EP3349042B1 - Überwachungssensor und flurgebundenes fahrzeug - Google Patents

Überwachungssensor und flurgebundenes fahrzeug Download PDF

Info

Publication number
EP3349042B1
EP3349042B1 EP17150936.7A EP17150936A EP3349042B1 EP 3349042 B1 EP3349042 B1 EP 3349042B1 EP 17150936 A EP17150936 A EP 17150936A EP 3349042 B1 EP3349042 B1 EP 3349042B1
Authority
EP
European Patent Office
Prior art keywords
light
monitoring sensor
scanning
optics
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17150936.7A
Other languages
English (en)
French (fr)
Other versions
EP3349042A1 (de
Inventor
Fabian Jachmann
Michael Engler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sick AG
Original Assignee
Sick AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sick AG filed Critical Sick AG
Priority to EP17150936.7A priority Critical patent/EP3349042B1/de
Priority to US15/866,835 priority patent/US10634773B2/en
Publication of EP3349042A1 publication Critical patent/EP3349042A1/de
Application granted granted Critical
Publication of EP3349042B1 publication Critical patent/EP3349042B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • G01S17/48Active triangulation systems, i.e. using the transmission and reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/90Lidar systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • laser scanners are used for this purpose.
  • Such laser scanners usually have movable optics and devices for light transit time measurement, which is associated with high costs.
  • the distance of an existing object or obstacle in the monitoring area can be determined.
  • the light generated by the light source of the light emitter is focused with the aid of the transmitting optics to form a transmitted light beam, which strikes in the monitoring area on an optionally located there, to be detected object.
  • the transmitted light may be remitted from such an object, i. diffused or specularly reflected. It passes through a receiving optical system and can be detected by a light receiver, which forms a receiving unit together with the receiving optics.
  • the light receiver consists in known solutions of an array of photosensitive receiver elements.
  • the position of a light spot generated by the remitted light on the light receiver changes in the so-called triangulation direction.
  • the point of impact on the light receiver and the distance of the detected object.
  • a monitoring sensor can be mounted on a vehicle, wherein the monitoring sensor is expediently arranged at a distance from the track to be monitored and oriented such that the transmitted light is emitted obliquely at a predetermined angle of inclination in the direction of the travel path and there at a corresponding distance from the monitoring sensor.
  • the track thus provides a The monitoring area extends between the monitoring sensor and the point of impact of the transmitted light on the scanning plane.
  • the transmitted light hits an object in the monitoring area, which is closer to the monitoring sensor than the point of incidence of the transmitted light on the scanning plane, the transmitted light which passes through the receiving optical system is reflected at a different angle in the direction of the receiving optics, so that shifts the position of the light spot generated from the remitted light in the triangulation direction on the light receiver.
  • the transmitted light can be widened laterally, so that it generates a scanning light line when hitting the scanning plane or generally on an imaginary screen, which is transverse to the viewing direction of the monitoring sensor and thus usually transverse to the direction of travel of the vehicle and extends parallel to the scanning plane.
  • the transmitted light is fan-shaped, so to speak, so that the monitoring area extends sector-shaped from the monitoring sensor.
  • the light emitter, the light receiver and the receiving optics are designed and aligned such that the scanning light line on the scanning plane runs as a straight line across the main monitoring direction of the monitoring sensor, which is imaged as a rectilinear spot on the light receiver in the absence of obstacles, this rectilinear image parallel to the rows or columns of the light receiver, in which the receiver elements are arranged.
  • a lateral position on the light receiver ie a position in the direction of extension of the line-shaped light spot, corresponds to this a respective angular position within the sector-shaped monitoring area.
  • the incident location of the light received from the corresponding angle shifts transversely, in particular perpendicularly, to the extending direction of the light spot on the light receiver.
  • a short segment of the line-shaped receiving light spot is offset transversely to the extension direction of that rectilinear receiving light spot which would be generated without the presence of objects in the surveillance area.
  • the main monitoring direction usually coincides with the direction of travel of a vehicle carrying the monitoring sensor.
  • the object is achieved by a monitoring sensor having the features of claim 1 and by a vehicle having the features of claim 9.
  • the transmitting optics is set up to focus the light emitted by the light source into a transmitted light bundle which, when impinging on a scanning plane which is inclined to the optical axis of the transmitting optics by a predetermined angle of inclination in the triangulation direction, generates a scanning light line, which is concave curved viewed from the direction of the monitoring sensor.
  • the receiver elements are advantageously arranged in the form of a two-dimensional array and are adapted to convert received light into electrical received signals.
  • An evaluation unit for generating a detection signal from the received signals can be provided.
  • light receivers and light transmitters can be spaced apart in the triangulation direction, so that the beam paths of the transmitted light and of the received light have a parallax relative to one another.
  • the named scanning plane can be regarded as a fictitious reference plane.
  • the scanning plane for example, a real area, such as a track to be monitored correspond, which does not necessarily have to be exactly flat due to local conditions.
  • Said angle of inclination usually depends on the distance of the monitoring sensor from the scanning plane, ie the height of the attachment point of the monitoring sensor on the vehicle over the travel of the vehicle, and the desired maximum extent of the monitoring range corresponding to the distance of the scanning light line from the monitoring sensor.
  • the monitoring sensor is designed or oriented such that the triangulation direction transversely, advantageously perpendicular, extends to the scanning plane.
  • An inclination of the triangulation direction with respect to the scanning plane deviating from a perpendicular of the scanning plane is advantageously provided only within a plane which is perpendicular to the scanning plane and comprises the optical axis of the transmitting optics.
  • the desired curvature of the scanning light line is advantageously achieved in that the transmitting optics directs extra-axial beams with increasing lateral angular distance from the optical axis of the transmitting optics more strongly downwards in the direction of the scanning plane.
  • lateral subareas of the surveillance area i. Subareas that are located laterally to the main monitoring direction are better monitored.
  • it would potentially also be possible to monitor these lateral areas by producing a sufficiently long rectilinear scanning light line, so that a suitable solid angle range is covered.
  • the problem that with increasing angles of incidence of the transmitted light on the scanning plane is always further away from the monitoring sensor and the transmitted light thus impinges at an ever flatter angle to the scanning plane.
  • no sufficient amount of light is remitted from these places in the direction of the light receiver, so that a reliable detection of remitted light by the light receiver in these outer areas is no longer guaranteed.
  • the course of the scanning light line on the scanning plane corresponds to a segment of a circle, a parabola, a hyperbola or an ellipse.
  • the aperture angle of the scanned sector-shaped region i. the angular range over which the monitoring area extends is advantageously at least 45 °, preferably at least 90 ° and in particular up to 180 °.
  • the transmitted light bundle focused by the transmission optics generates a curved reference light line in projection onto a reference scanning plane extending perpendicular to the optical axis of the transmitting optics.
