EP3465063B1 - Evaporator and/or condenser element with superficially embedded porous particles - Google Patents

Evaporator and/or condenser element with superficially embedded porous particles Download PDF

Info

Publication number
EP3465063B1
EP3465063B1 EP17730681.8A EP17730681A EP3465063B1 EP 3465063 B1 EP3465063 B1 EP 3465063B1 EP 17730681 A EP17730681 A EP 17730681A EP 3465063 B1 EP3465063 B1 EP 3465063B1
Authority
EP
European Patent Office
Prior art keywords
particles
evaporator
support structure
capacitor element
element according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17730681.8A
Other languages
German (de)
French (fr)
Other versions
EP3465063A1 (en
Inventor
Joachim Baumeister
Jörg Weise
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3465063A1 publication Critical patent/EP3465063A1/en
Application granted granted Critical
Publication of EP3465063B1 publication Critical patent/EP3465063B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion

Definitions

  • the present invention relates to an evaporator and / or condenser element which has a support structure made of a thermally conductive material with a surface for evaporating or subliming and / or condensing or resublimating a liquid or solid medium.
  • Evaporator or condenser elements play an essential role in many technical processes, e.g. in chillers, heat pumps or steam generators.
  • the necessary evaporation superheating temperature and other performance parameters essentially determine the losses and the resulting efficiencies of the overall processes, but also the necessary installation space sizes of the individual elements and the overall system.
  • the principle of operation of an evaporator is to convert liquids or solids into the gaseous state by applying heat.
  • the heat can be supplied, for example, via direct heating or an integrated fluid guide with heating fluid.
  • evaporator elements are generally made from metals.
  • Evaporation and condensation processes are complex and are determined by many sub-mechanisms and their parameters, such as the heat conduction and temperature distribution in the evaporation element, the wetting or flooding state of the evaporator element with the liquid refrigerant (geometric distribution and amount of the refrigerant), nucleation, the Bubble tearing behavior, the proportion of micro-zone areas with intensive evaporation due to the low film thickness, the flow behavior of the liquid-gas mixture or the afterflow of liquid to or along the heated surface of the evaporator element.
  • Evaporator and / or condenser elements are primarily intended to convert liquid working media into the vaporous state with the best possible efficiency or from the vaporous state to the liquid state.
  • numerous problems still arise. Some of these problems are the required significant overheating of the evaporator elements, the limited evaporation capacity, with alternating evaporation-condensation processes with capillary refrigerant storage in the evaporator element, insufficient storage capacity for the condensate within the element, with evaporation from thin films from the evaporator surface, poor wetting properties and refrigerant distribution or that Long-term degradation of the evaporator performance through fouling.
  • the DE 102013103840 A1 an evaporator tube with an inner tube which is surrounded on its outer surface by an evaporation channel.
  • a coarse wire mesh is arranged in the radial direction outwards on the outer circumferential surface of the inner tube, followed by a finer wire mesh and a sintered layer, again followed by a fine wire mesh and the housing tube.
  • the US 000004819719A shows an evaporation element with a grooved support structure on which a dendritic structure is deposited.
  • the WO 2011/162849 A2 discloses an evaporator element which has a carrier structure made of a thermally conductive material with a surface for evaporating a liquid medium.
  • a carrier structure made of a thermally conductive material with a surface for evaporating a liquid medium.
  • DE 10 2010 016644 A1 describes an evaporator with a housing which has a coating of porous or sintered material which promotes the evaporation of a liquid coolant on the housing base.
  • Active techniques such as the use of electric fields, the use of vibrations or the use of centrifugal forces, are also known in order to increase the evaporation performance of an evaporator.
  • the object of the present invention is to provide an evaporator and / or condenser element and a method for its production which shows an improved evaporation and / or condensation behavior compared to the prior art and if necessary also has a storage capacity for the fluid to be evaporated or condensed.
  • the proposed evaporator and / or condenser element has a support structure made of a highly thermally conductive material with a surface for evaporation or sublimation or condensation or resublimation of a liquid or solid medium.
  • the thermally conductive material preferably has a thermal conductivity of> 1 W / mK, particularly preferably> 100 W / mK.
  • the carrier structure can have any desired external shape, in particular it can be flat or curved, but is preferably designed in such a way that it offers the largest possible surface.
  • the carrier structure can be in the form of a plurality of lamellae, in the form of stacked foils or in the form of a rolled-up foil, a sponge or a 3D mesh.
  • the carrier structure can also have ribs or a surface structured in another way.
  • the carrier structure is preferably designed to be self-supporting, so requires - for example in contrast to a coating - no additional support for support.
  • the proposed evaporator and / or condenser element is characterized in that particles made of a porous material are embedded in the surface of the support structure in such a way that they partially protrude from this surface.
  • This configuration of the evaporator and / or condenser element with a carrier structure with porous particles embedded in the surface favors the evaporation or condensation of a fluid that comes into contact with the surface.
  • the carrier structure is heated in a suitable manner, for example by direct heating or an integrated fluid guide with heating fluid, as is known from the prior art.
  • the porous particles serve, among other things, as a kind of boiling stone for evaporation, ie they provide bladder germ sites.
  • the heat conduction within the thermally conductive support structure to the surface is only slightly influenced by the superficially embedded particles.
  • the embedded particles also have an advantageous influence on the local temperature distribution, the local wetting behavior and the mobility of the 3-phase interface along the surface of the evaporation element.
  • the porous structure of the particles can also serve as a reservoir for steam residues, which are preferred nucleation sites for new bubbles.
  • the embedded particles can also serve as local liquid reservoirs and, for example, the liquid even when the element changes or changes in inclination Hold gravity. This is favored by the hydrophilic surface properties of the particles.
  • the porous particles are therefore preferably selected from a material with hydrophilic surface properties. This is particularly interesting for elements that are operated alternately as evaporation and as condenser elements, since this significantly shortens the transport routes or eliminates them completely in comparison to external liquid reservoirs.
  • the carrier structure preferably has suitable channels and / or through openings through which the fluid or refrigerant can reach the surface for evaporation or — in the case of condensation — can be guided away from the surface.
  • these channels or through openings can be introduced directly into the bulk material of the support structure or can be formed by the external shape of the support structure, for example in the case of a 3D network.
  • the particles are only loosely in the surface of the Support structure embedded and are only held by undercuts in the support structure. As a result, these particles are movable at their position in the support structure. In this case, the gap dimensions between the particle and the local wall of the support structure can be changed by movements of the particle.
  • the shifting capillary distances contribute to evaporation.
  • the interaction of moving particles and bubbles that form can lead to self-induced vibrations and can be used to improve evaporation.
  • the vibrations can also be induced by external influences.
  • gaps between the particles and the surrounding material of the support structure represent germ sites for the formation of bubbles and thus promote evaporation.
  • the porous particles can consist of any material, for example metal, ceramic, plastic, minerals, etc.
  • the particles should have such a fine pore size that they are not, or at most partially, filled with the matrix material forming the support structure during the manufacture of the element, for example by casting.
  • the production parameters for example during casting, for example the melting temperature or the infiltration casting pressure, must be adapted so that the porosity of the particles is at least partially preserved.
  • particles in the production which are initially not or only slightly porous, but then form the desired porosity during processing by subsequent treatment.
  • the particles first Contain substances, such as polymers, salts, etc., which are removed after incorporation into the surface of the support structure by suitable solvents, heat treatments, etc., thus leaving the desired pores in the particles.
  • the porous particles preferably consist of a material which has a different wetting behavior towards the fluid to be evaporated than the material of the support structure.
  • the porous particles in a support structure made of metal can be made of porous ceramic or expanded clay or the like.
  • the particles are preferably formed from a temperature-stable material which does not lose its desired properties due to the temperature effect during the manufacture of the element.
  • the size of the porous particles is less important. Exemplary particle sizes are in the range between 1 ⁇ m and 10 mm, preferred particle sizes between 50 ⁇ m and 5 mm.
  • the size here means the dimension in the dimension of the maximum expansion of the particles, for example the length in the case of elongated particles.
  • the porosity of the particles is preferably in the range from 30 to 90% by volume.
  • the shape of the porous particles also does not contribute significantly to the function of the evaporator and / or condenser element. Particles that are readily available have a round shape (pellets). However, any other shapes, for example oval, elongated, angular, irregular or spattering particle shapes are also possible, which may offer advantages in the formation of bubble nuclei.
  • the surface coverage density with the particles represents an influencing variable on the evaporation and / or condensation behavior.
  • the porous particles can be packed so densely that they touch one another. However, they can also be spaced more apart. They are preferably distributed on the surface such that regions of the surface are still exposed between the particles, i. H. that the particles are not arranged in several layers one above the other. Which surface coverage density is preferred depends on the respective application, on the choice of refrigerant or the fluid to be evaporated or condensed, on the (low) pressure conditions etc. and can be determined in advance by a simple series of tests.
  • the particles can be embedded more or less deeply in the surface of the support structure. If primarily the reservoir effect is to be exploited and / or the condensate is to be prevented from dripping off, or if the particles are to be embedded loosely, a deeper embedding should be aimed for.
  • 50 to 90% of the particle volume can be embedded in or surrounded by the material of the carrier structure, so that only 10 to 50% of the particle volume protrudes from the surface. If primarily the boiling stone effect, the changed local wetting behavior or other effects of the particles are to be used, a less deep embedding is also advantageous.
  • z. B 20 to 50% of the particle volume in the Matrix material must be embedded.
  • the embedding of the particles is preferably in a range that is between 1% and 99%, particularly preferably between 10% and 90%, of the particle volume.
  • the information on the particle volume in each case relates to a particle and applies in each case to all or at least to the majority of the particles embedded in the surface.
  • the material of the support structure also referred to below as the matrix material, is said to have good thermal conductivity, because it is used for the heat transport required for evaporation or condensation.
  • Suitable matrix materials are e.g. B. metals, ceramics or other materials with a thermal conductivity of at least 1 W / mK.
  • Preferred matrix materials have a thermal conductivity of at least 100 W / mK. These include, for example, aluminum, copper or SiC ceramics.
  • the carrier structure is preferably formed from a cast metallic material.
  • the support structure should have as large a surface as possible so that the evaporation and condensation processes can take place simultaneously at many points.
  • good accessibility to the vapor space is still guaranteed.
  • the carrier structure has the form of lamellae, stacked foils, rolled foils, sponges, 3D networks or other similar structures.
  • the proposed evaporator and / or condenser element can be produced by metal-forming, casting or powder-metallurgy processes.
  • the porous particles can be embedded in a particularly simple manner by initially integrating the particles with part of their particle volume into a placeholder structure.
  • the placeholder structure is then filled with the matrix material and then removed.
  • the particle volume not integrated in the placeholder material is then embedded in the matrix material.
  • the placeholder structure thus essentially represents a later macroporous structure within the carrier structure, via which the liquid or vaporous medium can be transported.
  • the proposed evaporator and / or condenser element can be used, for example, in chillers, heat pumps or steam generators. These are used, for example, in automobile construction, the aviation industry, the chemical industry, in rail vehicle construction, in plant construction, for household appliances (white goods), in heating construction or in air conditioning. Of course, this is not an exhaustive list of the possible uses of the proposed evaporator and / or condenser element.
  • Figure 1 shows a top view of a section of the surface of the support structure of the proposed evaporator and / or condenser element with particles embedded therein.
  • the support structure 1, of which individual surface areas in the Figure 1 are recognizable, is made of aluminum in this example.
  • Porous ceramic particles 2 are embedded in the surface of this support structure 1. As in the present example, these ceramic particles 2 can consist of expanded clay and serve as a type of boiling stone to promote evaporation.
  • the proposed evaporator and / or condenser element is cast using a placeholder structure.
  • Figure 2 shows an example of a photo of a polymer placeholder structure in the form of a three-dimensional stacked EVA mesh 3, which is coated with fine expanded clay granules (particle diameter smaller than mesh size of the mesh).
  • This coated three-dimensional composite structure is then infiltrated with molten metal and the melt solidifies.
  • the expanded clay or ceramic particles 2 protruding from the polymer are partially embedded in the surface of the solidifying metal structure.
  • the Polymer structure is removed thermally and there remains the metal structure with superficial porous ceramic particles 2, as shown in the photo Figure 3 is recognizable.
  • an aluminum structure in the form of a three-dimensional network is thus obtained as a support structure, in the surface of which the ceramic particles are embedded.
  • the in Figure 2 The coated composite structure shown is filled with fine copper powder under vibration, so that the fine copper powder trickles into the composite structure.
  • the copper-filled composite structure is heat-treated in such a way that the copper particles sinter into a solid, highly heat-conductive framework, while the polymer (EVA) is thermally decomposed.
  • EVA polymer
  • the expanded clay particles originally protruding from the polymer are now partially embedded in the surface of the sintered copper structure.
  • the copper structure again has the shape of a three-dimensional network.
  • Another exemplary possibility for producing the evaporator and / or condenser element is not to coat the three-dimensional EVA network structure 3 used as the starting basis for the preceding examples with fine granules made of porous ceramic, but with larger granules (particle diameter larger than mesh size of the network) ) to combine in layers.
  • This is part of the photo of the Figure 4 can be seen in cross section that the EVA network structure 3 below with the attached porous layer of ceramic granulate 2.
  • This composite structure is in turn The melt infiltrates and the polymer is removed. It remains the metal structure 4 with superficial porous ceramic particles 2, as shown in the photo Figure 5 is shown in sections.
  • the larger integrated volumes of porous ceramics lead to an expanded possibility of storing condensed liquid, for example as a reservoir for subsequent evaporation.
  • Another possibility for producing the evaporator and / or condenser element based on the coated composite structure of the Figure 2 consists in depositing the matrix material from a liquid on this composite structure, for example by electroless copper or nickel deposition.
  • a porous ceramic granulate is combined with salt placeholder structures.
  • a subsequent metal infiltration and the removal of the salt leads to metal structures 4 with (partially) loosely embedded ceramic particles 2.
  • the salt can be removed by rinsing with water.
  • the loosely embedded ceramic particles 2 are movable, but cannot leave the metal composite. Due to the mobility, self-induced vibrations can occur during the evaporation, which intensify the evaporation.
  • Another production possibility is the combination of porous ceramic granules with salt-placeholder structures as in the previous exemplary embodiment, although mixtures of NaCl and CaCl 2 are used here.
  • the different wetting behavior of the salts on the porous ceramics is used here.
  • NaCl forms granular crystals between the ceramic particles
  • CaCl 2 tends to form layers on the surfaces of the ceramic particles.
  • a water rinse can again be used to remove the NaCl, and water as well as various alcohols such as ethanol for removing the CaCl 2 .
  • the placeholder substances mentioned in the exemplary embodiments are only to be understood as examples of possible substances.
  • the manufacture of the proposed evaporator and / or condenser element is not limited to these substances.
  • Other possible placeholder materials can be, for example, other polymers such as polystyrene, polypropylene or PMMA, or other salts or minerals such as CaCl 2 , MgSO 4 , MnSO 4 , K 2 CO 3 , MgCl 2 .
  • combinations of placeholder materials are also possible.
  • the placeholders can be removed by thermal or chemical decomposition or by using solvents.
  • the solvents mentioned in the exemplary embodiments are likewise only to be understood as exemplary possible substances, but are not to be regarded as restrictive.
  • the placeholders do not have to be removed completely, as long as any placeholder residues do not interfere with the evaporation or condensation function or the function of the overall system.
  • Examples of harmless placeholder residues can be, for example, small amounts of poorly soluble carbon-containing residues from the decomposition of an EVA placeholder in technical evaporation systems for water or small amounts of NaCl residues in evaporation systems for alcohols, in which NaCl is only very slightly soluble. Examples of harmful and avoidable effects are e.g. B.
  • Remedial measures against such harmful effects can be special treatments, for example glowing in certain atmospheres or rinsing in certain liquids, by means of which residues of the placeholder salts are specifically converted into other compounds.
  • Reactions in which easily soluble placeholder salts are converted into poorly soluble salts and immobilized in this way are particularly suitable, for example the reaction of CaCl 2 with CO 2 gas to give poorly soluble CaCO 3 .
  • the porous particles serve as boiling stones for evaporation, for example for the provision of bladder germ sites. They only slightly interfere with the heat conduction within the metallic structure and have a favorable influence on the local temperature distribution. They influence the local wetting behavior and the mobility of the 3-phase interface along the evaporator surface. They can serve as a reservoir for steam residues, which are preferred nucleation sites for new bubbles, and they can serve as local liquid reservoirs. In total, there are three major advantages. The superheating temperature necessary for the evaporation is reduced, so that this gives the possibility of improving the thermodynamic efficiency of the overall system. The evaporation capacity that can be called up briefly is increased and there is an improved possibility of storing condensate locally.
  • Figure 8 shows, by way of example in a highly schematic representation, a cross-section of a possible embodiment of a proposed evaporator and / or condenser element with the support structure 1, which in this case is network-like, and the porous ceramic particles (not visible in the figure) embedded therein.
  • the support structure is in contact with the outside of a tube 6, in which a heat transfer fluid flows for supplying and removing heat.
  • the support structure is on the Pipe shrunk on or connected to it with a material bond.
  • round or flat tubes for efficient heat supply and removal can be integrated in the evaporator and / or condenser element or connected to it.
  • the support structure with the embedded particles can also be partially closed to the outside, so that there are fluid-carrying structures such. B. can be welded.

