EP3379063A1 - Flüssigkeitsgekühlter verbrennungsmotor - Google Patents

Flüssigkeitsgekühlter verbrennungsmotor Download PDF

Info

Publication number
EP3379063A1
EP3379063A1 EP18156931.0A EP18156931A EP3379063A1 EP 3379063 A1 EP3379063 A1 EP 3379063A1 EP 18156931 A EP18156931 A EP 18156931A EP 3379063 A1 EP3379063 A1 EP 3379063A1
Authority
EP
European Patent Office
Prior art keywords
cooling
cylinder
chamber
combustion engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18156931.0A
Other languages
English (en)
French (fr)
Other versions
EP3379063B1 (de
Inventor
Domenico Palmisani
Raghavendra Hegde
Zhi Li
Michael Sullivan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Machines Bulle SA
Deere and Co
Original Assignee
Liebherr Machines Bulle SA
Deere and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Machines Bulle SA, Deere and Co filed Critical Liebherr Machines Bulle SA
Publication of EP3379063A1 publication Critical patent/EP3379063A1/de
Application granted granted Critical
Publication of EP3379063B1 publication Critical patent/EP3379063B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/14Arrangements for cooling other engine or machine parts for cooling intake or exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/14Cylinders with means for directing, guiding or distributing liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/16Cylinder liners of wet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/38Cylinder heads having cooling means for liquid cooling the cylinder heads being of overhead valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling
    • F02F1/40Cylinder heads having cooling means for liquid cooling cylinder heads with means for directing, guiding, or distributing liquid stream 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/021Cooling cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/028Cooling cylinders and cylinder heads in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • F01P3/16Arrangements for cooling other engine or machine parts for cooling fuel injectors or sparking-plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/36Cylinder heads having cooling means for liquid cooling

