht die Zunahme des Metallstrangs 10 in seiner Breite B in Folge von Breitung. Hierbei verdeutlichen die Bereiche I in der Mitte von Fig. 6 die Breitenänderung des Metallstrangs 10 in Folge von Breitung bzw. eines Kriechens des Materials. Die Bereiche II in der unteren Darstellung von Fig. 6 verdeutlichen eine Breitenänderung des Metallstrangs 10 in Folge von Breitung und Ausbauchung.
  • Die Erfindung funktioniert nun wie folgt:
    Beim Stranggießen eines Metallstrangs 10 wird durch die Recheneinrichtung 120 auf Grundlage des Breitungsmodells BM die Breite des Metallstrangs 10 oder einer hieraus gebildeten Bramme für das Ende 21 der Stranggießanlage 20 berechnet und mit einem vorbestimmten Sollwert verglichen, wobei anschließend zumindest eine Schmalseite 134 der Kokille 130 durch ein zugeordnetes Stellglied 136 geeignet eingestellt wird, nämlich in Abhängigkeit der für das Ende 21 der Stranggießanlage berechneten Breite B des Metallstrangs 10.
  • Für die Berechnung der Breite des Metallstrangs 10 am Ende 21 der Stranggießanlage 20 werden Berechnungsparameter berücksichtigt, die wenigstens die physikalischen Eigenschaften des Werkstoffs des Metallstrangs, die Temperatur des Metalls in der Kokille 130, die Gießgeschwindigkeit des Metallstrangs 10, Überhitzung und die Geometrie des Metallstrangs 10 umfassen. In Fig. 3 ist das Bezugszeichen "140" dahingehend zu verstehen, dass von dem Breitungsmodell BM in der Recheneinrichtung 120 auch eine Änderung der Prozessparameter des Stranggießprozesses, wie Überhitzung, Gießgeschwindigkeit und Wasserkühlung, berücksichtigt werden können, und dies dann in die Ansteuerung des Stellglieds 136 zum Anstellen der zumindest einen Schmalseite 134 einfließt.
  • Wie vorstehend erläutert, kann eine Messeinrichtung 100 an der Messstelle 102 und an der Messstelle 104 vorgesehen sein, um dort die Breite des Metallstrangs 10 (an der Messstelle 102), bzw. die Breite des Metallstrangs 10 oder einer hieraus gebildeten Bramme (an der Messstelle 104) zu bestimmen. Mit der Breitenmessung durch die Messeinrichtung 100 kann somit eine Veränderung der Breite des Metallstrangs 10 bzw. einer Bramme an der jeweiligen Messstelle 102, 104 im Vergleich zur Breite des Metallstrangs 10 an der Austrittsöffnung 132 der Kokille 130 ermittelt werden, und dann mit einem vorbestimmten Sollwert für die Breite des Metallstrangs 10 oder einer hieraus gebildeten Bramme vergleichen werden. Hierbei bildet dann der durch die Messeinrichtung 100 erzeugte Messwert für die Breite des Metallstrangs 10 oder einer hieraus gebildeten Bramme einen weiteren Berechnungsparameter für die Berechnung in dem Breitungsmodell BM.
