EP3468864B1 - Method for compensating the blockage of a rudder blade in an x-shaped rudder - Google Patents

Method for compensating the blockage of a rudder blade in an x-shaped rudder Download PDF

Info

Publication number
EP3468864B1
EP3468864B1 EP17730735.2A EP17730735A EP3468864B1 EP 3468864 B1 EP3468864 B1 EP 3468864B1 EP 17730735 A EP17730735 A EP 17730735A EP 3468864 B1 EP3468864 B1 EP 3468864B1
Authority
EP
European Patent Office
Prior art keywords
rudder
com
blocked
scaled
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17730735.2A
Other languages
German (de)
French (fr)
Other versions
EP3468864B8 (en
EP3468864A1 (en
Inventor
Esther Damm
Sönke Markmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Original Assignee
ThyssenKrupp AG
ThyssenKrupp Marine Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp AG, ThyssenKrupp Marine Systems GmbH filed Critical ThyssenKrupp AG
Publication of EP3468864A1 publication Critical patent/EP3468864A1/en
Publication of EP3468864B1 publication Critical patent/EP3468864B1/en
Application granted granted Critical
Publication of EP3468864B8 publication Critical patent/EP3468864B8/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/20Steering equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/18Control of attitude or depth by hydrofoils

Definitions

  • the invention relates to a method for compensating for the blockage of a rudder blade in an X rudder system (hereinafter referred to as the X rudder) and thus for maintaining the maneuverability of the submarine with such an X rudder.
  • Modern submarines for example the German class 212a or the Israeli Dolphin class, have a so-called X rudder instead of the conventional aileron, in which the four rudder blades are each arranged diagonally to the horizontal or vertical when the submarine is in the normal position.
  • Rudder blades 1 and Rudder blade 4 and rudder blade 2 and rudder blade 3 each face each other.
  • the virtual rudder or virtual rudder corresponds to the rudder or the rudder in a conventional arrangement of the rudders in a cross shape.
  • the rudder blades work together in such a way that the submarine is rotated about its longitudinal axis without causing a further change in the direction of movement of the submarine, virtually a helical movement.
  • the rudder blades are set so that the direction of movement of the submarine is not changed, but the rudder blades represent a flow resistance and thus have a braking effect.
  • ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 are the control angles.
  • the central position of the rudder is considered as 0 ° deflection. If all the rudders are in the middle position, there is no force changing the direction of travel on the rudder.
  • a blocked rudder blade automatically affects both the virtual rudder and the virtual deep rudder.
  • the object of the invention is to provide a method which enables the maneuverability of the submarine even with a blocked rudder blade.
  • the advantage of the method is that the submarine remains maneuverable even after damage. The process avoids uncontrolled changes in position and direction. If a blocked rudder blade occurs during a combat mission or during a reconnaissance trip, the submarine can in particular be prevented from appearing, which would reveal the position and presence of the submarine.
  • the maximum permitted steering angle is not only dependent on the type. For example, a rudder blade can be moved in the range from -45 ° to 45 °. In addition, the maximum permitted steering angle also depends on the speed of the submarine. While at a standstill (0 kn) a deflection of -45 ° to 45 ° is possible in the aforementioned case, due to the water pressure that acts on the rudder blade due to the flow, the deflection can increase to e.g. ° be limited to 30 °, since the torque of the rowing machine and thus the maximum available force is limited.
  • the scaling changes the control behavior quantitatively, but the properties are retained qualitatively.
  • the ratio of deep rudder to rudder particularly preferably remains constant.
  • the submarine can also have a defined curve after scaling, For example, to starboard, without a significant change in diving depth, only the radius of the curve is increased during extreme maneuvers. The tax behavior remains predictable for the crew even under these conditions. A reduction in the accuracy of maintaining depth must be made if accepted.
  • the scaling is carried out in such a way that the steering angle of the rudder blade, which has the highest deflection, is set to the maximum value and the remaining deflections of the remaining two rudder blades are scaled accordingly.
  • the index sc at the steering angle ⁇ n, sc with n selected from group 1, 2, 3 or 4 means that the steering angle of the rudder n is scaled to the maximum value.
  • the calculation is carried out in the same way as the previous method, with priority given to the depth and thus to the rudder.
  • Fig. 1 a flow chart for the control of rudder blades of an X rudder is shown.
  • step A the value for the rudder ⁇ r, com and the value for the rudder ⁇ s, com are specified.
  • step B the values are converted into the steering angles ⁇ i of the four rudder blades according to formula 2.
  • step C it is checked whether a rudder blade is blocked. If no rudder blade is blocked, the process continues with step N; if a rudder blade is blocked, the process continues with step D.
  • step N it is checked whether one of the steering angles ⁇ i of the four rudder blades is larger than the maximum steering angle. If this is the case, the process continues with step 0; if this is not the case, the process continues with step K.
  • step 0 the steering angles ⁇ i of the four rudder blades are scaled such that the highest value of the steering angles ⁇ i of the four rudder blades assumes the value of the maximum steering angle.
  • step K the steering angles ⁇ i of the four rudder blades are scaled such that the highest value of the steering angles ⁇ i of the four rudder blades assumes the value of the maximum steering angle.
  • step D it is checked which rudder blade is blocked and at what angle ⁇ i the blocked rudder blade is blocked.
  • step E the steering angles for the remaining three rudder blades are calculated to compensate for the blocked rudder blade.
  • the calculation is carried out according to formulas 5 to 8.
  • step F it is checked whether one of the steering angles ⁇ i of the four rudder blades is larger than the maximum steering angle. If this is the case, proceed to step G; if this is not the case, proceed to step K.
  • step G it is determined which rudder blade has the largest compensating steering angle.
  • step H the control angles are scaled in order to reduce the largest compensating control angle to the maximum control angle. Scaling is done using formulas 10 to 33.
  • step I it is checked whether the amount of the predefined rudder is greater than or equal to 1 and whether the amount of the scaled rudder is less than 1. If this is the case, proceed to step L; if this is not the case, then proceed to step J.
  • step J the individual rudder positions are calculated for the steering angles scaled in step H.
  • the calculation is carried out according to formulas 34 to 37.
  • step L the steering angles with variable roll rudder are calculated using formulas 38 to 49.
  • step M the individual rudder positions for the scaled control variables are calculated according to formulas 5 to 8 or according to formulas 34 to 37.
  • step K the rudder blades are activated.
  • Fig. 2 The four rudder blades as well as the virtual rudder 50 and the virtual deep rudder 60 are shown, with the submarine being viewed from behind in the direction of travel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Feedback Control In General (AREA)
  • Earth Drilling (AREA)
  • Elevator Control (AREA)
  • Moulding By Coating Moulds (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Kompensation der Blockade eines Ruderblattes in einer X-Ruderanlage (im folgenden X-Ruder) und somit der Aufrechterhaltung der Manövrierfähigkeit des Unterseebootes mit einem solchen X-Ruder.The invention relates to a method for compensating for the blockage of a rudder blade in an X rudder system (hereinafter referred to as the X rudder) and thus for maintaining the maneuverability of the submarine with such an X rudder.

Moderne Unterseeboote, beispielsweise die deutsche Klasse 212a oder die israelische Dolphin-Klasse, haben anstelle des konventionellen Kreuzruders ein sogenanntes X-Ruder, bei welchem die vier Ruderblätter jeweils diagonal zur Horizontalen bzw. Vertikalen bei Normallage des Unterseeboots angeordnet sind.Modern submarines, for example the German class 212a or the Israeli Dolphin class, have a so-called X rudder instead of the conventional aileron, in which the four rudder blades are each arranged diagonally to the horizontal or vertical when the submarine is in the normal position.