Definitions

  • the invention relates to a liquid-cooled internal combustion engine comprising an engine block comprising a plurality of cylinders and the cylinder closing cylinder heads, wherein each cylinder is surrounded by a respective cooling jacket and in each cylinder head at least a separate cooling space is provided, the at least one transitional channel with the cooling jacket of the associated cylinder connected in the engine block.
  • a suitable coolant For cooling an internal combustion engine while the engine is running, it is flowed through by a suitable coolant.
  • the cylinder sleeves inserted into the casting of the engine block are flowed around by a coolant jacket surrounding the cylinder sleeves.
  • the cylinder heads also include one or more cooling chambers to cool the valves, seals, etc. housed there.
  • the coolant is usually pumped through an external cooling pump through the cooling jackets, cooling chambers and channels of each cylinder.
  • a possible cooling concept for an internal combustion engine is from the EP 2 132 423 B1 known.
  • the flow pattern according to the prior art is schematic in the FIG. 1 played.
  • Each of the four cylinders of the engine block 1 is closed by a single cylinder head 3.
  • the cooling jackets of the cylinders are identified by the reference numeral 2.
  • the coolant is first divided into partial streams through the individual cooling jackets 2 of the cylinder of the engine block 1.
  • the coolant flows via a separate riser 6 into a first and second partial cooling space 7a, 7b of the respective cylinder head 3.
  • the coolant of the partial flows is collected in a common coolant collecting chamber 8.
  • the partial flows of the coolant distributed to the individual cylinders should be identical, and pressure losses should be kept low.
  • manufacturing tolerances in the casting process for producing the engine block 1 or the cylinder heads 3 and cylinder head 200 lead to minor and application-relevant deviations of the actual geometry of the cooling jackets, cooling chambers and cooling channels, which can lead to asymmetric partial flows with different coolant flow rates.
  • the flow paths to be assigned to the individual cylinders are not identical. Overall, the asymmetries require higher coolant recirculation performance to ensure adequate cooling of all combustion chamber environments.
  • Remedy has been created by modification of the cylinder head gaskets, which in the FIG. 1 marked with the reference numeral 4. These include openings for the transition channels 6, 9 of the coolant between the engine block 1 and cylinder head 3.
  • the sealing elements 4a, 4b By adjusting the sealing elements 4a, 4b in the areas of the channels 6, 9 individual flow resistances can be realized, whereby ultimately a flow rate equalization of the different coolant partial streams are achieved can. This measure is required even if the upper or lower cooling chambers 7a, 7b are directly in fluid communication with each other.
  • a disadvantage of the proposed procedure is that it first requires a complex analysis of the symmetry properties of the produced internal combustion engine.
  • the need for cylinder-specific seals is not necessarily economical.
  • the search is therefore for a solution that ensures uniform coolant flows through the engine, without having to accept the aforementioned disadvantages.
  • a liquid-cooled internal combustion engine according to the features of claim 1.
  • the transition channels of at least two cylinders i. that the separate cooling chambers per cylinder with the respective cooling jacket of the associated cylinder connecting transition channels are connected to each other via a common pressure equalization chamber.
  • the pressure equalization chamber, the coolant sub-streams are merged before entering the cooling jackets, whereby deviations in the coolant flow rates of the partial flows can be balanced. This ensures that set for all partial flows identical or nearly identical coolant flow rates.
  • the construction according to the invention does not require any modification of the cylinder head gasket; instead, ideally identical sealing elements can be used for all cylinders of an internal combustion engine, which ultimately represents an enormous cost saving potential, all the more so since it is possible to dispense with the aforementioned complex measurement analysis.
  • the pressure compensation chamber is integrated in the engine block.
  • this extends in the longitudinal direction of the engine block and is particularly preferably applied tangentially to the cooling jackets of the cylinder.
  • the flow path of each individual cylinder extends from the at least one cooling space of the cylinder head to the cooling jacket of the cylinder. Consequently, the cooling jacket of the cylinder is at the end of the flow path, from which the coolant finally reaches the pressure sink.
  • At least two separate cooling chambers are provided in the cylinder head per cylinder.
  • an upper and a lower partial cooling space are provided, wherein the lower part of the cooling chamber is preferably in the region of the transition region between the cylinder head and engine block, i. in the area of the flame plate.
  • both cooling chambers are connected to each other via at least one connecting channel.
  • connection channels can be distinguished by different diameters.
  • a channel with a larger diameter serves as the main connection between the individual partial cooling chambers.
  • the remaining channel of lesser cross section substantially serves for venting during engine operation.
  • the provision of a second connection channel also has the advantage that the formation of air spaces during initial filling of the internal combustion engine with coolant is avoided.
  • the cylinder head of at least one cylinder is designed such that an extending through the cylinder head exhaust pipe is at least partially completely surrounded by the cooling chambers of the cylinder head.
  • the internal combustion engine is preferably equipped with a distribution chamber, which is connectable via a pressure connection with an external pressure source, for example a coolant pump.
  • the distribution chamber communicates with at least one cooling space of each cylinder head via one or more channels, so that coolant can flow from the distribution chamber into each cylinder head or into at least one cooling space of each cylinder head.
  • the coolant flow is split into individual partial flows, with the coolant of each partial flow first passing through the cylinder head and only then into the engine block, i. Cooling jacket of the cylinder flows.
  • the distribution chamber is integrated in the engine block.
  • At least one collecting chamber may be provided, in which the individual partial streams of the different cylinders end, i. the individual cooling jackets of each cylinder are connected to the collection chamber via one or more channels.
  • This may, for example, have a low-pressure connection, via which the coolant can be supplied to the part of the cooling circuit which is located externally to the internal combustion engine.
  • the collection chamber may preferably be integrated in the engine block.
  • At least two transitional channels are provided per cylinder head, which run parallel to the cylinder head and the at least one cooling chamber for pressure compensation chamber.
  • the characteristic of two parallel transition channels reduces the pressure losses.
  • the overriding benefit of this approach is the avoidance of dead zones of coolant flow - an area where there is no movement of coolant - and the avoidance of recirculation of the coolant flow - an area where there is coolant movement but there is no coolant exchange along the main flow direction , The avoidance of such Dead zones and recirculation are important because almost no heat is removed at zones of their occurrence.
  • At least one bypass of at least one cooling space of the cylinder head is provided, which opens directly into the collecting chamber and bypasses the cooling jacket of the cylinder.
  • the establishment of one or more bypass lines can reduce the risk of further stagnation zones of the coolant flow. Unwanted pressure losses can be further contained.
  • the main flow path of the coolant is divided from the distribution chamber on the partial flows for each cylinder, which are passed over the upper part of the cylinder head cooling chamber in the lower part of the cooling chamber, from where the partial flows of the coolant are brought together again by means of the pressure compensation chamber.
  • the accumulating there coolant the partial flows is again divided into individual streams through the cooling jackets of the individual cylinders and merged at the end in the collection chamber.
  • the realized cooling flow path is called a top-down variant.
  • An alternative flow guidance is called bottom-up variant.
  • the main flow path of the coolant flows for each partial flow from the distribution chamber via the lower part of the cooling chamber in the upper part of the cooling chamber. From there, the coolant is passed via the at least one transitional channel to the pressure compensation chamber, which distributes the coolant with identical partial flows to the individual cooling jackets of the cylinder. According to the bottom-up variant the individual partial flows are combined in the collection chamber.
  • the individual cylinder heads are combined to form a cylinder bank, which is advantageously manufactured as a single casting.
  • At least part of the separate cooling chambers of the cylinder heads can be connected to one another via a separate degassing line.
  • the upper part of the cooling chambers are connected to one another via a degassing line.
  • this degassing line is integrated directly into the cylinder heads or the resulting cylinder bank. Air bubbles are to be collected and removed by means of the degassing line.
  • the degassing line also contributes to the balancing of the partial flows, but can not replace the function of the pressure compensation chamber essential to the invention.
  • the cooling jacket of at least one cylinder is divided into at least two cooling jacket sections.
  • the division seen in the longitudinal direction in a lower or upper shell portion It makes sense to connect the two cooling jacket sections in parallel with the pressure compensation chamber in order to reduce the undesired pressure losses. Also conceivable is a parallel connection of the cooling jacket sections with the downstream collecting chamber.
  • FIG. 2 Let us first illustrate the design of the coolant chambers, channels or shrouds using the example of a six cylinder in-line engine. Two concrete embodiments are then based on the FIGS. 3 to 7 or 8 to 11 shown.