  • the profile of the reference light line can serve as a reference for the design of the transmitting or receiving optics, so that it is possible in particular to simplify the computation steps required for calculating the optics.
  • the vertex of the reference light line advantageously corresponds to the intersection of the optical axis of the transmitting optics with the reference scanning plane.
  • the intensity distribution of the scanning light line in the longitudinal direction and / or in the transverse direction of the scanning light line is homogeneous.
  • An appropriate design of the transmission optics ensures that, on the one hand, the image of the scanning light line on the light receiver, ie the light spot, is as sharply delimited as possible and, on the other hand a homogeneous distribution of intensity of the light spot over its entire length is given. This enables reliable object detection over the entire surveillance area.
  • the receiving optics is adapted to generate a straight line corresponding image of the scanning light line on the light receiver.
  • a rectilinear image of the scanning light line on the light receiver is modeled that the transmitted light impinges on a flat scanning plane, so that no distortions occur in the curvature of the scanning light line.
  • the receiving optics makes, so to speak, the distortions of the transmitting optics "reversed", which are necessary in order to convert about an imaginary rectilinear scanning light line in the concave curved scanning light line according to the invention.
  • an equally curved light spot would form on the light receiver, which would make the evaluation of a picture produced by the light receiver more complex, since it would no longer be e.g. only a maximum of the light distribution could be determined line by line or column by column, but radial components would have to be considered in the distance determination.
  • the photosensitive surface of the light receiver is optimally utilized.
  • the generation of a light spot in the form of a rectilinear image of the scanning light line also has the advantage that the variation of the light spot position on the light receiver as a function of the distance of an object to be detected from the monitoring sensor is largely the same regardless of the angular position of the object.
  • the receiver elements of the light receiver are arranged in rows and columns, wherein the image of the scanning light line on the light receiver parallel to the rows or columns.
  • the evaluation of the image generated by the light receiver is further facilitated.
  • the transmitting optics and / or the receiving optics each comprise at least one lens, wherein at least one refractive surface of the lens is designed as a free-form surface.
  • at least one refractive surface is designed as a freeform surface.
  • the desired distortions can be achieved in a simple and cost-effective manner when generating the scanning light line or when producing an image of the scanning light line on the light receiver.
  • the transmitting and / or the receiving optics are designed as mirror optics or comprise a respective combination of one or more mirror optics and one or more lenses.
  • the transmitting optics and / or the receiving optics can each comprise at least one mirror optics whose light-reflecting surface is designed as a free-form surface.
  • the transmitting optics has at least two free-form surfaces, wherein a first free-form surface is configured in such a way that it would produce a straight scanning line on the scanning plane and a second free-form surface is configured such that it causes the curvature of the scanning light line.
  • the first free-form surface thus effects a collimation of the transmitted light in the triangulation direction and a spreading of the transmitted light in the direction of the opening angle.
  • the second free-form surface serves to deflect off-axis beams with increasing lateral angular distance from the optical axis of the transmitting optics more strongly downwards in the direction of the scanning plane in order to generate the desired curvature of the scanning light line.
  • the free-form surfaces can be provided on one or even on several lenses.
  • the two refractive surfaces of a single lens may be formed as a respective free-form surface.
  • the present invention also extends to a field-bound vehicle, in particular a driverless transport vehicle, having a monitoring sensor according to at least one of the aforementioned embodiments for monitoring a travel path of the vehicle.
  • the monitoring sensor is spaced apart from the track to be monitored on the vehicle and aligned such that the optical axis of the transmission optics intersects a flat track at a predetermined distance from the vehicle.
  • Fig. 1 and 2 show a floor-bound vehicle 10, which can travel along a travel path 26 in a direction of movement RF.
  • a monitoring sensor 12 for the spatially resolved detection of objects in a monitoring area 20 is arranged on the vehicle 10 at a distance from the travel path 26.
  • the monitoring sensor 12 has a light transmitter for emitting transmitted light into the monitoring area 20, the light transmitter comprising a light source 14 and a transmitting optical system 16, which has an optical axis O.
  • the monitoring sensor 12 further comprises a light receiver 22, which has a plurality of receiver elements which are arrayed in rows and columns.
  • the light receiver 22 is preceded by a receiving optical system 24, which focuses light from the surveillance area 20, which is remitted from an object 40 to be detected or the travel path 26, in the direction of the light receiver 22.
  • the light source 14, the transmitting optics 16, the light receiver 22 and the receiving optics 24 are arranged and aligned with each other such that the position of a light spot generated on the light receiver 22 by means of the receiving optics 24 results in a triangulation direction T as a function of the distance of the object 40 wherein light remitted from a receiving light region 42 can be detected.
  • the monitoring sensor 12 is inclined relative to the travel path 26, so that a light beam emitted along the optical axis O strikes the driving path at an impact point 46 spaced from the vehicle 10 at an inclination angle ⁇ .
  • the transmission optical unit 16 is set up to collimate the transmitted light 18 in the triangulation direction T or transversely to a plane which is defined by the travel path 26 and subsequently also referred to as the scanning plane 26 and in a direction orthogonal thereto in the direction of an opening angle ⁇ ( Fig. 2 ) expand or spread.
  • the collimating light on the one hand and the fan-shaped expansion on the other hand, the transmitted light 18 is formed by means of the optical transmitting system 16 so that there is a scanning light line 28 in the absence of objects or other obstacles in the beam path on the scanning plane 26 generated concave curved viewed from the direction of the monitoring sensor 12 (see Fig. 2 ).
  • the design and function of the transmitting optics 16 will be described in more detail below.
  • the curvature of the scanning light line 28 corresponds in accordance with the exemplary embodiment Fig. 2 a circular segment, wherein the opening angle ⁇ is approximately 90 °.
  • the scanning light line 28 may also correspond to a segment of a hyperbola, a parabola or an ellipse.
  • the receiving optical system 24 is configured to image the scanning light line 28 onto the light receiver 22 in such a way that a light spot corresponding to a straight line is generated on the light receiver 22, this rectilinear light spot being parallel to the scanning plane 26 and perpendicular to the triangulation direction T parallel to the rows or Columns of the light receiver 22 extends.
  • the design and function of the receiving optics 24 will be described in more detail below.
  • the distance of a detected object 40 from the variation of the impact location on the light receiver 22 in the triangulation direction T can be determined, while the angular position of the object from the position of the impact location on the light receiver 22 in a direction transverse to the triangulation direction T can be determined.
  • the concave curvature of the scanning light line 28 thereby improves the detection of objects in lateral areas of the monitoring area 20.
  • an object 40 whose direction of movement RO according to FIG Fig. 2 transverse to the direction of movement RF of the vehicle 10 is already detected at an early time, so that a possible collision with the vehicle 10 can be avoided.