Description

Technisches AnwendungsgebietTechnical application area

Die vorliegende Erfindung betrifft ein Verdampfer- und/oder Kondensatorelement, das eine Trägerstruktur aus einem wärmeleitfähigen Material mit einer Oberfläche zum Verdampfen oder Sublimieren und/oder Kondensieren oder Resublimieren eines flüssigen oder festen Mediums aufweist.The present invention relates to an evaporator and / or condenser element which has a support structure made of a thermally conductive material with a surface for evaporating or subliming and / or condensing or resublimating a liquid or solid medium.

Verdampfer- oder Kondensatorelemente spielen eine wesentliche Rolle in vielen technischen Prozessen, wie z.B. in Kältemaschinen, Wärmepumpen oder Dampferzeugern. Die notwendige Verdampfungs-Überhitzungstemperatur und andere Leistungsparameter bestimmen ganz wesentlich die Verluste und die resultierenden Wirkungsgrade der Gesamt-Prozesse, aber auch die notwendigen Bauraumgrößen der einzelnen Elemente und der Gesamtanlage.Evaporator or condenser elements play an essential role in many technical processes, e.g. in chillers, heat pumps or steam generators. The necessary evaporation superheating temperature and other performance parameters essentially determine the losses and the resulting efficiencies of the overall processes, but also the necessary installation space sizes of the individual elements and the overall system.

Das Wirkprinzip eines Verdampfers besteht darin, durch Wärmezufuhr Flüssigkeiten oder Feststoffe in den gasförmigen Zustand zu überführen. Die Wärmezufuhr kann dabei bspw. über Direktbeheizung oder eine integrierte Fluidführung mit Heizflüssigkeit erfolgen. Im Sinne einer guten Wärmeübertragung vom Verdampferelement in das zu verdampfende Medium werden Verdampferelemente in der Regel aus Metallen gefertigt.The principle of operation of an evaporator is to convert liquids or solids into the gaseous state by applying heat. The heat can be supplied, for example, via direct heating or an integrated fluid guide with heating fluid. In order to ensure good heat transfer from the evaporator element to the medium to be evaporated, evaporator elements are generally made from metals.

