EP3441986B1 - Isolierter elektrischer leiter - Google Patents

Isolierter elektrischer leiter Download PDF

Info

Publication number
EP3441986B1
EP3441986B1 EP18191902.8A EP18191902A EP3441986B1 EP 3441986 B1 EP3441986 B1 EP 3441986B1 EP 18191902 A EP18191902 A EP 18191902A EP 3441986 B1 EP3441986 B1 EP 3441986B1
Authority
EP
European Patent Office
Prior art keywords
layer
electrical conductor
electric conductor
insulating coating
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18191902.8A
Other languages
English (en)
French (fr)
Other versions
EP3441986A1 (de
EP3441986B8 (de
Inventor
Jürgen Hochstöger
Rudolf Schrayvogel
Ewald Koppensteiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HPW Metallwerk GmbH
Original Assignee
Gebauer and Griller Metallwerk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebauer and Griller Metallwerk GmbH filed Critical Gebauer and Griller Metallwerk GmbH
Priority to PL18191902T priority Critical patent/PL3441986T3/pl
Priority to RS20211525A priority patent/RS62697B1/sr
Publication of EP3441986A1 publication Critical patent/EP3441986A1/de
Application granted granted Critical
Publication of EP3441986B1 publication Critical patent/EP3441986B1/de
Publication of EP3441986B8 publication Critical patent/EP3441986B8/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/301Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen or carbon in the main chain of the macromolecule, not provided for in group H01B3/302
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/003Apparatus or processes specially adapted for manufacturing conductors or cables using irradiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/141Insulating conductors or cables by extrusion of two or more insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • H01B13/145Pretreatment or after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/305Polyamides or polyesteramides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/307Other macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/427Polyethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0225Three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0291Disposition of insulation comprising two or more layers of insulation having different electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/303Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups H01B3/38 or H01B3/302
    • H01B3/306Polyimides or polyesterimides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes

Definitions

  • the invention relates to an insulated electrical conductor comprising an electrical conductor, preferably made of copper or aluminum, with an insulating coating, the insulating coating comprising at least one outer insulating layer made of thermoplastic material, and to a method for producing such an insulated electrical conductor.
  • Insulated electrical conductors are installed in almost every electrical device in order to conduct electrical current without causing short circuits, which can be caused by the contact of non-electrically insulated conductors.
  • Such insulated electrical conductors comprise an electrical conductor made of copper and a coating which electrically insulates the electrical conductor and usually has one or more layers.
  • the insulating coating comprises an insulating layer made of thermoplastic material.
  • an all-round cut is usually made on the insulated electrical conductor perpendicular to a conductor axis, the electrical conductor is stretched by 20% and then the detachment of the insulating coating from the electrical conductor is measured. The less the insulating coating detaches from the electrical conductor, the better the adhesion.
  • JP2003031061A discloses the production of an insulated electrical conductor comprising an electrical conductor with an insulating coating, the insulating coating comprising an insulating layer made of thermoplastic material (EVA or PE).
  • the electrical conductor of the generic insulated electrical conductor consists of copper or an alloy with a high copper content or aluminum or other electrically conductive materials.
  • the electrical conductor is understood to mean both a single conductor and a stranded wire containing a plurality of individual conductors.
  • the cross-sectional geometry of the electrical conductor which is normal to a conductor axis, can have any geometric shape: square, rectangular, circular or elliptical, whereby it Any edges are usually rounded or profiled.
  • the insulation of the electrical conductor is ensured by the provided at least one insulation layer made of thermoplastic material, wherein the at least one insulation layer can advantageously form the outermost layer of the insulating coating. However, it is also conceivable that one or more further insulation layers are applied to the at least one insulation layer.
  • oxide layer for example made of copper oxide or aluminum oxide
  • the oxide layer has a negative effect on the adhesive properties of a layer of the insulating coating applied to the surface of the electrical conductor.
  • the adhesion of the layer of the insulating coating applied to the surface of the electrical conductor from which the oxide layer has been removed is significantly improved. It has been shown that the oxide layer can be completely removed by a plasma treatment under an - oxygen-free - protective gas atmosphere, with other impurities also being able to be removed by the plasma treatment. It is even possible that the plasma treatment removes the top atomic layers of the electrical conductor.
  • a gas plasma is generated in the protective gas atmosphere and the electrical conductor in the plasma is bombarded with ions of the protective gas in order to remove at least the oxide layer by the ion bombardment.
  • Suitable protective gas or process gas are, for example, nitrogen, argon or hydrogen.
  • the plasma treatment has other positive effects on the insulated electrical conductor: on the one hand, the electrical conductor is heated by the impact energy of the ions on the surface and can be annealed during the plasma treatment
  • the surface energy of the electrical conductor can be increased by ion bombardment, which additionally improves the adhesion of the insulating coating to the surface of the electrical conductor.
  • Another effect of the plasma treatment is the increase in the micro-roughness of the surface of the electrical conductor, which also has a positive effect on the adhesion of the insulating coating.
  • At least part of the insulating coating is applied to the surface of the electrical conductor in a protective gas atmosphere, preferably in the same protective gas atmosphere under which the plasma treatment is carried out.
  • An insulated electrical conductor according to the invention has particularly good adhesion properties due to the direct application of a plastic-containing intermediate layer of the insulating coating or the direct application of the insulating layer made of thermoplastic material to the plasma-treated and thus oxide-layer-free surface of the electrical conductor: If a circumferential cut on the insulated electrical conductor is perpendicular carried out to a conductor axis and the conductor stretched by 20%, the detachment of the insulating coating from the electrical conductor measured in the direction of the conductor axis is only a maximum of 3 mm, preferably a maximum of 2 mm, in particular a maximum of 1 mm.
  • the adhesion effect is thus achieved in both variants in that a plastic layer, which is preferably made of plastic, is applied under a protective gas atmosphere directly to the surface of the electrical conductor, which is preferably plasma-cleaned and thus oxide layer-free.
  • the plastic layer can be the at least one insulating layer made of thermoplastic plastic if no intermediate layer is provided.
  • the plastic layer can also be an intermediate layer containing plastic, preferably a plasma polymer layer or at least one fluoropolymer layer. If the insulating coating has an intermediate layer containing plastic, the at least one insulating layer is preferably applied directly to the intermediate layer containing plastic. However, it is also conceivable that one or more further intermediate layers are provided between the intermediate layer containing plastic and the at least one insulation layer.
  • the plastic-containing intermediate layer of the insulating coating is preferably the plasma polymer layer or the at least one fluoropolymer layer.
  • the insulating coating consists of the at least one insulation layer, that is to say has no further intermediate layers.
  • the detachment of the insulating coating from the electrical conductor usually remains far below 1 mm, in particular a maximum of 0.2 mm, preferably a maximum of 0.1 mm, preferably a maximum of 0.05 mm, particularly preferably a maximum 0.01 mm, if the at least one insulation layer is applied directly to the surface of the electrical conductor.
  • the at least one insulation layer comprises a polyaryletherketone [PAEK], in particular polyetheretherketone [PEEK], or consists of polyaryletherketone [PAEK], in particular polyetheretherketone [PEEK].
  • One embodiment variant of the invention provides that the electrical conductor is arranged continuously under a protective gas atmosphere until the insulating coating is applied in order to prevent the formation of a new oxide layer on the surface of the electrical conductor. It is also possible to run through several protective gas atmospheres one after the other, as long as the plasma-treated electrical conductor is arranged uninterruptedly under one of the protective gas atmospheres.
  • the gas plasma for bombarding the electrical conductor is a low-pressure plasma, preferably with a pressure below 80 mbar, which can be produced in a manner known per se.
  • pressures below 50 mbar or even below 20 mbar are conceivable.
  • the insulating coating in particular the at least one insulating layer, has a temperature resistance of at least 180 ° C, preferably of at least 200 ° C, in particular of at least 220 ° C.
  • thermoplastic material of the at least one insulation layer is selected from the group consisting of polyaryletherketone [PAEK], polyimide [PI], polyamideimide [PAI], polyetherimide [PEI], polyphenylene sulfide [PPS] and combinations thereof.
  • PAEK polyaryletherketone
  • PAI polyamideimide
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • the thermoplastic material can comprise one or more of the plastics mentioned above and, if appropriate, further components, such as fiber material, fillers or further plastics.
  • Polyaryletherketones are made up of phenyl groups linked by means of oxygen bridges, i.e. ether or ketone groups, the number and sequence of the ether or ketone groups within the polyaryletherketones being variable.
  • Polyimides are plastics whose most important structural feature is the imide group. These include polysuccinimide (PSI), Polybismaleimide (PBMI) and polyoxadiazobenzimidazole (PBO), polyimidesulfone (PISO) and polymethacrylimide (PMI).
  • thermoplastic of the at least one insulation layer is a polyaryletherketone [PAEK] selected from the group consisting of polyetherketone [PEK], polyetheretherketone [PEEK], polyetherketoneketone [PEKK ], Polyether ether ketone ketone [PEEKK], polyether ketone ether ketone ketone [PEKEKK], and combinations thereof.
  • PAEK polyaryletherketone
  • Polyetheretherketone [PEEK] has proven to be particularly well suited for the at least one insulation layer.
  • the at least one insulation layer has a thickness between 10 and 1000 ⁇ m, preferably between 25 ⁇ m and 750 ⁇ m, particularly preferably between 30 ⁇ m and 500 ⁇ m, in particular between 50 ⁇ m and 250 ⁇ m.
  • other layer thicknesses are also conceivable, for example 40 ⁇ m, 60 ⁇ m, 80 ⁇ m, 100 ⁇ m or 200 ⁇ m, to name a few possibilities.
  • the specified values can relate both to the thickness of an individual layer of the insulation layer and to the total thickness of the insulation layer if the insulation layer comprises more than one layer.
  • the at least one insulation layer can be produced inexpensively and quickly if it is applied by an extrusion process, that is to say it is extruded on. Therefore, in a further preferred embodiment of the invention, it is provided that the, preferably outer, insulation layer can be produced by means of an extrusion process.
  • the insulating coating consists of the at least one insulating layer and the at least one insulating layer is applied directly to the surface of the electrical conductor, one becomes special enables simple and inexpensive production of an insulated electrical conductor according to the invention, since the adhesion of the at least one insulation layer to the surface of the electrical conductor as a result of the plasma treatment is already so good that no intermediate layers are necessary.
  • the insulating coating consists of the at least one insulating layer and that the plastic-containing intermediate layer applied directly to the surface of the electrical conductor is the at least one insulating layer.
  • the particularly preferred embodiment relates to an insulated electrical conductor comprising an electrical conductor, preferably made of copper or aluminum, with an insulating coating, the insulating coating consisting of at least one insulating layer made of thermoplastic material, obtainable by a method in which the electrical conductor is under a protective gas atmosphere in a gas plasma is bombarded with ions of the protective gas in order to remove an oxide layer formed on a surface of the electrical conductor and / or to increase the surface energy of the electrical conductor, and the at least one insulation layer is applied directly to the surface of the electrical conductor is, the at least one insulation layer is applied to the electrical conductor in a protective gas atmosphere.
  • the particularly preferred embodiment also relates to an insulated electrical conductor comprising an electrical conductor, preferably made of copper or aluminum, with an insulating coating, the insulating coating consisting of at least one insulating layer made of thermoplastic material, the invention providing that an oxide layer formed on a surface of the electrical conductor by bombarding the electrical conductor with ions of a Protective gas of a protective gas atmosphere is removed in a gas plasma and subsequently the at least one insulation layer is applied directly to the oxide-layer-free surface of the electrical conductor.
  • the insulating coating can consist, for example, of only a single insulating layer which is applied directly to the surface of the electrical conductor in order to enable particularly simple manufacture.
  • a further particularly preferred embodiment of the invention provides that the insulating Coating consists of exactly two or more than two, for example three or four, insulation layers.
  • a lowermost insulation layer is applied directly to the surface of the electrical conductor, the further insulation layers each being applied to one of the preceding insulation layers. If a fault has occurred in the lowest insulation layer, i.e.
  • the subsequent insulation layers increase the likelihood that the faulty section of the lowest insulation layer will not be covered by the following insulation layers either, reduced following an exponential function.
  • all insulation layers are applied in a protective gas atmosphere, so that the adhesion of subsequent insulation layers in the area of defective sections of the preceding insulation layers is improved.
  • At least one, that is to say for example one, two, three or four, further insulation layer made of thermoplastic material can be applied to the insulating coating or to the insulating coating consisting of the at least one insulating layer.
  • the at least one further insulation layer is preferably constructed analogously to the at least one insulation layer, so that the thermoplastic plastic of the at least one further insulation layer is selected from the group consisting of polyaryletherketone [PAEK], in particular polyetheretherketone [PEEK], polyimide [PI], polyamideimide [PAI ], Polyetherimide [PEI], polyphenylene sulfide [PPS], and combinations thereof.
  • At least one further insulation layer is applied to the insulating coating outside the protective gas atmosphere in order to cover any defective sections of the insulating coating, so that the adhesion of the further insulation layer is not improved in the area of the defective sections of the insulating coating.
  • further insulation layers can also be applied if a greater thickness of the insulation is required. Therefore, in a further embodiment of the invention it is provided that at least one, preferably one, two or three, further insulation layer is applied to the insulating coating, the at least one further insulation layer not being applied in a protective gas atmosphere.
  • the insulating coating has a plasma polymer layer of crosslinked macromolecules of non-uniform chain length, which plasma polymer layer is applied directly to the surface of the electrical conductor by polymerizing a gaseous monomer in a gas plasma, preferably in a gas plasma for bombarding the electrical conductor, can be produced.
  • the plastic-containing intermediate layer of the insulating coating applied directly to the surface of the electrical conductor in this exemplary embodiment is the plasma polymer layer.
  • the plasma polymer layer serves as an intermediate layer and, on the one hand, adheres excellently to the surface of the electrical conductor and, on the other hand, enables increased adhesion of the layer of the insulating coating applied to the plasma polymer layer, for example the at least one insulating layer.
  • the plasma polymer layer has a thickness of 1 ⁇ m or less. Thicknesses of up to a hundredth of a micrometer are conceivable as the lower limit. Due to the small layer thickness, the plasma polymer layer has only a negligible effect on the entire thickness of the insulated electrical conductor.
  • the monomer for producing the plasma polymer layer is ethylene, buthenol, acetone or tetrafluoromethane [CF 4 ].
  • the plasma polymer layers formed by these monomers in the plasma are characterized by particularly good adhesion properties.
  • the plasma polymer layer is to have properties similar to those of polytetrafluoroethylene [PTFE] or perfluoroethylene propylene [FEP], CF 4 is the ideal monomer.
  • the insulating coating has at least one fluoropolymer layer applied directly to the surface of the electrical conductor, preferably comprising polytetrafluoroethylene [PTFE] or perfluoroethylene propylene [FEP].
  • the fluoropolymer layer is also characterized by excellent adhesive properties, both on the electrical conductor and on the layer applied to the fluoropolymer layer, and serves as an intermediate layer insulating coating. It is also conceivable that several fluoropolymer layers, for example two, three or four, are applied to the electrical conductor on top of one another.
  • the thickness of the at least one fluoropolymer layer is between 1 ⁇ m and 120 ⁇ m, preferably between 5 ⁇ m and 100 ⁇ m, particularly preferably between 10 ⁇ m and 80 ⁇ m, in particular between 20 ⁇ m and 50 ⁇ m .
  • the entire insulating coating is applied in a preferred embodiment of the invention under a protective gas atmosphere.
  • a further embodiment of the invention provides that the at least one insulation layer is applied directly to the plasma polymer layer or the at least one fluoropolymer layer.
  • the insulating coating consists of at least two layers: the first lower layer applied directly to the electrical conductor in accordance with the first or second alternative embodiment variant and the second upper layer in the form of the at least one insulating layer made of thermoplastic material.
  • the outermost layer of the insulating coating can either be formed by the at least one insulating layer itself or by one or more further layers.
  • the electrical conductor preferably made of copper or aluminum, is subjected to the process in the form of a tape or a wire.
  • the electrical conductor is either treated "inline", i.e. directly after the production of the electrical conductor (for example by cold forming or extrusion), in accordance with the method according to the invention, or the electrical conductor is made available in wound form via a coil payout.
  • the electrical conductor becomes one more before the plasma treatment mechanical and / or chemical pre-cleaning.
  • the plasma treatment is carried out analogously to the previous explanations, the electrical conductor being continuously conveyed through the plasma treatment unit carrying out the plasma treatment.
  • the thickness of the layer removed from the electrical conductor by the plasma treatment can be precisely adjusted by a suitable choice of the process parameters.
  • the temperature for the soft annealing and the associated recrystallization of the structure of the electrical conductor can also be defined.
  • the insulating coating is applied to the treated surface of the electrical conductor.
  • the insulating coating adheres particularly well to the surface of the electrical conductor due to the removal of the oxide layer or the activation of the surface by increasing the surface energy of the electrical conductor.
  • either the at least one insulation layer or at least the plastic-containing intermediate layer of the insulating coating i.e. in particular the plasma polymer layer or the at least one fluoropolymer layer, applied directly to the oxide layer-free surface of the electrical conductor in a protective gas atmosphere. It is particularly advantageous if the electrical conductor is arranged continuously under a protective gas atmosphere until the insulating coating is applied. It goes without saying that, if two, three or more insulation layers made of thermoplastic material are provided, in any case the first of the insulation layers is applied directly to the surface of the electrical conductor and the subsequent ones Insulation layers are at least partially applied to the underlying insulation layers.
  • Insulated electrical conductors produced in this way have particularly good adhesion properties through the direct application of an intermediate layer of the insulating coating containing plastic or through the direct application of the at least one insulating layer made of thermoplastic material to the plasma-treated, oxide-free surface of the electrical conductor: If an all-round cut is made on the insulated electrical conductor carried out perpendicular to a conductor axis and the conductor stretched by 20%, the detachment of the insulating coating from the electrical conductor measured in the direction of the conductor axis is only a maximum of 3 mm, preferably a maximum of 2 mm, in particular a maximum of 1 mm.
  • thermoplastic of the at least one insulation layer is selected from the group consisting of polyaryletherketone [PAEK], in particular polyetheretherketone [PEEK], polyimide [PI], polyamideimide [PAI], polyetherimide [PEI], polyphenylene sulfide [ PPS] and combinations thereof.
  • PAEK polyaryletherketone
  • PEEK polyetheretherketone
  • PI polyimide
  • PAI polyamideimide
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • Extrusion is a cost-effective method for applying the insulation layer and is also particularly suitable for PAEK, in particular PEEK, and PPS.
  • the at least one insulation layer can thus also be applied in a simple manner as the outermost layer of the insulating coating.
  • the electrical conductor By preheating the electrical conductor, which is particularly advantageous if the at least one insulation layer or the insulating coating is extruded directly onto the surface of the electrical conductor, a sudden cooling of the plastic-containing intermediate layer on contact with the electrical conductor is reduced and thus negative influences on adhesion are minimized.
  • the electrical conductor is cooled before the application of the insulating coating in order to prevent excessive heating, for example a melt, of the plastic-containing intermediate layer upon contact with the electrical conductor. Therefore, in a further preferred embodiment of the method, it is provided that the electrical conductor is brought to a temperature of at least 200 ° C., preferably at least 400 ° C., before the insulating coating is applied.
  • the insulated electrical conductor is cooled after the at least one insulation layer has been extruded on, depending on the strength of the at least one insulation layer to be achieved.
  • the setting of the mechanical properties of the at least one insulation layer takes place, among other things, through the defined cooling of the insulated electrical conductor and the resulting setting of the degree of crystallization and is particularly important if the at least one insulation layer is the outermost layer the insulating coating. If the insulated electrical conductor is cooled slowly, for example, by cooling in air, the result is a high degree of crystallinity of the at least one insulation layer. Quenching in a water bath, i.e. abrupt cooling, or a combination of abrupt and slow cooling is also conceivable.
  • the insulated electrical conductor is guided over rollers, preferably pressure rollers, after the at least one insulation layer has been extruded on. It is particularly advantageous if the at least one insulation layer forms the outermost layer of the insulating coating. Closely guiding the insulated electrical conductor over the pressure rollers while applying pressure to the insulated electrical conductor leads to particularly good adhesion of the insulating coating or in particular of the at least one insulation layer on the surface of the electrical conductor.
  • the interfaces of the insulating coating between the individual layers, if several are present, and / or the interface of the lowest layer of the insulating coating and the surface of the electrical conductor are pressed against one another, thus increasing the adhesion effects.
  • the insulating coating consists of at least two, preferably exactly two, insulating layers and the insulating coating is produced by means of tandem extrusion under a protective gas atmosphere.
  • the tandem extrusion the at least two insulation layers are produced independently of one another, so that a clogging of an extrusion tool only causes a defect in one of the insulation layers.
  • the defective section is covered with a high degree of probability by the subsequent extrusion steps.
  • a further embodiment of the invention provides that at least one further insulating layer made of thermoplastic material is applied to the insulating material by means of tandem extrusion Coating is extruded on, the extrusion of the further insulation layer not taking place under a protective gas atmosphere.
  • thermoplastic of the at least one further insulation layer is preferably selected from the group consisting of polyaryletherketone [PAEK], in particular polyetheretherketone [PEEK], polyimide [PI], polyamideimide [PAI], polyetherimide [PEI], polyphenylene sulfide [PPS] and combinations thereof.
  • PAEK polyaryletherketone
  • PEEK polyetheretherketone
  • PI polyimide
  • PAI polyamideimide
  • PEI polyetherimide
  • PPS polyphenylene sulfide
  • the steps required to produce the insulating coating can be reduced by the fact that the at least one insulating layer and the at least one fluoropolymer Layer can be produced by means of co- or tandem extrusion. So both layers can be in can only be produced in a single production step and with an extrusion unit.
  • a further embodiment variant provides that a plasma polymer layer containing plastic is applied directly to the surface of the electrical conductor by polymerizing a gaseous monomer in a gas plasma.
  • an insulated electrical conductor according to the invention is used as a winding wire for electrical machines, preferably electrical motors or transformers.
  • FIG. 11 shows a schematic representation of a method for producing an insulated electrical conductor as shown in FIG Figures 2a to 2d or 3a to 3d is shown.
  • the insulated electrical conductor comprises an electrical conductor 1 made of copper, other materials such as aluminum are also conceivable, and an insulating coating 2, which has at least one insulating layer 3 made of thermoplastic, preferably high-temperature-resistant plastic.
  • the at least one insulation layer 3 is designed as an outer insulation layer 3 and thus forms the outermost layer of the insulating coating 2.
  • one or more additional layers, preferably Insulation layers can be applied, which can then form the outermost layer of the insulating coating 2.
  • the electrical conductor 1 is continuously fed to the process as a strip or wire via a coil payout 7 and can be produced using cold forming processes, such as drawing or rolling, or extrusion, for example using Conform® technology. It goes without saying that the method according to the invention can also be carried out “in-line”, that is to say directly following the manufacturing process.
  • the electrical conductor 1 is pre-cleaned mechanically, for example by means of a grinding process, or chemically, for example by means of suitable solvents or acids, in a pre-cleaning unit 8, in order to remove coarse dirt from the electrical conductor 1.
  • the pre-cleaned electrical conductor 1 arrives in a plasma treatment unit 9 in which a protective gas atmosphere of nitrogen, argon or hydrogen prevails and a gas plasma is produced in the form of a low-pressure plasma with a pressure of less than 20 mbar.
  • a low-pressure plasma can also be used at a pressure of less than 80 mbar can be produced.
  • the surface of the electrical conductor 1 is bombarded with ions of the protective gas in order to ablate or remove an oxide layer formed on a surface of the electrical conductor 1.
  • the electrical conductor 1 is annealed soft by the plasma treatment and the surface energy of the electrical conductor 1 increases, so the surface is activated.
  • the insulating coating 2 consists of only one insulation layer 3.
  • the insulation layer 3 has a temperature resistance of over 180 ° C., preferably over 220 ° C., so that the insulated electrical conductor can also be used at high operating temperatures.
  • the outer insulation layer 3 consists of polyetheretherketone [PEEK], which has both high temperature resistance and high resistance to a large number of organic and inorganic substances.
  • the outer insulation layer 3 can also consist of polyphenylene sulfide [PPS] or comprise PEEK and / or PPS.
  • the electrical conductor 1 In order to achieve increased adhesion between the electrical conductor 1 and the outer insulation layer 3, the electrical conductor 1, after passing through the plasma treatment unit 9, enters the extrusion unit 11 in which the outer insulation layer 3 is extruded onto the electrical conductor 1 will.
  • the electrical conductor 1 is preheated to a temperature of at least 200.degree. C., preferably at least 300.degree.
  • both the extrusion and the transport of the conductor 1 into the extrusion unit 11 take place under a protective gas atmosphere.
  • An insulated electrical conductor produced in this way can be used, for example, as a winding wire, also known as "magnet wire" in English, in an electrical machine, such as an electric motor or a transformer.
  • the thickness of the outer insulation layer 3 is approximately 30 ⁇ m in the present exemplary embodiment.
  • the insulation layer 3 consists of a polyaryletherketone [PAEK] such as polyetheretherketone [PEEK], particularly good adhesion properties are achieved as a result.
  • the separation of the insulation layer 3 from the electrical conductor 1 usually remains far below 1 mm, and is in particular a maximum of 0.2 mm, preferably a maximum of 0.1 mm, preferably a maximum of 0.05 mm, particularly preferably a maximum of 0.01 mm.
  • the thermoplastic of the insulation layer 3 is polyimide [PI], polyamideimide [PAI], polyetherimide [PEI], polyphenylene sulfide [PPS], increased adhesion properties can be achieved.
  • the at least one insulation layer 3 can also comprise two, three, four or more individual insulation layers 3, all of which are produced in the extrusion unit 11 under a protective gas atmosphere. This allows the probability of defects in the insulating coating 2 to be drastically reduced, since defects in the lowest of the insulation layers 3 are compensated for by subsequent insulation layers 3. Tandem extrusion processes are particularly suitable for such a production.
  • further insulation layers which are preferably constructed analogously to the at least one insulation layer 3, that is to say in particular made of a polyaryletherketone [PAEK] such as Polyetheretherketone [PEEK] or another of the aforementioned plastics, are applied to the insulating coating 2 in a further extrusion unit 12 outside the protective gas atmosphere.
  • PAEK polyaryletherketone
  • PEEK Polyetheretherketone
  • the insulating coating 2 comprises in FIG Figures 2b and 3b
  • an intermediate layer containing plastic in the form of a plasma polymer layer 4 is shown in addition to the second embodiment variant the extrusion unit 11 is arranged. It is also conceivable that the plasma treatment and the plasma polymerization are carried out in a combined device.
  • the plasma polymer layer 4 is formed in the plasma polymerization unit 10 on the surface of the electrical conductor 1 by adding a gaseous monomer such as ethylene, buthenol, acetone or tetrafluoromethane [CF 4 ] is activated by means of the plasma and, as a result, highly crosslinked macromolecules of different chain lengths and a proportion of free radicals are formed, which are deposited as a plasma polymer layer 4 on the surface of the electrical conductor 1.
  • the plasma polymer layer 4 produced in this way is less than 1 ⁇ m thick and adheres particularly well to the activated and oxide-free surface of the electrical conductor 1.
  • the outer insulation layer 3 is in turn extruded onto the plasma polymer layer 4 in the extrusion unit 11 as described above, the adhesion between the plasma polymer layer 4 and the outer insulation layer 3 also being high.
  • the insulating coating 2 comprises, in addition to the outer insulating layer 3 made of PEEK, a fluoropolymer layer 5 made of polytetrafluoroethylene [PTFE] or perfluoroethylene propylene [FEP] plastic-containing intermediate layer which is applied directly to the surface of the electrical conductor 1 and further improves the adhesion between the electrical conductor 1 and the outer insulation layer 3.
  • the fluoropolymer layer 5 is produced together with the outer insulation layer 3 in the extrusion unit 11 by means of a co- or tandem extrusion process.
  • the thickness of the fluoropolymer layer 5 is approximately 30 ⁇ m in the present exemplary embodiment.
  • the insulated electrical conductor is cooled in a controlled manner, for example by air cooling, and passed over a series of pressure rollers which further improve the adhesion by exerting pressure on the insulated electrical conductor. Finally, the insulated electrical conductor is wound onto a reel winder 13.
  • Fig. 1 it is an overview in which all facilities are shown that are necessary for the production of the individual design variants. While the sequence, from right to left, of the devices passed through is independent of the embodiment variant and in any case the plasma treatment unit 9 and the extrusion unit 11 must be passed through, the plasma polymerization unit 9 and the further extrusion unit 12 are involved about optional equipment that is only used in the manufacture of specific design variants. It goes without saying that instead of a co- or tandem extrusion process, several individual extrusions can also be carried out sequentially.