  • FIG. 3 schematically shows a transmitted light beam path in a side view, in contrast to Fig. 1 not only a along the optical axis O of the optical transmitting system 16 extending central transmitted light beam 30 of the transmitted light beam 18 is shown, but also the two outer transmitted light beams 32, in the perspective of Fig. 3 one behind the other and so far in the illustration are not visible separately.
  • the outer transmitted light beams 32 strike the scanning plane 26 at passage points 38, while the central transmitted light beam 30 is at the point of impact 46 hits the scanning plane 26.
  • the calculation of the transmitting optical system 16 can be carried out, for example, on the basis of a reference light line 36 which is produced as an image or projection of the transmitted light bundle 18 after passing through the scanning plane 26 assumed here to be transparent on a reference scanning plane 34 perpendicular to the central transmitted light beam 30 or to the optical Axis O runs.
  • a reference light line 36 which is produced as an image or projection of the transmitted light bundle 18 after passing through the scanning plane 26 assumed here to be transparent on a reference scanning plane 34 perpendicular to the central transmitted light beam 30 or to the optical Axis O runs.
  • the resulting reference light line 36 is rotated in the plane of the drawing.
  • the reference light line 36 has a hyperbolic or parabolic-like profile, the vertex lying in the point of impingement 46.
  • the transmitting optics 16 is here exemplified as a biconical lens, wherein the one refractive surface of the lens plan and the other refractive surface in plan view according to Fig. 2 and 4 concave and in side view according to Fig. 1 and 5 is convexly curved.
  • the concave curvature of the refractive surface causes according to Fig. 4 the fan-shaped spreading of the transmitted light beam 18, while the convex curvature component according to Fig. 5 the collimation of the transmitted light beam in the triangulation direction T and the angle-dependent change of the radiation angle causes.
  • Fig. 4 three spaced apart cutting planes A to C are located.
  • the cutting plane A runs in the middle of the transmitting optics 16, the cutting plane C in an outer region and the cutting plane B between the cutting planes A and C.
  • the associated sectional views are in Fig. 5 shown.
  • a largely parallel collimation of the transmitted light beam 18 takes place. While the beam 18 in the sectional plane A is parallel to the optical axis O, the inclination of the beam 18 with respect to the optical axis O increases toward the outside.
  • the effective refractive surface of the transmitting optics 16 may preferably be designed as a free-form surface, the calculation of which is based on the reference light line 36 (FIG. Fig. 3 ).
  • the various optical functions of the transmitting optics 16 need not be realized in a single refractive surface, but may be distributed to different refractive surfaces of a single or multiple lenses.
  • the receiving optics 24 can be configured in a corresponding manner, wherein essentially the angle-dependent distortions which cause the curvature of the scanning light line 28 to be "undone" again.
  • One of the divergent component of the optical transmitting system 16 corresponding property, as provided in the transmitting optics 16 for the fan-shaped spreading of the beam, can be omitted in the receiving optical system 24 in the rule.
  • FIG Fig. 6 An exemplary receiving optical system 24 is shown in FIG Fig. 6 shown schematically.
  • the receiving optics 24 are designed such that an imaging region 44 corresponding to the extent of the scanning light line 28 is imaged on the light receiver 22 in the best possible format-filling manner becomes. This avoids that unwanted scattered light reaches the light receiver 22. Accordingly, the passage points 38 of the external transmitted light beams 32 (FIG. Fig. 2 and 3 ) can be imaged in regions of the light receiver 22 that are as close to the edge as possible.
  • One or more refractive surfaces of the transmitting optics 16 may also be configured as free-form surfaces,

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Überwachungssensor zur ortsaufgelösten Detektion von Objekten in einem Überwachungsbereich nach dem Triangulationsprinzip, mit
    • einem Lichtsender zum Aussenden von Sendelicht in den Überwachungsbereich, wobei der Lichtsender eine Lichtquelle und eine Sendeoptik, welche eine optische Achse aufweist, umfasst,
    • einem Lichtempfänger, welcher mehrere Empfängerelemente aufweist, zum Empfangen von Licht aus dem Überwachungsbereich, welches von einem zu detektierenden Objekt remittiert wird, und
    • einer dem Lichtempfänger vorgeordneten Empfangsoptik,
    wobei der Lichtsender, der Lichtempfänger und die Empfangsoptik derart zueinander angeordnet sind, dass sich die Position eines mittels der Empfangsoptik aus dem remittierten Licht auf dem Lichtempfänger erzeugten Lichtflecks in einer Triangulationsrichtung in Abhängigkeit von der Entfernung des Objekts ergibt. Die Erfindung betrifft ferner ein flurgebundenes Fahrzeug mit einem Überwachungssensor.
  • Bei flurgebundenen Fahrzeugen, insbesondere fahrerlosen Transportfahrzeugen, besteht ein zunehmendes Bedürfnis, den Fahrweg des Fahrzeugs auf die Anwesenheit von Hindernissen mittels geeigneter Sensoren zu überwachen. Oftmals werden hierfür Laserscanner eingesetzt. Derartige Laserscanner weisen in der Regel bewegliche Optiken und Vorrichtungen zur Lichtlaufzeitmessung auf, was mit hohen Kosten verbunden ist.
  • Eine Alternative zur Verwendung von Laserscannern besteht in dem Einsatz von nach dem Prinzip der Lasertriangulation arbeitenden Überwachungssensoren gemäß der eingangs genannten Art. Ein derartiger Überwachungssensor ist aus EP 1 947 477 A1 bekannt.
  • Mit Hilfe eines derartigen Überwachungssensors kann die Entfernung eines im Überwachungsbereich vorhandenen Objekts oder Hindernisses bestimmt werden. Das von der Lichtquelle des Lichtsenders erzeugte Licht wird mit Hilfe der Sendeoptik zu einem Sendelichtstrahl fokussiert, welcher im Überwachungsbereich auf ein dort gegebenenfalls befindliches, zu detektierendes Objekt trifft. Das Sendelicht kann von einem solchen Objekt remittiert, d.h. diffus oder spiegelnd reflektiert, werden. Es tritt durch eine Empfangsoptik hindurch und kann von einem Lichtempfänger detektiert werden, der zusammen mit der Empfangsoptik eine Empfangseinheit bildet. Der Lichtempfänger besteht bei bekannten Lösungen aus einem Array von fotosensitiven Empfängerelementen.
  • In Abhängigkeit von der Entfernung zwischen dem Überwachungssensor und dem remittierenden Objekt ändert sich die Position eines durch das remittierte Licht erzeugten Lichtflecks auf dem Lichtempfänger in der sogenannten Triangulationsrichtung. Zwischen dem Auftreffpunkt auf dem Lichtempfänger und der Entfernung des erfassten Objekts besteht ein eindeutiger geometrischer Zusammenhang. Durch Auswertung der Lichtverteilung auf dem Lichtempfänger kann damit die Entfernung zwischen Objekt und Überwachungssensor bestimmt werden.