Verdampfungs- und Kondensationsprozesse sind komplex und werden von vielen Teilmechanismen und ihren Parametern bestimmt, wie bspw. der Wärmeleitung und Temperaturverteilung im Verdampfungselement, dem Benetzungs- oder Flutungszustand des Verdampferelementes mit dem flüssigen Kältemittel (geometrische Verteilung und Menge des Kältemittels), der Keimbildung, dem Blasenabreißverhalten, dem Anteil an Mikrozonenbereichen mit intensiver Verdampfung aufgrund geringer Filmdicke, dem Strömungsverhalten des Flüssigkeits-Gas-Gemisches oder dem Nachströmen von Flüssigkeit zur bzw. entlang der erhitzten Oberfläche des Verdampferelementes.Evaporation and condensation processes are complex and are determined by many sub-mechanisms and their parameters, such as the heat conduction and temperature distribution in the evaporation element, the wetting or flooding state of the evaporator element with the liquid refrigerant (geometric distribution and amount of the refrigerant), nucleation, the Bubble tearing behavior, the proportion of micro-zone areas with intensive evaporation due to the low film thickness, the flow behavior of the liquid-gas mixture or the afterflow of liquid to or along the heated surface of the evaporator element.

Verdampfer- und/oder Kondensatorelemente sollen vor allem flüssige Arbeitsmedien mit einem möglichst guten Wirkungsgrad in den dampfförmigen Zustand oder vom dampfförmigen Zustand in den flüssigen Zustand überführen. Allerdings treten trotz intensiver Entwicklungen in diesem Bereich noch immer zahlreiche Probleme auf. Einige dieser Probleme sind die erforderliche deutliche Überhitzung der Verdampferelemente, die begrenzte Verdampfungsleistung, bei alternierendem Verdampfungs-Kondensationsprozessen mit kapillarer Kältemittelspeicherung im Verdampferelement keine ausreichende Speicherfähigkeit für das Kondensat innerhalb des Elementes, bei Verdampfung aus dünnen Filmen aus der Verdampferoberfläche eine schlechte Benetzungseigenschaft und Kältemittelverteilung oder die Langzeit-Degradation der Verdampferleistung durch Fouling.Evaporator and / or condenser elements are primarily intended to convert liquid working media into the vaporous state with the best possible efficiency or from the vaporous state to the liquid state. However, despite intensive developments in this area, numerous problems still arise. Some of these problems are the required significant overheating of the evaporator elements, the limited evaporation capacity, with alternating evaporation-condensation processes with capillary refrigerant storage in the evaporator element, insufficient storage capacity for the condensate within the element, with evaporation from thin films from the evaporator surface, poor wetting properties and refrigerant distribution or that Long-term degradation of the evaporator performance through fouling.

Stand der TechnikState of the art

Zur Verbesserung der Leistungsfähigkeit von Verdampferelementen sind passive Techniken wie bspw. die punktweise Beschichtung von Oberflächen mit schlecht-benetzendem Teflon, die Modifizierung der Oberfläche durch chemische, mechanische oder Laserbehandlung, die Erzeugung oder Auftragung poröser Schichten zur Verbesserung der Keimbildung oder ein oberflächliches Aufbringen von Drahtstrukturen bekannt. So zeigt bspw. die DE 102013103840 A1 ein Verdampferrohr mit einem Innenrohr, das an seiner Außenmantelfläche von einem Verdampfungskanal umgeben ist. In dem Verdampfungskanal ist in Radialrichtung nach außen auf der Außenmantelfläche des Innenrohres ein grobes Drahtgewebe angeordnet, gefolgt von einem feineren Drahtgewebe und einer Sinterschicht, wiederum gefolgt von einem feinen Drahtgewebe und dem Gehäuserohr. Die US 000004819719A zeigt ein Verdampfungselement mit einer gefurchten Trägerstruktur, auf der eine dendritische Struktur abgeschieden ist.To improve the performance of evaporator elements are passive techniques such as the point coating of surfaces with poorly wetting Teflon, the modification of the surface by chemical, mechanical or laser treatment, the creation or application of porous layers to improve nucleation or the superficial application of wire structures known. For example, the DE 102013103840 A1 an evaporator tube with an inner tube which is surrounded on its outer surface by an evaporation channel. In the evaporation channel, a coarse wire mesh is arranged in the radial direction outwards on the outer circumferential surface of the inner tube, followed by a finer wire mesh and a sintered layer, again followed by a fine wire mesh and the housing tube. The US 000004819719A shows an evaporation element with a grooved support structure on which a dendritic structure is deposited.

Die WO 2011/162849 A2 offenbart ein Verdampferelement, das eine Trägerstruktur aus einem wärmeleitfähigen Material mit einer Oberfläche zum Verdampfen eines flüssigen Mediums aufweist. In der DE 10 2010 016644 A1 ist ein Verdampfer mit einem Gehäuse beschrieben, das am Gehäuseboden einen die Verdampfung eines flüssigen Kühlmittels begünstigenden Belag aus porösem oder gesintertem Material aufweist.The WO 2011/162849 A2 discloses an evaporator element which has a carrier structure made of a thermally conductive material with a surface for evaporating a liquid medium. In the DE 10 2010 016644 A1 describes an evaporator with a housing which has a coating of porous or sintered material which promotes the evaporation of a liquid coolant on the housing base.

Weiterhin sind aktive Techniken, wie bspw. die Nutzung elektrischer Felder, die Nutzung von Vibrationen oder die Nutzung von Fliehkräften bekannt, um die Verdampfungsleistung eines Verdampfers zu erhöhen.Active techniques, such as the use of electric fields, the use of vibrations or the use of centrifugal forces, are also known in order to increase the evaporation performance of an evaporator.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verdampfer- und/oder Kondensatorelement sowie ein Verfahren zu dessen Herstellung anzugeben, das ein gegenüber dem Stand der Technik verbessertes Verdampfungs- und/oder Kondensationsverhalten zeigt und bei Bedarf auch eine Speicherfähigkeit für das zu verdampfende oder zu kondensierende Fluid aufweist.The object of the present invention is to provide an evaporator and / or condenser element and a method for its production which shows an improved evaporation and / or condensation behavior compared to the prior art and if necessary also has a storage capacity for the fluid to be evaporated or condensed.

Darstellung der ErfindungPresentation of the invention

Die Aufgabe wird mit dem Verdampfer- und/oder Kondensatorelement sowie dem Verfahren gemäß den Patentansprüchen 1 und 12 bzw. 13 gelöst. Vorteilhafte Ausgestaltungen des Verdampfer- und/oder Kondensatorelements sowie des Verfahrens sind Gegenstand der abhängigen Patentansprüche oder lassen sich der nachfolgenden Beschreibung sowie den Ausführungsbeispielen entnehmen.The object is achieved with the evaporator and / or condenser element and with the method according to claims 1 and 12 or 13. Advantageous embodiments of the evaporator and / or condenser element and the method are the subject of the dependent claims or can be found in the following description and the exemplary embodiments.

Das vorgeschlagene Verdampfer- und/oder Kondensatorelement weist eine Trägerstruktur aus einem gut wärmeleitfähigen Material mit einer Oberfläche zum Verdampfen oder Sublimieren bzw. Kondensieren oder Resublimieren eines flüssigen oder festen Mediums auf. Das wärmeleitfähige Material hat dabei vorzugsweise eine Wärmeleitfähigkeit von > 1 W/mK, besonders bevorzugt > 100 W/mK. Die Trägerstruktur kann eine beliebige äußere Form aufweisen, insbesondere eben oder gekrümmt ausgeführt sein, ist jedoch bevorzugt so ausgebildet, dass sie eine möglichst große Oberfläche bietet. So kann die Trägerstruktur bspw. in Form mehrerer Lamellen, in Form von gestapelten Folien oder in Form einer aufgerollten Folie, eines Schwammes oder eines 3D-Netzes ausgebildet sein. Die Trägerstruktur kann auch Rippen oder eine in anderer Weise strukturierte Oberfläche aufweisen. Vorzugsweise ist die Trägerstruktur selbsttragend ausgebildet, erfordert also - bspw. im Gegensatz zu einer Beschichtung - keinen zusätzlichen Träger zur Stützung. Das vorgeschlagene Verdampfer- und/oder Kondensatorelement zeichnet sich dadurch aus, dass Partikel aus einem porösen Material so in die Oberfläche der Trägerstruktur eingebettet sind, dass sie zum Teil aus dieser Oberfläche herausragen.The proposed evaporator and / or condenser element has a support structure made of a highly thermally conductive material with a surface for evaporation or sublimation or condensation or resublimation of a liquid or solid medium. The thermally conductive material preferably has a thermal conductivity of> 1 W / mK, particularly preferably> 100 W / mK. The carrier structure can have any desired external shape, in particular it can be flat or curved, but is preferably designed in such a way that it offers the largest possible surface. For example, the carrier structure can be in the form of a plurality of lamellae, in the form of stacked foils or in the form of a rolled-up foil, a sponge or a 3D mesh. The carrier structure can also have ribs or a surface structured in another way. The carrier structure is preferably designed to be self-supporting, so requires - for example in contrast to a coating - no additional support for support. The proposed evaporator and / or condenser element is characterized in that particles made of a porous material are embedded in the surface of the support structure in such a way that they partially protrude from this surface.