  • FIG. 2 shows no structural components of the internal combustion engine according to the invention, but merely illustrates the present during engine operation coolant volumes within the engine block and the cylinder head bank.
  • Channels, Cold rooms and cooling jackets are usually created by matching recesses in the casting of the engine block or the cylinder bank.
  • the cooling jacket for each cylinder is, for example, created by a larger diameter of the cylindrical recess for receiving the cylinder sleeve, so that the resulting gap forms the corresponding volume. Shown are a total of six cylinder jackets 10 in series.
  • Each cooling jacket 10 is divided into an upper part jacket 11 and a lower part jacket 12, wherein the volume of the upper part cooling jacket 11 is significantly smaller than the volume of the lower cooling jacket 12 fails (see. FIG. 2a ).
  • An elongate collection chamber 50 attaches laterally to the cooling jackets 10 a cylinder row of the engine block and is fluidly connected in parallel with two cooling jacket parts 11, 12 in parallel.
  • On the cylinder side opposite the collection chamber 50 is a pressure compensation chamber 60, which also extends in the longitudinal direction of the engine block along the row of cylinders. Also, this pressure compensation chamber 60 is in fluid communication with the upper and lower part of the cooling jacket 11, 12th
  • Reference numeral 40 denotes the distribution chamber 40 (FIG. Fig. 2b ). This also extends in the vertical direction to the upper part of the cooling chamber 30, so that the coolant contained in the distribution chamber 40 can get into partial streams directly into the upper part of the cooling chambers 30 of the cylinder. It is therefore about a top-down cooling concept, the meaning of which will be described in more detail below with reference to the embodiments.
  • fluid connections 70 between the upper part of the cooling chambers 30 can be seen. The resulting venting channel is designated by the reference numeral 70.
  • FIG. 3 exemplified for a 4-cylinder engine.
  • the illustration shows a row of cylinders of the engine block 100 whose cylinder heads are combined to form a cylinder head bank 200.
  • the reference numerals are given only for the first cylinder, but the further cylinders are constructed identically to the first cylinder.
  • the coolant is divided into individual partial streams, each of which leads via a channel 31 directly into the upper part of the cooling chamber 30.
  • the partial cooling chambers 30 of the cylinder heads are connected to one another via the venting channel 70, as a result of which air bubbles contained in the coolant collect and can be conveyed to the outside.
  • the ends of the vent line are closed at the ends by means of caps or provided with a suitable vent valve.
  • the lower part of the cooling chamber 20 is connected via two parallel transition channels 25, 26 with the pressure compensation chamber 60 in connection.
  • all partial flows of the individual cylinders in the pressure compensation chamber 60 are brought together again.
  • Due to the presence and the design of this pressure compensation chamber 60 a good balance of the cooling system is achieved, production-related asymmetries of the channels 28, 31 and the partial cooling chambers 20, 30 are compensated and for the partial flows of the cylinder results in approximately identical coolant flow rates. It is thus achieved a substantially identical cooling performance for all cylinders, whereby the energy required for the circulation of the coolant decreases. A modification of the cylinder head gaskets is therefore superfluous. Also, in the proposed flow pattern, some balance of the asymmetries can already be achieved through the vent channel 70.
  • the coolant Downstream of the pressure compensation chamber 60, the coolant is distributed back to individual partial flows for the individual cylinders and passes through the parallel connecting lines 61, 62 to the upper and lower part of shell 11, 12 of the cooling jacket 10 of the individual cylinders in the engine block 100. After flowing around the cylinder sleeve passes the coolant back into the collection chamber 50, which emits the coolant via the pressure port 51 to the located outside of the engine part of the coolant circuit.
  • the upper and lower partial cooling jackets 11, 12 will advantageously be fed in parallel from the pressure compensation chamber 60, since a serial connection would lead to significantly increased pressure losses because the entire coolant required for cooling the large-area lower partial cooling jacket comprises the upper partial cooling jacket, which has a substantially smaller flow cross-section , would have to flow through. And the comparatively small flow cross section of the upper part of the cooling jacket has a longitudinal extension of half the diameter of the cylinder sleeve.
  • the lower cooling jackets 12 of adjacent cylinders are fluidly connected to one another via the channel 13 in order to distribute the pressure pulsations caused during the expansion phase to adjacent coolant partial flows, in order to counteract the occurrence of cavitation damage.
  • the lower part of the cooling chamber 20 of each cylinder via a bypass channel 29 is connected directly to the collection chamber 50, whereby a smaller volume fraction of the partial flow passes directly on the cooling jacket 10 over into the collection chamber 50.
  • This measure also helps avoid the danger of dead zones and recirculation of the coolant flow, primarily to achieve a reliable and effective cooling and secondarily to achieve a reduction in pressure losses.
  • FIG. 5 shows a section along the axis DD.
  • the cylinder sleeve 101 is inserted.
  • the gap lying between the recess wall and the sleeve forms the cooling jacket, which completely surrounds the cylinder sleeve 101.
  • the recess in the casting of the engine block 100 has different diameters in the longitudinal direction, whereby the upper and lower part cooling jacket 11, 12 is formed.
  • the lower partial cooling jacket 12 is significantly longer in the cylinder longitudinal direction and the volume of the partial cooling jacket 12 clearly exceeds the volume of the upper partial cooling jacket 11.
  • the lower part of the cooling jacket 12 has a significantly larger cross-sectional area than the upper part cooling jacket 11.
  • the pressure compensation chamber 60 is also formed within the engine block 100 and tangential to the recesses for the cylinder sleeves 101 in the longitudinal axis of the engine block 100 inspired.
  • the mounted on the engine block 100 cylinder head 200 has the upper and lower part of the cooling chamber 20, 30. Also, an inserted injector 201 can be seen here.
  • the arrows indicate the main flow direction of the Coolant flow of a single cylinder. Accordingly, the coolant is passed from the distribution chamber 40 to the upper part of the cooling chamber 20 and flows from there via the main channel 28 to the lower part of the cooling chamber 30. Good to see the second connecting line 27 between the upper and lower part of the cooling chamber 20, 30, which has a much smaller diameter having.
  • the coolant enters the pressure compensation chamber 60 and from there to the individualméteilmänteln 11, 12 flows.
  • the circle on the longitudinal axis of the cylinder sleeve 101 symbolizes the existing fluid connection 13 of the lower part jacket 12 to adjacent cooling jackets 10.
  • Not visible in the sectional plane DD is the existing connection of the cooling jackets 11, 12 to the collection chamber 50. However, this is visible in FIG. 6 , Also, here is the necessary connection between the pressure compensation chamber 60 and the cooling jackets 11, 12 to see.
  • FIG. 7 Another sectional view of the illustrated cooling concept is the FIG. 7 refer to.
  • a transversely extending through the cylinder head bank exhaust passage of a cylinder is to be seen in cross section, wherein the exhaust passage is at least partially completely surrounded by the coolant flow of a cylinder.
  • the seal 203 closes the upper part of the cooling chamber 20 upwards.
  • the bypass connection 29 can be seen from the lower part of the cooling chamber 20 to the collection chamber 50.
  • the venting channel 70 integrated directly into the cylinder head bank can be seen.
  • FIGS. 8 to 11 An alternative cooling concept for the internal combustion engine according to the invention is the representations of FIGS. 8 to 11 refer to.
  • the reference numerals in the illustration of FIG. 8 with a total of four cylinders specified only for the first cylinder, but the other cylinders are identical to the first cylinder constructed.
  • this alternative cooling concept is also On engines with a different number of cylinders transferable, also clear, regardless of whether it is a series or V-type engine.
  • the coolant from the distribution chamber 50 does not enter the upper part of the cooling chamber 30 of the cylinder head rail 200, but instead first in the lower part of the cooling chamber 20, from where it continues to reach the upper part of the cooling chamber 30 via the connecting channels 27, 28. This is connected via a single transition channel 25 with the pressure compensation chamber 60 in connection, starting from this, as in the first embodiment, partial flows are provided to the individual cylinder jackets.
  • the lower part of the cooling chamber 20 has a bypass connection 29 with the collection chamber 50, so that by this the way over the upper part of the cooling chamber 30 and the cooling jacket 10 can be bypassed.
  • This bypass also has a section with a comparatively small cross-section.
  • this narrow cross-section is present only over a very short length, whereas the flow paths at the cross-section constricteddeteilmänteln have a much greater longitudinal expansion and represent a correspondingly high flow resistance.
  • the Figures 9 . 10 show corresponding sectional views along the axes of intersection DD and EE. Compared to the first embodiment and the Figures 5 and 6 It can be seen that the design of the engine block 100 is identical, but slight differences in the cylinder head 200 are necessary. Therefore, a uniform engine block 100 can be used for the application of the different cooling concepts or flow patterns; only individual cylinder heads are necessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Die vorliegende Erfindung betrifft einen flüssigkeitsgekühlten Verbrennungsmotor bestehend aus einem mehrere Zylinder umfassenden Motorblock und die Zylinder verschließenden Zylinderköpfen, wobei jeder Zylinder von jeweils einem Kühlmantel umgeben ist und in jedem Zylinderkopf mindestens ein separater Kühlraum vorgesehen ist, der über wenigstens einen Verbindungskanal mit dem Kühlmantel des zugeordneten Zylinders verbunden ist, wobei die Verbindungskanäle von wenigstens zwei Zylindern über eine Druckausgleichkammer miteinander verbunden sind.