  • Zur Überwachung des Fahrwegs kann ein Überwachungssensor an einem Fahrzeug montiert werden, wobei der Überwachungssensor zweckmäßigerweise von dem zu überwachenden Fahrweg beabstandet angeordnet wird und derart ausgerichtet wird, dass das Sendelicht schräg unter einem vorgegebenen Neigungswinkel in Richtung des Fahrwegs emittiert wird und dort in einem entsprechenden Abstand von dem Überwachungssensor auftrifft. Der Fahrweg stellt somit eine Abtastebene dar. Der Überwachungsbereich erstreckt sich zwischen dem Überwachungssensor und dem Auftreffort des Sendelichts auf der Abtastebene.
  • Trifft das Sendelicht auf ein Objekt in dem Überwachungsbereich, das sich näher an dem Überwachungssensor befindet als der Auftreffort des Sendelichts auf die Abtastebene, so wird das Sendelicht, das durch die Empfangsoptik tritt, unter einem anderen Winkel in Richtung der Empfangsoptik remittiert, so dass sich die Position des aus dem remittierten Licht erzeugten Lichtflecks in Triangulationsrichtung auf dem Lichtempfänger verschiebt.
  • Damit nicht nur Objekte detektiert werden können, die sich unmittelbar in Blickrichtung des Überwachungssensors, d.h. auf oder nahe an der optischen Achse der Sendeoptik befinden, kann das Sendelicht lateral aufgeweitet werden, so dass es beim Auftreffen die Abtastebene oder allgemein auf eine gedachte Projektionsfläche eine Abtastlichtlinie erzeugt, die sich quer zur Blickrichtung des Überwachungssensors und damit in der Regel quer zur Fortbewegungsrichtung des Fahrzeugs und parallel zur Abtastebene erstreckt.
  • Das Sendelicht wird sozusagen fächerförmig aufgeweitet, so dass der Überwachungsbereich sich sektorförmig vom Überwachungssensor aus erstreckt. Gewöhnlich sind der Lichtsender, der Lichtempfänger und die Empfangsoptik derart ausgelegt und ausgerichtet, dass die Abtastlichtlinie auf der Abtastebene als gerade Linie quer zur Hauptüberwachungsrichtung des Überwachungssensors verläuft, die bei nicht vorhandenen Hindernissen als geradliniger Lichtfleck auf den Lichtempfänger abgebildet wird, wobei diese geradlinige Abbildung parallel zu den Zeilen oder Spalten des Lichtempfängers verläuft, in denen die Empfängerelemente angeordnet sind.
  • Eine Lateralposition auf dem Lichtempfänger, d.h. eine Position in der Erstreckungsrichtung des linienförmig abgebildeten Lichtflecks korrespondiert dabei mit einer jeweiligen Winkelposition innerhalb des sektorförmigen Überwachungsbereichs.
  • Wenn sich ein Objekt innerhalb des Überwachungsbereichs befindet, das von dem Sendelicht erfasst wird, verschiebt sich der Auftreffort des aus dem entsprechenden Winkel empfangenen Lichts quer, insbesondere senkrecht, zu der Erstreckungsrichtung des Lichtflecks auf dem Lichtempfänger. Mit anderen Worten ist ein kurzes Segment des linienförmigen Empfangslichtflecks, dessen Länge von dem Winkelbereich abhängt, über den sich das erfasste Objekt erstreckt, quer zu der Erstreckungsrichtung desjenigen geradlinigen Empfangslichtflecks versetzt, welcher ohne die Anwesenheit von Objekten im Überwachungsbereich erzeugt werden würde.
  • Mit einem derartigen Überwachungssensor können jedoch Objekte, die sich außerhalb einer in Richtung der optischen Achse der Sendeoptik verlaufenden Hauptüberwachungsrichtung befinden, nicht ausreichend zuverlässig und frühzeitig erfasst werden. Die Hauptüberwachungsrichtung fällt in der Regel mit der Fortbewegungsrichtung eines den Überwachungssensor tragenden Fahrzeugs zusammen.
  • Es besteht ein Bedürfnis, auch solche Fremdfahrzeuge oder andere Hindernisse zu erfassen, die sich quer zu dieser Fortbewegungsrichtung bewegen und den Fahrweg des Fahrzeugs unter Kollisionsgefahr kreuzen könnten.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, einen Überwachungssensor zu schaffen, der auch in seitlichen Randbereichen des Überwachungsbereichs eine zuverlässige Objekterkennung gewährleistet. Ferner soll ein entsprechendes Fahrzeug mit einem verbesserten Überwachungssensor bereitgestellt werden.
  • Die Lösung der Aufgabe erfolgt durch einen Überwachungssensor mit den Merkmalen des Anspruchs 1 und durch ein Fahrzeug mit den Merkmalen des Anspruchs 9.
  • Bei dem erfindungsgemäßen Überwachungssensor ist vorgesehen, dass die Sendeoptik dazu eingerichtet ist, das von der Lichtquelle emittierte Licht zu einem Sendelichtbündel zu fokussieren, welches beim Auftreffen auf eine Abtastebene, welche zu der optischen Achse der Sendeoptik um einen vorgegebenen Neigungswinkel in der Triangulationsrichtung geneigt verläuft, eine Abtastlichtlinie erzeugt, die aus Richtung des Überwachungssensors betrachtet konkav gekrümmt verläuft.
  • Die Empfängerelemente sind vorteilhafterweise in Form eines zweidimensionalen Arrays angeordnet und sind dazu eingerichtet, empfangenes Licht in elektrische Empfangssignale umzuwandeln. Es kann eine Auswerteeinheit zum Erzeugen eines Erfassungssignals aus den Empfangssignalen vorgesehen sein. Entsprechend dem Triangulationsprinzip können Lichtempfänger und Lichtsender in Triangulationsrichtung voneinander beabstandet sein, so dass die Strahlengänge des Sendelichts und des Empfangslichts eine Parallaxe zueinander aufweisen.
  • Die genannte Abtastebene kann als eine fiktive Referenzebene angesehen werden. In der Praxis kann die Abtastebene beispielsweise auch einer realen Fläche, z.B. einem zu überwachenden Fahrweg, entsprechen, die aufgrund örtlicher Gegebenheiten nicht zwingend exakt eben sein muss. Der genannte Neigungswinkel hängt in der Regel von dem Abstand des Überwachungssensors von der Abtastebene, d.h. der Höhe des Befestigungspunktes des Überwachungssensors an dem Fahrzeug über dem Fahrweg des Fahrzeugs, und der gewünschten maximalen Ausdehnung des Überwachungsbereichs entsprechend dem Abstand der Abtastlichtlinie vom Überwachungssensor ab.