Durch diese Ausgestaltung des Verdampfer- und/oder Kondensatorelementes mit einer Trägerstruktur mit in die Oberfläche eingebetteten porösen Partikeln wird die Verdampfung bzw. Kondensation eines mit der Oberfläche in Berührung kommenden Fluids begünstigt. Die Trägerstruktur wird dabei in geeigneter Weise aufgeheizt, bspw. über Direktbeheizung oder eine integrierte Fluidführung mit Heizflüssigkeit, wie dies aus dem Stand der Technik bekannt ist. Die porösen Partikel dienen dabei u.a. als eine Art Siedestein für die Verdampfung, stellen also Blasenkeimstellen bereit. Die Wärmeleitung innerhalb der wärmeleitfähigen Trägerstruktur zur Oberfläche hin wird von den oberflächlich eingebetteten Partikeln nur geringfügig beeinflusst. Neben der Funktion als Siedestein beeinflussen die eingebetteten Partikel auch die lokale Temperaturverteilung, das lokale Benetzungsverhalten und die Mobilität der 3-Phasen-Grenzfläche entlang der Oberfläche des Verdampfungselementes vorteilhaft. Die poröse Struktur der Partikeln kann darüber hinaus auch als Reservoir für Dampfreste dienen, welche bevorzugte Keimbildungsstellen für neue Blasen darstellen. Neben der Verbesserung der Verdampfung selbst können die eingebetteten Partikel auch als lokale Flüssigkeitsreservoire dienen und bspw. die Flüssigkeit auch bei Neigungsänderungen des Elementes oder veränderter Gravitation halten. Dies wird durch hydrophile Oberflächeneigenschaften der Partikel begünstigt. Die porösen Partikel werden für diesen Anwendungszweck daher vorzugsweise aus einem Material mit hydrophilen Oberflächeneigenschaften gewählt. Dies ist besonders interessant für Elemente, die alternierend als Verdampfungs- und als Kondensatorelemente betrieben werden, da hierdurch im Vergleich zu externen Flüssigkeitsreservoirs die Transportwege deutlich verkürzt werden oder komplett wegfallen.This configuration of the evaporator and / or condenser element with a carrier structure with porous particles embedded in the surface favors the evaporation or condensation of a fluid that comes into contact with the surface. The carrier structure is heated in a suitable manner, for example by direct heating or an integrated fluid guide with heating fluid, as is known from the prior art. The porous particles serve, among other things, as a kind of boiling stone for evaporation, ie they provide bladder germ sites. The heat conduction within the thermally conductive support structure to the surface is only slightly influenced by the superficially embedded particles. In addition to the function as a boiling stone, the embedded particles also have an advantageous influence on the local temperature distribution, the local wetting behavior and the mobility of the 3-phase interface along the surface of the evaporation element. The porous structure of the particles can also serve as a reservoir for steam residues, which are preferred nucleation sites for new bubbles. In addition to improving the evaporation itself, the embedded particles can also serve as local liquid reservoirs and, for example, the liquid even when the element changes or changes in inclination Hold gravity. This is favored by the hydrophilic surface properties of the particles. For this purpose, the porous particles are therefore preferably selected from a material with hydrophilic surface properties. This is particularly interesting for elements that are operated alternately as evaporation and as condenser elements, since this significantly shortens the transport routes or eliminates them completely in comparison to external liquid reservoirs.

Mit dem vorgeschlagenen Verdampfer- und/oder Kondensatorelement wird daher insbesondere eine Verringerung der notwendigen Verdampfungs-Überhitzungstemperatur, eine Erhöhung der volumen- und massenspezifischen Verdampfungs- und Kondensationsleistung und eine erhöhte volumenspezifische Kältemittelspeicherfähigkeit erreicht.With the proposed evaporator and / or condenser element, therefore, in particular a reduction of the necessary evaporation superheating temperature, an increase in the volume and mass-specific evaporation and condensation capacity and an increased volume-specific refrigerant storage capacity are achieved.

Die Trägerstruktur weist vorzugsweise geeignete Kanäle und/oder Durchgangsöffnungen auf, über die das Fluid bzw. Kältemittel zur Verdampfung an die Oberfläche gelangen oder - bei Kondensation - von der Oberfläche weg geführt werden kann. Diese Kanäle oder Durchgangsöffnungen können je nach Ausbildung der Trägerstruktur direkt in das Volumenmaterial der Trägerstruktur eingebracht oder durch die äußere Form der Trägerstruktur, bspw. im Falle eines 3D-Netzes, gebildet sein.The carrier structure preferably has suitable channels and / or through openings through which the fluid or refrigerant can reach the surface for evaporation or — in the case of condensation — can be guided away from the surface. Depending on the design of the support structure, these channels or through openings can be introduced directly into the bulk material of the support structure or can be formed by the external shape of the support structure, for example in the case of a 3D network.

In einer weiteren Ausgestaltung sind zumindest einige der Partikel nur lose in die Oberfläche der Trägerstruktur eingebettet und werden nur durch Hinterschneidungen in der Trägerstruktur gehalten. Dadurch sind diese Partikel an ihrer Position in der Trägerstruktur beweglich. Die Spaltabmessungen zwischen Partikel und lokaler Wand der Trägerstruktur können in diesem Fall durch Bewegungen des Partikels verändert werden. Die sich damit verschiebenden Kapillar-Abstände tragen zur Verdampfung bei. Die Wechselwirkung von beweglichen Partikeln und sich bildenden Blasen kann zu selbstinduzierten Vibrationen führen und zur Verbesserung der Verdampfung genutzt werden. Die Vibrationen können auch durch externe Einwirkung induziert werden. Prinzipiell stellen Spalte zwischen den Partikeln und dem umgebenden Material der Trägerstruktur Keimstellen für die Bildung von Blasen dar und fördern damit die Verdampfung.In a further embodiment, at least some of the particles are only loosely in the surface of the Support structure embedded and are only held by undercuts in the support structure. As a result, these particles are movable at their position in the support structure. In this case, the gap dimensions between the particle and the local wall of the support structure can be changed by movements of the particle. The shifting capillary distances contribute to evaporation. The interaction of moving particles and bubbles that form can lead to self-induced vibrations and can be used to improve evaporation. The vibrations can also be induced by external influences. In principle, gaps between the particles and the surrounding material of the support structure represent germ sites for the formation of bubbles and thus promote evaporation.

Die porösen Partikel können aus jedem beliebigen Material, bspw. Metall, Keramik, Kunststoff, Mineralien usw. bestehen. Die Partikeln sollten eine so feine Porengröße aufweisen, dass sie bei der Herstellung des Elementes, bspw. durch Gießen, nicht oder höchstens teilweise mit dem die Trägerstruktur bildenden Matrixmaterial befüllt werden. Bei größeren Porengrößen müssen ggf. die Herstellungsparameter, beim Gießen bspw. die Schmelztemperatur oder der Infiltrationsgießdruck, so angepasst werden, dass die Porosität der Partikel zumindest teilweise erhalten bleibt. Es ist auch möglich, bei der Herstellung Partikel zu verwenden, die zunächst nicht oder nur wenig porös sind, aber dann bei der Verarbeitung durch nachträgliche Behandlung die gewünschte Porosität ausbilden. Zum Beispiel können die Partikel zunächst Substanzen, wie Polymere, Salze etc. enthalten, die nach der Einbindung in die Oberfläche der Trägerstruktur durch geeignete Lösemittel, Wärmebehandlungen usw. entfernt werden und so die gewünschten Poren in den Partikeln hinterlassen.The porous particles can consist of any material, for example metal, ceramic, plastic, minerals, etc. The particles should have such a fine pore size that they are not, or at most partially, filled with the matrix material forming the support structure during the manufacture of the element, for example by casting. With larger pore sizes, the production parameters, for example during casting, for example the melting temperature or the infiltration casting pressure, must be adapted so that the porosity of the particles is at least partially preserved. It is also possible to use particles in the production which are initially not or only slightly porous, but then form the desired porosity during processing by subsequent treatment. For example, the particles first Contain substances, such as polymers, salts, etc., which are removed after incorporation into the surface of the support structure by suitable solvents, heat treatments, etc., thus leaving the desired pores in the particles.

Vorzugsweise bestehen die porösen Partikel aus einem Material, welches ein anderes Benetzungsverhalten gegenüber dem zu verdampfenden Fluid als das Material der Trägerstruktur aufweist. So können die porösen Partikel bei einer Trägerstruktur aus Metall bspw. aus poröser Keramik oder Blähton oder dergleichen bestehen. Weiterhin sind die Partikel vorzugsweise aus einem temperaturstabilen Material gebildet, welches seine gewünschten Eigenschaften durch die Temperatureinwirkung bei der Herstellung des Elementes nicht verliert.The porous particles preferably consist of a material which has a different wetting behavior towards the fluid to be evaporated than the material of the support structure. For example, the porous particles in a support structure made of metal can be made of porous ceramic or expanded clay or the like. Furthermore, the particles are preferably formed from a temperature-stable material which does not lose its desired properties due to the temperature effect during the manufacture of the element.