Bei einem X-Ruder werden die Ruderblätter aus Sicht von hinten wie folgt nummeriert. Ruderblatt 1 ist rechts oben (Steuerbord, oben), Ruderblatt 2 ist links oben (Backbord, oben), Ruderblatt 3 rechts unten ((Steuerbord, unten) und Ruderblatt 4 ist links unten (Backbord, unten) angeordnet. Somit liegen Ruderblatt 1 und Ruderblatt 4 sowie Ruderblatt 2 und Ruderblatt 3 sich jeweils gegenüber.With an X rudder, the rudder blades are numbered from behind as follows. Rudder blade 1 is at the top right (starboard, top), rudder blade 2 is at the top left (port, top), rudder blade 3 at the bottom right ((starboard, bottom) and rudder blade 4 is at the bottom left (port, bottom). Rudder blades 1 and Rudder blade 4 and rudder blade 2 and rudder blade 3 each face each other.

Durch die Verwendung eines X-Ruders sind neben der Verwendung entsprechend als virtuelles Seitenruder oder virtuelles Tiefenruder zwei weitere Stellungen möglich. Das virtuelle Seitenruder oder virtuelle Tiefenruder entspricht dem Seitenruder oder dem Tiefenruder bei einer konventionellen Anordnung der Ruder in Kreuzform. Beim virtuellen Rollruder wirken die Ruderblätter derart zusammen, dass das Unterseeboot um seine Längsachse gedreht wird ohne eine weitere Änderung der Bewegungsrichtung des Unterseeboots zu bewirken, quasi eine schraubenförmige Bewegung vollzieht. Beim virtuellen Bremsruder sind die Ruderblätter so gestellt, dass die Bewegungsrichtung des Unterseeboots nicht verändert wird, die Ruderblätter jedoch einen Strömungswiderstand darstellen und so eine Bremswirkung aufweisen.By using an X rudder, two additional positions are possible in addition to being used as a virtual rudder or virtual rudder. The virtual rudder or virtual rudder corresponds to the rudder or the rudder in a conventional arrangement of the rudders in a cross shape. In the virtual roller rudder, the rudder blades work together in such a way that the submarine is rotated about its longitudinal axis without causing a further change in the direction of movement of the submarine, virtually a helical movement. With the virtual brake rudder, the rudder blades are set so that the direction of movement of the submarine is not changed, but the rudder blades represent a flow resistance and thus have a braking effect.

Die Steuerung erfolgt aus praktischen Gründen auch bei einem X-Ruder durch die Vorgabe einer Wirkung entsprechend einem virtuellen Seitenruders und virtuellen Tiefenruders, wobei zusätzlich auch Rollruder und Bremsruder vorgegeben werden. Die Umrechnung zwischen diesen vorgegebenen Werten und den an den Ruderblättern einzustellenden Winkeln ergibt sich zu: δ r δ s δ p δ u = 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 δ 1 δ 2 δ 3 δ 4

Figure imgb0001
mit:

δr
Auslenkung bzw. Steuerwinkel des virtuellen Seitenruders (engl.: rudder)
δs
Auslenkung bzw. Steuerwinkel des virtuellen Tiefenruders (engl.: sternplane)
δp
Auslenkung bzw. Steuerwinkel des virtuellen Rollruders (engl.: roll rudder)
δu
Auslenkung bzw. Steuerwinkel des virtuellen Bremsruders (engl.: brake rudder)
δ 1
Auslenkung bzw. Steuerwinkel des 1. Ruderblattes
δ 2
Auslenkung bzw. Steuerwinkel des 2. Ruderblattes
δ 3
Auslenkung bzw. Steuerwinkel des 3. Ruderblattes
δ 4
Auslenkung bzw. Steuerwinkel des 4. Ruderblattes
For practical reasons, the steering is also carried out with an X rudder by specifying an effect corresponding to a virtual rudder and virtual rudder, with the rudder and braking rudder also being specified. The conversion between these specified values and the angles to be set on the rudder blades results in: δ r δ s δ p δ u = 1 4 - 1 1 1 - 1 1 1 1 1 - 1 1 - 1 1 1 1 - 1 - 1 δ 1 δ 2 δ 3 δ 4
Figure imgb0001
With:
δ r
Deflection or steering angle of the virtual rudder
δ s
Deflection or steering angle of the virtual rudder
δ p
Deflection or steering angle of the virtual roll rudder
δ u
Deflection or steering angle of the virtual brake rudder
δ 1
Deflection or steering angle of the 1st rudder blade
δ 2
Deflection or steering angle of the 2nd rudder blade
δ 3
Deflection or steering angle of the 3rd rudder blade
δ 4
Deflection or steering angle of the 4th rudder blade

Positive Werte für δ 1, δ 2, δ 3 und δ 4 sowie δs gehen nach unten, positive Werte für δr gehen nach backbord.Positive values for δ 1 , δ 2 , δ 3 and δ 4 and δ s go down, positive values for δ r go to port.

δ 1, δ 2, δ 3 und δ 4 sind die Steuerwinkel. δ 1 , δ 2 , δ 3 and δ 4 are the control angles.

Bei Vorgabe des Seitenruders und des Tiefenruders ergeben sich die Auslenkungen der Ruderblätter durch Auflösen von Formel 1 entsprechend: δ 1 δ 2 δ 3 δ 4 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 δ r δ s δ p δ u

Figure imgb0002
If the rudder and the rudder are specified, the deflections of the rudder blades result from the dissolution of Formula 1 accordingly: δ 1 δ 2 δ 3 δ 4 = - 1 1 - 1 1 1 1 1 1 1 1 - 1 - 1 - 1 1 1 - 1 δ r δ s δ p δ u
Figure imgb0002

Als 0° Auslenkung wird die Mittelstellung des Ruders betrachtet. Befinden sich alle Ruder in Mittelstellung wirkt keine fahrtrichtungsändernde Kraft auf das Ruder.The central position of the rudder is considered as 0 ° deflection. If all the rudders are in the middle position, there is no force changing the direction of travel on the rudder.

Aufgrund des vergleichsweise komplexen Aufbaus des X-Ruders hat ein blockiertes Ruderblatt automatisch Auswirkung sowohl auf das virtuelle Seitenruder als auch auf das virtuelle Tiefenruder.Due to the comparatively complex structure of the X rudder, a blocked rudder blade automatically affects both the virtual rudder and the virtual deep rudder.

Aus der DE 10 2012 222 812 A1 ist ein Verfahren zur Regelung eines Zustand eines Fahrzeugs, insbesondere eines Unterwasserfahrzeugs bekannt.From the DE 10 2012 222 812 A1 a method for controlling a state of a vehicle, in particular an underwater vehicle, is known.

Aus der JP 2016-88 348 A ist ein Controller für eine Ruderanlage für ein X-Ruder bekannt.From the JP 2016-88 348 A a controller for a rudder system for an X rudder is known.