Landscapes

  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Laminated Bodies (AREA)
  • Insulated Conductors (AREA)
  • Insulating Of Coils (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)
  • Paints Or Removers (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Organic Insulating Materials (AREA)
  • Physical Vapour Deposition (AREA)

Description

    GEBIET DER ERFINDUNG
  • Die Erfindung betrifft einen isolierten elektrischen Leiter umfassend einen elektrischen Leiter, vorzugsweise aus Kupfer oder Aluminium, mit einer isolierenden Beschichtung, wobei die isolierende Beschichtung zumindest eine äußere Isolationsschicht aus thermoplastischem Kunststoff umfasst, sowie auf ein Verfahren zur Herstellung eines solchen isolierten elektrischen Leiters.
  • STAND DER TECHNIK
  • Isolierte elektrische Leiter werden in nahezu jedem elektrischen Gerät verbaut, um elektrischen Strom zu leiten ohne dabei Kurzschlüsse zu verursachen, die durch den Kontakt von nicht elektrisch isolierten Leitern verursacht werden können.
  • Derartige isolierte elektrische Leiter umfassen einen elektrischen Leiter aus Kupfer und eine den elektrischen Leiter elektrisch isolierenden Beschichtung, die üblicher Weise eine oder mehrere Schichten aufweist. Um die Isolierung des elektrischen Leiters sicherzustellen umfasst die isolierende Beschichtung eine Isolationsschicht aus thermoplastischem Kunststoff.
  • Während es in vielen Anwendungsgebieten vorteilhaft ist, wenn die Haftung der isolierenden Beschichtung am elektrischen Leiter schwach ausgebildet ist, um ein leichtes Abisolieren des elektrischen Leiters zu ermöglichen, ist es in anderen Anwendungsgebieten erwünscht, eine möglichst große Haftung sicherzustellen. Solche Anwendungsgebiete finden sich beispielsweise im Elektromaschinenbau und insbesondere bei Elektromotoren oder Transformatoren, wo die isolierten elektrischen Leiter auch einer erhöhten Temperatur ausgesetzt sind. Die Verarbeitbarkeit der isolierten elektrischen Leiter erfordert dabei oftmals eine erhöhte Haftung der isolierenden Beschichtung am elektrischen Leiter, teilweise auch bei hohen Betriebstemperaturen.
  • Um die Haftung zu überprüfen wird üblicher Weise ein Rundumschnitt am isolierten elektrischen Leiter senkrecht zu einer Leiterachse durchgeführt, der elektrische Leiter um 20% gedehnt und danach die Ablösung der isolierenden Beschichtung vom elektrischen Leiter gemessen. Desto geringer die Ablösung der isolierenden Beschichtung vom elektrischen Leiter ist, desto besser ist die Haftung.
  • In herkömmlichen isolierten elektrischen Leiter die eine isolierende Beschichtung mit einer, vorzugsweise hochtemperaturbeständigen, Isolationsschicht aufweisen, ist die Haftung zwischen dem elektrischen Leiter, insbesondere aus Kupfer, und der isolierenden Beschichtung, insbesondere der Isolationsschicht, eher gering, da die Haftung eines Kunststoffs am elektrischen Leiter aufgrund der Oberflächeneigenschaften gering ist. JP2003031061A offenbart die Herstellung eines isolierten elektrischen Leiters umfassend einen elektrischen Leiter mit einer isolierenden Beschichtung, wobei die isolierende Beschichtung eine Isolationsschicht aus thermoplastischem Kunststoff (EVA oder PE) umfasst.
  • AUFGABE DER ERFINDUNG
  • Es ist daher eine Aufgabe der Erfindung einen isolierten elektrischen Leiter vorzuschlagen, welcher die Nachteile des Stands der Technik überwindet und eine gute Haftung zwischen der isolierenden Beschichtung und dem elektrischen Leiter gewährleistet.
  • DARSTELLUNG DER ERFINDUNG
  • Der elektrische Leiter gattungsgemäßer isolierter elektrischer Leiter besteht aus Kupfer oder einer Legierung mit einem hohen Kupferanteil oder Aluminium oder sonstigen elektrisch leitfähigen Materialien. Unter dem elektrischen Leiter wird dabei sowohl ein Einzelleiter als auch eine mehrere Einzelleiter enthaltende Litze verstanden. Die Querschnittsgeometrie des elektrischen Leiters, welche normal auf eine Leiterachse steht, kann dabei eine beliebige geometrische Form aufweisen: quadratisch, rechteckig, kreisrund oder elliptisch, wobei es üblich ist etwaige Kanten abzurunden, bzw. profiliert. Die Isolation des elektrischen Leiters wird durch die vorgesehene zumindest eine Isolationsschicht aus thermoplastischem Kunststoff sichergestellt, wobei die zumindest eine Isolationsschicht vorteilhafter Weise die äußerste Schicht der isolierenden Beschichtung ausbilden kann. Es ist aber auch denkbar, dass auf der zumindest einen Isolationsschicht eine oder mehrere weitere Isolationsschichten aufgetragen sind.
  • Durch den Kontakt mit Sauerstoff, der unausweichlich ist sofern der elektrische Leiter der Atmosphäre ausgesetzt ist, bildet sich eine Oxidschicht, beispielsweise aus Kupferoxid oder Aluminiumoxid, an der Oberfläche des elektrischen Leiters aus. Umfassende Versuchsreihen haben gezeigt, dass sich die Oxidschicht negativ auf die Haftungseigenschaften einer auf die Oberfläche des elektrischen Leiters aufgebrachten Schicht der isolierenden Beschichtung auswirkt.
  • Wenn jedoch die Oxidschicht entfernt wird, verbessert sich die Haftung der auf der von der Oxidschicht befreiten Oberfläche des elektrischen Leiters aufgebrachten Schicht der isolierenden Beschichtung maßgeblich. Es hat sich gezeigt, dass die Oxidschicht durch eine Plasmabehandlung unter einer - sauerstofffreien - Schutzgasatmosphäre vollständig entfernt werden kann, wobei auch sonstige Verunreinigungen durch die Plasmabehandlung entfernt werden können. Es ist sogar möglich, dass durch die Plasmabehandlung die obersten Atomschichten des elektrischen Leiters abgetragen werden.
  • Bei der Plasmabehandlung wird ein Gas-Plasma in der Schutzgasatmosphäre erzeugt und der elektrische Leiter im Plasma mit Ionen des Schutzgases beschossen, um zumindest die Oxidschicht durch den Ionenbeschuss abzutragen. Als Schutzgas bzw. Prozessgas eignen sich beispielsweise Stickstoff, Argon oder Wasserstoff. Die Plasmabehandlung hat neben der Entfernung der Oxidschicht noch weitere positive Effekte auf den isolierten elektrischen Leiter: einerseits wird der elektrische Leiter durch die Aufprallenergie der Ionen auf der Oberfläche erhitzt und kann während der Plasmabehandlung weichgeglüht werden, um das Gefüge des elektrischen Leiters zu rekristallisieren andererseits kann durch den Ionenbeschuss die Oberflächenenergie des elektrischen Leiters erhöht werden, was die Haftung der isolierenden Beschichtung an der Oberfläche des elektrischen Leiters zusätzlich verbessert. Man spricht in diesem Zusammenhang auch von einer Aktivierung der Oberfläche des elektrischen Leiters. Ein weiterer Effekt der Plasmabehandlung ist die Erhöhung der Mikrorauigkeit der Oberfläche des elektrischen Leiters, welches sich ebenfalls positiv auf die Haftung der isolierenden Beschichtung auswirkt.
  • Um die erneute Ausbildung einer Oxidschicht an der Oberfläche des elektrischen Leiters zu verhindern, wird zumindest ein Teil der isolierenden Beschichtung unter Schutzgasatmosphäre, vorzugsweise unter derselben Schutzgasatmosphäre unter der die Plasmabehandlung durchgeführt wird, auf die Oberfläche des elektrischen Leiters aufgebracht wird.
  • Um die eingangs gestellte Aufgabe zu lösen, ist in einem isolierten elektrischen Leiter umfassend einen elektrischen Leiter, vorzugsweise aus Kupfer oder Aluminium, mit einer isolierenden Beschichtung
    • wobei die isolierende Beschichtung entweder
      zumindest eine Isolationsschicht aus thermoplastischem Kunststoff umfasst
    • oder
      zumindest eine Isolationsschicht aus thermoplastischem Kunststoff und eine Kunststoff enthaltende Zwischenschicht, vorzugsweise eine Plasmapolymer-Schicht oder zumindest eine Fluoropolymer-Schicht, umfasst,
    • daher erfindungsgemäß vorgesehen, dass eine auf einer Oberfläche des elektrischen Leiters ausgebildete Oxidschicht, vorzugsweise durch Beschuss des elektrischen Leiters mit Ionen eines Schutzgases einer Schutzgasatmosphäre in einem Gas-Plasma, entfernt ist
    • und nachfolgend entweder
      die zumindest eine Isolationsschicht unmittelbar auf die oxidschicht-freie Oberfläche des elektrischen Leiters aufgebracht ist
    • oder, im dem Fall, dass die Beschichtung die Kunststoff enthaltende Zwischenschicht umfasst,
      zumindest die Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung unmittelbar auf die oxidschicht-freie Oberfläche des elektrischen Leiters aufgebracht ist.
  • Ein erfindungsgemäßer isolierter elektrischer Leiter weist durch die unmittelbare Aufbringung einer Kunststoff enthaltenden Zwischenschicht der isolierenden Beschichtung oder durch die unmittelbare Aufbringung der Isolationsschicht aus thermoplastischem Kunststoff auf die plasmabehandelte und dadurch oxidschichtfreie Oberfläche des elektrischen Leiters besonders gute Haftungseigenschaften auf: Wird ein Rundumschnitt am isolierten elektrischen Leiter senkrecht zu einer Leiterachse durchgeführt und der Leiter um 20% gedehnt so beträgt die Ablösung der isolierenden Beschichtung vom elektrischen Leiter in Richtung der Leiterachse gemessen lediglich maximal 3 mm, vorzugsweise maximal 2 mm, insbesondere maximal 1 mm.
  • Der Haftungseffekt wird also bei beiden Varianten dadurch erreicht, dass eine Kunststoffschicht, welche vorzugsweise aus Kunststoff besteht, unter Schutzgasatmosphäre unmittelbar auf die, vorzugsweise plasmagereinigte und dadurch, oxidschichtfreie Oberfläche des elektrischen Leiters aufgetragen wird. Einerseits kann es sich bei der Kunststoffschicht unmittelbar um die zumindest eine Isolationsschicht aus thermoplastischem Kunststoff handeln, wenn keine Zwischenschicht vorgesehen ist. Andererseits kann es sich bei der Kunststoffschicht auch um eine Kunststoff enthaltende Zwischenschicht, vorzugsweise eine Plasmapolymer-Schicht oder um zumindest eine Fluoropolymer-Schicht, handeln. Wenn die isolierende Beschichtung eine Kunststoff enthaltende Zwischenschicht aufweist, ist die zumindest eine Isolationsschicht bevorzugt unmittelbar auf die Kunststoff enthaltende Zwischenschicht aufgebracht. Es ist jedoch auch denkbar, dass eine oder mehrere weitere Zwischenschichten zwischen der Kunststoff enthaltenden Zwischenschicht und der zumindest einen Isolationsschicht vorgesehen sind.
  • Wenngleich eine Vielzahl von unterschiedlichen Kunststoffen denkbar ist, die als Material für die Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung geeignet sind, handelt es sich bei der Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung vorzugsweise um die Plasmapolymer-Schicht oder um die zumindest eine Fluoropolymer-Schicht.
  • Wenn keine Kunststoff enthaltende Zwischenschicht vorgesehen ist und die Isolationsschicht unmittelbar auf die Oberfläche des elektrischen Leiters aufgetragen ist, ist es besonders bevorzugt, wenn die isolierende Beschichtung aus der zumindest einen Isolationsschicht besteht, also keine weiteren Zwischenschichten aufweist.
  • Überraschenderweise hat sich im Rahmen von Testreihen herausgestellt, dass die Ablösung der isolierenden Beschichtung vom elektrischen Leiter üblicher Weise weit unter 1 mm bleibt, insbesondere maximal 0,2 mm, vorzugsweise maximal 0,1 mm, bevorzugt maximal 0,05 mm, besonders bevorzugt maximal 0,01 mm, beträgt, wenn die zumindest eine Isolationsschicht unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird. Besonders vorteilhafte Effekte können dadurch erreicht werden, dass die zumindest eine Isolationsschicht ein Polyaryletherketon [PAEK], insbesondere Polyetheretherketon [PEEK], umfasst oder aus Polyaryletherketon [PAEK], insbesondere Polyetheretherketon [PEEK], besteht.
  • Eine Ausführungsvariante der Erfindung sieht vor, dass der elektrische Leiter bis zum Aufbringen der isolierenden Beschichtung durchgehend unter Schutzgasatmosphäre angeordnet ist, um die Ausbildung einer neuen Oxidschicht auf der Oberfläche des elektrischen Leiters zu verhindern. Es können auch mehrere Schutzgasatmosphären hintereinander durchlaufen werden, solange der plasmabehandelte elektrische Leiter ununterbrochen unter einer der Schutzgasatmosphären angeordnet ist.
  • In einer weiteren Ausführungsvariante der Erfindung ist vorgesehen, dass es sich bei dem Gas-Plasma zum Beschießen des elektrischen Leiters um ein Niederdruckplasma, vorzugsweise mit einem Druck unter 80 mbar, handelt, welches sich in an sich bekannter Weise herstellen lässt. Beispielsweise sind Drücke unter 50 mbar oder sogar unter 20 mbar denkbar.
  • Um den Einsatz des isolierten elektrischen Leiters in einer Umgebung mit erhöhter Temperatur, beispielsweise in Elektromaschinen mit erhöhter Betriebstemperatur, zu ermöglichen, ist in einer weiteren Ausführungsvariante der Erfindung vorgesehen, dass die isolierende Beschichtung, insbesondere die zumindest eine Isolationsschicht, eine Temperaturbeständigkeit von zumindest 180°C, vorzugsweise von zumindest 200°C, insbesondere von zumindest 220°C, aufweist.