Die Größe der porösen Partikel ist weniger bedeutsam. Beispielhafte Partikelgrößen liegen im Bereich zwischen 1 µm und 10 mm, bevorzugte Partikelgrößen zwischen 50 µm und 5 mm. Unter der Größe ist hierbei die Abmessung in der Dimension der maximalen Ausdehnung der Partikel zu verstehen, bspw. die Länge bei länglichen Partikeln. Die Porosität der Partikel liegt vorzugsweise im Bereich von 30 bis 90 Vol%. Auch die Form der porösen Partikel trägt nicht wesentlich zur Funktion des Verdampfer- und/oder Kondensatorelements bei. Gut verfügbare Partikel haben eine runde Form (Pellets). Es sind jedoch auch beliebige andere Formen, bspw. ovale, längliche, eckige, unregelmäßige oder spratzige Partikelformen möglich, die ggf. Vorteile bei der Blasenkeimbildung bieten.The size of the porous particles is less important. Exemplary particle sizes are in the range between 1 µm and 10 mm, preferred particle sizes between 50 µm and 5 mm. The size here means the dimension in the dimension of the maximum expansion of the particles, for example the length in the case of elongated particles. The porosity of the particles is preferably in the range from 30 to 90% by volume. The shape of the porous particles also does not contribute significantly to the function of the evaporator and / or condenser element. Particles that are readily available have a round shape (pellets). However, any other shapes, for example oval, elongated, angular, irregular or spattering particle shapes are also possible, which may offer advantages in the formation of bubble nuclei.

Eine Einflussgröße auf das Verdampfungs- und/oder Kondensationsverhalten stellt die Oberflächenbelegungsdichte mit den Partikeln dar. Die porösen Partikel können so dicht gepackt sein, dass sie sich gegenseitig berühren. Sie können jedoch auch stärker voneinander beabstandet sein. Vorzugsweise sind sie so an der Oberfläche verteilt, dass zwischen den Partikeln jeweils noch Bereiche der Oberfläche frei liegen, d. h. dass die Partikeln nicht in mehreren übereinander liegenden Schichten angeordnet sind. Welche Oberflächenbelegungsdichte zu bevorzugen ist, hängt vom jeweiligen Anwendungsfall, von der Wahl des Kältemittels bzw. des zu verdampfenden oder zu kondensierenden Fluids, von den (Nieder-)Druckbedingungen usw. ab und kann durch eine einfache Versuchsreihe vorab ermittelt werden.The surface coverage density with the particles represents an influencing variable on the evaporation and / or condensation behavior. The porous particles can be packed so densely that they touch one another. However, they can also be spaced more apart. They are preferably distributed on the surface such that regions of the surface are still exposed between the particles, i. H. that the particles are not arranged in several layers one above the other. Which surface coverage density is preferred depends on the respective application, on the choice of refrigerant or the fluid to be evaporated or condensed, on the (low) pressure conditions etc. and can be determined in advance by a simple series of tests.

Die Partikel können mehr oder weniger tief in die Oberfläche der Trägerstruktur eingebettet werden. Wenn in erster Linie der Reservoir-Effekt ausgenutzt und/oder das Abtropfen des Kondensats vermieden werden soll oder wenn die Partikel lose eingebettet sein sollen, ist eine tiefere Einbettung anzustreben. Hier können bspw. 50 bis 90% des Partikelvolumens in dem Material der Trägerstruktur eingebettet bzw. von diesem umschlossen sein, so dass nur 10 bis 50% des Partikelvolumens aus der Oberfläche herausragt. Wenn in erster Linie der Siedestein-Effekt, das geänderte lokale Benetzungsverhalten oder andere Effekte der Partikel ausgenutzt werden sollen, ist auch eine weniger tiefe Einbettung von Vorteil. Hier können dann z. B. 20 bis 50% des Partikelvolumens in dem Matrixmaterial eingebettet sein. Prinzipiell liegt die Einbettung der Partikel vorzugsweise in einem Bereich, der zwischen 1% und 99%, besonders bevorzugt zwischen 10% und 90%, des Partikelvolumens beträgt. Die Angaben zum Partikelvolumen beziehen sich dabei jeweils auf ein Partikel und gelten jeweils für alle oder wenigstens für den größten Teil der in die Oberfläche eingebetteten Partikel.The particles can be embedded more or less deeply in the surface of the support structure. If primarily the reservoir effect is to be exploited and / or the condensate is to be prevented from dripping off, or if the particles are to be embedded loosely, a deeper embedding should be aimed for. Here, for example, 50 to 90% of the particle volume can be embedded in or surrounded by the material of the carrier structure, so that only 10 to 50% of the particle volume protrudes from the surface. If primarily the boiling stone effect, the changed local wetting behavior or other effects of the particles are to be used, a less deep embedding is also advantageous. Here z. B. 20 to 50% of the particle volume in the Matrix material must be embedded. In principle, the embedding of the particles is preferably in a range that is between 1% and 99%, particularly preferably between 10% and 90%, of the particle volume. The information on the particle volume in each case relates to a particle and applies in each case to all or at least to the majority of the particles embedded in the surface.

Das Material der Trägerstruktur, im Folgenden auch als Matrixmaterial bezeichnet, soll eine gute Wärmeleitfähigkeit aufweisen, weil hierüber der für die Verdampfung bzw. Kondensation erforderliche Wärmetransport erfolgt. Geeignete Matrixmaterialien sind z. B. Metalle, Keramiken oder andere Werkstoffe mit einer Wärmeleitfähigkeit von mindestens 1 W/mK. Bevorzugte Matrixmaterialien weisen eine Wärmeleitfähigkeit von mindestens 100 W/mK auf. Hierzu zählen bspw. Aluminium, Kupfer oder SiC-Keramiken. Vorzugsweise ist die Trägerstruktur aus einem gegossenen metallischen Material gebildet.The material of the support structure, also referred to below as the matrix material, is said to have good thermal conductivity, because it is used for the heat transport required for evaporation or condensation. Suitable matrix materials are e.g. B. metals, ceramics or other materials with a thermal conductivity of at least 1 W / mK. Preferred matrix materials have a thermal conductivity of at least 100 W / mK. These include, for example, aluminum, copper or SiC ceramics. The carrier structure is preferably formed from a cast metallic material.

Die Trägerstruktur soll eine möglichst große Oberfläche aufweisen, damit die Verdampfungs- und Kondensationsvorgänge an vielen Punkten gleichzeitig stattfinden können. Bei einer Dünnfilmverdampfung, bei der keine maßgebliche Flutung des Verdampferelementes erfolgt, wird dadurch weiterhin eine gute Zugänglichkeit zum Dampfraum gewährleistet. Aus diesem Grund ist es vorteilhaft, wenn die Trägerstruktur die Form von Lamellen, gestapelten Folien, aufgerollten Folien, Schwämmen, 3D-Netzen oder anderen ähnlichen Strukturen aufweist.The support structure should have as large a surface as possible so that the evaporation and condensation processes can take place simultaneously at many points. In the case of thin-film evaporation, in which there is no significant flooding of the evaporator element, good accessibility to the vapor space is still guaranteed. For this reason, it is advantageous if the carrier structure has the form of lamellae, stacked foils, rolled foils, sponges, 3D networks or other similar structures.

Das vorgeschlagene Verdampfer- und/oder Kondensatorelement kann in Abhängigkeit von der gewünschten Form der Trägerstruktur durch umformtechnische, gießtechnische oder pulvermetallurgische Verfahren hergestellt werden. Bei pulvermetallurgischen oder gießtechnischen Verfahren kann die Einbettung der porösen Partikel auf besonders einfache Weise erfolgen, indem die Partikel mit einem Teil ihres Partikelvolumens zunächst in eine Platzhalterstruktur integriert werden. Die Platzhalterstruktur wird dann mit dem Matrixmaterial befüllt und anschließend entfernt. Das nicht im Platzhaltermaterial integrierte Partikelvolumen ist dann im Matrixmaterial eingebettet. Die Platzhalterstruktur stellt also im Wesentlichen eine spätere Makroporenstruktur innerhalb der Trägerstruktur dar, über die das flüssige oder dampfförmige Medium transportiert werden kann.Depending on the desired shape of the support structure, the proposed evaporator and / or condenser element can be produced by metal-forming, casting or powder-metallurgy processes. In the case of powder metallurgy or casting processes, the porous particles can be embedded in a particularly simple manner by initially integrating the particles with part of their particle volume into a placeholder structure. The placeholder structure is then filled with the matrix material and then removed. The particle volume not integrated in the placeholder material is then embedded in the matrix material. The placeholder structure thus essentially represents a later macroporous structure within the carrier structure, via which the liquid or vaporous medium can be transported.

Das vorgeschlagene Verdampfer- und/oder Kondensatorelement lässt sich bspw. in Kältemaschinen, Wärmepumpen oder Dampferzeugern einsetzen. Diese werden bspw. im Automobilbau, der Luftfahrtindustrie, der chemischen Industrie, im Schienenfahrzeugbau, im Anlagenbau, bei Hausgeräten (weiße Ware), im Heizungsbau oder in der Klimatisierung eingesetzt. Dies ist selbstverständlich keine abschließende Aufzählung der Einsatzmöglichkeiten des vorgeschlagenen Verdampfer- und/oder Kondensatorelementes.The proposed evaporator and / or condenser element can be used, for example, in chillers, heat pumps or steam generators. These are used, for example, in automobile construction, the aviation industry, the chemical industry, in rail vehicle construction, in plant construction, for household appliances (white goods), in heating construction or in air conditioning. Of course, this is not an exhaustive list of the possible uses of the proposed evaporator and / or condenser element.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Das vorgeschlagene Verdampfer- und/oder Kondensatorelement wird nachfolgend anhand von Ausführungsbeispielen in Verbindung mit den Zeichnungen nochmals näher erläutert. Hierbei zeigen:

Fig. 1
eine schematische Darstellung einer Oberfläche der Trägerstruktur des vorgeschlagenen Verdampfer- und/oder Kondensatorelements;
Fig. 2
ein Beispiel für eine Platzhalterstruktur zur Herstellung des vorgeschlagenen Verdampfer- und/oder Kondensatorelementes;
Fig. 3
ein Beispiel für eine Oberfläche des vorgeschlagenen Verdampfer- und/oder Kondensatorelementes, das mit der Platzhalterstruktur der Figur 2 hergestellt wurde;
Fig. 4
ein Beispiel für eine EVA-Netzstruktur mit angebundenen porösen Keramikpartikeln (vor dem Eingießen);
Fig. 5
ein Beispiel für eine gegossene Aluminiumstruktur mit eingebetteten groben Partikeln aus poröser Keramik;
Fig. 6
ein Beispiel für poröse Keramikpartikel mit dazwischenliegender Salzstruktur;
Fig. 7
ein Beispiel für eine gegossene Aluminiumstruktur mit eingebetteten und teilweise lose innenliegenden Keramikpartikeln; und
Fig. 8
ein Beispiel für den schematischen Aufbau eines Verdampfungselementes gemäß der vorliegenden Erfindung.
The proposed evaporator and / or condenser element is explained in more detail below using exemplary embodiments in conjunction with the drawings. Here show:
Fig. 1
a schematic representation of a surface of the support structure of the proposed evaporator and / or condenser element;
Fig. 2
an example of a placeholder structure for the manufacture of the proposed evaporator and / or condenser element;
Fig. 3
an example of a surface of the proposed evaporator and / or condenser element, which with the placeholder structure of Figure 2 was produced;
Fig. 4
an example of an EVA network structure with attached porous ceramic particles (before pouring);
Fig. 5
an example of a cast aluminum structure with embedded coarse particles made of porous ceramic;
Fig. 6
an example of porous ceramic particles with an intermediate salt structure;
Fig. 7
an example of a cast aluminum structure with embedded and partially loose internal ceramic particles; and
Fig. 8
an example of the schematic structure of an evaporation element according to the present invention.

Wege zur Ausführung der ErfindungWays of Carrying Out the Invention

Im Folgenden werden verschiedene Herstellungstechniken und die sich daraus ergebenden Strukturen des vorgeschlagenen Verdampfungs- und/oder Kondensatorelementes erläutert. Figur 1 zeigt hierzu in Draufsicht einen Ausschnitt aus der Oberfläche der Trägerstruktur des vorgeschlagenen Verdampfer- und/oder Kondensatorelementes mit darin eingebetteten Partikeln. Die Trägerstruktur 1, von der einzelne Oberflächenbereiche in der Figur 1 erkennbar sind, ist in diesem Beispiel aus Aluminium gebildet. In die Oberfläche dieser Trägerstruktur 1 sind poröse Keramikpartikel 2 eingebettet. Diese Keramikpartikel 2 können wie im vorliegenden Beispiel aus Blähton bestehen und dienen als eine Art Siedestein zur Begünstigung der Verdampfung.Various manufacturing techniques and the resulting structures of the proposed evaporation and / or condenser element are explained below. Figure 1 shows a top view of a section of the surface of the support structure of the proposed evaporator and / or condenser element with particles embedded therein. The support structure 1, of which individual surface areas in the Figure 1 are recognizable, is made of aluminum in this example. Porous ceramic particles 2 are embedded in the surface of this support structure 1. As in the present example, these ceramic particles 2 can consist of expanded clay and serve as a type of boiling stone to promote evaporation.

Bei einer bevorzugten Herstellungstechnik wird das vorgeschlagene Verdampfer- und/oder Kondensatorelement gießtechnisch unter Einsatz einer Platzhalterstruktur hergestellt. Figur 2 zeigt hierzu beispielhaft im Ausschnitt ein Foto einer Polymer-Platzhalterstruktur in Form eines dreidimensionalen gestapelten EVA-Netzes 3, das mit feinem Blähtongranulat (Partikeldurchmesser kleiner als Maschenweite des Netzes) beschichtet ist. Diese beschichtete dreidimensionale Verbundstruktur wird anschließend mit Metallschmelze infiltriert und die Schmelze erstarrt. Die aus dem Polymer herausragenden Blähton- bzw. Keramikpartikel 2 werden dabei in die Oberfläche der erstarrenden Metallstruktur teilweise eingebettet. Anschließend wird die Polymerstruktur thermisch entfernt und es verbleibt die Metallstruktur mit oberflächlich eingelagerten porösen Keramikpartikeln 2, wie sie in dem Foto der Figur 3 erkennbar ist. Mit dieser Technik wird somit eine Aluminiumstruktur in Form eines dreidimensionalen Netzes als Trägerstruktur erhalten, in dessen Oberfläche die keramischen Partikel eingebettet sind.In a preferred manufacturing technique, the proposed evaporator and / or condenser element is cast using a placeholder structure. Figure 2 shows an example of a photo of a polymer placeholder structure in the form of a three-dimensional stacked EVA mesh 3, which is coated with fine expanded clay granules (particle diameter smaller than mesh size of the mesh). This coated three-dimensional composite structure is then infiltrated with molten metal and the melt solidifies. The expanded clay or ceramic particles 2 protruding from the polymer are partially embedded in the surface of the solidifying metal structure. Then the Polymer structure is removed thermally and there remains the metal structure with superficial porous ceramic particles 2, as shown in the photo Figure 3 is recognizable. With this technique, an aluminum structure in the form of a three-dimensional network is thus obtained as a support structure, in the surface of which the ceramic particles are embedded.

Bei einer anderen Herstellungstechnik wird die in Figur 2 dargestellte beschichtete Verbundstruktur unter Vibration mit feinem Kupferpulver gefüllt, so dass das feine Kupferpulver in die Verbundstruktur einrieselt. Die Kupfer-gefüllte Verbundstruktur wird so wärmehandelt, dass die Kupferteilchen zu einem festen, gut wärmeleitenden Gerüst versintern, während das Polymer (EVA) thermisch zersetzt wird. Die ursprünglich aus dem Polymer herausragenden Blähtonteilchen sind nun in die Oberfläche der gesinterten Kupferstruktur teilweise eingebettet. Die Kupferstruktur weist wiederum die Form eines dreidimensionalen Netzes auf.In another manufacturing technique, the in Figure 2 The coated composite structure shown is filled with fine copper powder under vibration, so that the fine copper powder trickles into the composite structure. The copper-filled composite structure is heat-treated in such a way that the copper particles sinter into a solid, highly heat-conductive framework, while the polymer (EVA) is thermally decomposed. The expanded clay particles originally protruding from the polymer are now partially embedded in the surface of the sintered copper structure. The copper structure again has the shape of a three-dimensional network.

Eine weitere beispielhafte Möglichkeit zur Herstellung des Verdampfer- und/oder Kondensatorelements besteht darin, die als Ausgangsbasis für die vorangegangenen Beispiele verwendete dreidimensionale EVA-Netzstruktur 3 nicht mit feinem Granulat aus poröser Keramik zu beschichten, sondern mit größerem Granulat (Partikeldurchmesser größer als Maschenweite des Netzes) lagenweise zu kombinieren. Dies ist ausschnittsweise in dem Foto der Figur 4 im Querschnitt zu erkennen, das die unten liegende EVA-Netzstruktur 3 mit der angebundenen porösen Lage aus Keramikgranulat 2 darstellt. Diese Verbundstruktur wird wiederum mit Schmelze infiltriert und das Polymer entfernt. Es bleibt die Metallstruktur 4 mit oberflächlich eingelagerten porösen Keramikpartikeln 2 zurück, wie dies in dem Foto der Figur 5 ausschnittsweise dargestellt ist. Die größeren integrierten Volumina an poröser Keramik führen zu einer erweiterten Möglichkeit der Speicherung von kondensierter Flüssigkeit, bspw. als Reservoir für eine anschließende Verdampfung.Another exemplary possibility for producing the evaporator and / or condenser element is not to coat the three-dimensional EVA network structure 3 used as the starting basis for the preceding examples with fine granules made of porous ceramic, but with larger granules (particle diameter larger than mesh size of the network) ) to combine in layers. This is part of the photo of the Figure 4 can be seen in cross section that the EVA network structure 3 below with the attached porous layer of ceramic granulate 2. This composite structure is in turn The melt infiltrates and the polymer is removed. It remains the metal structure 4 with superficial porous ceramic particles 2, as shown in the photo Figure 5 is shown in sections. The larger integrated volumes of porous ceramics lead to an expanded possibility of storing condensed liquid, for example as a reservoir for subsequent evaporation.

Eine weitere Möglichkeit zur Herstellung des Verdampfer- und/oder Kondensatorelementes ausgehend von der beschichteten Verbundstruktur der Figur 2 besteht darin, das Matrixmaterial auf dieser Verbundstruktur aus einer Flüssigkeit abzuscheiden, bspw. durch stromlose Kuper- oder Nickelabscheidung.Another possibility for producing the evaporator and / or condenser element based on the coated composite structure of the Figure 2 consists in depositing the matrix material from a liquid on this composite structure, for example by electroless copper or nickel deposition.

In einem weiteren Beispiel wird ein poröses Keramik-Granulat mit Salz-Platzhalterstrukturen kombiniert. Dabei erfolgt eine gezielte teilweise Beschichtung des Granulats mit Salzkristallen 5, bspw. NaCl, wie dies im Foto der Figur 6 dargestellt ist. Eine anschließende Metallinfiltration und das Entfernen des Salzes führt zu Metallstrukturen 4 mit (teilweise) lose eingebetteten Keramikpartikeln 2. Dies ist im Foto der Figur 7 dargestellt. Die Entfernung des Salzes kann im Falle von NaCl durch Spülen mit Wasser erfolgen. Die lose eingebetteten Keramikpartikel 2 sind beweglich, können den Metallverbund aber nicht verlassen. Durch die Beweglichkeit kann es während der Verdampfung zu selbstinduzierten Vibrationen kommen, welche die Verdampfung verstärken.In another example, a porous ceramic granulate is combined with salt placeholder structures. A targeted partial coating of the granules with salt crystals 5, for example NaCl, takes place, as shown in the photo Figure 6 is shown. A subsequent metal infiltration and the removal of the salt leads to metal structures 4 with (partially) loosely embedded ceramic particles 2. This is in the photo of Figure 7 shown. In the case of NaCl, the salt can be removed by rinsing with water. The loosely embedded ceramic particles 2 are movable, but cannot leave the metal composite. Due to the mobility, self-induced vibrations can occur during the evaporation, which intensify the evaporation.