  • Bezüglich der in Fig. 4 gezeigten Veränderung des Abstands A zwischen den Schmalseiten 134 darf darauf hingewiesen werden, dass eine solche Breiteneinstellung der Kokille 130 auch unter Berücksichtigung einer Veränderung der flüssigen Stahltemperatur bzw. Überhitzung, der Gießgeschwindigkeit und der Sekundärkühlung erfolgen kann, wodurch dann die Breitenabweichung des Metallstrangs 10 als Folge von dessen Breitung minimiert wird.
  • Bezüglich der in Fig. 5 gezeigten Veränderung des Neigungswinkels einer Schmalseite 134 der Kokille 130 darf darauf hingewiesen werden, dass hierdurch eine Ausbauchung II des Metallstrangs 10 minimiert werden kann, ggf. in Verbindung mit einer geeigneten Anpassung der Wasserkühlung im Bereich der Sekundärkühlung 22, und ggf. in Verbindung mit einer Anpassung einer Kühlung der Schmalseiten 134 der Kokille 130.
  • Fig. 7 zeigt ein Diagramm zur Definition des Breitenanteils des Metallstrangs 10 an der Position der Messstelle 102, beispielhaft für zwei verschiedene Gießgeschwindigkeiten (mit v1 > v2). Es ist zu erkennen, dass der Breitungszuwachs mit zunehmendem Abstand vom Gießspiegel bzw. von der Austrittsöffnung 132 der Kokille 130 stetig abnimmt und beispielsweise in einem Abstand von 15 Metern vom Gießspiegel nicht weiter zunimmt bzw. von dort an konstant verläuft.
  • Fig. 8 zeigt ein Diagramm zur Verdeutlichung des Verlaufs der Breitung des Metallstrangs 10 innerhalb der Strangführung bei der Stranggießanlage 20 von Fig. 2, wobei der Graph G1 die Breitung und der Graph G2 den Schrumpf des Metallstrangs 10 darstellen.
  • In Fig. 9 und Fig. 10 sind jeweils Diagramme gezeigt, mit denen die Berechnung der Breitung des Metallstrangs 10 auf Grundlage des Breitungsmodells nach der vorliegenden Erfindung veranschaulicht wird, wobei dies für eine Variation der Gießgeschwindigkeit (Fig. 9, mit v1 > v2) bzw. für eine Variation der Überhitzung (Fig. 10, mit Überhitzung H1 > Überhitzung H2) erfolgt.
  • Fig. 11 zeigt ein Flussdiagramm, das die vorstehend erläuterten Aspekte der vorliegenden Erfindung nochmals veranschaulicht. Bei den hierin gezeigten Parametern a, b, c und d, mit denen das mathematisch-physikalische Modell MPM geregelt wird, kann es sich um die Parameter des Garofalo-Ansatzes und dessen Regressionskoeffizienten handeln.
  • Bezugszeichenliste
  • 10
    Metallstange
    20
    Stranggießanlage
    21
    Ende der Bramme
    100
    Messeinrichtung
    102
    Messstelle
    104
    Messstelle
    120
    Recheneinrichtung
    130
    Kokille
    132
    Austrittsöffnung
    134
    Schmalseite
    136
    Stellglied
    BM
    Breitungsmodell
    B
    Berechnete Breite
    H1
    Überhitzung
    H2
    Überhitzung
    TM
    thermodynamisches Modell
    MPM
    mathematisch-physikalisches Modell