Description

  • Die Erfindung betrifft einen flüssigkeitsgekühlten Verbrennungsmotor bestehend aus einem mehrere Zylinder umfassenden Motorblock und die Zylinder verschließenden Zylinderköpfen, wobei jeder Zylinder von jeweils einem Kühlmantel umgeben ist und in jedem Zylinderkopf mindestens ein separater Kühlraum vorgesehen ist, der über wenigstens einen Übergangskanal mit dem Kühlmantel des zugeordneten Zylinders im Motorblock verbunden ist.
  • Zur Kühlung eines Verbrennungsmotors im laufenden Motorbetrieb wird dieser durch ein geeignetes Kühlmittel durchströmt. Die in das Gussteil des Motorblocks eingesetzten Zylinderhülsen werden durch einen die Zylinderhülsen umgebenden Kühlmantel von dem Kühlmittel umströmt. Auch die Zylinderköpfe umfassen ein oder mehrere Kühlräume, um die dort untergebrachten Ventile, Dichtungen, etc. zu kühlen. Das Kühlmittel wird in der Regel durch eine externe Kühlpumpe durch die Kühlmäntel, Kühlräume und Kanäle der einzelnen Zylinder gepumpt.
  • Ein mögliches Kühlkonzept für eine Verbrennungsmaschine ist aus der EP 2 132 423 B1 bekannt. Der Strömungsverlauf gemäß dem Stand der Technik ist schematisch in der Figur 1 wiedergegeben. Jeder der insgesamt vier Zylinder des Motorblockes 1 ist über einen Einzelzylinderkopf 3 verschlossen. Die Kühlmäntel der Zylinder sind mit dem Bezugszeichen 2 gekennzeichnet. Ausgehend von einem gemeinsamen Kühlmittelverteilerraum 5 wird das Kühlmittel zunächst in Teilströme durch die einzelnen Kühlmäntel 2 der Zylinder des Motorblocks 1 aufgeteilt. Von jedem Kühlmantel 2 strömt das Kühlmittel über eine separate Steigleitung 6 in einen ersten und zweiten Teilkühlraum 7a, 7b des jeweiligen Zylinderkopfes 3. Am Ende wird das Kühlmittel der Teilströme in einer gemeinsamen Kühlmittelsammelkammer 8 gesammelt.
  • Idealerweise sollten die auf die einzelnen Zylinder verteilten Teilströme des Kühlmittels identisch sein, und Druckverluste niedrig gehalten werden. Fertigungstoleranzen bei dem Giessprozess zur Herstellung des Motorblockes 1 bzw. der Zylinderköpfe 3 bzw. Zylinderkopfbank 200 führen jedoch zu geringfügigen und bereits anwendungsrelevanten Abweichungen der tatsächlich vorliegenden Geometrieen der Kühlmäntel, Kühlräume und Kühlkanäle, was zu asymmetrischen Teilströmen mit abweichenden Kühlmittelflussraten führen kann. Ferner sind unter einer Inklusionsbetrachtung der Zuführung des Kühlmittels in die Verteilkammer und der Abführung des Kühlmittels aus der Sammelkammer die den einzelnen Zylindern zuzuordnenden Strömungspfade nicht identisch. Die Asymmetrien erfordern insgesamt eine höhere Kühlmittelumwälzleistung, um die ausreichende Kühlung aller Brennraumumgebungen sicherzustellen.
  • Abhilfe wurde bisher durch Modifikation der Zylinderkopfdichtungen geschaffen, die in der Figur 1 mit dem Bezugszeichen 4 gekennzeichnet sind. Diese enthalten unter anderem Öffnungen für die Übergangskanäle 6, 9 des Kühlmittels zwischen Motorblock 1 und Zylinderkopf 3. Durch Anpassung der Dichtungselemente 4a, 4b in den Bereichen der Kanäle 6, 9 lassen sich individuelle Strömungswiderstände realisieren, wodurch letztendlich eine Flussratenangleichung der unterschiedlichen Kühlmittelteilströme erreicht werden kann. Diese Maßnahme ist auch dann erforderlich, wenn die oberen oder unteren Kühlräume 7a, 7b direkt miteinander in einer fluiden Verbindung stehen.
  • Nachteilig an der vorgeschlagenen Vorgehensweise ist jedoch, dass diese zunächst eine aufwendige Analyse der Symmetrieeigenschaften des hergestellten Verbrennungsmotors erforderlich macht. Zudem ist die Notwendigkeit zylinderindividueller Dichtungen nicht unbedingt ökonomisch.
  • Gesucht wird daher nach einer Lösung, die gleichmäßige Kühlmittelströme durch den Verbrennungsmotor gewährleistet, ohne die vorgenannten Nachteile in Kauf nehmen zu müssen.
  • Gelöst wird diese Aufgabe durch einen flüssigkeitsgekühlten Verbrennungsmotor gemäß den Merkmalen des Anspruchs 1. Ausgehend von dem gattungsgemäßen Verbrennungsmotor wird erfindungsgemäß vorgeschlagen, dass die Übergangskanäle von wenigstens zwei Zylindern, d.h. die die separaten Kühlräume pro Zylinder mit dem jeweiligen Kühlmantel des zugeordneten Zylinders verbindenden Übergangskanäle über eine gemeinsame Druckausgleichkammer miteinander verbunden sind. Durch die Druckausgleichskammer werden die Kühlmittelteilströme vor dem Eintritt in die Kühlmäntel zusammengeführt, wodurch Abweichungen in den Kühlmittelflussraten der Teilströme ausbalanciert werden können. Hierdurch wird erreicht, dass sich für alle Teilströme identische oder nahezu identische Kühlmittelflussraten einstellen.
  • Die erfindungsgemäße Konstruktion verlangt keine Modifikation der Zylinderkopfdichtung, stattdessen lassen sich idealerweise identische Dichtelemente für alle Zylinder eines Verbrennungsmotors einsetzen, was letztendlich ein enormes Kosteneinsparpotential bedeutet, dies umso mehr, da auf die zuvor genannte aufwendige Messanalyse verzichtet werden kann.
  • Besonders vorteilhaft ist es, wenn die Druckausgleichkammer in den Motorblock integriert ist. Insbesondere erstreckt sich diese in Längsrichtung des Motorblockes und legt sich besonders bevorzugt tangential an die Kühlmäntel der Zylinder an. Die vom Kühlraum des Zylinderkopfes ausgehenden Übergangskanäle münden folglich in die Druckausgleichskammer, die unmittelbar mit den einzelnen Kühlmänteln der Zylinder des Verbrennungsmotorblockes in Verbindung steht.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung verläuft der Strömungspfad jedes einzelnen Zylinders von dem wenigstens einen Kühlraum des Zylinderkopfes zum Kühlmantel des Zylinders. Demzufolge steht der Kühlmantel des Zylinders am Ende des Strömungspfades, von dem das Kühlmittel letztendlich zurück zur Drucksenke gelangt.
  • Besonders bevorzugt ist es, wenn im Zylinderkopf pro Zylinder wenigstens zwei separate Kühlräume vorgesehen sind. Idealerweise sind ein oberer sowie ein unterer Teilkühlraum vorgesehen, wobei der untere Teilkühlraum bevorzugt im Bereich des Übergangsbereichs zwischen Zylinderkopf und Motorblock liegt, d.h. im Bereich der Flammplatte.
  • Denkbar ist es, dass beide Kühlräume über wenigstens einen Verbindungskanal miteinander verbunden sind. Besser ist die fluide Verbindung mittels wenigstens zwei Verbindungskanälen. Mehrere Verbindungskanäle können sich durch unterschiedliche Durchmesser auszeichnen. Bevorzugt dient ein Kanal mit größerem Durchmesser als Hauptverbindung zwischen den einzelnen Teilkühlräumen. Der verbleibende Kanal mit geringerem Querschnitt dient im wesentlichen zur Entlüftung während des Motorbetriebs. Das Vorsehen eines zweiten Verbindungskanals hat ferner den Vorteil, dass die Bildung von Lufträumen beim initialen Befüllen des Verbrennungsmotors mit Kühlflüssigkeit vermieden wird.
  • Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der Zylinderkopf wenigstens eines Zylinders derart ausgestaltet, dass eine durch den Zylinderkopf verlaufende Abgasleitung zumindest abschnittsweise von den Kühlräumen des Zylinderkopfes vollständig umgeben ist. Insbesondere wird dieser Abschnitt der Abgasleitung von dem oberen sowie unteren Teilkühlraum sowie dem oder den die Teilräume verbindenden Verbindungskanal oder Verbindungskanälen vollständig umgeben. Dadurch lässt sich die Wärmequelle in Form der Abgasleitung im diesem Bereich der Zylinderkopfdichtung effektiv abschirmen.
  • Der Verbrennungsmotor ist vorzugsweise mit einer Verteilkammer ausgestattet, die über einen Druckanschluss mit einer externen Druckquelle, beispielsweise einer Kühlmittelpumpe verbindbar ist. Die Verteilkammer steht über ein oder mehrere Kanäle mit wenigstens einem Kühlraum jedes Zylinderkopfes in Verbindung, sodass Kühlmittel aus der Verteilkammer in jeden Zylinderkopf bzw. in wenigstens einen Kühlraum jedes Zylinderkopfes strömen kann. Demzufolge wird der Kühlmittelstrom auf einzelne Teilströme aufgeteilt, wobei das Kühlmittel jedes Teilstroms zunächst durch den Zylinderkopf und erst im Anschluss in den Motorblock, d.h. Kühlmantel des Zylinders strömt. Gemäß bevorzugter Ausgestaltung der Erfindung ist die Verteilkammer in den Motorblock integriert.
  • Weiterhin kann wenigstens eine Sammelkammer vorgesehen sein, in der die einzelnen Teilströme der unterschiedlichen Zylinder enden, d.h. die einzelnen Kühlmäntel jedes Zylinders sind über ein oder mehrere Kanäle mit der Sammelkammer verbunden. Diese kann beispielsweise einen Niederdruckanschluss aufweisen, über den das Kühlmittel dem extern des Verbrennungsmotors gelegenen Teil des Kühlkreislaufs zugeführt werden kann. Auch die Sammelkammer kann vorzugsweise in den Motorblock integriert sein.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung sind pro Zylinderkopf wenigstens zwei Übergangskanäle vorgesehen, die parallel vom Zylinderkopf bzw. des wenigstens einen Kühlraumes zur Druckausgleichkammer verlaufen. Die Ausprägung von zwei parallel verlaufenden Übergangskanälen reduziert die Druckverluste. Der überragende Vorteil dieser Massnahme sind die Vermeidung von Totgebieten der Kühlmittelströmung - ein Gebiet in dem keine Bewegung von Kühlmittel erfolgt - und die Vermeidung von Rezirkulation der Kühlmittelströmung - ein Gebiet, in dem zwar eine Kühlmittelbewegung vorliegt, aber kein Austausch von Kühlmittel längs der Hauptströmungsrichtung vorliegt. Die Vermeidung solcher Totgebiete und Rezirkulation sind wichtig, da an Zonen ihres Auftretens nahezu kein Wärmeabtrag erfolgt.
  • Ferner ergeben sich durch das Vorsehen von zwei parallelen Übergangskanälen konstruktive Vorteile hinsichtlich der erzielbaren Materialsteifigkeit des Zylinderkopfes. Denn in dem Bereich zwischen den beiden parallel verlaufenden Übergangskanälen bleibt das Vollmaterial erhalten und wird nicht durch eine durchgängige Aushöhlung geschwächt.