  • Besonders gute Eigenschaften hinsichtlich der Temperaturbeständigkeit und der Beständigkeit gegen eine Vielzahl an organischen und chemischen Lösungsmittel, insbesondere auch gegen Hydrolyse, werden in einer bevorzugten Ausführungsvariante des erfindungsgemäßen isolierten elektrischen Leiters und des erfindungsgemäßen Verfahrens dadurch erreicht, dass der thermoplastische Kunststoff der zumindest einen Isolationsschicht ausgewählt ist aus der Gruppe bestehend aus Polyaryletherketon [PAEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon. Es versteht sich dabei von selbst, dass der thermoplastische Kunststoff einen oder mehrere der oben genannten Kunststoffe sowie gegebenenfalls weitere Bestandteile, wie beispielsweise Fasermaterial, Füllstoffe oder weitere Kunststoffe, umfassen kann.
  • Polyaryletherketone setzen sich aus mittels Sauerstoffbrücken, also Ether- oder Ketongruppen, verbundenen Phenylgruppen zusammen, wobei die Anzahl und Abfolge der Ether- bzw. Ketongruppen innerhalb der Polyaryletherketone variabel ist. Polyimide sind Kunststoffe, deren wichtigstes Strukturmerkmal die Imidgruppe ist. Dazu gehören u. a. Polysuccinimid (PSI), Polybismaleinimid (PBMI) und Polyoxadiazobenzimidazol (PBO), Polyimidsulfon (PISO) und Polymethacrylimid (PMI).
  • Entsprechend ist in einer besonders bevorzugten Ausführungsvariante des erfindungsgemäßen isolierten elektrischen Leiters und des erfindungsgemäßen Verfahrens vorgesehen, dass der thermoplastische Kunststoff der zumindest einen Isolationsschicht ein Polyaryletherketon [PAEK] ausgewählt aus der Gruppe bestehend aus Polyetherketon [PEK], Polyetheretherketon [PEEK], Polyetherketonketon [PEKK], Polyetheretherketonketon [PEEKK], Polyetherketon-etherketonketon [PEKEKK] und Kombinationen davon ist. Als besonders gut geeignet für die zumindest eine Isolationsschicht hat sich Polyetheretherketon [PEEK] erwiesen.
  • In einer weiteren Ausführungsvariante der Erfindung ist vorgesehen, dass die zumindest eine Isolationsschicht eine Dicke zwischen 10 und bis 1000 µm, vorzugsweise zwischen 25 µm und 750 µm, besonders bevorzugt zwischen 30 µm und 500 µm, insbesondere zwischen 50 µm und 250 µm, aufweist. Es versteht sich von selbst, dass auch andere Schichtdicken denkbar sind, beispielsweise 40 µm, 60 µm, 80 µm, 100 µm oder 200 µm, um einige Möglichkeiten zu nennen. Es versteht sich von selbst, dass sich die angegebenen Werte sowohl auf die Dicke einer einzelnen Schicht der Isolationsschicht als auch auf die Gesamtdicke der Isolationsschicht beziehen kann, wenn die Isolationsschicht mehr als eine Schicht umfasst.
  • Die zumindest eine Isolationsschicht lässt sich kostengünstig und schnell herstellen, wenn sie durch ein Extrusionsverfahren aufgebracht wird also aufextrudiert ist. Daher ist in einer weiteren bevorzugten Ausführungsvariante der Erfindung vorgesehen, dass die, vorzugsweise äußere, Isolationsschicht mittels eines Extrusions-Verfahrens herstellbar ist.
  • Wenn die isolierende Beschichtung aus der zumindest einen Isolationsschicht besteht und die zumindest eine Isolationsschicht unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird, wird eine besonders einfache und kostengünstige Herstellung eines erfindungsgemäßen isolierten elektrischen Leiters ermöglicht, da die Haftung der zumindest einen Isolationsschicht an der Oberfläche des elektrischen Leiters durch die Plasmabehandlung bereits so gut ist, dass keine Zwischenschichten notwendig sind.
  • Daher ist in einer weiteren besonders bevorzugten Ausführungsvariante der Erfindung vorgesehen, dass die isolierende Beschichtung aus der zumindest einen Isolationsschicht besteht und dass es sich bei der unmittelbar auf die Oberfläche des elektrischen Leiters aufgebrachten, Kunststoff enthaltenden Zwischenschicht um die zumindest eine Isolationsschicht handelt.
  • Somit betrifft die besonders bevorzugte Ausführungsvariante einen isolierten elektrischen Leiter umfassend einen elektrischen Leiter, vorzugsweise aus Kupfer oder Aluminium, mit einer isolierenden Beschichtung, wobei die isolierende Beschichtung aus zumindest einer Isolationsschicht aus thermoplastischem Kunststoff besteht, erhältlich durch ein Verfahren, in dem der elektrische Leiter unter einer Schutzgasatmosphäre in einem Gas-Plasma mit Ionen des Schutzgases beschossen wird, um eine auf einer Oberfläche des elektrischen Leiters ausgebildete Oxidschicht zu entfernen und/oder die Oberflächenenergie des elektrischen Leiters zu erhöhen, und die zumindest eine Isolationsschicht unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird, die zumindest eine Isolationsschicht unter Schutzgasatmosphäre auf den elektrischen Leiter aufgebracht wird.
  • In gleiche Art und Weise betrifft die besonders bevorzugte Ausführungsvariante auch einen isolierte elektrischer Leiter umfassend einen elektrischen Leiter, vorzugsweise aus Kupfer oder Aluminium, mit einer isolierenden Beschichtung, wobei die isolierende Beschichtung aus zumindest einer Isolationsschicht aus thermoplastischem Kunststoff besteht, wobei erfindungsgemäß vorgesehen ist, dass eine auf einer Oberfläche des elektrischen Leiters ausgebildete Oxidschicht durch Beschuss des elektrischen Leiters mit Ionen eines Schutzgases einer Schutzgasatmosphäre in einem Gas-Plasma entfernt ist und nachfolgend die zumindest eine Isolationsschicht unmittelbar auf die oxidschicht-freie Oberfläche des elektrischen Leiters aufgebracht ist.
  • Die isolierende Beschichtung kann beispielsweise nur aus einer einzigen Isolationsschicht bestehen, welche unmittelbar auf der Oberfläche des elektrischen Leiters aufgebracht ist, um eine besonders einfache Herstellung zu ermöglichen.
  • Um jedoch die Wahrscheinlichkeit eines Fehlers in der isolierenden Beschichtung, beispielsweise einen nicht mit der isolierenden Beschichtung versehenen Abschnitt des elektrischen Leiters bedingt durch einen Fehler im Herstellungsverfahren einer Isolationsschicht, drastisch zu verringern, ist in einer weiteren besonders bevorzugten Ausführungsvariante der Erfindung vorgesehen, dass die isolierende Beschichtung aus genau zwei oder aus mehr als zwei, beispielsweise aus drei oder vier, Isolationsschichten besteht. Dabei ist jedenfalls eine unterste Isolationsschicht unmittelbar auf der Oberfläche des elektrischen Leiters aufgebracht, wobei die weiteren Isolationsschichten jeweils auf einer der vorhergehenden Isolationsschichten aufgebracht sind. Sollte in der untersten Isolationsschicht ein Fehler aufgetreten sein, also ein Abschnitt des elektrischen Leiters nicht von der untersten Isolationsschicht abgedeckt sein, so wird durch die nachfolgenden Isolationsschichten die Wahrscheinlichkeit, dass genau der fehlerhafte Abschnitt der untersten Isolationsschicht auch von den nachfolgenden Isolationsschichten nicht abgedeckt wird, einer Exponentialfunktion folgend reduziert. Desto höher die Anzahl der Isolationsschichten, desto geringer die Wahrscheinlichkeit, dass ein Abschnitt des elektrischen Leiters gar keine isolierende Beschichtung aufweist. Um die verbesserte Haftung der nachfolgenden Isolationsschichten am elektrischen Leiter zu erreichen, werden alle Isolationsschichten unter Schutzgasatmosphäre aufgebracht, sodass die Haftung nachfolgender Isolationsschichten im Bereich von fehlerhaften Abschnitten der vorhergehenden Isolationsschichten verbessert ist.
  • Grundsätzlich kann auf der isolierenden Beschichtung bzw. auf der aus der zumindest einen Isolationsschicht bestehenden isolierenden Beschichtung zumindest eine, also beispielsweise eine, zwei, drei oder vier, weitere Isolationsschicht aus thermoplastischem Kunststoff aufgebracht werden. Die zumindest eine weitere Isolationsschicht ist dabei vorzugsweise analog zur zumindest einen Isolationsschicht aufgebaut, sodass der thermoplastische Kunststoff der zumindest einen weiteren Isolationsschicht ausgewählt ist aus der Gruppe bestehend aus Polyaryletherketon [PAEK], insbesondere Polyetheretherketon [PEEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon.
  • Da es sich bei den fehlerhaften Abschnitten der zumindest einen Isolationsschicht in der Regel um verhältnismäßig kleine Flächen handelt, ist es auch denkbar, dass zumindest eine weitere Isolationsschicht außerhalb der Schutzgasatmosphäre auf die isolierende Beschichtung aufgebracht werden, um etwaige fehlerhafte Abschnitte der isolierenden Beschichtung abzudecken, sodass im Bereich der fehlerhaften Abschnitte der isolierenden Beschichtung die Haftung der weiteren Isolationsschicht nicht verbessert ist. Natürlich können auch weitere Isolationsschichten aufgebracht werden, wenn eine größere Dicke der Isolierung erforderlich ist. Daher ist in einer weiteren Ausführungsvariante der Erfindung vorgesehen, dass zumindest eine, vorzugsweise eine, zwei oder drei, weitere Isolationsschicht auf der isolierenden Beschichtung aufgebracht ist, wobei die zumindest eine weitere Isolationsschicht nicht unter Schutzgasatmosphäre aufgebracht wird.
  • In einer ersten alternativen Ausführungsvariante der Erfindung ist zur Verbesserung der Haftung der isolierenden Beschichtung an der Oberfläche des elektrischen Leiters vorgesehen, dass die isolierende Beschichtung eine unmittelbar auf die Oberfläche des elektrischen Leiters aufgebrachte Plasmapolymer-Schicht aus vernetzten Makromolekülen uneinheitlicher Kettenlänge aufweist, welche Plasmapolymer-Schicht durch Polymerisation eines gasförmigen Monomers in einem Gas-Plasma, vorzugsweise im Gas-Plasma zum Beschießen des elektrischen Leiters, herstellbar ist. In anderen Worten handelt es sich bei der unmittelbar auf die Oberfläche des elektrischen Leiters aufgebrachten, Kunststoff enthaltenden Zwischenschicht der isolierenden Beschichtung in diesem Ausführungsbeispiel um die Plasmapolymer-Schicht. Die Plasmapolymer-Schicht dient als Zwischenschicht und haftet einerseits ausgezeichnet an der Oberfläche des elektrischen Leiters und ermöglich andererseits eine erhöhte Haftung der auf die Plasmapolymer-Schicht aufgetragenen Schicht der isolierenden Beschichtung, beispielsweise der zumindest einen Isolationsschicht.
  • Eine weitere Ausführungsvariante der ersten alternativen Ausführungsvariante sieht vor, dass die Plasmapolymer-Schicht eine Dicke von 1 µm oder weniger aufweist. Denkbar sind dabei Dicken bis zu einem Hundertstel eines Mikrometers als Untergrenze. Durch die geringe Schichtdicke wirkt sich die Plasmapolymer-Schicht nur unwesentlich auf die gesamte Dicke des isolierten elektrischen Leiters aus.
  • Gemäß einer weiteren Ausführungsvariante der ersten alternativen Ausführungsvariante handelt es sich bei dem Monomer zur Herstellung der Plasmapolymer-Schicht um Ethylen, Buthenol, Aceton oder Tetrafluormethan [CF4]. Die durch diese Monomere im Plasma gebildeten Plasmapolymer-Schichten zeichnen sich durch besonders gute Haftungseigenschaften aus. Insbesondere wenn die Plasmapolymer-Schicht ähnliche Eigenschaften wie Polytetrafluorethylen [PTFE] oder Perfluorethylenpropylen [FEP] aufweisen soll, bietet sich CF4 als Monomer an.
  • In einer zweiten alternativen Ausführungsvariante ist vorgesehen, dass die isolierende Beschichtung zumindest eine unmittelbar auf die Oberfläche des elektrischen Leiters aufgebrachte, vorzugsweise Polytetrafluorethylen [PTFE] oder Perfluorethylenpropylen [FEP] umfassende, Fluoropolymer-Schicht aufweist. Auch die Fluoropolymer-Schicht zeichnet sich durch hervorragende Haftungseigenschaften, sowohl am elektrischen Leiter als auch an der auf der Fluoropolymer-Schicht aufgetragenen Schicht, aus und dient als Zwischenschicht der isolierenden Beschichtung. Es ist auch denkbar, dass mehrere Fluoropolymer-Schichten, beispielsweise zwei drei oder vier, übereinander auf den elektrischen Leiter aufgebracht werden. Besonders vorteilhafte Haftungseigenschaften werden dadurch erreicht, dass die die Dicke der zumindest einen Fluoropolymer-Schicht zwischen 1 µm und 120 µm, vorzugsweise zwischen 5 µm und 100 µm, besonders bevorzugt zwischen 10 µm und 80 µm, insbesondere zwischen 20 µm und 50 µm, beträgt.
  • Um die zuvor beschrieben verbesserten Haftungseigenschaften für auf die Plasmapolymer-Schicht oder die zumindest eine Fluoropolymer-Schicht aufgetragenen Schichten der isolierenden Beschichtung, insbesondere für die zumindest eine Isolationsschicht, am elektrischen Leiter zu erreichen, sodass die Haftung nachfolgender Schichten im Bereich von fehlerhaften Abschnitten der vorhergehenden auf dem elektrischen Leiter aufgetragenen Schichten erhöht ist, wird die gesamte isolierende Beschichtung in einer bevorzugten Ausführungsvariante der Erfindung unter Schutzgasatmosphäre aufgebracht.