Claims (18)

  1. Verfahren zum Einstellen der Breite eines durch eine Kokille (130) stranggegossenen Metallstrangs (10) in einer Stranggießanlage (20), bei dem eine Breitenkorrektur für den Metallstrang (10) berechnet und als Stellgröße zum Verstellen mindestens einer Schmalseite der Kokille (130) ausgegeben wird, wobei auf Grundlage eines Breitungsmodells (BM) durch eine Recheneinrichtung (120) die Breite (B) des Metallstrangs (10) oder einer daraus gebildeten Bramme am Ende (21) der Stranggießanlage (20) in Abhängigkeit von zumindest einem Berechnungsparameter berechnet und mit einem vorbestimmten Sollwert verglichen wird, wobei zumindest eine Schmalseite (134) der Kokille (130), vorzugsweise beide Schmalseiten (134) der Kokille (130), in Abhängigkeit der für das Ende (21) der Stranggießanlage (20) berechneten Breite (B) des Metallstrangs (10) bzw. der Bramme eingestellt wird/werden, wobei eine Breite (B) des Metallstrangs (10) an zumindest einer Messstelle (102; 104) in einem vorbestimmten Abstand zur Austrittsöffnung (132) der Kokille (130) gemessen wird und der entsprechende Messwert dieser Breite (B) an die Recheneinrichtung (120) geleitet wird, um in dem Breitungsmodell (BM) berücksichtigt zu werden,
    dadurch gekennzeichnet,
    dass sich die zumindest eine Messstelle (102) innerhalb der Strangführung der Stranggießanlage (20) in deren oberen Teil, vorzugsweise in einer Entfernung von 4 bis 12 Metern von einer Austrittsöffnung (132) der Kokille (130), befindet.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Einstellung der zumindest einen Schmalseite (134) der Kokille (130) in Abhängigkeit der für das Ende (21) der Stranggießanlage (20) berechneten Breite (B) des Metallstrangs (10) durch die Recheneinrichtung (120) eingestellt, vorzugsweise geregelt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Breitungsmodell (BM) ein thermodynamisches Modell (TM) und ein mathematisch-physikalisches Modell (MPM) umfasst, wobei mittels des thermodynamischen Modells (TM) Temperaturen und Strangschalendicken des Metallstrangs (10) an jeder Position des Metallstrangs (10) in der Stranggießanlage (20) bestimmt werden, wobei mittels des mathematisch-physikalischen Modells (MPM) ein Kriechen des Metallstrangs (10) bestimmt wird, wobei das thermodynamische Modell (TM) und das mathematisch-physikalische Modell (MPM) miteinander gekoppelt sind, so dass mit den durch diese Modelle bestimmten Werten die Breite (B) des Metallstrangs (10) oder einer daraus gebildeten Bramme am Ende (21) der Stranggießanlage (20) bestimmt wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass in dem thermodynamischen Modell (TM) thermodynamische Zustandsänderungen des gesamten Metallstrangs (10) in einem mathematischen Simulationsmodell, beinhaltend eine Wärmeleitungsgleichung, berechnet werden, auf Grundlage dessen ein Rückschluss auf die Temperatur des Metallstrangs (10) entlang der Stranggießanlage (20) möglich ist.
  5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das mathematisch-physikalische Modell (MPM) einen Kriechansatz, insbesondere einen Ansatz für sekundäres Kriechen, berücksichtigt.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass für den Kriechansatz werkstoffspezifische Parameter des Metallstrangs (10) und/oder die Prozesstemperatur des Metallstrangs (10) während des Stranggießens berücksichtigt werden.