Aus Albert S.-F Cheng et al: "fin failure compensation for an unmanned underwater vehicle" Proceedings of the 11th international symposium on unmanned untethered submersible technology, 25.08.1999 (1999-08-25), Seiten 342-351, XP55402802 ist ein Verfahren zur Kompensation eines blockierten Ruders mittels Gleitmodus bekannt.Out Albert S.-F Cheng et al: "fin failure compensation for an unmanned underwater vehicle" Proceedings of the 11th international symposium on unmanned untethered submersible technology, August 25, 1999 (1999-08-25), pages 342-351, XP55402802 a method for compensating a blocked rudder by means of sliding mode is known.

Aufgabe der Erfindung ist es, ein Verfahren zur Verfügung zu stellen, welches die Manövrierfähigkeit des Unterseeboots auch mit einem blockierten Ruderblatt ermöglicht.The object of the invention is to provide a method which enables the maneuverability of the submarine even with a blocked rudder blade.

Gelöst wird diese Aufgabe durch das Verfahren mit den in Anspruch 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen, der nachfolgenden Beschreibung sowie den Zeichnungen.This object is achieved by the method with the features specified in claim 1. Advantageous further developments result from the subclaims, the following description and the drawings.

Das erfindungsgemäße Verfahren zur Kompensation der Blockade eines Ruderblattes in einem X-Ruder weist die folgenden Schritte auf:

  • a) Prüfen, ob ein Ruderblatt blockiert ist,
  • b) Feststellen, welches Ruderblatt blockiert ist,
  • c) Feststellen in welchem Winkel das blockierte Ruderblatt blockiert ist,
  • d) Kompensieren der Steuerwinkel für die verbleibenden drei Ruderblätter,
  • m) Ansteuern der Ruderblätter.
The method according to the invention for compensating the blockage of a rudder blade in an X rudder has the following steps:
  • a) Check whether a rudder blade is blocked,
  • b) determining which rudder blade is blocked,
  • c) determining the angle at which the blocked rudder blade is blocked,
  • d) compensating the steering angles for the remaining three rudder blades,
  • m) control of the rudder blades.

Vorteil des Verfahrens ist es, dass das Unterseeboot auch nach Beschädigung noch manövrierfähig bleibt. Durch das Verfahren werden unkontrollierte Lage- und Richtungsänderungen vermieden. Kommt es während eines Gefechtseinsatzes oder bei einer Aufklärungsfahrt zu einem blockierten Ruderblatt kann insbesondere ein Auftauchen des Unterseebootes vermieden werden, was die Position und Anwesenheit des Unterseeboots verraten würde.The advantage of the method is that the submarine remains maneuverable even after damage. The process avoids uncontrolled changes in position and direction. If a blocked rudder blade occurs during a combat mission or during a reconnaissance trip, the submarine can in particular be prevented from appearing, which would reveal the position and presence of the submarine.

Ist ein Ruderblatt blockiert, so ist die Auslenkung durch die blockierte Stellung vorgegeben und kann nicht mehr variiert werden. Es ergibt sich somit mit einem vorgegebenem virtuellen Seitenruder und einem vorgegebenem virtuellen Tiefenruder aus Formel 2: δ 1 , jam δ 2 δ 3 δ 4 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 δ r , com δ s , com δ p δ u

Figure imgb0003
mit:

δ 1,jam
Auslenkung des blockierten 1. Ruderblattes
δ 2,jam
Auslenkung des blockierten 2. Ruderblattes
δ 3,jam
Auslenkung des blockierten 3. Ruderblattes
δ 4,jam
Auslenkung des blockierten 4. Ruderblattes
δr,com
Auslenkung des Seitenruders, vorgegeben
δs,com
Auslenkung des Tiefenruders, vorgegeben
If a rudder blade is blocked, the deflection is predetermined by the blocked position and can no longer be varied. With a predefined virtual rudder and a predefined virtual rudder, this results from formula 2: δ 1 . yam δ 2 δ 3 δ 4 = - 1 1 - 1 1 1 1 1 1 1 1 - 1 - 1 - 1 1 1 - 1 δ r . com δ s . com δ p δ u
Figure imgb0003
With:
δ 1, jam
Deflection of the blocked 1st rudder blade
δ 2, jam
Deflection of the blocked 2nd rudder blade
δ 3, jam
Deflection of the blocked 3rd rudder blade
δ 4, jam
Deflection of the blocked 4th rudder blade
δ r, com
Deflection of the rudder, predetermined
δ s, com
Deflection of the rudder, predetermined

Da das Rollen eines Unterseeboots eine sehr ungünstige Bedingung ist, wird das Rollruder zunächst in der Neutrallage festgehalten: δ p = δ p , neut = 0 °

Figure imgb0004
Since the rolling of a submarine is a very unfavorable condition, the rudder is first held in the neutral position: δ p = δ p . new = 0 °
Figure imgb0004

Somit ist die Kompensation in Schritt d) gegeben als:

  • Für blockiertes 1. Ruderblatt: δ 2 δ 3 δ 4 δ u = 1 2 0 2 1 0 2 2 1 2 2 0 1 1 1 1 δ 1 , jam δ r , com δ s , com δ p , neut
    Figure imgb0005
  • Für blockiertes 2. Ruderblatt: δ 1 δ 4 δ 3 δ u = 1 2 0 2 1 0 2 2 1 2 2 0 1 1 1 1 δ 2 , jam δ r , com δ s , com δ p , neut
    Figure imgb0006
  • Für blockiertes 3. Ruderblatt: δ 4 δ 1 δ 2 δ u = 1 2 0 2 1 0 2 2 1 2 2 0 1 1 1 1 δ 3 , jam δ r , com δ s , com δ p , neut
    Figure imgb0007
  • Für blockiertes 4. Ruderblatt: δ 3 δ 2 δ 1 δ u = 1 2 0 2 1 0 2 2 1 2 2 0 1 1 1 1 δ 4 , jam δ r , com δ s , com δ p , neut
    Figure imgb0008
The compensation in step d) is thus given as:
  • For blocked 1st rudder blade: δ 2 δ 3 δ 4 δ u = 1 2 0 2 - 1 0 2 - 2 - 1 - 2 2 0 1 1 - 1 1 δ 1 . yam δ r . com δ s . com δ p . new
    Figure imgb0005
  • For blocked 2nd rudder blade: δ 1 δ 4 δ 3 δ u = 1 - 2 0 - 2 - 1 0 2 2 - 1 2 2 0 1 - 1 - 1 - 1 δ 2 . yam δ r . com δ s . com δ p . new
    Figure imgb0006
  • For blocked 3rd rudder blade: δ 4 δ 1 δ 2 δ u = 1 - 2 0 2 - 1 0 2 - 2 - 1 2 2 0 - 1 1 1 - 1 δ 3 . yam δ r . com δ s . com δ p . new
    Figure imgb0007
  • For blocked 4th rudder blade: δ 3 δ 2 δ 1 δ u = 1 2 0 - 2 - 1 0 2 2 - 1 - 2 2 0 - 1 - 1 1 1 δ 4 . yam δ r . com δ s . com δ p . new
    Figure imgb0008

In allen Fällen wird das Bremsruder als Variable frei gegeben, es wird also die Bremswirkung durch das Ruder in Kauf genommen, um die Steuerfähigkeit des Bootes aufrecht zu erhalten. Dieses bedeutet die geringste Veränderung des Steuerverhaltens des Unterseebootes.In all cases the brake rudder is released as a variable, so the braking effect by the rudder is accepted in order to maintain the steerability of the boat. This means the slightest change in the steering behavior of the submarine.