  • Um die Anzahl an unterschiedlichen Schichten in der isolierenden Beschichtung zu reduzieren und die damit verbundenen Herstellungskosten gering zu halten ist in einer weiteren Ausführungsvariante der Erfindung vorgesehen, dass die zumindest eine Isolationsschicht unmittelbar auf die Plasmapolymer-Schicht oder die zumindest eine Fluoropolymer-Schicht aufgebracht ist. In anderen Worten besteht die isolierende Beschichtung aus zumindest zwei Schichten: die erste untere, unmittelbar auf dem elektrischen Leiter aufgebrachte Schicht entsprechend der ersten oder zweiten alternativen Ausführungsvariante und die zweite obere Schicht in Form der zumindest einen Isolationsschicht aus thermoplastischem Kunststoff. Die äußerste Schicht der isolierenden Beschichtung kann dabei entweder durch die zumindest eine Isolationsschicht selbst ausgebildet sein oder aber durch eine oder mehrere weitere Schichten.
  • Ein erfindungsgemäßer isolierter elektrischer Leiter kann durch ein Verfahren zur Herstellung eines isolierten elektrischen Leiters hergestellt werden, welches folgende Verfahrensschritte aufweist:
    • Beschießen eines unter einer Schutzgasatmosphäre angeordneten elektrischen Leiters, vorzugsweise aus Kupfer oder Aluminium, mit Ionen des Schutzgases in einem Gas-Plasma, vorzugsweise einem Niederdruckplasma, um eine auf der Oberfläche des elektrischen Leiters ausgebildete Oxidschicht zu entfernen und/oder die Oberflächenenergie des elektrischen Leiters zu erhöhen;
    • Aufbringen einer isolierenden Beschichtung auf die Oberfläche des elektrischen Leiters, wobei die isolierende Beschichtung entweder
      • zumindest eine Isolationsschicht aus thermoplastischem Kunststoff umfasst,
        oder
      • zumindest eine Isolationsschicht aus thermoplastischem Kunststoff und
      • eine Kunststoff enthaltende Zwischenschicht, vorzugsweise eine Plasmapolymer-Schicht oder zumindest eine
      • Fluoropolymer-Schicht, umfasst wobei entweder
      • die zumindest eine Isolationsschicht unter
      • Schutzgasatmosphäre unmittelbar auf die Oberfläche des
      • elektrischen Leiters aufgebracht wird oder, im dem Fall, dass die Beschichtung die Kunststoff enthaltende Zwischenschicht umfasst,
      • zumindest die Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung unter Schutzgasatmosphäre unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird.
  • Der elektrische Leiter, vorzugsweise aus Kuper oder Aluminium, wird in Form eines Bandes oder eines Drahts dem Verfahren unterzogen. Dabei wird der elektrische Leiter entweder "inline", also direkt anschließend an die Herstellung des elektrischen Leiters (etwa durch Kaltumformung oder Extrusion), entsprechend dem erfindungsgemäßen Verfahren behandelt oder aber der elektrische Leiter wird in aufgewickelter Form über einen Spulenablauf zur Verfügung gestellt. In der Regel wird der elektrische Leiter vor der Plasmabehandlung noch einer mechanischen und/oder chemischen Vorreinigung unterzogen. Die Plasmabehandlung wird analog zu den vorhergegangen Ausführungen durchgeführt, wobei der elektrische Leiter kontinuierlich durch die die Plasmabehandlung durchführende Plasmabehandlungs-Einheit gefördert wird. Durch die geeignete Wahl der Prozessparameter lässt sich die Dicke der durch die Plasmabehandlung vom elektrischen Leiter abgetragenen Schicht genau einstellen. Zusätzlich dazu lässt sich auch die Temperatur für das Weichglühen und die damit verbundene Rekristallisation des Gefüges des elektrischen Leiters definieren.
  • Nach der Plasmabehandlung, also dem Abtragen der Oxidschicht und jedweden Verunreinigungen von der Oberfläche des elektrischen Leiters, wobei auch dünne Schichten der Oberfläche des elektrischen Leiters selbst (kleiner als 1 µm, vorzugsweise kleiner 0,1 µm) abgetragen werden können, durch Beschuss mit Ionen im Gas-Plasma bzw. der Aktivierung der Oberfläche des elektrischen Leiters, wird die isolierende Beschichtung auf die behandelte Oberfläche des elektrischen Leiters aufgebracht. Die isolierende Beschichtung haftet aufgrund der Entfernung der Oxidschicht bzw. durch die Aktivierung der Oberfläche durch Erhöhung der Oberflächenenergie des elektrischen Leiters besonders gut auf der Oberfläche des elektrischen Leiters. Um die Ausbildung einer neuen Oxidschicht auf der Oberfläche des elektrischen Leiters zu verhindern, welche den erfindungsgemäßen Effekt unterbinden oder zumindest entscheidend abschwächen würde, wird entweder die zumindest eine Isolationsschicht oder zumindest die Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung, also insbesondere die Plasmapolymer-Schicht oder die zumindest eine Fluoropolymer-Schicht, unter Schutzgasatmosphäre unmittelbar auf die oxidschicht-frei Oberfläche des elektrischen Leiters aufgebracht. Insbesondere von Vorteil ist es dabei, wenn der elektrische Leiter bis zum Aufbringen der isolierenden Beschichtung durchgehend unter Schutzgasatmosphäre angeordnet ist. Es versteht sich dabei von selbst, dass, sofern zwei, drei oder mehr Isolationsschichten aus thermoplastischem Kunststoff vorgesehen sind, jedenfalls die erste der Isolationsschichten unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird und die nachfolgenden Isolationsschichten zumindest teilweise auf die darunterliegenden Isolationsschichten aufgebracht werden.
  • Derart hergestellte isolierte elektrische Leiter weisen durch die unmittelbare Aufbringung einer Kunststoff enthaltenden Zwischenschicht der isolierenden Beschichtung oder durch die unmittelbare Aufbringung der zumindest einen Isolationsschicht aus thermoplastischem Kunststoff auf die plasmabehandelte, oxidfreie Oberfläche des elektrischen Leiters besonders gute Haftungseigenschaften auf: Wird ein Rundumschnitt am isolierten elektrischen Leiter senkrecht zu einer Leiterachse durchgeführt und der Leiter um 20% gedehnt so beträgt die Ablösung der isolierenden Beschichtung vom elektrischen Leiter in Richtung der Leiterachse gemessen lediglich maximal 3 mm, vorzugsweise maximal 2 mm, insbesondere maximal 1 mm.
  • Wenn die zumindest eine Isolationsschicht aus thermoplastischem Kunststoff unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird, wurde festgestellt, dass die Ablösung der isolierenden Beschichtung vom elektrischen Leiter üblicher Weise weit unter 1 mm bleibt, insbesondere maximal 0,2 mm, vorzugsweise maximal 0,1 mm, bevorzugt maximal 0,05 mm, besonders bevorzugt maximal 0,01 mm, beträgt. Besonders vorteilhafte Effekte werden dann erreicht, wenn der thermoplastische Kunststoff der zumindest einen Isolationsschicht ausgewählt ist aus der Gruppe bestehend aus Polyaryletherketon [PAEK], insbesondere Polyetheretherketon [PEEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon.
  • Eine Ausführungsvariante des Verfahrens sieht vor, dass die zumindest eine Isolationsschicht aufextrudiert wird. Die Extrusion stellt ein kostengünstiges Verfahren zum Aufbringen der Isolationsschicht dar und eignet sich insbesondere auch für PAEK, insbesondere PEEK, und PPS. Die zumindest eine Isolationsschicht lässt sich somit auch in einfacher Art und Weise als äußerste Schicht der isolierenden Beschichtung aufbringen.
  • Durch eine Vorwärmung des elektrischen Leiters, die vor allem vorteilhaft ist, wenn die zumindest eine Isolationsschicht bzw. die isolierende Beschichtung direkt auf die Oberfläche des elektrischen Leiters aufextrudiert wird, wird eine ruckartige Abkühlung der Kunststoff enthaltenden Zwischenschicht bei Kontakt mit dem elektrischen Leiter reduziert und damit negative Einflüsse auf die Haftung minimiert. Gleichfalls kann vorgesehen sein, das der elektrische Leiter vor dem Aufbringen der isolierenden Beschichtung abgekühlt wird, um eine zu starke Erhitzung, etwa eine Schmelze, der Kunststoff enthaltenden Zwischenschicht bei Kontakt mit dem elektrischen Leiter zu verhindern. Daher ist in einer weiteren bevorzugten Ausführungsvariante des Verfahrens vorgesehen, dass der elektrische Leiter vor dem Aufbringen der isolierenden Beschichtung auf eine Temperatur von zumindest 200 °C, vorzugsweise zumindest 400 °C, gebracht wird.
  • In einer weiteren Ausführungsvariante des Verfahrens ist vorgesehen, dass der isolierte elektrische Leiter nach dem Aufextrudieren der zumindest einen Isolationsschicht in Abhängigkeit der zu erreichenden Festigkeit der zumindest einen Isolationsschicht abgekühlt wird. Die Einstellung der mechanischen Eigenschaften der zumindest einen Isolationsschicht, insbesondere der mechanischen Festigkeit, erfolgt unter anderem durch die definierte Abkühlung des isolierten elektrischen Leiters und die dadurch bedingte Einstellung des Kristallisationsgrades und ist besonders wichtig, wenn es sich bei der zumindest einen Isolationsschicht um die äußerste Schicht der isolierenden Beschichtung handelt. Wird der isolierte elektrische Leiter beispielsweise langsam abgekühlt, etwa durch Abkühlen an der Luft, ergibt sich eine hohe Kristallinität der zumindest einen Isolationsschicht. Denkbar ist auch ein Abschrecken in einem Wasserbad, also eine abrupte Abkühlung, oder eine Kombination aus abrupter und langsamer Abkühlung.
  • Um die Haftung der isolierenden Beschichtung am elektrischen Leiter weiter zu verbessern, insbesondere wenn die zumindest eine Isolationsschicht direkt auf die Oberfläche des elektrischen Leiters aufgebracht wird, ist in einer bevorzugten Ausführungsvariante des Verfahrens vorgesehen, dass der isolierte elektrische Leiter nach dem Aufextrudieren der zumindest einen Isolationsschicht über Rollen, vorzugsweise Anpressrollen, geführt wird. Besonders vorteilhaft ist es dabei, wenn die zumindest eine Isolationsschicht die äußerste Schicht der isolierenden Beschichtung bildet. Ein enges Führen des isolierten elektrischen Leiters über die Anpressrollen unter Beaufschlagung des isolierten elektrischen Leiters mit Druck führt zu einer besonders guten Haftung der isolierenden Beschichtung bzw. insbesondere der zumindest einen Isolationsschicht auf der Oberfläche des elektrischen Leiters. Dabei werden die Grenzflächen der isolierenden Beschichtung zwischen den einzelnen Schichten, sofern mehrere vorhanden sind, und/oder die Grenzfläche der untersten Schicht der isolierenden Beschichtung und die Oberfläche des elektrischen Leiters aneinander gepresst und so die Adhäsionseffekte verstärkt.
  • In einer besonders bevorzugten Ausführungsvariante der Erfindung, welche sich durch besonders gute Haftungseigenschaften auszeichnet, ist vorgesehen, dass die isolierende Beschichtung aus der zumindest einen Isolationsschicht besteht und dass die zumindest eine Isolationsschicht als Kunststoff enthaltende Zwischenschicht der isolierenden Beschichtung unter Schutzgasatmosphäre unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird. Entsprechend wird folgender Verfahrensschritt durchgeführt:
    • Aufbringen einer isolierenden Beschichtung auf die Oberfläche des elektrischen Leiters, wobei die isolierende Beschichtung aus zumindest einer Isolationsschicht aus thermoplastischem Kunststoff besteht und wobei die zumindest eine
    • Isolationsschicht unter Schutzgasatmosphäre unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht wird.
  • Dadurch wird ebenfalls die zuvor erwähnte besonders geringe Ablösung von weniger als 1 mm erreicht.
  • Um, wie zuvor erwähnt, die Wahrscheinlichkeit eines Fehlers in der isolierenden Beschichtung drastisch zu verringern, ist in einer weiteren Ausführungsvariante vorgesehen, dass die isolierende Beschichtung aus zumindest zwei, vorzugsweise genau zwei, Isolationsschichten besteht und die isolierende Beschichtung mittels Tandemextrusion unter Schutzgasatmosphäre hergestellt wird. Durch die Tandemextrusion werden die zumindest zwei Isolationsschichten unabhängig voneinander hergestellt, sodass eine Verstopfung eines Extrusionswerkzeugs nur einen Fehler in einer der Isolationsschichten hervorruft. Dadurch wird der fehlerhafte Abschnitt durch die nachfolgenden Extrusionsschritte mit hoher Wahrscheinlichkeit abgedeckt.
  • Wenn, wie zuvor ausgeführt, aufgrund der verhältnismäßig kleinen Fläche der Fehler, auf eine verbesserte Haftung verzichtet werden kann oder eine dickere isolierende Beschichtung erforderlich ist, sieht eine weitere Ausführungsvariante der Erfindung vor, dass zumindest eine weitere Isolationsschicht aus thermoplastischem Kunststoff mittels Tandemextrusion auf die isolierende Beschichtung aufextrudiert wird, wobei die Extrusion der weiteren Isolationsschicht nicht unter Schutzgasatmosphäre stattfindet.
  • Vorzugsweise ist der thermoplastische Kunststoff der zumindest einen weiteren Isolationsschicht ausgewählt aus der Gruppe bestehend aus Polyaryletherketon [PAEK], insbesondere Polyetheretherketon [PEEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon.