  • Gemäß einer weiter vorteilhaften Ausgestaltung der Erfindung ist wenigstens ein Bypass von wenigstens einem Kühlraum des Zylinderkopfes vorgesehen, der unmittelbar in der Sammelkammer mündet und den Kühlmantel des Zylinders umgeht. Die Einrichtung einer oder mehrerer Bypass-Leitungen kann die Gefahr von weiteren Stagnationszonen des Kühlmittelstromes reduzieren. Unerwünschte Druckverluste können weiter eingedämmt werden.
  • Der Hauptströmungspfad des Kühlmittels teilt sich ausgehend von der Verteilkammer auf die Teilströme für jeden Zylinder auf, die über den oberen Teilkühlraum des Zylinderkopfes in den unteren Teilkühlraum geführt werden, von wo aus die Teilströme des Kühlmittel wieder mittels der Druckausgleichkammer zusammengeführt werden. Das sich dort ansammelnde Kühlmittel der Teilströme wird erneut auf einzelne Teilströme durch die Kühlmäntel der einzelnen Zylinder aufgeteilt und am Ende in der Sammelkammer zusammengeführt. Der realisierte Kühlströmungspfad wird als sogenannte Top-Down-Variante bezeichnet.
  • Eine alternative Strömungsführung nennt sich Bottom-Up-Variante. In dieser Ausgestaltung verläuft der Hauptströmungspfad des Kühlmittels für jeden Teilstrom von der Verteilkammer über den unteren Teilkühlraum in den oberen Teilkühlraum. Von dort aus wird das Kühlmittel über den wenigstens einen Übergangskanal zur Druckausgleichskammer geführt, die das Kühlmittel mit identischen Teilströmen auf die einzelnen Kühlmäntel der Zylinder verteilt. Entsprechend der Bottom-Up-Variante werden die einzelnen Teilströme in der Sammelkammer zusammengeführt.
  • Besonders vorteilhaft ist es, wenn sich für die beide zuvor beschriebenen Varianten, d.h. die Top-Down- bzw. Bottom-Up-Variante, eine Bauteilgleichheit hinsichtlich des Motorblocks ergibt. Für die Wahl eines der oben genannten Kühlkonzepte ist daher lediglich der Austausch des Zylinderkopfes notwendig, der Verbrennungsmotorblock kann unverändert für beide Varianten eingesetzt werden.
  • Gemäß einer weiterhin vorteilhaften Ausgestaltung der Erfindung sind die einzelnen Zylinderköpfe zu einer Zylinderbank zusammengefasst, die vorteilhafter Weise als einziges Gussteil gefertigt ist.
  • Zumindest ein Teil der separaten Kühlräume der Zylinderköpfe kann über eine separate Entgasungsleitung miteinander verbunden sein. Insbesondere sind die oberen Teilkühlräume über eine Entgasungsleitung miteinander verbunden. Weiterhin ist es besonders vorteilhaft, wenn diese Entgasungsleitung unmittelbar in die Zylinderköpfe bzw. die resultierende Zylinderbank integriert ist. Mittels der Entgasungsleitung sollen Luftblasen gesammelt und abgeführt werden. Zusätzlich liefert auch die Entgasungsleitung einen Beitrag zur Symmetrierung der Teilströme, kann jedoch die erfindungswesentliche Funktion der Druckausgleichkammer nicht ersetzen.
  • In einer weiter vorteilhaften Ausgestaltung der Erfindung kann vorgesehen sein, dass der Kühlmantel wenigstens eines Zylinders in wenigstens zwei Kühlmantelabschnitte aufgeteilt ist. Von besonderem Vorteil ist die Aufteilung in Längsrichtung gesehen in einen unteren bzw. oberen Mantelabschnitt. Sinnvoll ist eine Parallelschaltung der beiden Kühlmantelabschnitte mit der Druckausgleichskammer, um die klarerweise unerwünschten Druckverluste zu reduzieren. Denkbar ist auch eine Parallelverbindung der Kühlmantelabschnitte mit der stromabwärts folgenden Sammelkammer.
  • Besonders vorteilhaft ist ebenfalls eine direkte Fluidverbindung zwischen Kühlmänteln benachbarter Zylinder. Hintergrund für eine derartige Überlegung ist, dass sich während der Expansionsphase innerhalb eines Zylinders dessen Zylinderbuchse leicht bewegt. Diese leichte Bewegung übt in Hinblick auf die vergleichsweise geringe Kühlmanteldicke bereits eine deutliche Änderung der dortigen Volumenverhältnisse aus, was wiederum zum Auftreten von Druckpulsationen innerhalb des dortigen Kühlmittelteilstroms führt und damit ein Kavitationsrisiko auslöst. Mittels der besagten Fluiderbindung verteilen sich diese Druckpulsationen auf die benachbarten Kühlmittelteilströme und reduzieren damit die Ampituden der innerhalb eines Kühlmittelteilstromes auftretenden Druckpulsationen, wodurch letztendlich auch das Risiko auftretender Kavitationen verringert werden kann.
  • Weitere Vorteile und Eigenschaften der Erfindung sollen im Folgenden anhand von zwei in den Figuren dargestellten Ausführungsbeispielen näher erläutert werden. Es zeigen:
  • Figur 1:
    eine schematische Darstellung des Kühlmittelströmungspfades durch einen Verbrennungsmotor nach dem Stand der Technik,
    Figur 2:
    eine schematische Darstellung der Kühlvolumina eines Motorblocks und einer Zylinderbank des erfindungsgemäßen Verbrennungsmotors;
    Figur 3:
    eine schematische Darstellung der Kühlmittelströmungspfade durch den erfindungsgemäßen Verbrennungsmotor gemäß dem Top-Down-Konzept;
    Figur 4:
    eine Draufsicht auf einen Teilbereich des erfindungsgemäßen Verbrennungsmotors;
    Figur 5:
    eine Schnittdarstellung entlang der Schnittachse D-D gemäß Figur 4 durch den erfindungsgemäßen Verbrennungsmotor nach dem Top-Down-Konzept;
    Figur 6:
    eine Schnittdarstellung entlang der Schnittachse E-E gemäß Figur 4 durch den erfindungsgemäßen Verbrennungsmotor nach dem Top-Down-Konzept;
    Figur 7:
    eine weitere Schnittdarstellung durch den erfindungsgemäßen Verbrennungsmotor nach dem Top-Down-Prinzip;
    Figur 8:
    eine schematische Darstellung des Strömungspfadverlaufs eines alternativen erfindungsgemäßen Verbrennungsmotors nach dem Bottom-Up-Konzept;
    Figur 9:
    eine Schnittdarstellung durch den Verbrennungsmotor nach dem Bottom-Up-Konzept entlang der Schnittachse D-D gemäß Figur 4;
    Figur 10:
    eine Schnittdarstellung entlang der Schnittachse E-E gemäß Figur 4 durch den Verbrennungsmotor nach dem Bottom-Up-Konzept und
    Figur 11:
    eine weitere Schnittdarstellung durch den Verbrennungsmotor gemäß dem Bottom-Up-Konzept.
  • Nachfolgend werden zwei Ausführungsbeispiele für den erfindungsgemäßen Verbrennungsmotor vorgestellt, die eine gute Ausbalancierung der Kühlmittelteilströme durch die den einzelnen Zylindern des Motors zuzuordneten Kühlmittelkammern, - kanäle und -mäntel ermöglichen. Mittels Figur 2 soll zunächst die Ausbildung der Kühlmittelkammern, -kanäle oder -mäntel am Beispiel eines 6 Zylinderreihenmotors veranschaulicht werden. Zwei konkrete Ausführungsbeispiele werden dann anhand der Figuren 3 bis 7 bzw. 8 bis 11 aufgezeigt.
  • Figur 2 zeigt keine strukturellen Bestandteile des erfindungsgemäßen Verbrennungsmotors, sondern veranschaulicht lediglich die im Motorbetrieb vorliegenden Kühlmittelvolumina innerhalb des Motorblockes und der Zylinderkopfbank. Kanäle, Kühlräume und Kühlmäntel werden in der Regel durch passende Ausnehmungen im Gussteil des Motorblockes bzw. der Zylinderbank geschaffen. Der Kühlmantel für jeden Zylinder wird bspw. durch einen größeren Durchmesser der zylinderförmigen Ausnehmung für die Aufnahme der Zylinderhülse geschaffen, so dass der resultierende Spalt das entsprechende Volumen bildet. Gezeigt sind insgesamt sechs Zylindermäntel 10 in Reihe.
  • Jeder Kühlmantel 10 ist in einen oberen Teilmantel 11 und einen unteren Teilmantel 12 aufgeteilt, wobei das Volumen des oberen Teilkühlmantels 11 deutlich kleiner als das Volumen des unteren Kühlmantels 12 ausfällt (vgl. Figur 2a). Eine längliche Sammelkammer 50 legt sich seitlich an die Kühlmäntel 10 einer Zylinderreihe des Motorblocks an und ist mit beiden Kühlmantelteilen 11, 12 fluidisch in Parallelschaltung verbunden. Auf der der Sammelkammer 50 gegenüberliegenden Zylinderseite befindet sich eine Druckausgleichskammer 60, die sich ebenfalls in Längsrichtung des Motorblocks entlang der Zylinderreihe erstreckt. Auch diese Druckausgleichskammer 60 steht in fluider Verbindung mit dem oberen und unteren Teilkühlmantel 11, 12.
  • Für jeden Zylinder befindet sich oberhalb der Kühlmäntel 10 im Zylinderkopf ein unterer Teilkühlraum 20. Eine Detaildarstellung zeigt Figur 2c. Die vier kreisrunden Aussparungen 21 sind durch die im Zylinderkopf eingesetzten Ventile, insbesondere zwei Lufteinlass- sowie zwei Abgasventile, bedingt, die von dem Kühlvolumen des Teilkühlraums 20 umspült werden. Die mittige Ausnehmung 22 ist durch die im Zylinderkopf eingesetzte Hülse eines Kraftstoffinjektors begründet.
  • Darüber liegend bzw. im Detail der Figur 2d zu entnehmen ist der obere Teilkühlraum 30 der Zylinderbank.
  • Mit dem Bezugszeichen 40 ist die Verteilkammer 40 bezeichnet (Fig. 2b). Diese erstreckt sich zudem in Vertikalrichtung bis zum oberen Teilkühlraum 30, so dass das in der Verteilkammer 40 enthaltene Kühlmittel in Teilströmen direkt in die oberen Teilkühlräume 30 der Zylinder gelangen kann. Es handelt sich demzufolge um ein Top-Down-Kühlkonzept, dessen Bedeutung nachfolgend anhand der Ausführungsbeispiele näher beschrieben wird. Zudem sind fluide Verbindungen 70 zwischen den oberen Teilkühlräumen 30 erkennbar. Der so entstehende Entlüftungskanal ist mit dem Bezugszeichen 70 bezeichnet.
  • Auf die einzelnen Verbindungen der Kühlmittelvolumina und den entsprechenden Strömungspfaden soll im Folgenden anhand der konkreten Kühlkonzepte eingegangen werden. Das sogenannte Top-Down-Konzept des erfindungsgemäßen Verbrennungsmotors ist in Figur 3 exemplarisch für einen 4-Zylindermotor dargestellt. Die Darstellung zeigt eine Zylinderreihe des Motorblockes 100, deren Zylinderköpfe zu einer Zylinderkopfbank 200 zusammengefasst sind. Der Einfachheit halber sind die Bezugszeichen nur für den ersten Zylinder angegeben, die weiteren Zylinder sind jedoch identisch zum ersten Zylinder aufgebaut.