  • Der Überwachungssensor ist derart ausgestaltet bzw. ausgerichtet, dass die Triangulationsrichtung quer, vorteilhafterweise senkrecht, zu der Abtastebene verläuft. Eine von einer Senkrechten der Abtastebene abweichende Neigung der Triangulationsrichtung in Bezug auf die Abtastebene ist vorteilhafterweise nur innerhalb einer Ebene vorgesehen, welche senkrecht zur Abtastebene verläuft und die optische Achse der Sendeoptik umfasst.
  • Die gewünschte Krümmung der Abtastlichtlinie wird vorteilhafterweise dadurch erzielt, dass die Sendeoptik außeraxiale Strahlen mit zunehmendem lateralem Winkelabstand von der optischen Achse der Sendeoptik stärker nach unten in Richtung der Abtastebene lenkt.
  • Mit dem erfindungsgemäßen Überwachungssensor können seitliche Teilbereiche des Überwachungsbereichs, d.h. Teilbereiche, die sich seitlich der Hauptüberwachungsrichtung befinden, besser überwacht werden. Zwar wäre potentiell auch eine Überwachung dieser seitlichen Bereiche dadurch möglich, dass eine ausreichend lange geradlinige Abtastlichtlinie erzeugt wird, so dass ein geeigneter Raumwinkelbereich überdeckt wird. Allerdings bestünde dann das Problem, dass bei zunehmenden Winkeln der Auftreffort des Sendelichts auf die Abtastebene immer weiter vom Überwachungssensor entfernt ist und das Sendelicht somit unter einem immer flacheren Winkel auf die Abtastebene auftrifft. Infolgedessen wird von diesen Orten keine ausreichende Lichtmenge mehr in Richtung des Lichtempfängers remittiert, so dass eine zuverlässige Detektion von remittiertem Licht durch den Lichtempfänger in diesen äußeren Bereichen nicht mehr gewährleistet ist.
  • Diese Problematik wird durch die vorliegende Erfindung vermieden, da durch die konkave Krümmung der Abtastlichtlinie die Auftrefforte des Sendelichts auf die Abtastebene in äußeren Winkelbereichen des Überwachungsbereichs näher am Überwachungssensor liegen, als dies bei einer geradlinig verlaufenden Abtastlichtlinie der Fälle wäre.
  • Gemäß einer vorteilhaften Ausführungsform der Erfindung entspricht der Verlauf der Abtastlichtlinie auf der Abtastebene einem Segment eines Kreises, einer Parabel, einer Hyperbel oder einer Ellipse.
  • Diese Verläufe haben sich als geeignet herausgestellt, um die gewünschte Verbesserung bei der Abtastsicherheit zu erzielen. Bei der Ausgestaltung der Abtastlichtlinie als Kreissegment ergibt sich zudem der Vorteil, dass der Abstand der Abtastlichtlinie und damit die Ausdehnung des Überwachungsbereichs über den gesamten Winkelbereich des abgetasteten Sektors gleichbleibt. Der Öffnungswinkel des abgetasteten sektorförmigen Bereichs, d.h. der Winkelbereich, über den sich der Überwachungsbereich erstreckt, beträgt vorteilhafterweise mindestens 45°, bevorzugt mindestens 90° und insbesondere bis zu 180°.
  • Vorteilhafterweise erzeugt das von der Sendeoptik fokussierte Sendelichtbündel in Projektion auf eine senkrecht zur optischen Achse der Sendeoptik verlaufende Referenzabtastebene eine gekrümmte Referenzlichtlinie. Der Verlauf der Referenzlichtlinie kann als Referenz für die Auslegung der Sende- bzw. Empfangsoptik dienen, so dass sich insbesondere die bei einer Berechnung der Optiken notwendigen Rechenschritte vereinfachen lassen. Der Scheitelpunkt der Referenzlichtlinie entspricht vorteilhafterweise dem Schnittpunkt der optischen Achse der Sendeoptik mit der Referenzabtastebene.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist die Intensitätsverteilung der Abtastlichtlinie in Längsrichtung und/oder in Querrichtung der Abtastlichtlinie homogen. Durch eine entsprechende Auslegung der Sendeoptik wird gewährleistet, dass zum einen die Abbildung der Abtastlichtlinie auf dem Lichtempfänger, d.h. der Lichtfleck, möglichst scharf begrenzt ist und zum anderen eine möglichst homogene Intensitätsverteilung des Lichtflecks über seine gesamte Länge gegeben ist. Dadurch wird eine zuverlässige Objektdetektion über den gesamten Überwachungsbereich ermöglicht.
  • Vorteilhafterweise ist die Empfangsoptik dazu eingerichtet, ein einer geraden Linie entsprechendes Abbild der Abtastlichtlinie auf dem Lichtempfänger zu erzeugen. Für ein derartiges geradliniges Abbild der Abtastlichtlinie auf dem Lichtempfänger wird modellhaft angenommen, dass das Sendelicht auf eine plane Abtastebene auftrifft, so dass keine Verzerrungen bei der Krümmungsform der Abtastlichtlinie auftreten. Die Empfangsoptik macht sozusagen die Verzeichnungen der Sendeoptik "rückgängig", die notwendig sind, um etwa eine gedachte geradlinig verlaufende Abtastlichtlinie in die erfindungsgemäße konkav gekrümmte Abtastlichtlinie zu überführen.
  • Bei Verwendung einer Empfangsoptik, die diese Verzeichnungen nicht berücksichtigen würde, würde auf dem Lichtempfänger ein ebenfalls gekrümmt verlaufender Lichtfleck entstehen, was die Auswertung eines von dem Lichtempfänger erzeugten Bildes aufwendiger machen würde, da dann nicht mehr z.B. lediglich zeilenweise bzw. spaltenweise ein Maximum der Lichtverteilung ermittelt werden könnte, sondern radiale Komponenten bei der Entfernungsermittlung berücksichtigt werden müssten. Zudem wird die lichtempfindliche Fläche des Lichtempfängers optimal ausgenutzt. Das Erzeugen eines Lichtflecks in Form eines geradlinigen Abbildes der Abtastlichtlinie bietet ferner den Vorteil, dass die Variation der Lichtfleckposition auf dem Lichtempfänger in Abhängigkeit von dem Abstand eines zu detektierenden Objekts von dem Überwachungssensor unabhängig von der Winkelposition des Objekts weitgehend gleichbleibt.
  • Vorteilhafterweise sind die Empfängerelemente des Lichtempfängers in Reihen und Spalten angeordnet, wobei das Abbild der Abtastlichtlinie auf dem Lichtempfänger parallel zu den Reihen oder Spalten verläuft. Hierdurch wird die Auswertung des von dem Lichtempfänger erzeugten Bildes nochmals erleichtert.