Es kann bei der Kompensation jedoch auftreten, dass die maximal mögliche Auslenkung eines Ruderblattes überschritten wird. Um dieses Problem zu lösen, werden erfindungsgemäß nach Schritt d) folgende Schritte ausgeführt:

  • e) Prüfen, ob einer der kompensierenden Steuerwinkel größer als der maximal zulässige Steuerwinkel ist,
  • f) Wenn e) positiv, dann Feststellen welcher kompensierenden Steuerwinkel die größte Auslenkung aufweist,
  • g) Skalieren der kompensierenden Steuerwinkel,
  • m) Wenn e) negativ oder nach g) Ansteuern der Ruderblätter.
However, with compensation it can occur that the maximum possible deflection of a rudder blade is exceeded. To solve this problem, the following steps are carried out according to the invention after step d):
  • e) check whether one of the compensating steering angles is greater than the maximum permissible steering angle,
  • f) If e) positive, then determine which compensating steering angle has the greatest deflection,
  • g) scaling the compensating steering angles,
  • m) If e) negative or after g) control of the rudder blades.

Hierbei ist der maximal zulässige Steuerwinkel nicht nur abhängig von der Bauart. Beispielsweise kann ein Ruderblatt im Bereich von -45° bis 45° bewegbar sein. Zusätzlich ist der maximal zulässige Steuerwinkel auch von der Geschwindigkeit des Unterseebootes abhängig. Während bei Stillstand (0 kn) eine Auslenkung im vorgenannten Fall von -45° bis 45° möglich ist, kann aufgrund des Wasserdrucks, der durch die Strömung auf das Ruderblatt wirkt, bei schneller Fahrt, beispielsweise 20 kn, die Auslenkung beispielsweise auf - 30° bis 30° beschränkt sein, da das Drehmoment der Rudermaschine und somit die maximal zur Verfügung stehende Kraft begrenzt ist.The maximum permitted steering angle is not only dependent on the type. For example, a rudder blade can be moved in the range from -45 ° to 45 °. In addition, the maximum permitted steering angle also depends on the speed of the submarine. While at a standstill (0 kn) a deflection of -45 ° to 45 ° is possible in the aforementioned case, due to the water pressure that acts on the rudder blade due to the flow, the deflection can increase to e.g. ° be limited to 30 °, since the torque of the rowing machine and thus the maximum available force is limited.

Die Skalierung ändert zwar quantitativ das Steuerverhalten, qualitativ bleiben die Eigenschaften jedoch erhalten. Besonders bevorzugt bleibt das Verhältnis von Tiefenruder zu Seitenruder konstant. Beispielsweise kann das Unterseeboot auch nach der Skalierung eine definierte Kurve, zum Beispiel nach Steuerbord, fahren, ohne dass es zu einer erheblichen Veränderung der Tauchtiefe kommt, es wird lediglich der Kurvenradius bei extremen Manövern vergrößert. So bleibt das Steuerverhalten auch unter diesen Bedingungen für die Besatzung vorhersagbar. Eine Verringerung der Genauigkeit der Beibehaltung der Tiefe muss gegeben falls in Kauf genommen werden.The scaling changes the control behavior quantitatively, but the properties are retained qualitatively. The ratio of deep rudder to rudder particularly preferably remains constant. For example, the submarine can also have a defined curve after scaling, For example, to starboard, without a significant change in diving depth, only the radius of the curve is increased during extreme maneuvers. The tax behavior remains predictable for the crew even under these conditions. A reduction in the accuracy of maintaining depth must be made if accepted.

Die Skalierung erfolgt derart, dass der Steuerwinkel des Ruderblattes, welcher die höchste Auslenkung aufweist, auf den maximalen Wert gesetzt wird und die verbleibenden Auslenkungen der verbleibenden beiden Ruderblätter entsprechend skaliert werden.The scaling is carried out in such a way that the steering angle of the rudder blade, which has the highest deflection, is set to the maximum value and the remaining deflections of the remaining two rudder blades are scaled accordingly.

Der Index sc beim Steuerwinkel δn,sc mit n ausgewählt aus der Gruppe 1, 2, 3 oder 4 bedeutet, dass der Steuerwinkel des Ruders n auf den maximalen Wert skaliert ist.The index sc at the steering angle δ n, sc with n selected from group 1, 2, 3 or 4 means that the steering angle of the rudder n is scaled to the maximum value.

Es wird a definiert zu δ r , com = a δ s , com

Figure imgb0009
It is defined as a δ r . com = a δ s . com
Figure imgb0009

Ist nun das 1. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 2. Ruderblattes aus Formel 5 und Formel 9: δ r , com , sc = 1 2 δ 2 , sc δ 1 , jam

Figure imgb0010
δ s , com , sc = 1 2 a δ 2 , sc δ 1 , jam
Figure imgb0011
If the 1st rudder blade is now blocked, the maximum deflection of the 2nd rudder blade results from Formula 5 and Formula 9: δ r . com . sc = 1 2 δ 2 . sc - δ 1 . yam
Figure imgb0010
δ s . com . sc = 1 2 a δ 2 . sc - δ 1 . yam
Figure imgb0011

Ist nun das 1. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 3. Ruderblattes aus Formel 5 und Formel 9: δ s , com , sc = 1 2 δ 3 , sc + δ 1 , jam

Figure imgb0012
δ r , com , sc = 1 2 a δ 3 , sc + δ 1 , jam
Figure imgb0013
If the 1st rudder blade is now blocked, the maximum deflection of the 3rd rudder blade results from Formula 5 and Formula 9: δ s . com . sc = 1 2 δ 3 . sc + δ 1 . yam
Figure imgb0012
δ r . com . sc = 1 2 a δ 3 . sc + δ 1 . yam
Figure imgb0013

Ist nun das 1. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 4. Ruderblattes aus Formel 5 und Formel 9: δ s , com , sc = δ 4 , sc + δ 1 , jam 2 1 a

Figure imgb0014
δ r , com , sc = a δ 4 , sc + δ 1 , jam 2 1 a
Figure imgb0015
If the 1st rudder blade is now blocked, the maximum deflection of the 4th rudder blade results from Formula 5 and Formula 9: δ s . com . sc = δ 4 . sc + δ 1 . yam 2 1 - a
Figure imgb0014
δ r . com . sc = a δ 4 . sc + δ 1 . yam 2 1 - a
Figure imgb0015

Ist nun das 2. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 1. Ruderblattes aus Formel 6 und Formel 9: δ r , com , sc = 1 2 δ 2 , jam δ 1 , sc

Figure imgb0016
δ s , com , sc = 1 2 a δ 2 , jam δ 1 , sc
Figure imgb0017
If the 2nd rudder blade is now blocked, the maximum deflection of the 1st rudder blade results from Formula 6 and Formula 9: δ r . com . sc = 1 2 δ 2 . yam - δ 1 . sc
Figure imgb0016
δ s . com . sc = 1 2 a δ 2 . yam - δ 1 . sc
Figure imgb0017

Ist nun das 2. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 3. Ruderblattes aus Formel 6 und Formel 9: δ s , com , sc = δ 2 , jam + δ 3 , sc 2 1 + a

Figure imgb0018
δ r , com , sc = a δ 2 , jam + δ 3 , sc 2 1 + a
Figure imgb0019
If the 2nd rudder blade is now blocked, the maximum deflection of the 3rd rudder blade results from Formula 6 and Formula 9: δ s . com . sc = δ 2 . yam + δ 3 . sc 2 1 + a
Figure imgb0018
δ r . com . sc = a δ 2 . yam + δ 3 . sc 2 1 + a
Figure imgb0019