  • Ausgehend von der Verteilkammer 40, in die das Kühlmittel über einen externen Druckanschluss 41 gepumpt wird, wird das Kühlmittel auf einzelne Teilströme aufgeteilt, von denen jeder über einen Kanal 31 direkt in den oberen Teilkühlraum 30 führt. Die Teilkühlräume 30 der Zylinderköpfe sind über den Entlüftungskanal 70 miteinander verbunden, wodurch sich im Kühlmittel enthaltene Luftblasen sammeln und nach aussen befördern lassen. Die Enden der Entlüftungsleitung sind endseitig mittels Kappen verschlossen bzw. mit einem geeigneten Entlüftungsventil versehen.
  • Der Großteil des im oberen Teilkühlraum 30 jedes Zylinders enthaltenen Kühlmittels strömt über einen Hauptstrompfad 28 in den unteren Teilkühlraum 20. Ein vergleichsweise geringer Volumenanteil fliesst über die zusätzliche Fluidverbindung 27 zum unteren Raum 20. Über die zweite Fluidverbindung 27 wird eine zusätzliche Entlüftung im Motorbetrieb erreicht, zudem lässt sich dadurch die Gefahr unerwünschter Luftansammlungen im Kühlsystem insbesondere während der Inbetriebnahme des Motors, d.h. beim Befüllen des Motors mit Kühlmittel, reduzieren.
  • Die untere Teilkühlkammer 20 steht über zwei parallel verlaufende Übergangskanäle 25, 26 mit der Druckausgleichkammer 60 in Verbindung. Dadurch werden alle Teilströme der einzelnen Zylinder in der Druckausgleichskammer 60 wieder zusammengeführt. Durch das Vorhandensein und die Ausgestaltung dieser Druckausgleichkammer 60 wird eine gute Balancierung des Kühlsystems erreicht, fertigungsbedingte Asymmetrien der Kanäle 28, 31 bzw. der Teilkühlräume 20, 30 werden ausgeglichen und für die Teilströme der Zylinder ergeben sich annähernd identische Kühlmittelfliessraten. Es wird somit für alle Zylinder eine weitgehend identische Kühlleistung erzielt, wodurch der Energiebedarf für das Umwälzen des Kühlmittels sinkt. Eine Modifikation der Zylinderkopfdichtungen ist demnach überflüssig. Auch kann bei dem vorgeschlagenen Strömungsverlauf ein gewisser Ausgleich der Asymmetrien bereits durch den Entlüftungskanal 70 erreicht werden.
  • Stromabwärts von der Druckausgleichkammer 60 verteilt sich das Kühlmittel wieder auf einzelne Teilströme für die einzelnen Zylinder und gelangt über die parallelen Verbindungsleitungen 61, 62 zum oberen und unteren Teilmantel 11, 12 des Kühlmantels 10 der einzelnen Zylinder im Motorblock 100. Nach dem Umströmen der Zylinderhülse gelangt das Kühlmittel zurück in die Sammelkammer 50, die das Kühlmittel über den Druckanschluss 51 an den sich ausserhalb des Verbrennungsmotors gelegenen Teil des Kühlmittelkreislauf abgibt. Die oberen und unteren Teilkühlmäntel 11, 12 werden vorteilhafterweise parallel aus der Druckausgleichkammer 60 gespeist werden, da eine serielle Verbindung zu deutlich erhöhten Druckverlusten führen würde, weil das gesamte zur Kühlung des grossflächigen unteren Teilkühlmantels benötigte Kühlmittel den oberen Teilkühlmantel, der einen wesentlich kleineren Strömungsquerschnitt aufweist, durchströmen müsste. Und der vergleichsweise kleine Strömungsquerschnitt des oberen Teilkühlmantels weist eine Längsausdehung des halben Durchmessers der Zylinderhülse auf.
  • Die unteren Kühlmäntel 12 benachbarter Zylinder sind fluidisch über den Kanal 13 miteinander verbunden, um die während der Expansionsphase hervorgerufenen Druckpulsationen auf benachbarte Kühlmittelteilströme zu verteilen, um dem Entstehen von Kavitationschäden entgegen zu wirken.
  • Ergänzend ist der untere Teilkühlraum 20 jedes Zylinders über einen Bypass Kanal 29 direkt mit der Sammelkammer 50 verbunden ist, wodurch ein geringerer Volumenanteil des Teilstromes auf direktem Weg am Kühlmantel 10 vorbei in die Sammelkammer 50 gelangt. Auch diese Maßnahme hilft die Gefahr von Totgebieten und Rezirkulation der Kühlmittelströmung vermeiden, um primär eine zuverlässige und wirkungsvolle Kühlung zu errreichen und sekundär eine Reduzierung der Druckverluste zu erzielen.
  • Die nachfolgenden Schnittdarstellungen der Figuren 5, 6 und 7 durch den Motorblock 100 und die Zylinderbank 200 zeigen die konkrete Ausprägung der einzelnen Kühlräume, -mäntel bzw. Kühlkanäle. Die Schnittdarstellungen der Figuren 5 und 6 schneiden den Motorblock auf Höhe eines Zylinders in unterschiedlichen Ebenen, die in der Figur 4 als die Schnittebenen D-D und E-E eingezeichnet sind.
  • Figur 5 zeigt einen Schnitt entlang der Achse D-D. In der zylindrischen Ausnehmung des Motorblockes 100 ist die Zylinderhülse 101 eingesetzt. Der zwischen Ausnehmungswand und Hülse liegende Spalt bildet den Kühlmantel, der die Zylinderhülse 101 vollständig ummantelt. Die Ausnehmung im Gussteil des Motorblocks 100 weist in Längsrichtung unterschiedliche Durchmesser auf, wodurch der obere sowie untere Teilkühlmantel 11, 12 ausgebildet wird. Hierbei ist erkennbar, dass der untere Teilkühlmantel 12 in Zylinderlängsrichtung deutlich länger ist und das Volumen des Teilkühlmantels 12 das Volumen des oberen Teilkühlmantels 11 deutlich übersteigt. Ausserdem ist erkennbar, dass der untere Teilkühlmantel 12 eine deutlich grössere Querschnittsfläche aufweist als der obere Teilkühlmantel 11. Ferner ist erkennbar, dass die Druckausgleichkammer 60 ebenfalls innerhalb des Motorblocks 100 ausgebildet ist und sich in Längsachse des Motorblocks 100 tangential an den Ausnehmungen für die Zylinderhülsen 101 anlehnt.
  • Der auf dem Motorblock 100 aufgesetzte Zylinderkopf 200 weist den oberen sowie unteren Teilkühlraum 20, 30 auf. Auch ist hier ein eingesetzter Injektor 201 erkennbar. Die eingezeichneten Pfeile kennzeichnen die Strömungshauptrichtung des Kühlmittelflusses eines einzelnen Zylinders. Demzufolge wird das Kühlmittel von der Verteilkammer 40 zum oberen Teilkühlraum 20 geleitet und strömt von dort aus über den Hauptkanal 28 weiter zum unteren Teilkühlraum 30. Gut zu erkennen ist die zweite Verbindungsleitung 27 zwischen oberen und unterem Teilkühlraum 20, 30, die einen deutlich geringeren Durchmesser aufweist.
  • Über die Übergangskanäle 25, 26, von denen nur einer in der Schnittebene zu sehen ist, gelangt das Kühlmittel in die Druckausgleichkammer 60 und von dort aus zu den einzelnen Kühlteilmänteln 11, 12 strömt. Der Kreis auf der Längsachse der Zylinderhülse 101 symbolisiert die bestehende Fluidverbindung 13 des unteren Teilmantels 12 zu benachbarten Kühlmänteln 10. Nicht zu sehen in der Schnittebene D-D ist die bestehende Verbindung von den Kühlmänteln 11, 12 zur Sammelkammer 50. Ersichtlich ist diese allerdings in Figur 6. Auch ist hier die notwendige Verbindung zwischen der Druckausgleichskammer 60 und den Kühlmänteln 11, 12 zu sehen.
  • Eine weitere Schnittdarstellung des erläuterten Kühlkonzeptes ist der Figur 7 zu entnehmen. In dieser Ebene ist ein in Querrichtung durch die Zylinderkopfbank verlaufender Abgaskanal eines Zylinders im Querschnitt zu sehen, wobei der Abgaskanal zumindest abschnittsweise vollumfänglich durch den Kühlmittelstrom eines Zylinders umgeben ist. Zur kühlenden Ummantelung des Abgaskanals 202 tragen der obere und untere Teilkühlraum 20, 30 sowie die entsprechenden Kanalverbindungen bei. Die Dichtung 203 verschliesst den oberen Teilkühlraum 20 nach oben hin. Der Figur 7 ist ebenfalls die Bypass-Verbindung 29 aus dem unteren Teilkühlraum 20 zur Sammelkammer 50 zu entnehmen. Ebenso ist der direkt in die Zylinderkopfbank integrierte Entlüftungskanal 70 zu sehen.
  • Ein alternatives Kühlkonzept für den erfindungsgemäßen Verbrennungsmotor ist den Darstellungen der Figuren 8 bis 11 zu entnehmen. Der Einfachheit halber sind die Bezugszeichen in der Darstellung der Figur 8 mit insgesamt vier Zylindern nur für den ersten Zylinder angegeben, die weiteren Zylinder sind jedoch identisch zum ersten Zylinder aufgebaut. Selbstverständlich ist auch dieses alternative Kühlkonzept auf Motoren mit einer anderen Anzahl von Zylindern übertragbar, ebenfalls klarerweise unabhängig davon, ob es sich um einen Reihen- oder V-Motor handelt. Anders als im Ausführungsbeispiel der Figuren 2 bis 7 gelangt das Kühlmittel von der Verteilkammer 50 nicht in den obere Teilkühlraum 30 der Zylinderkopfbank 200, sondern stattdessen zuerst in den unteren Teilkühlraum 20, von wo aus es weiter über die Verbindungskanäle 27, 28 zum oberen Teilkühlraum 30 gelangt. Dieser steht über einen einzigen Übergangskanal 25 mit der Druckausgleichkammer 60 in Verbindung, von diesem ausgehend wie im ersten Ausführungsbeispiel Teilströme zu den einzelnen Zylindermänteln vorgesehen sind.
  • Auch in diesem Ausführungsbeispiel hat der untere Teilkühlraum 20 eine Bypass-Verbindung 29 mit der Sammelkammer 50, sodass durch diesen der Weg über den oberen Teilkühlraum 30 als auch den Kühlmantel 10 umgangen werden kann. Dieser Bypass weist ebenfalls einen Abschnitt mit einem vergleichsweise kleinen Querschnitt. Jedoch liegt dieser enge Querschnitt nur über eine sehr geringe Länge vor, wohingegen die Strömungspfade an den querschnittsverengten Kühlteilmänteln eine um ein hohes Vielfaches grössere Längenausdehnung aufweisen und einen entsprechend hohen Strömungswiderstand darstellen. Die Figuren 9, 10 zeigen entsprechende Schnittdarstellungen entlang der Schnittachsen D-D sowie E-E. Im Vergleich zum ersten Ausführungsbeispiel und den Figuren 5 und 6 ist dabei erkennbar, dass die Ausführung des Motorblocks 100 identisch ist, jedoch geringfügige Unterschiede im Zylinderkopf 200 notwendig sind. Für die Anwendung der unterschiedlichen Kühlkonzepte bzw. Strömungsverläufe kann daher ein einheitlicher Motorblock 100 zum Einsatz kommen, es sind lediglich individuelle Zylinderköpfe notwendig.