  • Es hat sich als vorteilhaft erwiesen, wenn die Sendeoptik und/oder die Empfangsoptik jeweils wenigstens eine Linse umfassen, wobei zumindest eine lichtbrechende Fläche der Linse als Freiformfläche ausgebildet ist. Durch die Ausgestaltung zumindest einer lichtbrechenden Fläche als Freiformfläche lassen sich auf einfache und kostengünstige Weise die gewünschten Verzeichnungen beim Erzeugen der Abtastlichtlinie bzw. beim Erzeugen eines Abbildes der Abtastlichtlinie auf dem Lichtempfänger erreichen. Grundsätzlich ist es auch möglich, dass die Sende- und/oder die Empfangsoptik als Spiegeloptik ausgebildet sind oder eine jeweilige Kombination aus einer oder mehreren Spiegeloptiken und einer oder mehreren Linsen umfassen. Vorteilhafterweise können die Sendeoptik und/oder die Empfangsoptik jeweils wenigstens eine Spiegeloptik umfassen, deren lichtreflektierende Fläche als Freiformfläche ausgebildet ist.
  • Vorteilhafterweise weist die Sendeoptik wenigstens zwei Freiformflächen auf, wobei eine erste Freiformfläche derart ausgestaltet ist, dass diese für sich genommen eine gerade verlaufende Abtastlichtlinie auf der Abtastebene erzeugen würde, und wobei eine zweite Freiformfläche derart ausgestaltet ist, dass diese die Krümmung der Abtastlichtlinie bewirkt. Die erste Freiformfläche bewirkt also eine Kollimation des Sendelichts in Triangulationsrichtung und eine Spreizung des Sendelichts in Richtung des Öffnungswinkels. Die zweite Freiformfläche dient dazu, außeraxiale Strahlen mit zunehmendem lateralen Winkelabstand von der optischen Achse der Sendeoptik stärker nach unten in Richtung der Abtastebene abzulenken, um die gewünschte Krümmung der Abtastlichtlinie zu generieren. Beispielsweise können die Freiformflächen an einer oder auch an mehreren Linsen vorgesehen sein. Insbesondere können die beiden lichtbrechenden Flächen einer einzigen Linse als jeweilige Freiformfläche ausgebildet sein.
  • Die vorliegende Erfindung erstreckt sich auch auf ein flurgebundenes Fahrzeug, insbesondere fahrerloses Transportfahrzeug, mit einem Überwachungssensor nach zumindest einer der vorstehend genannten Ausführungsformen zum Überwachen eines Fahrwegs des Fahrzeugs.
  • Vorteilhafterweise ist der Überwachungssensor von dem zu überwachenden Fahrweg beabstandet an dem Fahrzeug angeordnet und derart ausgerichtet, dass die optische Achse der Sendeoptik einen ebenen Fahrweg in einem vorgegebenen Abstand von dem Fahrzeug schneidet.
  • Weitere vorteilhafte Ausführungsformen der Erfindung ergeben sich aus der Beschreibung, den Zeichnungen und den Unteransprüchen.
  • Die Erfindung wird nachfolgend anhand eines Ausführungsbeispiels mit Bezug auf die Zeichnungen beschrieben. Es zeigen:
  • Fig. 1
    ein Fahrzeug mit einem Überwachungssensor gemäß einem Ausführungsbeispiel der vorliegenden Erfindung in Seitenansicht,
    Fig. 2
    das Fahrzeug und Überwachungssensor von Fig. 1 in Draufsicht,
    Fig. 3
    ein schematischer Sendelichtstrahlengang,
    Fig. 4
    eine Sendeoptik des Überwachungssensors von Fig. 1 und 2 in Draufsicht,
    Fig. 5
    verschiedene Teilstrahlengänge des Sendelichts in Schnittdarstellung, und
    Fig. 6
    eine Empfangsoptik des Lichtempfängers von Fig. 1 und 2.
  • Fig. 1 und 2 zeigen ein flurgebundenes Fahrzeug 10, welches sich entlang eines Fahrwegs 26 in einer Bewegungsrichtung RF fortbewegen kann. An dem Fahrzeug 10 ist von dem Fahrweg 26 beabstandet ein Überwachungssensor 12 zur ortsaufgelösten Detektion von Objekten in einem Überwachungsbereich 20 angeordnet.
  • Der Überwachungssensor 12 weist einen Lichtsender zum Aussenden von Sendelicht in den Überwachungsbereich 20 auf, wobei der Lichtsender eine Lichtquelle 14 und eine Sendeoptik 16, welche eine optische Achse O aufweist, umfasst. Der Überwachungssensor 12 umfasst ferner einen Lichtempfänger 22, welcher mehrere Empfängerelemente aufweist, die arrayförmig in Reihen und Spalten angeordnet sind. Dem Lichtempfänger 22 ist eine Empfangsoptik 24 vorgeordnet, welche Licht aus dem Überwachungsbereich 20, welches von einem zu detektierenden Objekt 40 bzw. dem Fahrweg 26 remittiert wird, in Richtung auf den Lichtempfänger 22 fokussiert.
  • Die Lichtquelle 14, die Sendeoptik 16, der Lichtempfänger 22 und die Empfangsoptik 24 sind derart zueinander angeordnet und ausgerichtet, dass sich die Position eines mittels der Empfangsoptik 24 auf dem Lichtempfänger 22 erzeugten Lichtflecks in einer Triangulationsrichtung T in Abhängigkeit von der Entfernung des Objekts 40 ergibt, wobei Licht, welches aus einem Empfangslichtbereich 42 remittiert wird, erfasst werden kann.
  • Aus Gründen der Übersichtlichkeit ist in der Seitenansicht von der Fig. 1 der Strahlengang lediglich in Schnittansicht dargestellt, wobei die Schnittebene entlang der optischen Achse O verläuft.
  • Der Überwachungssensor 12 ist gegenüber dem Fahrweg 26 geneigt, so dass ein entlang der optischen Achse O ausgesendeter Lichtstrahl in einem von dem Fahrzeug 10 beabstandeten Auftreffpunkt 46 unter einem Neigungswinkel β auf den Fahrweg trifft.
  • Die Sendeoptik 16 ist dazu eingerichtet, das Sendelicht 18 in der Triangulationsrichtung T bzw. quer zu einer Ebene, die durch den Fahrweg 26 definiert wird und nachfolgend auch als Abtastebene 26 bezeichnet wird, zu kollimieren und in einer hierzu orthogonalen Richtung in Richtung eines Öffnungswinkels α (Fig. 2) aufzuweiten oder zu spreizen. Das Sendelichtbündel 18 erstreckt sich damit fächerförmig in den Überwachungsbereich 20. Durch die Kollimation einerseits und die fächerförmige Aufweitung andererseits wird das Sendelicht 18 mittels der Sendeoptik 16 derart geformt, dass es bei Abwesenheit von Objekten oder anderen Hindernissen im Strahlengang auf der Abtastebene 26 eine Abtastlichtlinie 28 erzeugt, die aus Richtung des Überwachungssensors 12 betrachtet konkav gekrümmt verläuft (siehe Fig. 2). Die Ausgestaltung und Funktion der Sendeoptik 16 wird nachfolgend noch näher beschrieben.