  • Wenn die isolierende Beschichtung zumindest eine Fluoropolymer-Schicht umfasst, die als Kunststoff enthaltende Zwischenschicht unmittelbar auf die Oberfläche des elektrischen Leiters aufgebracht ist, lassen sich die zur Herstellung der isolierenden Beschichtung benötigten Schritte dadurch reduzieren, dass die zumindest eine Isolationsschicht und die zumindest eine Fluoropolymer-Schicht mittels Ko- oder Tandemextrusion hergestellt werden. So können beide Schichten in nur einem einzigen Herstellungsschritt und mit einer Extrusions-Einheit hergestellt werden.
  • Zur Verbesserung der Haftung der isolierenden Beschichtung am elektrischen Leiter ist in einer weiteren Ausführungsvariante vorgesehen, dass unmittelbar auf der Oberfläche des elektrischen Leiters mittels Polymerisation eines gasförmigen Monomers in einem Gas-Plasma eine Plasmapolymer-Schicht als Kunststoff enthaltende Zwischenschicht aufgebracht wird.
  • Da eine hohe Temperaturbeständigkeit und eine hohe Haftung der isolierenden Beschichtung am elektrischen Leiter insbesondere im Elektromaschinenbau von Bedeutung ist, ist vorgesehen, dass ein erfindungsgemäßer isolierter elektrischer Leiter als Wickeldraht für Elektromaschinen, vorzugsweise Elektromotoren oder Transformatoren, verwendet wird.
  • KURZE BESCHREIBUNG DER FIGUREN
  • Die Erfindung wird nun anhand von Ausführungsbeispielen näher erläutert. Die Zeichnungen sind beispielhaft und sollen den Erfindungsgedanken zwar darlegen, ihn aber keinesfalls einengen oder gar abschließend wiedergeben.
  • Dabei zeigt:
  • Fig. 1
    eine schematische Darstellung eines erfindungsgemäßen Verfahrens;
    Fig. 2a
    eine erste Ausführungsvariante eines isolierten elektrischen Leiters mit rechteckigem Querschnitt;
    Fig. 2b
    eine zweite Ausführungsvariante eines isolierten elektrischen Leiters mit rechteckigem Querschnitt;
    Fig. 2c
    eine dritte Ausführungsvariante eines isolierten elektrischen Leiters mit rechteckigem Querschnitt;
    Fig. 3a-3c
    die erste bis dritte Ausführungsvariante mit rundem Querschnitt.
    WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
  • Fig. 1 zeigt eine schematische Darstellung eines Verfahrens zur Herstellung eines isolierten elektrischen Leiters, wie er in den Figuren 2a bis 2d bzw. 3a bis 3d dargestellt ist. Der isolierte elektrische Leiter umfasst einen elektrischen Leiter 1 aus Kupfer, wobei auch andere Materialien wie etwa Aluminium denkbar sind, und eine isolierende Beschichtung 2, welche zumindest eine Isolationsschicht 3 aus thermoplastischem, vorzugsweise hochtemperaturbeständigem, Kunststoff aufweist. In den nachfolgenden Ausführungsbeispielen ist die zumindest eine Isolationsschicht 3 als eine äußere Isolationsschicht 3 ausgebildet und bildet somit die äußerste Schicht der isolierenden Beschichtung 2. Es versteht sich jedoch von selbst, dass in alternativen Ausführungsvarianten auf der Isolationsschicht 3 noch eine oder mehrere weitere Schichten, vorzugsweise Isolationsschichten, aufgebracht sein können, die dann die äußerste Schicht der isolierenden Beschichtung 2 ausbilden können.
  • Der elektrische Leiter 1 wird im dargestellten Ausführungsbeispiel als Band oder Draht über einen Spulenablauf 7 stetig dem Verfahren zugeführt und kann etwa mittels Kaltumformungsverfahren, wie Ziehen oder Walzen, oder Extrusion, beispielsweise mittels Conform® - Technologie, hergestellt sein. Es versteht sich von selbst, dass das erfindungsgemäße Verfahren auch "in-line" durchgeführt werden kann, also direkt an den Herstellungsprozess anschließt. In einem ersten Schritt wird der elektrische Leiter 1 in einer Vorreinigungs-Einheit 8 mechanisch, etwa mittels eines Schleifverfahrens, oder chemisch, etwa mittels geeigneter Lösungsmittel oder Säuren, vorgereinigt, um grobe Verschmutzungen vom elektrischen Leiter 1 zu entfernen.
  • Im nächsten Verfahrensschritt gelangt der vorgereinigte elektrische Leiter 1 in eine Plasmabehandlungs-Einheit 9 in der eine Schutzgasatmosphäre aus Stickstoff, Argon oder Wasserstoff vorherrscht und ein Gas-Plasma in Form eines Niederdruckplasmas mit weniger als 20 mbar Druck hergestellt ist. Ein Niederdruckplasma kann jedoch auch schon bei einem Druck von weniger als 80 mbar hergestellt werden. In diesem Niederdruckplasma wird die Oberfläche des elektrischen Leiters 1 mit Ionen des Schutzgases beschossen, um eine auf einer Oberfläche des elektrischen Leiters 1 gebildete Oxidschicht abzutragen bzw. zu entfernen. Gleichzeitig wird der elektrische Leiter 1 durch die Plasmabehandlung weich geglüht und die Oberflächenenergie des elektrischen Leiters 1 erhöht also die Oberfläche aktiviert.
  • Durch das Abtragen der Oxidschicht und jedweden Verunreinigungen von der Oberfläche des elektrischen Leiters 1, wobei sogar vorgesehen sein kann, dass sehr dünne Schichten des elektrischen Leiters 1 selbst von der Oberfläche abgetragen werden, und die Erhöhung der Oberflächenenergie kann die Haftung zwischen dem elektrischen Leiter 1 aus Kupfer und der auf dem elektrischen Leiter 1 aufgebrachten isolierenden Beschichtung 2 entscheidend verbessert werden.
  • In der ersten Ausführungsvariante des erfindungsgemäßen isolierten elektrischen Leiters, dargestellt in Figur 2a als Flachleiter mit rechteckigem Querschnitt und in Fig. 3a mit rundem Querschnitt, besteht die isolierende Beschichtung 2 nur aus einer Isolationsschicht 3. Die Isolationsschicht 3 weist dabei eine Temperaturbeständigkeit von über 180°C, vorzugsweise von über 220°C, auf, sodass der isolierte elektrische Leiter auch bei hohen Betriebstemperaturen eingesetzt werden kann. Die äußere Isolationsschicht 3 besteht dabei aus Polyetheretherketon [PEEK], welches sowohl die hohe Temperaturbeständigkeit als auch eine hohe Beständigkeit gegenüber einer großen Anzahl an organischen und anorganischen Substanzen aufweist. Alternativ dazu kann die äußere Isolationsschicht 3 auch aus Polyphenylensulfid [PPS] bestehen oder PEEK und/oder PPS umfassen.
  • Um die erhöhte Haftung zwischen dem elektrischen Leiter 1 und der äußeren Isolationsschicht 3 zu erreichen, gelangt der elektrische Leiter 1 nach dem Durchlaufen der Plasmabehandlungs-Einheit 9 in die Extrusions-Einheit 11 in der die äußere Isolationsschicht 3 auf den elektrische Leiter 1 aufextrudiert wird. Dabei wird der elektrische Leiter 1 auf eine Temperatur von zumindest 200°C, vorzugsweise zumindest 300°C, vorgeheizt. Um die erneute Ausbildung einer Oxidschicht zu verhindern, erfolgt sowohl die Extrusion als auch der Transport des Leiters 1 in die Extrusions-Einheit 11 unter Schutzgasatmosphäre. Ein derart hergestellter isolierter elektrischer Leiter kann beispielsweise als Wickeldraht, im Englischen auch als "magnet wire" geläufig, in einer Elektromaschine, wie einem Elektromotor oder einem Transformator, eingesetzt werden. Die Dicke der äußeren Isolationsschicht 3 beträgt im vorliegenden Ausführungsbeispiel etwa 30 µm.
  • Insbesondere wenn die Isolationsschicht 3 aus einem Polyaryletherketon [PAEK] wie Polyetheretherketon [PEEK] besteht, werden dadurch besonders gute Haftungseingenschaften erreicht. So bleibt die Ablösung der Isolationsschicht 3 vom elektrischen Leiter 1 üblicher Weise weit unter 1 mm, und beträgt insbesondere maximal 0,2 mm, vorzugsweise maximal 0,1 mm, bevorzugt maximal 0,05 mm, besonders bevorzugt maximal 0,01 mm. Auch wenn es sich bei dem thermoplastischen Kunststoff der Isolationsschicht 3 um Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] handelt, lassen sich gesteigerte Haftungseigenschaften erreichen.
  • Im Allgemeinen kann die zumindest eine Isolationsschicht 3 auch zwei, drei vier oder mehr einzelne Isolationsschichten 3 umfassen, welche allesamt unter Schutzgasatmosphäre in der Extrusions-Einheit 11 hergestellt werden. Dadurch lässt sich die Wahrscheinlichkeit von Fehlern in der isolierenden Beschichtung 2 drastisch reduzieren, da Fehler in der untersten der Isolationsschichten 3 durch nachfolgende Isolationsschichten 3 ausgeglichen werden. Für eine solche Herstellung eignen sich insbesondere Tandemextrusionsverfahren.
  • Zusätzlich oder stattdessen kann auch vorgesehen sein, dass weitere Isolationsschichten, die vorzugsweise analog zu der zumindest einen Isolationsschicht 3 aufgebaut sind, also insbesondere aus einem Polyaryletherketon [PAEK] wie Polyetheretherketon [PEEK] oder einem anderen der zuvor genannten Kunststoffe bestehen, außerhalb der Schutzgasatmosphäre in einer weiteren Extrusions-Einheit 12 auf die isolierende Beschichtung 2 aufgebracht werden.
  • Um die Haftung zwischen der isolierenden Beschichtung 2 und dem elektrischen Leiter 1 alternativ zur ersten Ausführungsvariante zu erhöhen, umfasst die isolierende Beschichtung 2 in der in den Figuren 2b und 3b dargestellten zweiten Ausführungsvariante neben der äußeren Isolationsschicht 3 aus PEEK oder PPS eine Kunststoff enthaltende Zwischenschicht in Form einer Plasmapolymer-Schicht 4. Diese Plasmapolymer-Schicht 4 wird im erfindungsgemäßen Verfahren in einer Plasmapolymerisations-Einheit 10 hergestellt, die nach der Plasmabehandlungs-Einheit 9 und vor der Extrusions-Einheit 11 angeordnet ist. Es ist auch denkbar, dass die Plasmabehandlung und die Plasmapolymerisation in einer kombinierten Einrichtung durchgeführt werden. Nachdem die Oxidschicht entfernt und die Oberflächenenergie erhöht wurde, siehe oben, bildet sich in der Plasmapolymerisations-Einheit 10 die Plasmapolymer-Schicht 4 auf der Oberfläche des elektrischen Leiters 1 aus, indem ein gasförmiges Monomer, wie Ethylen, Buthenol, Aceton oder Tetrafluormethan [CF4] mittels des Plasmas aktiviert wird und sich dadurch hochvernetzte Makromoleküle unterschiedlicher Kettenlänge und einem Anteil an freien Radikalen ausbilden, welche sich als Plasmapolymer-Schicht 4 auf der Oberfläche des elektrischen Leiters 1 ablagern. Die so entstandene Plasmapolymer-Schicht 4 ist im vorliegenden Ausführungsbeispiel weniger als 1 µm dick und haftet besonders gut an der aktivierten und oxidfreien Oberfläche des elektrischen Leiters 1.
  • Die äußere Isolationsschicht 3 wird wiederum in der Extrusions-Einheit 11 wie oben beschrieben auf die Plasmapolymer-Schicht 4 aufextrudiert, wobei auch die Haftung zwischen Plasmapolymer-Schicht 4 und äußerer Isolationsschicht 3 hoch ist.
  • In der dritten Ausführungsvariante, abgebildet in den Figuren 2c und 3c, umfasst die isolierende Beschichtung 2 neben der äußeren Isolationsschicht 3 aus PEEK eine als Fluoropolymer-Schicht 5 aus Polytetrafluorethylen [PTFE] oder Perfluorethylenpropylen [FEP] ausgebildete Kunststoff enthaltende Zwischenschicht, die unmittelbar auf die Oberfläche des elektrischen Leiters 1 aufgebracht ist und die Haftung zwischen dem elektrischen Leiter 1 und der äußeren Isolationsschicht 3 weiter verbessert. Hergestellt wird die Fluoropolymer-Schicht 5 gemeinsam mit der äußeren Isolationsschicht 3 in der Extrusions-Einheit 11 mittels eines Ko- oder Tandemextrusions-Verfahrens. Die Dicke der Fluoropolymer-Schicht 5 beträgt dabei im vorliegenden Ausführungsbeispiel etwa 30 µm.
  • Nach dem Aufextrudieren der äußeren Isolationsschicht 3 wird der isolierte elektrische Leiter kontrolliert abgekühlt, beispielsweise durch Luftkühlung, und über eine Reihe von Anpressrollen geführt, die durch Ausüben von Druck auf den isolierte elektrische Leiter die Haftung weiter verbessern. Abschließend wird der isolierte elektrische Leiter auf einem Spulenaufwickler 13 aufgewickelt.
  • Bei den dargestellten Einrichtungen in Fig. 1 handelt es sich über eine Übersicht, in der alle Einrichtungen gezeigt sind, die zur Herstellung der einzelnen Ausführungsvarianten notwendig sind. Während die Reihenfolge, von rechts nach links, der durchlaufenen Einrichtungen von der Ausführungsvariante unabhängig sind und jedenfalls die Plasmabehandlungs-Einheit 9 und die Extrusions-Einheit 11 durchlaufen werden müssen, handelt es sich bei der Plasmapolymerisations-Einheit 9 und der weiteren Extrusions-Einheit 12 um optionale Einrichtungen, die nur bei der Herstellung spezifischer Ausführungsvarianten zum Einsatz kommen. Es versteht sich von selbst, dass statt eines Ko- oder Tandemextrusions-Verfahrens auch mehrere einzelne Extrusionen sequentiell durchgeführt werden können.
  • BEZUGSZEICHENLISTE
  • 1
    elektrischer Leiter
    2
    isolierende Beschichtung
    3
    Isolationsschicht
    4
    Plasmapolymer-Schicht
    5
    Fluoropolymer-Schicht
    6
    Metallschicht
    7
    Spulenablauf
    8
    Vorreinigungs-Einheit
    9
    Plasmabehandlungs-Einheit
    10
    Plasmapolymerisations-Einheit
    11
    Extrusions-Einheit
    12
    weitere Extrusionseinheit
    13
    Spulenaufwickler