Ist nun das 2. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 4. Ruderblattes aus Formel 6 und Formel 9: δ s , com , sc = 1 2 δ 2 , jam + δ 4 , sc

Figure imgb0020
δ r , com , sc = 1 2 a δ 2 , jam + δ 4 , sc
Figure imgb0021
If the 2nd rudder blade is now blocked, the maximum deflection of the 4th rudder blade results from Formula 6 and Formula 9: δ s . com . sc = 1 2 δ 2 . yam + δ 4 . sc
Figure imgb0020
δ r . com . sc = 1 2 a δ 2 . yam + δ 4 . sc
Figure imgb0021

Ist nun das 3. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 1. Ruderblattes aus Formel 7 und Formel 9: δ s , com , sc = 1 2 δ 3 , jam + δ 1 , sc

Figure imgb0022
δ r , com , sc = 1 2 a δ 3 , jam + δ 1 , sc
Figure imgb0023
If the 3rd rudder blade is now blocked, the maximum deflection of the 1st rudder blade results from Formula 7 and Formula 9: δ s . com . sc = 1 2 δ 3 . yam + δ 1 . sc
Figure imgb0022
δ r . com . sc = 1 2 a δ 3 . yam + δ 1 . sc
Figure imgb0023

Ist nun das 3. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 2. Ruderblattes aus Formel 7 und Formel 9: δ s , com , sc = δ 2 , sc + δ 3 , jam 2 1 + a

Figure imgb0024
δ r , com , sc = a δ 2 , sc + δ 3 , jam 2 1 + a
Figure imgb0025
If the 3rd rudder blade is now blocked, the maximum deflection of the 2nd rudder blade results from Formula 7 and Formula 9: δ s . com . sc = δ 2 . sc + δ 3 . yam 2 1 + a
Figure imgb0024
δ r . com . sc = a δ 2 . sc + δ 3 . yam 2 1 + a
Figure imgb0025

Ist nun das 3. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 4. Ruderblattes aus Formel 7 und Formel 9: δ r , com , sc = 1 2 δ 3 , jam δ 4 , sc

Figure imgb0026
δ s , com , sc = 1 2 a δ 3 , jam δ 4 , sc
Figure imgb0027
If the 3rd rudder blade is now blocked, the maximum deflection of the 4th rudder blade results from Formula 7 and Formula 9: δ r . com . sc = 1 2 δ 3 . yam - δ 4 . sc
Figure imgb0026
δ s . com . sc = 1 2 a δ 3 . yam - δ 4 . sc
Figure imgb0027

Ist nun das 4. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 1. Ruderblattes aus Formel 8 und Formel 9: δ s , com , sc = δ 1 , sc + δ 4 , jam 2 1 a

Figure imgb0028
δ r , com , sc = a δ 1 , sc + δ 4 , jam 2 1 a
Figure imgb0029
If the 4th rudder blade is now blocked, the maximum deflection of the 1st rudder blade results from Formula 8 and Formula 9: δ s . com . sc = δ 1 . sc + δ 4 . yam 2 1 - a
Figure imgb0028
δ r . com . sc = a δ 1 . sc + δ 4 . yam 2 1 - a
Figure imgb0029

Ist nun das 4. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 2. Ruderblattes aus Formel 8 und Formel 9: δ s , com , sc = 1 2 δ 2 , sc + δ 4 , jam

Figure imgb0030
δ r , com , sc = 1 2 a δ 2 , sc + δ 4 , jam
Figure imgb0031
If the 4th rudder blade is blocked, the maximum deflection of the 2nd rudder blade results from Formula 8 and Formula 9: δ s . com . sc = 1 2 δ 2 . sc + δ 4 . yam
Figure imgb0030
δ r . com . sc = 1 2 a δ 2 . sc + δ 4 . yam
Figure imgb0031

Ist nun das 4. Ruderblatt blockiert, so ergibt sich bei maximaler Auslenkung des 3. Ruderblattes aus Formel 8 und Formel 9: δ r , com , sc = 1 2 δ 3 , sc δ 4 , jam

Figure imgb0032
δ s , com , sc = 1 2 a δ 3 , sc δ 4 , jam
Figure imgb0033
If the 4th rudder blade is now blocked, the maximum deflection of the 3rd rudder blade results from Formula 8 and Formula 9: δ r . com . sc = 1 2 δ 3 . sc - δ 4 . yam
Figure imgb0032
δ s . com . sc = 1 2 a δ 3 . sc - δ 4 . yam
Figure imgb0033

Mit den skalierten virtuellen Auslenkungen δr,com,sc und δs,com,sc aus den Formeln 10 bis 37 und den Formeln 5 bis 8 ergeben sich die Steuerwinkel zu:

  • Für blockiertes 1. Ruderblatt ergibt sich: δ 2 δ 3 δ 4 δ u = 1 2 0 2 1 0 2 2 1 2 2 0 1 1 1 1 δ 1 , jam δ r , com , sc δ s , com , sc δ p , neut
    Figure imgb0034
  • Für blockiertes 2. Ruderblatt ergibt sich: δ 1 δ 4 δ 3 δ u = 1 2 0 2 1 0 2 2 1 2 2 0 1 1 1 1 δ 2 , jam δ r , com , sc δ s , com , sc δ p , neut
    Figure imgb0035
  • Für blockiertes 3. Ruderblatt ergibt sich: δ 4 δ 1 δ 2 δ u = 1 2 0 2 1 0 2 2 1 2 2 0 1 1 1 1 δ 3 , jam δ r , com , sc δ s , com , sc δ p , neut
    Figure imgb0036
  • Für blockiertes 4. Ruderblatt ergibt sich: δ 3 δ 2 δ 1 δ u = 1 2 0 2 1 0 2 2 1 2 2 0 1 1 1 1 δ 4 , jam δ r , com , sc δ s , com , sc δ p , neut
    Figure imgb0037
With the scaled virtual deflections δ r, com, sc and δ s, com, sc from formulas 10 to 37 and formulas 5 to 8, the control angles are:
  • For blocked 1st rudder blade the following results: δ 2 δ 3 δ 4 δ u = 1 2 0 2 - 1 0 2 - 2 - 1 - 2 2 0 1 1 - 1 1 δ 1 . yam δ r . com . sc δ s . com . sc δ p . new
    Figure imgb0034
  • For blocked 2nd rudder blade the following results: δ 1 δ 4 δ 3 δ u = 1 - 2 0 - 2 - 1 0 2 2 - 1 2 2 0 1 - 1 - 1 - 1 δ 2 . yam δ r . com . sc δ s . com . sc δ p . new
    Figure imgb0035
  • For blocked 3rd rudder blade the following results: δ 4 δ 1 δ 2 δ u = 1 - 2 0 2 - 1 0 2 - 2 - 1 2 2 0 - 1 1 1 - 1 δ 3 . yam δ r . com . sc δ s . com . sc δ p . new
    Figure imgb0036
  • For blocked 4th rudder blade the following results: δ 3 δ 2 δ 1 δ u = 1 2 0 - 2 - 1 0 2 2 - 1 - 2 2 0 - 1 - 1 1 1 δ 4 . yam δ r . com . sc δ s . com . sc δ p . new
    Figure imgb0037