Claims (15)

  1. Flüssigkeitsgekühlter Verbrennungsmotor bestehend aus einem mehrere Zylinder umfassenden Motorblock und die Zylinder verschließenden Zylinderköpfen, wobei jeder Zylinder von jeweils einem Kühlmantel umgeben ist und in jedem Zylinderkopf mindestens ein separater Kühlraum vorgesehen ist, der über wenigstens einen Übergangskanal mit dem Kühlmantel des zugeordneten Zylinders verbunden ist,
    dadurch gekennzeichnet,
    dass die Übergangskanäle von wenigstens zwei Zylindern über eine Druckausgleichkammer miteinander verbunden sind.
  2. Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, dass die Druckausgleichkammer im Motorblock integriert ist, wobei sich diese insbesondere in Längsrichtung des Motorblockes erstreckt und tangential an die Kühlmäntel der Zylinder anlegt.
  3. Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Strömungspfad des Kühlmittels für jeden Zylinder von dem wenigstens einen Kühlraum des Zylinderkopfes zum Kühlmantel des Zylinders verläuft.
  4. Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass pro Zylinderkopf mindestens zwei Kühlräume vorgesehen sind, idealerweise ein oberer und ein unterer Teilkühlraum, die über wenigstens einen Verbindungskanal miteinander verbunden sind, idealerweise über wenigstens zwei Verbindungskanäle, idealerweise mit unterschiedlichen Durchmessern.
  5. Verbrennungsmotor nach Anspruch 4, dadurch gekennzeichnet, dass wenigstens eine durch den Zylinderkopf verlaufende Abgasleitung zumindest abschnittsweise von den Kühlräumen des Zylinderkopfes, insbesondere des oberen und unteren Teilkühlraumes sowie die Teilräume verbindenden Verbindungskanäle, vollständig umgeben ist.
  6. Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine über einen Druckanschluss mit einer externen Druckquelle verbindbare Verteilkammer vorgesehen ist, die mit wenigstens einem Kühlraum jedes Zylinderkopfes über mindestens einen Kanal verbunden ist, so dass Kühlmittel aus der Verteilkammer in den wenigstens einen Kühlraum strömen kann, wobei die Verteilkammer vorzugsweise in den Motorblock integriert ist.
  7. Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine Sammelkammer vorgesehen ist, die mit dem Kühlmantel jedes Zylinders über ein oder mehrere Kanäle verbunden ist, so dass das Kühlmittel von jedem Kühlmantel des Motorblockes in die Sammelkammer strömen kann, wobei die Sammelkammer vorzugsweise in den Motorblock integriert ist.
  8. Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass pro Zylinderkopf wenigstens zwei Übergangskanäle vorgesehen sind, die parallel vom Zylinderkopf bzw. des wenigstens einen Kühlraumes zur Druckausgleichkammer verlaufen.
  9. Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Bypass von wenigstens einem Kühlraum des Zylinderkopfes, insbesondere dem unteren Teilkühlraum, ausgeht und vorzugsweise in der Sammelkammer mündet, um einen den Kühlmantel umgehenden Bypass-Strömungspfad zu schaffen.
  10. Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hauptströmungspfad des Kühlmittels für jeden Zylinder von der Verteilkammer über den obere Teilkühlraum in den unteren Teilkühlraum verläuft, von dort über den wenigstens einen Übergangskanal zur Druckausgleichskammer führt, und von dieser aus über den Kühlmantel in die Sammelkammer verläuft.
  11. Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Hauptströmungspfad des Kühlmittels für jeden Zylinder von der Verteilkammer über den unteren Teilkühlraum in den obere Teilkühlraum verläuft, von dort über den wenigstens einen Übergangskanal zur Druckausgleichskammer führt und von dieser aus über den Kühlmantel in die Sammelkammer verläuft.
  12. Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zylinderköpfe eine Zylinderbank bilden, die als Gussteil gefertigt ist, wobei zumindest ein Teil der separaten Kühlräume über eine in die Zylinderköpfe bzw. die Zylinderbank integrierte Entgasungsleitung miteinander verbunden ist.
  13. Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dichtungselemente der Zylinderkopfdichtungen, welche durch die Teilströme des Kühlmittelpfades zwischen Zylinderkopf und Motorblock passiert werden, für alle Zylinder identisch ausgeführt sind.
  14. Verbrennungsmotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kühlmantel in wenigstens zwei Teilkühlmäntel aufgeteilt ist, insbesondere einen unteren und oberen Teilkühlmantel, wobei die Teilkühlmäntel parallel mit der Druckausgleichskammer und/oder der Sammelkammer verbunden sind.
  15. Verbrennungsmotor nach Anspruch 14, dadurch gekennzeichnet, dass eine Verbindung zwischen den Kühlmänteln benachbarter Zylinder besteht, insbesondere zwischen den unteren Teilkühlmänteln benachbarter Zylinder.
EP18156931.0A 2017-03-22 2018-02-15 Flüssigkeitsgekühlter verbrennungsmotor Active EP3379063B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00388/17A CH713618A1 (de) 2017-03-22 2017-03-22 Flüssigkeitsgekühlter Verbrennungsmotor.

Publications (2)

Publication Number Publication Date
EP3379063A1 true EP3379063A1 (de) 2018-09-26
EP3379063B1 EP3379063B1 (de) 2021-03-24

Family

ID=61226475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18156931.0A Active EP3379063B1 (de) 2017-03-22 2018-02-15 Flüssigkeitsgekühlter verbrennungsmotor

Country Status (3)

Country Link
US (2) US10662857B2 (de)
EP (1) EP3379063B1 (de)
CH (1) CH713618A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018116973A1 (de) * 2018-07-13 2020-01-16 Man Truck & Bus Se Zylinderkopf und Kurbelgehäuse für eine Brennkraftmaschine
FR3093758A1 (fr) * 2019-03-12 2020-09-18 Renault S.A.S. "Bloc-cylindres intégrant une conduite de transit de fluide caloporteur séparée d'une chambre d'eau"
WO2020188071A1 (de) * 2019-03-20 2020-09-24 Avl List Gmbh Brennkraftmaschine mit zumindest einem zylinder
EP3865687A1 (de) * 2020-02-14 2021-08-18 Caterpillar Inc. Verbrennungsmotor mit top-down-kühlung
AT524536A4 (de) * 2021-03-15 2022-07-15 Avl List Gmbh Flüssigkeitsgekühlte brennkraftmaschine
AT526527B1 (de) * 2022-12-06 2024-04-15 Avl List Gmbh Flüssigkeitsgekühlte Brennkraftmaschine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028799B2 (en) 2019-08-30 2021-06-08 Deere & Company Selective engine block channeling for enhanced cavitation protection