Claims (16)

  1. Isolierter elektrischer Leiter umfassend
    einen elektrischen Leiter (1), vorzugsweise aus Kupfer oder Aluminium, mit einer isolierenden Beschichtung (2),
    wobei die isolierende Beschichtung (2) entweder
    zumindest eine Isolationsschicht (3) aus thermoplastischem Kunststoff umfasst
    oder
    zumindest eine Isolationsschicht (3) aus thermoplastischem Kunststoff und eine Kunststoff enthaltende Zwischenschicht (4,5), vorzugsweise eine Plasmapolymer-Schicht (4) oder zumindest eine Fluoropolymer-Schicht (5), umfasst,
    dadurch gekennzeichnet, dass eine auf einer Oberfläche des elektrischen Leiters (1) ausgebildete Oxidschicht, vorzugsweise durch Beschuss des elektrischen Leiters (1) mit Ionen eines Schutzgases einer Schutzgasatmosphäre in einem Gas-Plasma, entfernt ist
    und nachfolgend entweder
    die zumindest eine Isolationsschicht (3) unmittelbar auf die oxidschicht-freie Oberfläche des elektrischen Leiters (1) aufgebracht ist
    oder, in dem Fall, dass die Beschichtung (2) die Kunststoff enthaltende Zwischenschicht (4,5) umfasst,
    zumindest die Kunststoff enthaltende Zwischenschicht (4,5) unmittelbar auf die oxidschicht-freie Oberfläche des elektrischen Leiters (1) aufgebracht ist.
  2. Isolierter elektrischer Leiter nach Anspruch 1, dadurch gekennzeichnet, dass die auf der Oberfläche des elektrischen Leiters (1) ausgebildete Oxidschicht durch Beschuss des elektrischen Leiters mit Ionen eines Schutzgases einer Schutzgasatmosphäre in einem Gas-Plasma entfernt ist.
  3. Isolierter elektrischer Leiter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die isolierende Beschichtung (2), insbesondere die zumindest eine Isolationsschicht (3), eine Temperaturbeständigkeit von zumindest 180°C, vorzugsweise von zumindest 200°C, insbesondere von zumindest 220°C, aufweist.
  4. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der thermoplastische Kunststoff der zumindest einen Isolationsschicht (3) ausgewählt ist aus der Gruppe bestehend aus Polyaryletherketon [PAEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon.
  5. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der thermoplastische Kunststoff der zumindest einen Isolationsschicht (3) ein Polyaryletherketon [PAEK] ausgewählt aus der Gruppe bestehend aus Polyetherketon [PEK], Polyetheretherketon [PEEK], Polyetherketonketon [PEKK], Polyetheretherketonketon [PEEKK], Polyetherketon-etherketonketon [PEKEKK] und Kombinationen davon ist.
  6. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die zumindest eine Isolationsschicht (3) eine Dicke zwischen 10 und bis 1000 µm, vorzugsweise zwischen 25 µm und 750 µm, besonders bevorzugt zwischen 30 µm und 500 µm, insbesondere zwischen 50 µm und 250 µm, aufweist.
  7. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die zumindest eine Isolationsschicht (3) mittels eines Extrusions-Verfahrens herstellbar ist.
  8. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die isolierende Beschichtung (2) aus der zumindest einen Isolationsschicht (3) besteht.
  9. Isolierter elektrischer Leiter nach Anspruch 8, dadurch gekennzeichnet, dass die isolierende Beschichtung (2) aus einer Isolationsschicht (3) besteht.
  10. Isolierter elektrischer Leiter nach Anspruch 8, dadurch gekennzeichnet, dass die isolierende Beschichtung (2) aus zumindest zwei, vorzugsweise genau zwei, Isolationsschichten (3) besteht.
  11. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass zumindest eine weitere Isolationsschicht aus thermoplastischem Kunststoff auf der isolierenden Beschichtung (2) aufgebracht ist, wobei die zumindest eine weitere Isolationsschicht nicht unter Schutzgasatmosphäre aufgebracht wird.
  12. Isolierter elektrischer Leiter nach Anspruch 11, dadurch gekennzeichnet, dass der thermoplastische Kunststoff der zumindest einen weiteren Isolationsschicht ausgewählt ist aus der Gruppe bestehend aus Polyaryletherketon [PAEK], vorzugsweise Polyetheretherketon [PEEK], Polyimid [PI], Polyamidimid [PAI], Polyetherimid [PEI], Polyphenylensulfid [PPS] und Kombinationen davon.
  13. Isolierter elektrischer Leiter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die isolierende Beschichtung (2) zumindest eine Fluoropolymer-Schicht (5) aufweist
    und dass es sich bei der unmittelbar auf die Oberfläche des elektrischen Leiters (1) aufgebrachten, Kunststoff enthaltenden Zwischenschicht um die Fluoropolymer-Schicht (5) handelt.
  14. Isolierter elektrischer Leiter nach Anspruch 13, dadurch gekennzeichnet, dass die Fluoropolymer-Schicht (5) Polytetrafluorethylen [PTFE] oder Perfluorethylenpropylen [FEP] umfasst.
  15. Isolierter elektrischer Leiter einem der Ansprüche 13 bis 14, dadurch gekennzeichnet, dass die Dicke der zumindest einen Fluoropolymer-Schicht (5) zwischen 1 µm und 120 µm, vorzugsweise zwischen 5 µm und 100 µm, besonders bevorzugt zwischen 10 µm und 80 µm, insbesondere zwischen 20 µm und 50 µm, beträgt.
  16. Isolierter elektrischer Leiter nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die gesamte isolierende Beschichtung (2) unter Schutzgasatmosphäre auf den elektrischen Leiter (1) aufgebracht ist.
EP18191902.8A 2016-04-01 2017-03-20 Isolierter elektrischer leiter Active EP3441986B8 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL18191902T PL3441986T3 (pl) 2016-04-01 2017-03-20 Izolowany przewód elektryczny
RS20211525A RS62697B1 (sr) 2016-04-01 2017-03-20 Izolovani električni provodnik

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16163536.2A EP3226258B1 (de) 2016-04-01 2016-04-01 Isolierter elektrischer leiter
EP17711216.6A EP3394861B1 (de) 2016-04-01 2017-03-20 Isolierter elektrischer leiter
PCT/EP2017/056489 WO2017167595A1 (de) 2016-04-01 2017-03-20 Isolierter elektrischer leiter

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP17711216.6A Division EP3394861B1 (de) 2016-04-01 2017-03-20 Isolierter elektrischer leiter
EP17711216.6A Division-Into EP3394861B1 (de) 2016-04-01 2017-03-20 Isolierter elektrischer leiter

Publications (3)

Publication Number Publication Date
EP3441986A1 EP3441986A1 (de) 2019-02-13
EP3441986B1 true EP3441986B1 (de) 2021-09-29
EP3441986B8 EP3441986B8 (de) 2021-11-03

Family

ID=55697019

Family Applications (3)

Application Number Title Priority Date Filing Date
EP16163536.2A Active EP3226258B1 (de) 2016-04-01 2016-04-01 Isolierter elektrischer leiter
EP17711216.6A Active EP3394861B1 (de) 2016-04-01 2017-03-20 Isolierter elektrischer leiter
EP18191902.8A Active EP3441986B8 (de) 2016-04-01 2017-03-20 Isolierter elektrischer leiter

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP16163536.2A Active EP3226258B1 (de) 2016-04-01 2016-04-01 Isolierter elektrischer leiter
EP17711216.6A Active EP3394861B1 (de) 2016-04-01 2017-03-20 Isolierter elektrischer leiter

Country Status (18)