Leider ist es auch damit nicht möglich, alle Richtung anzusteuern, wenn ein Ruder in der Maximalstellung, beispielsweise ±45° blockiert ist. Um in solchen Fällen dennoch die Manövrierfähigkeit zu verbessern, kann es notwendig sein, das Rollruder freizugeben und eine Drehung um die Längsachse zuzulassen. Daher werden erfindungsgemäß die folgenden Schritte ausgeführt:

  • h) Prüfen, ob der Betrag des vorgegebenen Tiefenruder größer gleich 1° ist und der Betrag des skalierten Tiefenruders kleiner 1° ist,
  • i) Wenn h) negativ, dann Durchführung einer Anpassung mit skaliertem Seitenruder und skaliertem Tiefenruder gemäß Schritt g) und mit Schritt m) weiterführen,
  • j) Wenn h) positiv, dann erneutes Skalieren unter Berücksichtigung des Rollruders,
  • k) Ermitteln des erneut skalierten Seitenruders, des erneut skalierten Tiefenruders und des erneut skalierten Rollruders,
  • l) dann Durchführung einer Anpassung mit erneut skaliertem Seitenruder, erneut skaliertem Tiefenruder und erneut skaliertem Rollruder,
  • m) Wenn e) negativ oder nach i) oder nach l) Ansteuern der Ruderblätter.
Unfortunately, it is also not possible to control all directions if a rudder is blocked in the maximum position, for example ± 45 °. In order to improve maneuverability in such cases, it may be necessary to release the wheel rudder and allow rotation about the longitudinal axis. The following steps are therefore carried out according to the invention:
  • h) Check whether the amount of the specified deep rudder is greater than or equal to 1 ° and the amount of the scaled deep rudder is less than 1 °,
  • i) If h) negative, then carry out an adjustment with scaled rudder and scaled rudder according to step g) and with step m),
  • j) If h) positive, then rescaling taking into account the roll rudder,
  • k) determining the rescaled rudder, the rescaled rudder and the rescaled roll rudder,
  • l) then carrying out an adaptation with a rescaled rudder, a rescaled rudder and a rescaled roll rudder,
  • m) If e) negative or after i) or after l) control of the rudder blades.

Da in diesem Fall nicht mehr Tiefe und Kurs gehalten werden können, wird die Priorität auf die Tauchtiefe und somit auf das Tiefenruder gelegt. Dieses ist bevorzugt, da sowohl ein Unterschreiten der maximalen Tauchtiefe als auch ein Auftauchen eine große Gefahr für das Unterseeboot darstellen kann.Since depth and course can no longer be maintained in this case, priority is given to the depth of the dive and thus to the rudder. This is preferred because both falling below the maximum diving depth and surfacing can pose a great danger to the submarine.

Im Folgenden bezeichnen δr,ord das erneut skalierte Seitenruder und δp,ord das erneut skalierte Rollruder, wobei es sich hierbei nicht um vollständig korrekt skalierte Werte handelt. Die Werte werden derart bestimmt, dass δs,com erreicht werden kann. δr,com kann hingegen nicht mehr eingehalten werden, da δ p als weiterer Freiheitsgrad freigegeben ist. Die Variation wird hierbei so gewählt, dass δr,ord minimal ist.

  • Für blockiertes 1. Ruderblatt ergibt sich: δ r , ord = 1 2 δ 1 , jam δ 4 + 2 δ s , com
    Figure imgb0038
    δ p , ord = 1 2 δ 2 δ 1 , jam 2 δ r , ord , wenn δ 1 , jam 2 δ r , ord > 45 °
    Figure imgb0039
    δ p , ord = 1 2 δ 3 δ 1 , jam + 2 δ s , com , wenn δ 1 , jam + 2 δ s , com > 45 °
    Figure imgb0040
  • Für blockiertes 2. Ruderblatt ergibt sich: δ r , ord = 1 2 δ 2 , jam + δ 3 2 δ s , com
    Figure imgb0041
    δ p , ord = 1 2 δ 1 + δ 2 , jam 2 δ r , ord , wenn δ 2 , jam 2 δ r , ord > 45 °
    Figure imgb0042
    δ p , ord = 1 2 δ 4 + δ 2 , jam 2 δ s , com , wenn δ 2 , jam 2 δ s , com > 45 °
    Figure imgb0043
  • Für blockiertes 3. Ruderblatt ergibt sich: δ r , ord = 1 2 δ 3 , jam + δ 2 2 δ s , com
    Figure imgb0044
    δ p , ord = 1 2 δ 4 δ 3 , jam + 2 δ r , ord , wenn δ 3 , jam + 2 δ r , ord > 45 °
    Figure imgb0045
    δ p , ord = 1 2 δ 1 δ 3 , jam + 2 δ s , com , wenn δ 3 , jam + 2 δ s , com > 45 °
    Figure imgb0046
  • Für blockiertes 4. Ruderblatt ergibt sich: δ r , ord = 1 2 δ 4 , jam δ 1 + 2 δ s , com
    Figure imgb0047
    δ p , ord = 1 2 δ 3 δ 4 , jam + 2 δ r , ord , wenn δ 4 , jam + 2 δ r , ord > 45 °
    Figure imgb0048
    δ p , ord = 1 2 δ 2 + δ 4 , jam 2 δ s , sc , wenn δ 4 , jam 2 δ s , com > 45 °
    Figure imgb0049
In the following, δ r, order the re-scaled rudder and δ p, order the re-scaled roll rudder, which are not completely correctly scaled values. The values are determined in such a way that δ s, com can be achieved. δ r, com , however, can no longer be complied with, since δ p is released as a further degree of freedom. The variation is chosen so that δ r, ord is minimal.
  • For blocked 1st rudder blade the following results: δ r . ord = 1 2 - δ 1 . yam - δ 4 + 2 δ s . com
    Figure imgb0038
    δ p . ord = 1 2 δ 2 - δ 1 . yam - 2 δ r . ord . if δ 1 . yam - 2 δ r . ord > 45 °
    Figure imgb0039
    δ p . ord = 1 2 - δ 3 - δ 1 . yam + 2 δ s . com . if δ 1 . yam + 2 δ s . com > 45 °
    Figure imgb0040
  • For blocked 2nd rudder blade the following results: δ r . ord = 1 2 δ 2 . yam + δ 3 - 2 δ s . com
    Figure imgb0041
    δ p . ord = 1 2 - δ 1 + δ 2 . yam - 2 δ r . ord . if δ 2 . yam - 2 δ r . ord > 45 °
    Figure imgb0042
    δ p . ord = 1 2 δ 4 + δ 2 . yam - 2 δ s . com . if δ 2 . yam - 2 δ s . com > 45 °
    Figure imgb0043
  • For blocked 3rd rudder blade the following results: δ r . ord = 1 2 δ 3 . yam + δ 2 - 2 δ s . com
    Figure imgb0044
    δ p . ord = 1 2 δ 4 - δ 3 . yam + 2 δ r . ord . if δ 3 . yam + 2 δ r . ord > 45 °
    Figure imgb0045
    δ p . ord = 1 2 - δ 1 - δ 3 . yam + 2 δ s . com . if δ 3 . yam + 2 δ s . com > 45 °
    Figure imgb0046
  • For blocked 4th rudder blade the following results: δ r . ord = 1 2 - δ 4 . yam - δ 1 + 2 δ s . com
    Figure imgb0047
    δ p . ord = 1 2 - δ 3 - δ 4 . yam + 2 δ r . ord . if δ 4 . yam + 2 δ r . ord > 45 °
    Figure imgb0048
    δ p . ord = 1 2 δ 2 + δ 4 . yam - 2 δ s . sc . if δ 4 . yam - 2 δ s . com > 45 °
    Figure imgb0049