  7. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die mittels des thermodynamischen Modells (TM) bestimmten Werte für die Berechnung durch das mathematisch-physikalische Modell (MPM) berücksichtigt werden.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der zumindest eine Berechnungsparameter, der in dem Breitungsmodell (BM) berücksichtigt wird, wenigstens die physikalischen Eigenschaften des Werkstoffs des Metallstrangs (10), die Temperatur des Metalls in der Kokille (130), die Gießgeschwindigkeit des Metallstrangs (10), die Überhitzung und/oder die Geometrie des Metallstrangs (10 umfasst.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass der zumindest eine Berechnungsparameter während des Stranggießprozesses und somit in Echtzeit ("Online") ermittelt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Breitung des Metallstrangs (10) auf Grundlage des Breitungsmodells (BM) in einzelnen Querschnittssegmenten des Metallstrangs (10) entlang seiner Gießrichtung berechnet wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass in dem Breitungsmodell (BM) ein Schrumpf des Metallstrangs (10) entlang der Gießrichtung berücksichtigt wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass sich eine zusätzliche Messstelle (104) innerhalb der Strangführung der Stranggießanlage (20) am Ende der Stranggießanlage (20) oder außerhalb davon befindet.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Temperatur des Metalls innerhalb der Kokille (130) durch die Temperatur zumindest einer Seitenwand der Kokille (130) erfasst wird, vorzugsweise, dass die Temperatur des Metalls innerhalb der Kokille (130) durch die abgeführten Wärmeströme über das Kokillenkühlwasser an zumindest einer Kokillenseite erfasst wird.
  14. Verfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass eine Anstellung und/oder eine Anstellgeschwindigkeit für die zumindest eine Kokillen-Schmalseite (134) auf Grundlage des Breitungsmodells (BM) bestimmt wird.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass eine Anstellung und/oder eine Anstellgeschwindigkeit für die zumindest eine Kokillen-Schmalseite (134) in Abhängigkeit einer Überhitzung (H1; H2) des flüssigen Metalls, aus dem der Metallstrang (10) vergossen wird, einer Sekundärkühlung und/oder einem Analysenwechsel bestimmt wird.
  16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Gießtemperatur aus einer Temperaturmessstelle in der Pfanne oder im Thundish herangezogen oder mit einem Pfannen- oder Thundish-Modell berechnet wird.
  17. Vorrichtung (1) zum Einstellen der Breite (B) eines durch eine Kokille (130) stranggegossenen Metallstrangs (10) in einer Stranggießanlage (20), umfassend
    eine Recheneinrichtung (120), in der ein Breitungsmodell (BM) eingerichtet ist und auf Grundlage dessen in Abhängigkeit von zumindest einem Berechnungsparameter die Breite (B) des Metallstrangs (10) oder einer daraus gebildeten Bramme am Ende (21) der Stranggießanlage (20) berechnet und mit einem vorbestimmten Sollwert verglichen wird, wobei die Recheneinrichtung (120) im Anschluss hieran ein Stellsignal erzeugt,
    ein mit zumindest einer Schmalseite (134) der Kokille (130) in Wirkverbindung stehendes Stellglied (136), das durch das Stellsignal ansteuerbar ist, um die zumindest eine Schmalseite (134) der Kokille (130) einzustellen, und
    zumindest eine Messeinrichtung (100), mit der eine Breite (B) des Metallstrangs (10) oder einer daraus gebildeten Bramme an einer in einem vorbestimmten Abstand zur Austrittsöffnung (132) der Kokille (130) angeordneten Messstelle (102; 104) messbar ist,
    dadurch gekennzeichnet,
    dass die Messeinrichtung (100) an einer Messstelle (102) innerhalb der Strangführung der Stranggießanlage (20) in deren oberen Teil, vorzugsweise in einer Entfernung von 4 bis 12 Metern von einer Austrittsöffnung (132) der Kokille (130), angeordnet ist.
  18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass die Messeinrichtung (100) zusätzlich an einer Messstelle (104) am Ende der Stranggießanlage (20) oder außerhalb davon angeordnet ist.
EP16200278.6A 2015-11-26 2016-11-23 Verfahren und vorrichtung zum einstellen der breite eines stranggegossenen metallstrangs Active EP3173166B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015223496.7A DE102015223496A1 (de) 2015-11-26 2015-11-26 Verfahren und Vorrichtung zum Einstellen der Breite eines stranggegossenen Metallstrangs