Country Link
US (2) US20190131037A1 (de)
EP (3) EP3226258B1 (de)
JP (2) JP6877773B2 (de)
KR (2) KR102587257B1 (de)
CN (2) CN109074918A (de)
BR (2) BR122020003443B1 (de)
CA (1) CA3019024C (de)
ES (3) ES2704893T3 (de)
HU (1) HUE056737T2 (de)
MA (2) MA44633A (de)
MD (1) MD3441986T2 (de)
MX (1) MX2018011979A (de)
MY (1) MY188833A (de)
PL (3) PL3226258T3 (de)
PT (3) PT3226258T (de)
RS (3) RS58038B1 (de)
TR (1) TR201910192T4 (de)
WO (1) WO2017167595A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7084128B2 (ja) 2017-11-29 2022-06-14 花王株式会社 尿比重評価機能付き採尿容器
AT523257A1 (de) * 2018-05-29 2021-06-15 Miba Emobility Gmbh Stator mit Isolationsschicht
AT521301B1 (de) * 2018-05-29 2020-04-15 Miba Ag Stator mit Isolationsschicht
CN108831607B (zh) * 2018-07-26 2024-01-09 江苏中容电气有限公司 一种单根小截面换位导线
CN109545456A (zh) * 2018-12-27 2019-03-29 河南通达电缆股份有限公司 一种耐水耐高温绕组线
DE102019111438B4 (de) * 2019-05-03 2020-11-26 Schaeffler Technologies AG & Co. KG Verfahren zum Ablösen einer Isolationsschicht von einem Leiterdrahtende
KR20240096871A (ko) * 2019-08-23 2024-06-26 제우스 컴퍼니 엘엘씨 중합체-코팅된 와이어
DE202020005038U1 (de) 2019-12-11 2021-03-12 Hew-Kabel Gmbh Isoliertes elektrisch leitfähiges Element
FR3109848B1 (fr) 2020-04-30 2022-12-16 Arkema France Conducteur isolé apte à être utilisé dans un bobinage, bobinage en dérivant et procédés de fabrication correspondants.
JP7488725B2 (ja) 2020-08-26 2024-05-22 Ntn株式会社 絶縁転がり軸受
CN114334289B (zh) * 2021-02-24 2023-03-10 佳腾电业(赣州)有限公司 一种绝缘电线制备方法、绝缘电线和电子/电气设备
AT525296A1 (de) * 2021-07-23 2023-02-15 Miba Emobility Gmbh Verfahren zur Herstellung eines isolierten elektrischen Leiters
GB202113671D0 (en) 2021-09-24 2021-11-10 Victrex Mfg Ltd Insulated conductor and method of manufacture
JP2024025963A (ja) * 2022-08-15 2024-02-28 エセックス古河マグネットワイヤジャパン株式会社 絶縁電線及びその製造方法、並びに該絶縁電線を用いたコイル、回転電機及び電気・電子機器
JP7510096B2 (ja) 2022-08-25 2024-07-03 ダイキン工業株式会社 絶縁電線およびその製造方法
JP7460940B2 (ja) 2022-08-30 2024-04-03 ダイキン工業株式会社 絶縁電線
KR102498266B1 (ko) * 2022-10-18 2023-02-09 주식회사 케이디일렉트릭 멀티탭용 케이블 제조장치
WO2024120990A1 (en) 2022-12-05 2024-06-13 Nv Bekaert Sa Method to produce an insulated metal element and insulated metal element
CN116705399B (zh) * 2023-07-19 2023-12-08 江苏君华特种工程塑料制品有限公司 一种抗剥离聚醚醚酮车用线缆及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031061A (ja) * 2001-07-13 2003-01-31 Mitsubishi Cable Ind Ltd 水密絶縁電線の製造方法
WO2016039350A1 (ja) * 2014-09-09 2016-03-17 古河電気工業株式会社 絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1295889C (en) * 1985-01-14 1992-02-18 Richard J. Penneck Refractory coated article
JPS63192867A (ja) * 1987-02-06 1988-08-10 Mitsubishi Heavy Ind Ltd 金属皮膜方法
JPS63274470A (ja) * 1987-05-07 1988-11-11 Hitachi Cable Ltd 薄膜被覆金属線の製造法
US5396104A (en) * 1989-03-28 1995-03-07 Nippon Steel Corporation Resin coated bonding wire, method of manufacturing the same, and semiconductor device
JPH03222210A (ja) * 1990-01-29 1991-10-01 Furukawa Electric Co Ltd:The 絶縁電線
JP3453033B2 (ja) * 1996-10-23 2003-10-06 株式会社豊田中央研究所 被覆部材およびその製造方法
JP2003346578A (ja) * 2002-05-27 2003-12-05 Yazaki Corp 高圧cvケーブルの製造方法、及び高圧cvケーブルの製造装置
JP2004127649A (ja) * 2002-10-01 2004-04-22 Sumitomo Wiring Syst Ltd 水密型絶縁電線製造装置及び水密型絶縁電線製造方法
DE10331608A1 (de) * 2003-07-12 2005-01-27 Hew-Kabel/Cdt Gmbh & Co. Kg Verfahren zum Beschichten und/oder partiellen Umspritzen von flexiblem langgestrecktem Gut
KR100912321B1 (ko) * 2003-12-04 2009-08-14 도쿄엘렉트론가부시키가이샤 반도체 기판 도전층 표면의 청정화 방법
KR20040088448A (ko) * 2004-09-21 2004-10-16 정세영 단결정 와이어 제조방법
EP1945397B1 (de) * 2005-11-10 2016-03-02 Lucas-Milhaupt, Inc. Ein flussmaterial enthaltendes lötmaterial mit einer durchgehenden länge einer elastomerlage
KR20070038039A (ko) * 2006-11-27 2007-04-09 프리즈미안 카비 에 시스테미 에너지아 에스 알 엘 외부의 화학 약품류에 내성인 케이블을 제조하는 방법
DE102009006069A1 (de) * 2009-01-25 2010-07-29 Hew-Kabel/Cdt Gmbh & Co. Kg Elektrisches Kabel
CN101640082B (zh) * 2009-09-02 2011-04-06 北京福斯汽车电线有限公司 一种裸铜导体硅橡胶绝缘汽车用电线电缆制造方法及制品
DE102010002721A1 (de) * 2010-03-10 2011-11-17 Siemens Aktiengesellschaft Draht und Verfahren zur Herstellung eines Drahts
JP2014103045A (ja) * 2012-11-21 2014-06-05 Hitachi Metals Ltd 絶縁電線及びその製造方法
JP2015095363A (ja) * 2013-11-12 2015-05-18 旭硝子株式会社 ワイヤまたはケーブル、それらの製造方法および絶縁テープ
WO2015130681A1 (en) * 2014-02-25 2015-09-03 Essex Group, Inc. Insulated winding wire
CN106663500A (zh) * 2014-08-05 2017-05-10 通用线缆技术公司 用于架空导体的含氟共聚物涂料
JP2016039103A (ja) * 2014-08-11 2016-03-22 住友電装株式会社 被覆電線の製造方法及び被覆電線の製造装置
CN104778997B (zh) * 2015-04-28 2017-04-12 河南九发高导铜材股份有限公司 一种高温高导电工线材及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031061A (ja) * 2001-07-13 2003-01-31 Mitsubishi Cable Ind Ltd 水密絶縁電線の製造方法
WO2016039350A1 (ja) * 2014-09-09 2016-03-17 古河電気工業株式会社 絶縁電線、コイルおよび電気・電子機器ならびに絶縁電線の製造方法

Also Published As

Publication number Publication date
JP2021122007A (ja) 2021-08-26
EP3441986A1 (de) 2019-02-13
ES2903093T3 (es) 2022-03-31
PL3394861T3 (pl) 2019-10-31
CN114520071A (zh) 2022-05-20
MX2018011979A (es) 2019-01-15
CA3019024A1 (en) 2017-10-05
TR201910192T4 (tr) 2019-08-21
MD3441986T2 (ro) 2022-05-31
EP3394861B1 (de) 2019-05-01
PT3226258T (pt) 2019-01-09
PT3441986T (pt) 2021-12-02
US20190131037A1 (en) 2019-05-02
HUE056737T2 (hu) 2022-03-28
ES2737298T3 (es) 2020-01-13
MA44633A (fr) 2019-02-13
PL3441986T3 (pl) 2022-03-07
EP3394861A1 (de) 2018-10-31
RS62697B1 (sr) 2022-01-31
PT3394861T (pt) 2019-07-08
KR102455180B1 (ko) 2022-10-14
JP6877773B2 (ja) 2021-05-26
CA3019024C (en) 2022-05-31
KR20220137813A (ko) 2022-10-12
BR122020003443B1 (pt) 2023-04-11
US20230040706A1 (en) 2023-02-09
CN109074918A (zh) 2018-12-21
JP2019519062A (ja) 2019-07-04
EP3441986B8 (de) 2021-11-03
MA44174A (fr) 2018-10-31
RS58877B1 (sr) 2019-08-30
EP3226258B1 (de) 2018-10-24
JP7055496B2 (ja) 2022-04-18
MY188833A (en) 2022-01-07
BR112018069576A2 (pt) 2019-01-22
ES2704893T3 (es) 2019-03-20
WO2017167595A1 (de) 2017-10-05
RS58038B1 (sr) 2019-02-28
PL3226258T3 (pl) 2019-04-30
KR102587257B1 (ko) 2023-10-10
EP3226258A1 (de) 2017-10-04
KR20180128920A (ko) 2018-12-04

Similar Documents

Publication Publication Date Title
EP3441986B1 (de) Isolierter elektrischer leiter
EP0951132B1 (de) Wicklungsstab für die Hochspannungswicklung einer elektrischen Maschine sowie Verfahren zur Herstellung eines solchen Wicklungsstabes
EP1829059A1 (de) Verfahren zum herstellen eines wickelleiters für elektrische geräte und nach diesem verfahren hergestellter wickelleiter
AT521301B1 (de) Stator mit Isolationsschicht
EP3134906B1 (de) Drillleiter
DE102018201790B4 (de) Verdrillter Aluminiumverbunddrahtleiter, verdrillter Aluminiumverbunddraht und Kabelbaum
DE3417541A1 (de) Verfahren zur herstellung eines isolierten rechteckigen drahtes
DE69029580T2 (de) Verfahren zur Bildung eines Schichtkörpers und das sich daraus ergebende Produkt
DE102011107313A1 (de) Isolierter Hochtemperatur-Bandsupraleiter und Verfahren zu seiner Herstellung
EP2224458A2 (de) Elektrisches Kabel
EP1995738A1 (de) Elektrischer Leiter
EP1952407B1 (de) Glimmerverstärkte isolation
WO2023000010A1 (de) Verfahren/anlage zur herstellung eines isolierten elektrischen leiters
DE102010001991B4 (de) Flachleitervorrichtung mit zwei umsponnenen Isolierschichten und Herstellungsverfahren
EP2483895B1 (de) Verfahren zum aufbringen von kunststoff auf einzelleiter und hts-verbund hergestellt aus den einzelleitern
DE102005058040A1 (de) Verfahren zum Herstellen eines Wickelleiters für elektrische Geräte und nach diesem Verfahren hergestellter Wickelleiter
EP3836165A1 (de) Isoliertes elektrisch leitfähiges element und verfahren zu dessen herstellung
DE2540681C3 (de) Vorrichtung zur Oberflächenbehandlung von Folienbahnen mittels elektrischer Entladungen
DE102021001740A1 (de) Beschichtungsverfahren für Mikroflachdrähte
EP4307321A1 (de) Lackisolierter runddraht, verfahren zur herstellung und verwendung dazu
WO1998008238A1 (de) Bewicklungsschutz für bandkerne
DE102008032854A1 (de) Herstellung eines Energieleiters
DE2122633A1 (de) Verfahren zur Herstellung von druckempfindlichen Klebmaterialien
EP0492186A2 (de) Verfahren und Vorrichtung zur Herstellung einer mit Fluorkarbon isolierten elektrischen Leitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17P Request for examination filed

Effective date: 20180831

AC Divisional application: reference to earlier application

Ref document number: 3394861

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17Q First examination report despatched

Effective date: 20190117

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210707

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017011626

Country of ref document: DE

Owner name: HPW METALLWERK GMBH, AT

Free format text: FORMER OWNER: GEBAUER & GRILLER METALLWERK GMBH, WIEN, AT

AC Divisional application: reference to earlier application

Ref document number: 3394861

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HPW METALLWERK GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017011626

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1434926

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3441986

Country of ref document: PT

Date of ref document: 20211202

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20211125

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211230

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E056737

Country of ref document: HU

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2903093

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220331

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 39062

Country of ref document: SK

VSFP Annual fee paid to validation state [announced via postgrant information from national office to epo]

Ref country code: MD

Payment date: 20220302

Year of fee payment: 6

REG Reference to a national code

Ref country code: MD

Ref legal event code: VAGR

Ref document number: 3441986

Country of ref document: MD

Date of ref document: 20220531

Kind code of ref document: T2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220129

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017011626

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220320

VSFP Annual fee paid to validation state [announced via postgrant information from national office to epo]

Ref country code: MD

Payment date: 20230303

Year of fee payment: 7

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240319

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240319

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240229

Year of fee payment: 8

Ref country code: HU

Payment date: 20240308

Year of fee payment: 8

Ref country code: FI

Payment date: 20240326

Year of fee payment: 8

Ref country code: DE

Payment date: 20240328

Year of fee payment: 8

Ref country code: CZ

Payment date: 20240229

Year of fee payment: 8

Ref country code: BG

Payment date: 20240326

Year of fee payment: 8

Ref country code: PT

Payment date: 20240229

Year of fee payment: 8

Ref country code: GB

Payment date: 20240319

Year of fee payment: 8

Ref country code: SK

Payment date: 20240304

Year of fee payment: 8

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MA

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

VSFP Annual fee paid to validation state [announced via postgrant information from national office to epo]

Ref country code: MD

Payment date: 20240306

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240229

Year of fee payment: 8

Ref country code: SE

Payment date: 20240326

Year of fee payment: 8

Ref country code: RS

Payment date: 20240229

Year of fee payment: 8

Ref country code: PL

Payment date: 20240220

Year of fee payment: 8

Ref country code: IT

Payment date: 20240321

Year of fee payment: 8

Ref country code: FR

Payment date: 20240327

Year of fee payment: 8

Ref country code: BE

Payment date: 20240326

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240412

Year of fee payment: 8