In einem alternativen Verfahren wird die Priorität auf den Kurs gelegt, die Tauchtiefe wird variiert. In diesem alternativen Verfahren werden die folgenden Schritte ausgeführt:

  • h') Prüfen, ob der Betrag des vorgegebenen Seitenruders größer gleich 1° ist und der Betrag des skalierten Seitenruders kleiner 1° ist,
  • i') Wenn h') negativ, dann Durchführung einer Anpassung mit skaliertem Seitenruder und skaliertem Tiefenruder,
  • j') Wenn h') positiv, dann erneutes Skalieren unter Berücksichtigung des Rollruders,
  • k') Ermitteln des erneut skalierten Tiefenruders, des erneut skalierten Seitenruders und des erneut skalierten Rollruders,
  • l') dann Durchführung einer Anpassung mit erneut skaliertem Tiefenruder, erneut skaliertem Seitenruder und erneut skaliertem Rollruder,
  • m) Wenn e) negativ oder nach i') oder nach l') Ansteuern der Ruderblätter.
In an alternative procedure, the priority is placed on the course, the diving depth is varied. In this alternative procedure, the following steps are performed:
  • h ') check whether the amount of the specified rudder is greater than or equal to 1 ° and the amount of the scaled rudder is less than 1 °,
  • i ') If h') negative, then make an adjustment with scaled rudder and scaled rudder,
  • j ') If h') positive, then rescaling taking the roll rudder into account,
  • k ') determining the rescaled rudder, the rescaled rudder and the rescaled roll rudder,
  • l ') then performing an adjustment with a rescaled depth rudder, a rescaled rudder and a rescaled rudder,
  • m) If e) negative or after i ') or after l') control of the rudder blades.

In diesem Fall erfolgt die Berechnung analog zur vorherigen Methode, als die Priorität auf die Tauchtiefe und somit auf das Tiefenruder gelegt wurde.In this case, the calculation is carried out in the same way as the previous method, with priority given to the depth and thus to the rudder.

Nachfolgend ist das erfindungsgemäße Verfahren anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert.

  • Fig. 1 Ablaufdiagramm
  • Fig. 2 Ruderanordnung
The method according to the invention is explained in more detail below on the basis of an exemplary embodiment shown in the drawing.
  • Fig. 1 Flow chart
  • Fig. 2 Rudder arrangement

In Fig. 1 ist ein Ablaufdiagramm für die Ansteuerung von Ruderblättern eines X-Ruders gezeigt.In Fig. 1 a flow chart for the control of rudder blades of an X rudder is shown.

In Schritt A wird der Wert für das Seitenruder δr,com und der Wert für das Tiefenruder δs,com vorgegeben.In step A, the value for the rudder δ r, com and the value for the rudder δ s, com are specified.

In Schritt B werden die Werte in die Steuerwinkel δi der vier Ruderblätter entsprechend Formel 2 umgerechnet.In step B, the values are converted into the steering angles δ i of the four rudder blades according to formula 2.

In Schritt C wird geprüft, ob ein Ruderblatt blockiert ist. Ist kein Ruderblatt blockiert, wird mit Schritt N fortgefahren, ist ein Ruderblatt blockiert, so wird mit Schritt D fortgefahren.In step C it is checked whether a rudder blade is blocked. If no rudder blade is blocked, the process continues with step N; if a rudder blade is blocked, the process continues with step D.

In Schritt N wird geprüft, ob einer der Steuerwinkel δi der vier Ruderblätter größer als der maximale Steuerwinkel ist. Ist dieses der Fall, so wird mit Schritt 0 fortgefahren, ist dieses nicht der Fall, so wird mit Schritt K fortgefahren.In step N it is checked whether one of the steering angles δ i of the four rudder blades is larger than the maximum steering angle. If this is the case, the process continues with step 0; if this is not the case, the process continues with step K.

In Schritt 0 werden die Steuerwinkel δi der vier Ruderblätter so skaliert, dass der höchste Wert der Steuerwinkel δi der vier Ruderblätter den Wert des maximalen Steuerwinkel annimmt. Anschließend wird mit Schritt K fortgefahren.In step 0, the steering angles δ i of the four rudder blades are scaled such that the highest value of the steering angles δ i of the four rudder blades assumes the value of the maximum steering angle. The process then continues with step K.

In Schritt D wird geprüft, welches Ruderblatt blockiert ist und in welchem Winkel δi das blockierte Ruderblatt blockiert ist.In step D it is checked which rudder blade is blocked and at what angle δ i the blocked rudder blade is blocked.

In Schritt E werden die Steuerwinkel für die verbleibenden drei Ruderblätter berechnet, um das blockierte Ruderblatt zu kompensieren. Die Berechnung erfolgt entsprechend der Formeln 5 bis 8.In step E, the steering angles for the remaining three rudder blades are calculated to compensate for the blocked rudder blade. The calculation is carried out according to formulas 5 to 8.

In Schritt F wird geprüft, ob einer der Steuerwinkel δi der vier Ruderblätter größer als der maximale Steuerwinkel ist. Ist dieses der Fall, so wird mit Schritt G fortgefahren, ist dieses nicht der Fall, so wird mit Schritt K fortgefahren.In step F it is checked whether one of the steering angles δ i of the four rudder blades is larger than the maximum steering angle. If this is the case, proceed to step G; if this is not the case, proceed to step K.

In Schritt G wird ermittelt, welches Ruderblatt den größten kompensierenden Steuerwinkel aufweist.In step G, it is determined which rudder blade has the largest compensating steering angle.

In Schritt H werden die Steuerwinkel skaliert, um den größten kompensierenden Steuerwinkel auf den maximalen Steuerwinkel zu reduzieren. Die Skalierung erfolgt mittels der Formeln 10 bis 33.In step H, the control angles are scaled in order to reduce the largest compensating control angle to the maximum control angle. Scaling is done using formulas 10 to 33.

In Schritt I wird geprüft, ob der Betrag des vorgegebenen Tiefenruders größer gleich 1 ist und ob der Betrag des skalierten Tiefenruders kleiner 1 ist. Ist dieses der Fall, so wird mit Schritt L fortgefahren, ist dieses nicht der Fall, dann wird mit Schritt J fortgefahren.In step I it is checked whether the amount of the predefined rudder is greater than or equal to 1 and whether the amount of the scaled rudder is less than 1. If this is the case, proceed to step L; if this is not the case, then proceed to step J.

In Schritt J werden die Einzelruderlagen für die in Schritt H skalierten Steuerwinkel berechnet. Die Berechnung erfolgt entsprechend der Formeln 34 bis 37.In step J, the individual rudder positions are calculated for the steering angles scaled in step H. The calculation is carried out according to formulas 34 to 37.

In Schritt L werden die Steuerwinkel mit variablem Rollruder mittels der Formeln 38 bis 49 berechnet.In step L, the steering angles with variable roll rudder are calculated using formulas 38 to 49.

In Schritt M werden die Einzelruderlagen für die skalierten Steuergrößen nach den Formeln 5 bis 8 bzw. nach den Formeln 34 bis 37 berechnet.In step M, the individual rudder positions for the scaled control variables are calculated according to formulas 5 to 8 or according to formulas 34 to 37.

In Schritt K werden die Ruderblätter angesteuert.In step K the rudder blades are activated.