  • Die Krümmung der Abtastlichtlinie 28 entspricht im Ausführungsbeispiel gemäß Fig. 2 einem Kreissegment, wobei der Öffnungswinkel α ungefähr 90° beträgt.
  • Gemäß einer Abwandlung kann die Abtastlichtlinie 28 auch einem Segment einer Hyperbel, einer Parabel oder einer Ellipse entsprechen.
  • Die Empfangsoptik 24 ist dazu eingerichtet, die Abtastlichtlinie 28 derart auf den Lichtempfänger 22 abzubilden, dass ein einer geraden Linie entsprechender Lichtfleck auf dem Lichtempfänger 22 erzeugt wird, wobei dieser geradlinige Lichtfleck parallel zu der Abtastebene 26 und senkrecht zur Triangulationsrichtung T parallel zu den Reihen oder Spalten des Lichtempfängers 22 verläuft. Die Ausgestaltung und Funktion der Empfangsoptik 24 wird nachfolgend noch näher beschrieben.
  • Wenn ein Objekt 40, beispielsweise ein fremdes Fahrzeug, ein Hindernis oder eine Person, in den Überwachungsbereich 20 gelangt und von dem Sendelichtbündel 18 erfasst wird, wird ein der Ausdehnung des Objekts 40 entsprechender Teilbereich des Sendelichtbündels 18 von dem Objekt 40 in Richtung auf die Empfangsoptik 24 remittiert, wobei sich der Triangulationswinkel, unter dem das remittierte Licht auf die Empfangsoptik 24 und den Lichtempfänger 22 trifft, in Abhängigkeit von dem Abstand des Objekts 40 ändert. Entsprechend ändert sich der Auftreffort des Empfangslichts für einen entsprechenden Abschnitt des Empfangslichtflecks in Triangulationsrichtung.
  • Somit kann der Abstand eines detektierten Objekts 40 aus der Variation des Auftrefforts auf dem Lichtempfänger 22 in Triangulationsrichtung T ermittelt werden, während die Winkelposition des Objekts aus der Position des Auftrefforts auf dem Lichtempfänger 22 in einer Richtung quer zur Triangulationsrichtung T bestimmt werden kann.
  • Die konkave Krümmung der Abtastlichtlinie 28 verbessert dabei die Erfassung von Objekten in seitlichen Bereichen des Überwachungsbereichs 20. So kann beispielsweise ein Objekt 40, dessen Bewegungsrichtung RO gemäß Fig. 2 quer zu der Bewegungsrichtung RF des Fahrzeugs 10 verläuft, bereits zu einem frühen Zeitpunkt erfasst werden, so dass eine eventuelle Kollision mit dem Fahrzeug 10 vermieden werden kann.
  • Die Ausgestaltung der Sendeoptik 16 wird im Folgenden mit Bezug auf Fig. 3 bis 5 näher erläutert. Fig. 3 zeigt schematisch einen Sendelichtstrahlengang in seitlicher Ansicht, wobei im Unterschied zu Fig. 1 nicht nur ein entlang der optischen Achse O der Sendeoptik 16 verlaufender mittlerer Sendelichtstrahl 30 des Sendelichtbündels 18 dargestellt ist, sondern zusätzlich auch die beiden äußeren Sendelichtstrahlen 32, die in der Perspektive von Fig. 3 hintereinanderliegen und insofern in der Darstellung nicht voneinander getrennt sichtbar sind. Wie in Fig. 3 gut zu erkennen ist, treffen die äußeren Sendelichtstrahlen 32 unter einem größeren Winkel auf die Abtastebene 26 als der mittlere Sendelichtstrahl 30. Die äußeren Sendelichtstrahlen 32 treffen in Durchtrittspunkten 38 auf die Abtastebene 26 auf bzw. schneiden diese, während der mittlere Sendelichtstrahl 30 in dem Auftreffpunkt 46 auf die Abtastebene 26 trifft.
  • Die Berechnung der Sendeoptik 16 kann beispielsweise auf der Grundlage einer Referenzlichtlinie 36 erfolgen, die als Abbild oder Projektion des Sendelichtbündels 18 nach Durchtritt durch die hier als transparent angenommene Abtastebene 26 auf einer Referenzabtastebene 34 erzeugt wird, die senkrecht zum mittleren Sendelichtstrahl 30 bzw. zur optischen Achse O verläuft. In der Darstellung von Fig. 3 ist die so entstandene Referenzlichtlinie 36 in die Zeichenebene gedreht. Die Referenzlichtlinie 36 weist einen hyperbel- oder parabelähnlichen Verlauf auf, wobei der Scheitelpunkt im Auftreffpunkt 46 liegt.
  • In Fig. 4 und 5 ist eine beispielhafte Sendeoptik 16 dargestellt, mit welcher der beschriebene Sendelichtstrahlengang erzeugt werden kann. Die Sendeoptik 16 ist hier beispielhaft als bikonische Linse ausgebildet, wobei die eine lichtbrechende Fläche der Linse plan und die andere lichtbrechende Fläche in Draufsicht gemäß Fig. 2 und 4 konkav und in Seitenansicht gemäß Fig. 1 und 5 konvex gekrümmt ist.
  • Die konkave Krümmung der lichtbrechenden Fläche bewirkt gemäß Fig. 4 das fächerförmige Aufspreizen des Sendelichtbündels 18, während der konvexe Krümmungsanteil gemäß Fig. 5 die Kollimation des Sendelichtbündels in Triangulationsrichtung T und die winkelabhängige Änderung des Abstrahlwinkels bewirkt.
  • In Fig. 4 sind drei voneinander beabstandete Schnittebenen A bis C eingezeichnet. Die Schnittebene A verläuft in der Mitte der Sendeoptik 16, die Schnittebene C in einem äußeren Bereich und die Schnittebene B zwischen den Schnittebenen A und C. Die zugehörigen Schnittdarstellungen sind in Fig. 5 dargestellt. Hier ist gut zu erkennen, dass in allen drei Schnittebenen A bis C eine weitgehend parallele Kollimation des Sendelichtbündels 18 stattfindet. Während das Strahlenbündel 18 in der Schnittebene A parallel zur optischen Achse O verläuft, nimmt die Neigung des Strahlenbündels 18 in Bezug auf die optische Achse O nach außen hin zu.
  • Die wirksame lichtbrechende Fläche der Sendeoptik 16 kann vorzugsweise als Freiformfläche ausgestaltet sein, wobei deren Berechnung auf der Grundlage der Referenzlichtlinie 36 (Fig. 3) erfolgen kann.