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69208821T2 (de) * 1991-11-11 1996-08-08 Waertsilae Nsd Oy Ab Verbesserung der Verbindungsanlage der Unterdruckflüssigkeit für den Zylinderkopf einer Brennkraftmaschine
EP1052394A2 (de) * 1999-05-14 2000-11-15 Bayerische Motoren Werke Aktiengesellschaft Flüssigkeitsgekühlte, mehrzylindrige Brennkraftmaschine mit am Zylinder-Kurbelgehäuse lösbar angeordnetem Zylinderkopf
DE10244829A1 (de) * 2002-09-25 2004-04-01 Bayerische Motoren Werke Ag Flüssigkeitsgekühlte Brennkraftmaschine sowie Verfahren zur Durchführung eines Abwärmetransfers
DE10251360A1 (de) * 2002-11-05 2004-05-19 Daimlerchrysler Ag Flüssigkeitsgekühlter Zylinderkopf
DE102007048021A1 (de) * 2007-10-06 2009-04-09 Bayerische Motoren Werke Aktiengesellschaft Flüssigkeitsgekühlter Zylinderkopf für eine Brennkraftmaschine
EP2132423B1 (de) 2007-04-05 2010-11-17 AVL List GmbH Flüssigkeitsgekühlte brennkraftmaschine
DE102011015930A1 (de) * 2011-04-02 2012-10-04 Daimler Ag Kühleinrichtung einer Verbrennungskraftmaschine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB766187A (en) * 1953-11-26 1957-01-16 Ricardo & Co Engineers Improvements in detachable cylinder head constructions for liquid-cooled internal combustion engines
GB1468508A (en) 1973-04-12 1977-03-30 Perkins Engines Ltd Engine cooling system
DE2721064A1 (de) * 1977-05-11 1978-11-16 Maschf Augsburg Nuernberg Ag Kuehlanlage fuer fluessigkeitsgekuehlte verbrennungskraftmaschinen von kraftfahrzeugen
US4305348A (en) * 1978-10-23 1981-12-15 Ramsey Corporation Seal for an internal combustion engine
JPS6055684B2 (ja) * 1980-04-08 1985-12-06 日産自動車株式会社 内燃機関の冷却装置
JPH10288081A (ja) * 1997-04-12 1998-10-27 Yamaha Motor Co Ltd 筒内燃料噴射式エンジンにおける燃料噴射弁周りの冷却構造
DE102005026599B4 (de) * 2005-06-09 2007-07-12 Man Diesel Se Brennkraftmaschine
CN101349213A (zh) * 2008-09-03 2009-01-21 无锡开普机械有限公司 水冷发动机机体
AT506473B1 (de) * 2009-04-23 2010-12-15 Avl List Gmbh Zylinderkopf einer brennkraftmaschine
DE102010002082B4 (de) * 2010-02-18 2013-09-19 Ford Global Technologies, Llc Separat gekühlter Abgassammler zur Aufrechterhaltung einer No-Flow Strategie des Zylinderblockkühlmittelmantels
US20110277708A1 (en) * 2010-05-17 2011-11-17 Gm Global Technology Operations, Inc. Cylinder Head for Internal Combustion Engine
AT513053B1 (de) * 2012-06-26 2014-03-15 Avl List Gmbh Brennkraftmaschine, insbesondere Großdieselmotor
AT515220B1 (de) * 2013-12-10 2015-07-15 Steyr Motors Gmbh Zylinderblock einer Verbrennungskraftmaschine in Monoblock - Bauweise und Gießform zu dessen Herstellung
JP2017155591A (ja) * 2014-06-17 2017-09-07 川崎重工業株式会社 エンジン冷却システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69208821T2 (de) * 1991-11-11 1996-08-08 Waertsilae Nsd Oy Ab Verbesserung der Verbindungsanlage der Unterdruckflüssigkeit für den Zylinderkopf einer Brennkraftmaschine
EP1052394A2 (de) * 1999-05-14 2000-11-15 Bayerische Motoren Werke Aktiengesellschaft Flüssigkeitsgekühlte, mehrzylindrige Brennkraftmaschine mit am Zylinder-Kurbelgehäuse lösbar angeordnetem Zylinderkopf
DE10244829A1 (de) * 2002-09-25 2004-04-01 Bayerische Motoren Werke Ag Flüssigkeitsgekühlte Brennkraftmaschine sowie Verfahren zur Durchführung eines Abwärmetransfers
DE10251360A1 (de) * 2002-11-05 2004-05-19 Daimlerchrysler Ag Flüssigkeitsgekühlter Zylinderkopf
EP2132423B1 (de) 2007-04-05 2010-11-17 AVL List GmbH Flüssigkeitsgekühlte brennkraftmaschine
DE102007048021A1 (de) * 2007-10-06 2009-04-09 Bayerische Motoren Werke Aktiengesellschaft Flüssigkeitsgekühlter Zylinderkopf für eine Brennkraftmaschine
DE102011015930A1 (de) * 2011-04-02 2012-10-04 Daimler Ag Kühleinrichtung einer Verbrennungskraftmaschine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018116973A1 (de) * 2018-07-13 2020-01-16 Man Truck & Bus Se Zylinderkopf und Kurbelgehäuse für eine Brennkraftmaschine
FR3093758A1 (fr) * 2019-03-12 2020-09-18 Renault S.A.S. "Bloc-cylindres intégrant une conduite de transit de fluide caloporteur séparée d'une chambre d'eau"
WO2020188071A1 (de) * 2019-03-20 2020-09-24 Avl List Gmbh Brennkraftmaschine mit zumindest einem zylinder
CN113423927A (zh) * 2019-03-20 2021-09-21 Avl李斯特有限公司 具有至少一个气缸的内燃机
US11519357B2 (en) 2019-03-20 2022-12-06 Avl List Gmbh Internal combustion engine having at least one cylinder
EP3865687A1 (de) * 2020-02-14 2021-08-18 Caterpillar Inc. Verbrennungsmotor mit top-down-kühlung
US11149679B2 (en) 2020-02-14 2021-10-19 Caterpillar Inc. Internal combustion engine with top-down cooling
AT524536A4 (de) * 2021-03-15 2022-07-15 Avl List Gmbh Flüssigkeitsgekühlte brennkraftmaschine
AT524536B1 (de) * 2021-03-15 2022-07-15 Avl List Gmbh Flüssigkeitsgekühlte brennkraftmaschine
WO2022192930A1 (de) * 2021-03-15 2022-09-22 Avl List Gmbh Flüssigkeitsgekühlte brennkraftmaschine
AT526527B1 (de) * 2022-12-06 2024-04-15 Avl List Gmbh Flüssigkeitsgekühlte Brennkraftmaschine
AT526527A4 (de) * 2022-12-06 2024-04-15 Avl List Gmbh Flüssigkeitsgekühlte Brennkraftmaschine

Also Published As

Publication number Publication date
CH713618A1 (de) 2018-09-28
US20190093542A1 (en) 2019-03-28
US20200318525A1 (en) 2020-10-08
US11248514B2 (en) 2022-02-15
EP3379063B1 (de) 2021-03-24
US10662857B2 (en) 2020-05-26

Similar Documents

Publication Publication Date Title
EP3379063B1 (de) Flüssigkeitsgekühlter verbrennungsmotor
AT506473B1 (de) Zylinderkopf einer brennkraftmaschine
DE10202661B4 (de) Zylinderkopf für mehrere Zylinder
DE102008035957B4 (de) Zylinderkopf für eine Brennkraftmaschine
EP1516113B1 (de) Gekühlter zylinderkopf für eine kolbenbrennkraftmaschine
AT6654U1 (de) Zylinderkopf für eine flüssigkeitsgekühlte mehrzylinder-brennkraftmaschine
AT518998B1 (de) Zylinderkopf
DE102008047185A1 (de) Kühlmittelströmungsweganordnung eines Zylinderkopfes einer Brennkraftmaschine und Verfahren zu dessen Kühlung
WO2020011926A1 (de) Zylinderkopf und kurbelgehäuse für eine brennkraftmaschine
DE10331918B4 (de) Zylinderkopf für eine flüssigkeitsgekühlte Mehrzylinder-Brennkraftmaschine
DE10127219A1 (de) Kühlanlage für einen Verbrennungsmotor
DE112004002081B4 (de) Brennkraftmaschine
EP0819837B1 (de) Kühlkreislauf einer Brennkraftmaschine
AT517127A1 (de) Zylinderkopf für eine brennkraftmaschine
AT524566B1 (de) Flüssigkeitsgekühlte Brennkraftmaschine
DE102009008237A1 (de) Brennkraftmaschine mit getrennten Kühlmittelräumen im Zylinderkopf
DE60131487T2 (de) Zylinderkopfkühlwasserstruktur und Verfahren zur Herstellung
AT524536B1 (de) Flüssigkeitsgekühlte brennkraftmaschine
DE102015202491B4 (de) Kühlmittelmantel für einen Zylinderkopf einer Brennkraftmaschine
EP0637680B1 (de) Flüssigkeitsgekühlte Mehrzylinder-Brennkraftmaschine
AT514804B1 (de) Verbrennungskraftmaschine mit Ölkanälen
DE112016003551T5 (de) Zylinderkopf-kühlanordnung
EP1329628A2 (de) Zylinderdeckel mit einem Kühlkanalsystem für eine Hubkolbenbrennkraftmaschine
WO2005088111A1 (de) Wassergekühlter zylinderkopf für eine brennkraftmaschine
AT5039U1 (de) Zylinderblock für eine flüssigkeitsgekühlte brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190326

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191217

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 7/14 20060101ALN20200917BHEP

Ipc: F02F 1/14 20060101AFI20200917BHEP

Ipc: F01P 3/02 20060101ALN20200917BHEP

Ipc: F02F 1/36 20060101ALN20200917BHEP

INTG Intention to grant announced

Effective date: 20201016

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LIEBHERR MACHINES BULLE SA

Owner name: DEERE & COMPANY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1374727

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004393

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210625

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210726

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004393

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220215

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1374727

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210324

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 7

Ref country code: GB

Payment date: 20240221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240226

Year of fee payment: 7