In Fig. 2 sind die vier Ruderblätter sowie das virtuelle Seitenruder 50 und das virtuelle Tiefenruder 60 gezeigt, wobei hier in Fahrtrichtung von hinten auf das Unterseeboot gesehen wird.In Fig. 2 The four rudder blades as well as the virtual rudder 50 and the virtual deep rudder 60 are shown, with the submarine being viewed from behind in the direction of travel.

Zu sehen sind Ruderblatt 1 10, Ruderblatt 2 20, Ruderblatt 3 30 und Ruderblatt 4 40 sowie das virtuelle Seitenruder 50 und das virtuelle Tiefenruder 60.You can see rudder blade 1 10, rudder blade 2 20, rudder blade 3 30 and rudder blade 4 40 as well as the virtual rudder 50 and the virtual deep rudder 60.

Claims (1)

  1. Method for compensation of the blockage of a rudder blade in an X-shaped rudder of a submarine, wherein the method comprises the following steps:
    a) check whether a rudder blade is blocked,
    b) determine which rudder blade is blocked,
    c) determine the angle at which the blocked rudder blade is blocked,
    d) compensate the control angle for the remaining three rudder blades,
    m) actuate the rudder blades,
    wherein following step d) the following steps are carried out:
    e) check whether one of the compensating control angles is greater than the maximum permissible control angle,
    f) if e) is positive, then determine which compensating control angle has the largest deflection,
    g) scale the compensating control angle,
    m) if e) is negative or following g), actuate the rudder blades,
    wherein following step g), the following steps are carried out:
    h) check whether the magnitude of the specified stern plane is greater than or equal to 1° and the magnitude of the scaled stern plane is less than 1°,
    i) if h) is negative, then perform an adjustment with a scaled rudder and a scaled stern plane according to step g) and continue with step m),
    j) if h) is positive then re-scale, taking into account the roll rudder,
    k) determine the re-scaled rudder, the re-scaled stern plane and the re-scaled roll rudder,
    l) then perform an adjustment with the re-scaled rudder, re-scaled stern plane and re-scaled roll rudder,
    m) if e) is negative or following i) or following l), actuate the rudder blades.
EP17730735.2A 2016-06-10 2017-06-08 Method for compensating the blockage of a rudder blade in an x-shaped rudder Active EP3468864B8 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016006933.3A DE102016006933B3 (en) 2016-06-10 2016-06-10 Method for compensating the blockage of a rudder blade in an X-rudder
PCT/EP2017/064017 WO2017211982A1 (en) 2016-06-10 2017-06-08 Method for compensating the blockage of a rudder blade in an x-shaped rudder

Publications (3)

Publication Number Publication Date
EP3468864A1 EP3468864A1 (en) 2019-04-17
EP3468864B1 true EP3468864B1 (en) 2020-03-04
EP3468864B8 EP3468864B8 (en) 2020-04-15

Family

ID=59070636

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17730735.2A Active EP3468864B8 (en) 2016-06-10 2017-06-08 Method for compensating the blockage of a rudder blade in an x-shaped rudder

Country Status (5)

Country Link
EP (1) EP3468864B8 (en)
DE (1) DE102016006933B3 (en)
ES (1) ES2794823T3 (en)
SG (1) SG11201810781YA (en)
WO (1) WO2017211982A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113716003B (en) * 2021-09-27 2022-11-15 中国人民解放军海军工程大学 X-shaped rudder underwater vehicle and rudder clamp anti-sinking method thereof
DE102022207660A1 (en) 2022-07-26 2024-02-01 Thyssenkrupp Ag Redundant electric steering system for a submarine and its operation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2217878B (en) * 1988-04-23 1992-01-29 Ferranti Plc A system including an autopilot, with a simulator, for a fluid borne vehicle
EP2107333B1 (en) * 2008-04-03 2011-01-26 Whitehead Alenia Sistemi Subacquei S.p.A. Method and system for steering a body moving within a fluid
JP2013052745A (en) * 2011-09-02 2013-03-21 Kayseven Co Ltd Submersible vessel
DE102012222812A1 (en) * 2012-12-11 2014-06-12 Raytheon Anschütz Gmbh Method for controlling state of vehicle e.g. underwater vehicle, involves outputting valid result at current time value of control quantity to vehicle based on optimal control value sequence
JP6189186B2 (en) * 2013-07-12 2017-08-30 三菱重工業株式会社 Underwater vehicle, its control device and control method
JP6201217B2 (en) * 2014-11-06 2017-09-27 三菱重工業株式会社 Rudder control device, underwater vehicle and rudder control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2017211982A1 (en) 2017-12-14
DE102016006933B3 (en) 2017-11-16
ES2794823T3 (en) 2020-11-19
SG11201810781YA (en) 2019-01-30
EP3468864B8 (en) 2020-04-15
EP3468864A1 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
DE112015000480B4 (en) Vehicle steering control device
DE102013219588B4 (en) suspension control device
DE112013003863T5 (en) Apparatus and method for controlling a power steering system
DE112017004674T5 (en) VEHICLE CONTROL SYSTEM, VEHICLE CONTROL PROCEDURE AND ELECTRIC POWER STEERING SYSTEM
DE3634250C1 (en) Aircraft control
DE2337995B2 (en) Control system for a hydrofoil
DE2227703A1 (en) Rudder actuation control device for marine vehicles
EP3468864B1 (en) Method for compensating the blockage of a rudder blade in an x-shaped rudder
DE102016216796A1 (en) STEERING CONTROL DEVICE FOR VEHICLE
DE102019214305A1 (en) Device and method for generating a steering wheel reaction torque in an SBW system
DE102005018471A1 (en) Motor vehicle stabilization method, involves applying driver-independent steering wheel moment, where steering wheel runs smooth in direction of rotation than in opposite direction of rotation
DE1431187A1 (en) Device for the artificial generation of control feelings, especially in aircraft
DE102007024489A1 (en) Vehicle's electromechanical steering protecting device, has control unit to detect hand steering moment signal and produce control signals based on hand steering moment represented by hand steering moment signal
DE2444178A1 (en) AUTOMATIC CONTROL SYSTEM FOR A FLAT BOAT
DE2528073A1 (en) PROCEDURE FOR THE INDEPENDENT POSITIONING OF A SHIP
DE112017005368T5 (en) STEERING CONTROL DEVICE
EP3908897B1 (en) Control of a ship
DE2255760C3 (en) Regulator, in particular for flight attitude control of an aircraft equipped with gas turbine engines
DE60303436T2 (en) METHOD AND SYSTEM FOR COMPENSATING CHALLENGES
DE1781191A1 (en) Drawer tilting or straightening device
DE102007029958A1 (en) Method for adjusting a steering system in a vehicle
DE102014018974A1 (en) Control device for a machine with a function for reducing synchronization errors
DE102009002107A1 (en) Method for controlling a ship and control arrangement
DE102017216019A1 (en) Method for steering a vehicle
DE711006C (en) Ship propulsion

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH

Owner name: THYSSENKRUPP AG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH

Owner name: THYSSENKRUPP AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Ref document number: 502017004111

Country of ref document: DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1240072

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200315

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502017004111

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200604

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200605

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200704

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2794823

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20201207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200608

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200608

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230620

Year of fee payment: 7

Ref country code: FR

Payment date: 20230628

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1240072

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230620

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220608

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230623

Year of fee payment: 7

Ref country code: ES

Payment date: 20230830

Year of fee payment: 7