Eine weitere Herstellungsmöglichkeit besteht in der Kombination von porösem Keramik-Granulat mit Salz-Platzhalterstrukturen wie im vorangegangenen Ausführungsbeispiel, wobei hier allerdings Mischungen von NaCl und CaCl2 verwendet werden. Hierbei wird das unterschiedliche Benetzungsverhalten der Salze auf den porösen Keramiken genutzt. Im Fall von X13-Zeolith als Material der Keramikpartikel bildet NaCl körnige Kristalle zwischen den Keramikpartikeln, während sich das CaCl2 dagegen eher schichtförmig auf den Oberflächen der Keramikpartikel anlagert. Dies kann bspw. genutzt werden, um eine höhere mechanische Stabilität der Struktur für die nachfolgenden Verarbeitungsschritte, bspw. Infiltrieren mit Schmelze, oder eine verstärkte Ausbildung loser Keramikpartikel in der Metallstruktur zu erzielen. Für das Entfernen des NaCl kann wiederum eine Wasserspülung genutzt werden, für das Entfernen des CaCl2 sowohl Wasser als auch verschiedene Alkohole wie bspw. Ethanol.Another production possibility is the combination of porous ceramic granules with salt-placeholder structures as in the previous exemplary embodiment, although mixtures of NaCl and CaCl 2 are used here. The different wetting behavior of the salts on the porous ceramics is used here. In the case of X13 zeolite as the material of the ceramic particles, NaCl forms granular crystals between the ceramic particles, while the CaCl 2, on the other hand, tends to form layers on the surfaces of the ceramic particles. This can be used, for example, in order to achieve a higher mechanical stability of the structure for the subsequent processing steps, for example infiltration with melt, or an increased formation of loose ceramic particles in the metal structure. A water rinse can again be used to remove the NaCl, and water as well as various alcohols such as ethanol for removing the CaCl 2 .

Die in den Ausführungsbeispielen genannten Platzhaltersubstanzen, d.h. EVA, NaCl, CaCl2 sind nur beispielhaft als mögliche Substanzen zu verstehen. Die Herstellung des vorgeschlagenen Verdampfer- und/oder Kondensatorelementes ist nicht auf diese Substanzen beschränkt. Andere mögliche Platzhaltermaterialien können bspw. andere Polymere wie Polystyrol, Polypropylen oder PMMA, oder andere Salze oder Mineralien wie CaCl2, MgSO4, MnSO4, K2CO3, MgCl2 sein. Es sind, wie im letzten Ausführungsbeispiel beschrieben, auch Kombinationen von Platzhaltermaterialien möglich. Das Entfernen der Platzhalter kann durch thermische oder chemische Zersetzung oder durch Einsatz von Lösungsmitteln erfolgen. Die in den Ausführungsbeispielen genannten Lösemittel sind ebenfalls nur als beispielhafte mögliche Substanzen zu verstehen, jedoch nicht beschränkend anzusehen. Das Entfernen der Platzhalter muss nicht vollständig erfolgen, solange sich eventuelle Platzhalterreste nicht störend auf die Verdampfungs- oder Kondensationsfunktion bzw. auf die Funktion des Gesamtsystems auswirken. Beispiele für unschädliche Platzhalterrückstände können z.B. geringe Mengen an schwer löslichen kohlenstoffhaltigen Rückständen aus der Zersetzung eines EVA-Platzhalters in technischen Verdampfungssystemen für Wasser oder geringe Mengen an NaCl-Resten in Verdampfungssystemen für Alkohole sein, in welchen NaCl nur sehr schwach löslich ist. Beispiele für schädliche und zu vermeidende Auswirkungen sind z. B. verstärkte Korrosionsangriffe durch Salzreste oder eine nachteilhafte Veränderung des Verdampfungsverhaltens des Kältemittels durch Kontamination mit Salzen oder anderen Stoffen. Abhilfemaßnahmen gegen solche schädliche Wirkungen können spezielle Behandlungen sein, bspw. Glühen in bestimmten Atmosphären oder Spülen in bestimmten Flüssigkeiten, durch welche Reste der Platzhaltersalze gezielt in andere Verbindungen umgewandelt werden. Speziell eignen sich hierfür Reaktionen, bei welchen leicht lösliche Platzhaltersalze in schwer lösliche Salze umgewandelt und auf diese Weise immobilisiert werden, bspw. die Reaktion von CaCl2 mit CO2-Gas zu schwer löslichem CaCO3.The placeholder substances mentioned in the exemplary embodiments, ie EVA, NaCl, CaCl 2, are only to be understood as examples of possible substances. The manufacture of the proposed evaporator and / or condenser element is not limited to these substances. Other possible placeholder materials can be, for example, other polymers such as polystyrene, polypropylene or PMMA, or other salts or minerals such as CaCl 2 , MgSO 4 , MnSO 4 , K 2 CO 3 , MgCl 2 . As described in the last exemplary embodiment, combinations of placeholder materials are also possible. The placeholders can be removed by thermal or chemical decomposition or by using solvents. The solvents mentioned in the exemplary embodiments are likewise only to be understood as exemplary possible substances, but are not to be regarded as restrictive. The placeholders do not have to be removed completely, as long as any placeholder residues do not interfere with the evaporation or condensation function or the function of the overall system. Examples of harmless placeholder residues can be, for example, small amounts of poorly soluble carbon-containing residues from the decomposition of an EVA placeholder in technical evaporation systems for water or small amounts of NaCl residues in evaporation systems for alcohols, in which NaCl is only very slightly soluble. Examples of harmful and avoidable effects are e.g. B. increased corrosion attacks by salt residues or a disadvantageous change in the evaporation behavior of the refrigerant due to contamination with salts or other substances. Remedial measures against such harmful effects can be special treatments, for example glowing in certain atmospheres or rinsing in certain liquids, by means of which residues of the placeholder salts are specifically converted into other compounds. Reactions in which easily soluble placeholder salts are converted into poorly soluble salts and immobilized in this way are particularly suitable, for example the reaction of CaCl 2 with CO 2 gas to give poorly soluble CaCO 3 .

Bei dem vorgeschlagenen Verdampfer- und/oder Kondensatorelement ergeben sich durch die eingebetteten porösen Partikel viele positive Effekte. Die porösen Partikel dienen als Siedesteine für die Verdampfung, z.B. für die Bereitstellung von Blasenkeimstellen. Sie stören die Wärmeleitung innerhalb der metallischen Struktur nur geringfügig und beeinflussen die lokale Temperaturverteilung günstig. Sie beeinflussen das lokale Benetzungsverhalten und die Mobilität der 3-Phasen-Grenzfläche entlang der Verdampferoberfläche. Sie können als Reservoir für Dampfreste dienen, welche bevorzugte Keimbildungsstellen für neue Blasen darstellen und sie können als lokale Flüssigkeitsreservoire dienen. In der Summe ergeben sich dadurch drei wesentliche Vorteile. Die für die Verdampfung notwendige Überhitzungstemperatur wird gesenkt, so dass dadurch die Möglichkeit für die Verbesserung des thermodynamischen Wirkungsgrades des Gesamtsystems gegeben ist. Die kurzzeitig abrufbare Verdampfungsleistung wird erhöht und es ergibt sich eine verbesserte Möglichkeit der lokalen Speicherung von Kondensat.In the proposed evaporator and / or condenser element result from the embedded porous particles have many positive effects. The porous particles serve as boiling stones for evaporation, for example for the provision of bladder germ sites. They only slightly interfere with the heat conduction within the metallic structure and have a favorable influence on the local temperature distribution. They influence the local wetting behavior and the mobility of the 3-phase interface along the evaporator surface. They can serve as a reservoir for steam residues, which are preferred nucleation sites for new bubbles, and they can serve as local liquid reservoirs. In total, there are three major advantages. The superheating temperature necessary for the evaporation is reduced, so that this gives the possibility of improving the thermodynamic efficiency of the overall system. The evaporation capacity that can be called up briefly is increased and there is an improved possibility of storing condensate locally.

Figur 8 zeigt noch beispielhaft in stark schematisierter Darstellung eine mögliche Ausgestaltung eines vorgeschlagenen Verdampfer- und/oder Kondensatorelements mit der in diesem Falle netzartig ausgebildeten Trägerstruktur 1 und den darin eingebetteten porösen Keramikpartikeln (in der Figur nicht erkennbar) im Querschnitt. In diesem Beispiel steht eine Seite der Trägerstruktur in Kontakt mit der Außenseite eines Rohres 6, in dem ein Wärmeträgerfluid zur Wärmezu- und -abfuhr fließt. Um einen möglichst guten thermischen Kontakt zu erhalten, ist die Trägerstruktur auf das Rohr aufgeschrumpft oder stoffschlüssig mit diesem verbunden. Figure 8 shows, by way of example in a highly schematic representation, a cross-section of a possible embodiment of a proposed evaporator and / or condenser element with the support structure 1, which in this case is network-like, and the porous ceramic particles (not visible in the figure) embedded therein. In this example, one side of the support structure is in contact with the outside of a tube 6, in which a heat transfer fluid flows for supplying and removing heat. In order to obtain the best possible thermal contact, the support structure is on the Pipe shrunk on or connected to it with a material bond.