Publications (2)

Publication Number Publication Date
EP3173166A1 EP3173166A1 (de) 2017-05-31
EP3173166B1 true EP3173166B1 (de) 2019-05-15

Family

ID=57391894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16200278.6A Active EP3173166B1 (de) 2015-11-26 2016-11-23 Verfahren und vorrichtung zum einstellen der breite eines stranggegossenen metallstrangs

Country Status (2)

Country Link
EP (1) EP3173166B1 (de)
DE (1) DE102015223496A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560652A (zh) * 2019-10-16 2019-12-13 北京首钢股份有限公司 一种特殊钢铸坯裂纹的控制方法
CN113600771B (zh) * 2021-07-30 2023-05-23 上海二十冶建设有限公司 一种矩形立式连铸机结晶器离线校弧装置及使用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT381050B (de) * 1985-01-21 1986-08-11 Voest Alpine Ag Verfahren zum stranggiessen sowie einrichtung zur durchfuehrung des verfahrens
JPS61232049A (ja) 1985-04-09 1986-10-16 Nippon Steel Corp 連鋳鋳片幅一定制御方法
US5205345A (en) * 1991-08-07 1993-04-27 Acutus Industries Method and apparatus for slab width control
DE19814222A1 (de) * 1998-03-31 1999-10-07 Schloemann Siemag Ag Verfahren zum Stranggießen und Fertigwalzen eines Gießstranges innerhalb einer vorgegebenen Fertigbreitentoleranz
DE102011082158A1 (de) 2011-09-06 2013-03-07 Sms Siemag Ag Gießverfahren, insbesondere Stranggießverfahren
DE102013214811A1 (de) 2013-01-30 2014-07-31 Sms Siemag Aktiengesellschaft Verfahren und Vorrichtung zum Gießen eines Strangs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3173166A1 (de) 2017-05-31
DE102015223496A1 (de) 2017-06-01

Similar Documents

Publication Publication Date Title
EP3184202B1 (de) Verfahren zum stranggiessen eines metallstranges
EP2279052B1 (de) Verfahren zum stranggiessen eines metallstrangs
AT408197B (de) Verfahren zum stranggiessen eines metallstranges
EP2753439B1 (de) Giessverfahren, insbesondere stranggiessverfahren
EP2346631B1 (de) Verfahren und vorrichtung zur steuerung der erstarrung eines giessstranges in einer stranggiessanlage beim anfahren des giessprozesses
EP2762251B1 (de) Verfahren und Vorrichtung zum Gießen eines Strangs
EP1200216A1 (de) Verfahren und einrichtung zum herstellen eines stranges aus metall
EP3554744B1 (de) Verfahren und vorrichtung zum regeln einer stranggiessanlage
EP2279053B1 (de) Verfahren zum stranggiessen eines metallstrangs
EP3173166B1 (de) Verfahren und vorrichtung zum einstellen der breite eines stranggegossenen metallstrangs
EP2620233A1 (de) Verfahren zur Bearbeitung von Walzgut in einem Warmwalzwerk
DE102019208736A1 (de) Verfahren zum Gießen eines Gießstrangs in einer Stranggießanlage
EP2906369B1 (de) Breitenbeeinflussung eines bandförmigen walzguts
EP1448330B1 (de) Verfahren zum stranggiessen
DE19823440C1 (de) Verfahren und Vorrichtung zum endabmessungsnahen Gießen von Metall
EP3733323B1 (de) Verfahren und stranggiessanlage zum giessen eines giessstrangs
DE10310357A1 (de) Gießwalzanlage zur Erzeugen eines Stahlbandes
EP1536900B2 (de) Verfahren zum Starten eines Giessvorganges
WO2007042170A1 (de) Verfahren zum stranggiessen einer metallschmelze
EP2673099B1 (de) Verfahren zur regelung einer temperatur eines strangs durch das positionieren einer verfahrbaren kühldüse in einer strangführung einer stranggiessanlage
DE102011077454A1 (de) Stranggießanlage
DE102015215328A1 (de) Verfahren zum Stranggießen eines Metallstrangs und zum Bestimmen des Schrumpfs eines stranggegossenen Metallstrangs
EP2804708B1 (de) Modellierung einer giesswalzanlage
DE102005049151A1 (de) Verfahren zum Stranggießen von flüssigen Metallen, insbesondere von flüssigem Stahl und Soft-Reduzieren
DE102022200939A1 (de) Verfahren zum Querteilen eines Metallbandes sowie Walzanlage mit einer Schere zum Querteilen eines Metallbandes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20161123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 11/05 20060101ALI20180910BHEP

Ipc: B22D 11/16 20060101AFI20180910BHEP

INTG Intention to grant announced

Effective date: 20181012

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190227

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016004688

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190815

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190816

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016004688

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

26N No opposition filed

Effective date: 20200218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191123

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190915

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20161123

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190515

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 8

Ref country code: DE

Payment date: 20231121

Year of fee payment: 8

Ref country code: AT

Payment date: 20231121

Year of fee payment: 8