Es können bspw. Rund- oder Flachrohre zur effizienten Wärmezu- und -abfuhr in das Verdampfer- und/oder Kondensatorelement integriert oder mit diesem verbunden sein. Die Trägerstruktur mit den eingebetteten Partikeln kann auch partiell nach außen verschlossen sein, so dass dort fluidführende Strukturen z. B. angeschweißt werden können.For example, round or flat tubes for efficient heat supply and removal can be integrated in the evaporator and / or condenser element or connected to it. The support structure with the embedded particles can also be partially closed to the outside, so that there are fluid-carrying structures such. B. can be welded.

BezugszeichenlisteReference list

11
TrägerstrukturSupport structure
22nd
Keramikpartikel/KeramikgranulatCeramic particles / ceramic granules
33rd
dreidimensionale EVA-Netzstrukturthree-dimensional EVA network structure
44th
MetallstrukturMetal structure
55
SalzkristalleSalt crystals
66
Rohrpipe

Claims (14)

  1. Evaporator and/or capacitor element having a support structure (1) made from a thermally conductive material having a surface for evaporating or sublimating and/or condensing or resublimating a liquid or solid medium, characterized in that particles (2) of a porous material are embedded in the surface of the support structure (1) in such manner that they partially protrude from this surface.
  2. Evaporator and/or capacitor element according to Claim 1, characterized in that the support structure (1) has or forms channels and/or passthrough openings for receiving and/or transporting the liquid medium.
  3. Evaporator and/or capacitor element according to Claim 1 or 2, characterized in that the particles (2) are distributed over the surface of the support structure (1) in such manner that areas of the surface remain exposed between the particles (2).
  4. Evaporator and/or capacitor element according to any one of Claims 1 to 3, characterized in that at least some of the particles (2) are embedded only loosely in the surface of the support structure (1) and are retained by undercuts in the surface.
  5. Evaporator and/or capacitor element according to any one of Claims 1 to 4, characterized in that at least some of the particles (2) are embedded in the surface of the support structure (1) in such manner that cracks are created between the particles (2) and the surrounding material of the support structure (1).
  6. Evaporator and/or capacitor element according to any one of Claims 1 to 5, characterized in that the particles (2) have a porosity which is between 30 and 90% by volume.
  7. Evaporator and/or capacitor element according to any one of Claims 1 to 6, characterized in that the particles have a size which is between 50 µm and 5 mm.
  8. Evaporator and/or capacitor element according to any one of Claims 1 to 7, characterized in that most of the particles are embedded in the surface of the support structure (1) in such manner that 10% to 90% of each particle volume is surrounded by the material of the support structure (1).
  9. Evaporator and/or capacitor element according to any one of Claims 1 to 8, characterized in that the support structure (1) is embodied in the form of spaced lamellae, in the form of a plurality of spaced foil layers, as a sponge structure or in the form of a three-dimensional mesh.
  10. Evaporator and/or capacitor element according to any one of Claims 1 to 9, characterized in that the support structure (1) is made from metal and the particles (2) are made from ceramic.
  11. Evaporator and/or capacitor element according to any one of Claims 1 to 10, characterized in that the support structure (1) is connected to one or more tubes (6) for the supply and dissipation of heat via a heat transfer fluid.
  12. Method for producing an evaporator and/or capacitor element according to any one of Claims 1 to 10, in which
    - the porous particles (2) are first connected to a placeholder structure (3) or placeholder elements (5), by which a composite structure with continuous interstitial spaces is obtained, into which the porous particles (2) protrude, and
    - either material forming the support structure (1) is then poured over the composite structure, penetrating the interstitial spaces, or the interstitial spaces of the composite structure are filled with a powdery material forming the support structure (1), which is then sintered,
    - wherein the placeholder structure (3) or placeholder elements (5) is/are at least partially removed either already by a heat generated during pouring or sintering or subsequently by a separate treatment.
  13. Method for producing an evaporator and/or capacitor element according to any one of Claims 1 to 10, in which
    - particles which in a later step receive a porosity for forming the porous particles (2) are first connected to a placeholder structure (3) or placeholder elements (5), by which a composite structure with continuous interstitial spaces is obtained, into which the particles protrude, and
    - either a material forming the support structure (1) is then poured over the composite structure, penetrating the interstitial spaces, or the interstitial spaces of the composite structure are filled with a powdery material forming the support structure (1), which is then sintered,
    - wherein the placeholder structure (3) or placeholder elements (5) is/are at least partially removed either already by a heat generated during pouring or sintering or subsequently by a separate treatment and
    - wherein the particles receive the porosity to form the porous particles (2) either already by the heat generated during pouring or sintering or due to separate treatment.
  14. Method according to Claim 12 or 13, characterized in that the placeholder structure (3) or placeholder elements (5) are formed from one or more salts or polymers.
EP17730681.8A 2016-05-25 2017-05-23 Evaporator and/or condenser element with superficially embedded porous particles Active EP3465063B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016209082.8A DE102016209082A1 (en) 2016-05-25 2016-05-25 Evaporator and / or capacitor element with superficially embedded porous particles
PCT/EP2017/062364 WO2017202820A1 (en) 2016-05-25 2017-05-23 Evaporator and/or condenser element with superficially embedded porous particles

Publications (2)

Publication Number Publication Date
EP3465063A1 EP3465063A1 (en) 2019-04-10
EP3465063B1 true EP3465063B1 (en) 2020-04-08

Family

ID=59070599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17730681.8A Active EP3465063B1 (en) 2016-05-25 2017-05-23 Evaporator and/or condenser element with superficially embedded porous particles

Country Status (3)

Country Link
EP (1) EP3465063B1 (en)
DE (1) DE102016209082A1 (en)
WO (1) WO2017202820A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US481A (en) 1837-11-23 Improvement in the pistol-saber
US4219078A (en) * 1978-12-04 1980-08-26 Uop Inc. Heat transfer surface for nucleate boiling
US4819719A (en) * 1987-01-20 1989-04-11 Mcdonnell Douglas Corporation Enhanced evaporator surface
GB9024056D0 (en) * 1990-11-06 1990-12-19 Star Refrigeration Improved heat transfer surface
US6660224B2 (en) * 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material
FI120050B (en) * 2004-06-03 2009-06-15 Luvata Oy Method for reducing and bonding metal oxide powder to a heat transfer surface and heat transfer surface
EP1862733A1 (en) * 2005-11-09 2007-12-05 Manlio Molinari Quick steam generator
US20090269521A1 (en) * 2008-04-24 2009-10-29 3M Innovative Properties Company Porous structured thermal transfer article
US20100263842A1 (en) * 2009-04-17 2010-10-21 General Electric Company Heat exchanger with surface-treated substrate
WO2011162849A2 (en) * 2010-04-01 2011-12-29 The Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Device having nano-coated porous integral fins
DE102010016644A1 (en) * 2010-04-26 2011-11-24 Technische Universität Darmstadt Evaporator for evaporation of liquid coolant, has housing which has inlet opening for liquid coolant and outlet opening for evaporated coolant
DE102013103840A1 (en) 2013-04-16 2014-10-16 Benteler Automobiltechnik Gmbh Evaporator tube for arrangement in an exhaust system and method for producing the evaporator tube with a porous sintered structure and steam channels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102016209082A1 (en) 2017-11-30
EP3465063A1 (en) 2019-04-10
WO2017202820A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
DE102006008786B4 (en) Adsorption heat pump, adsorption chiller and adsorber elements contained therein based on an open-pore heat-conducting solid
DE112011103811B4 (en) Festkörpersorptionskühlung
US20190014688A1 (en) Vapor chamber heat spreaders and methods of manufacturng thereof
DE102008010746A1 (en) Heat storage composite material
DE112019003618T5 (en) HEAT TUBES COMPREHENSIVE WICK STRUCTURES WITH VARIABLE PERMEABILITY
DE102014118177A1 (en) Process for producing metallic moldings, metallic moldings and method for forming a component with a heat exchanger
DE102015215570A1 (en) Heat sink for an electronic component and method for its production
EP1430530B1 (en) Heat exchanger
DE60126282T2 (en) ADSORPTIONSKÄLTEVORRICHTUNG
DE112004002839T5 (en) Device for heat transport and method for its production
EP3465063B1 (en) Evaporator and/or condenser element with superficially embedded porous particles
EP2236970B1 (en) Heat exchanger with a phase change material and method for its manufacture
DE602004005885T2 (en) METHOD FOR PRODUCING COMPOSITE BODILIES FROM BLUE GRAPHITE AND VERMICULITE
DE102005001056B4 (en) Sorption storage element and method for its preparation
AT524235B1 (en) heat transport device
DE102005007516A1 (en) Adsorption cooling device, e.g. to act as an adsorption heat pump or refrigerator, draws off/adds water vapor/steam from a vaporizer acting as a cooling element
DE102020210170A1 (en) Capacitor element and method of manufacturing it
DE10328047B3 (en) Made of metal foam blocks component and method for its preparation
DE102014118178A1 (en) Method for producing a metallic structure
WO2009030208A1 (en) Component and use of same
DE102006048445B4 (en) Apparatus for providing heat, method for its production and method for transferring heat
DE102019107161A1 (en) Filter element and method for manufacturing a filter element
EP2135693B1 (en) Filter element and method for manufacturing a filter element
DE102019116102A1 (en) Storage unit for reversible storage of thermal energy
DE102021102959A1 (en) Process for the production of a heat pipe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181119

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1254960

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004677

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200709

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200817

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004677

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

26N No opposition filed

Effective date: 20210112

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200408

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1254960

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 7

Ref country code: FR

Payment date: 20230517

Year of fee payment: 7

Ref country code: DE

Payment date: 20230519

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 7