  • Grundsätzlich müssen die verschiedenen optischen Funktionen der Sendeoptik 16 nicht in einer einzigen lichtbrechenden Fläche verwirklicht sein, sondern können auch auf verschiedene lichtbrechende Flächen einer einzigen oder mehrerer Linsen verteilt werden.
  • Um eine geradlinige Abbildung der Abtastlichtlinie 28 auf dem Lichtempfänger 22 zu erzielen, kann die Empfangsoptik 24 in entsprechender Weise ausgestaltet sein, wobei im Wesentlichen die winkelabhängigen Verzerrungen, welche die Krümmung der Abtastlichtlinie 28 bewirken, wieder "rückgängig" gemacht werden sollen. Eine der divergenten Komponente der Sendeoptik 16 entsprechende Eigenschaft, wie sie bei der Sendeoptik 16 zur fächerförmigen Aufspreizung des Strahlenbündels vorgesehen ist, kann in der Regel bei der Empfangsoptik 24 entfallen.
  • Eine beispielhafte Empfangsoptik 24 ist in Fig. 6 schematisch dargestellt. Die Empfangsoptik 24 ist bezüglich ihrer Brennweite und ihres Öffnungswinkels so ausgelegt, dass ein der Erstreckung der Abtastlichtlinie 28 entsprechender Abbildungsbereich 44 möglichst formatfüllend auf den Lichtempfänger 22 abgebildet wird. Dadurch wird vermieden, dass unerwünschtes Streulicht auf den Lichtempfänger 22 gelangt. Entsprechend sollen die Durchtrittspunkte 38 der äußeren Sendelichtstrahlen 32 (Fig. 2 und 3) in möglichst randnahe Bereiche Lichtempfängers 22 abgebildet werden. Letztlich wird dadurch gewährleistet, dass Sendelicht 18, das an unterschiedlichen Positionen im Überwachungsbereich 20 in Richtung des Überwachungssensors 12 remittiert wird, mit möglichst gleichbleibender Helligkeit auf den Lichtempfänger 22 fokussiert wird, so dass der Überwachungssensor 12 eine möglichst positionsunabhängige Empfindlichkeit aufweist. Eine oder mehrere lichtbrechenden Flächen der Sendeoptik 16 können ebenfalls als Freiformflächen ausgestaltet sein,
  • Bezugszeichenliste
  • 10
    Fahrzeug
    12
    Überwachungssensor
    14
    Lichtquelle
    16
    Sendeoptik
    18
    Sendelicht, Sendelichtbündel
    20
    Überwachungsbereich
    22
    Lichtempfänger
    24
    Empfangsoptik
    26
    Fahrweg, Abtastebene
    28
    Abtastlichtlinie
    30
    mittlerer Sendelichtstrahl
    32
    äußerer Sendelichtstrahl
    34
    Referenzabtastebene
    36
    Referenzlichtlinie
    38
    Durchtrittspunkt
    40
    Objekt
    42
    Empfangslichtbereich
    44
    Abbildungsbereich
    46
    Auftreffpunkt
    A bis C
    Schnittebene
    O
    optische Achse
    RF
    Bewegungsrichtung des Fahrzeugs
    RO
    Bewegungsrichtung des Objekts
    T
    Triangulationsrichtung
    α
    Öffnungswinkel
    β
    Neigungswinkel

Claims (10)

  1. Überwachungssensor (12) zur ortsaufgelösten Detektion von Objekten in einem Überwachungsbereich (20) nach dem Triangulationsprinzip, mit
    - einem Lichtsender zum Aussenden von Sendelicht (18) in den Überwachungsbereich (20), wobei der Lichtsender eine Lichtquelle (14) und eine Sendeoptik (16), welche eine optische Achse (O) aufweist, umfasst,
    - einem Lichtempfänger (22), welcher mehrere Empfängerelemente aufweist, zum Empfangen von Licht aus dem Überwachungsbereich (20), welches von einem zu detektierenden Objekt (40) remittiert wird, und
    - einer dem Lichtempfänger (22) vorgeordneten Empfangsoptik (24),
    wobei der Lichtsender, der Lichtempfänger (22) und die Empfangsoptik (24) derart zueinander angeordnet sind, dass sich die Position eines mittels der Empfangsoptik (24) aus dem remittierten Licht (26) auf dem Lichtempfänger (14) erzeugten Lichtflecks (32) in einer Triangulationsrichtung (T) in Abhängigkeit von der Entfernung des Objekts (40) ergibt, dadurch gekennzeichnet, dass die Sendeoptik (16) dazu eingerichtet ist, das von der Lichtquelle (14) emittierte Licht zu einem Sendelichtbündel (18) zu fokussieren, welches beim Auftreffen auf eine Abtastebene (26), welche zu der optischen Achse (O) der Sendeoptik (16) um einen vorgegebenen Neigungswinkel (β) in der Triangulationsrichtung (T) geneigt verläuft, eine Abtastlichtlinie (28) erzeugt, die aus Richtung des Überwachungssensors (12) betrachtet konkav gekrümmt verläuft.
  2. Überwachungssensor nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der Verlauf der Abtastlichtlinie (28) auf der Abtastebene (26) einem Segment eines Kreises, einer Parabel, einer Hyperbel oder einer Ellipse entspricht.
  3. Überwachungssensor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das von der Sendeoptik (16) fokussierte Sendelichtbündel (18) in Projektion auf eine senkrecht zur optischen Achse (O) der Sendeoptik (16) verlaufende Referenzabtastebene (34) eine gekrümmte Referenzlichtlinie (36) erzeugt.
  4. Überwachungssensor (12) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    dass das Intensitätsprofil der Abtastlichtlinie (28) in Längsrichtung und/oder in Querrichtung der Abtastlichtlinie (28) homogen ist.
  5. Überwachungssensor (12) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    dass die Empfangsoptik (24) dazu eingerichtet ist, ein einer geraden Linie entsprechendes Abbild der Abtastlichtlinie (28) auf dem Lichtempfänger (22) zu erzeugen.
  6. Überwachungssensor (12) nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Empfängerelemente des Lichtempfängers (22) in Reihen und Spalten angeordnet sind, und
    dass das Abbild der Abtastlichtlinie (28) auf dem Lichtempfänger (22) parallel zu den Reihen oder Spalten verläuft.
  7. Überwachungssensor (12) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
    dass die Sendeoptik (16) und/oder die Empfangsoptik (24) jeweils wenigstens eine Linse umfassen, wobei zumindest eine lichtbrechende Fläche der Linse als Freiformfläche ausgebildet ist.
  8. Überwachungssensor (12) nach Anspruch 7,
    dadurch gekennzeichnet,
    dass die Sendeoptik (16) wenigstens zwei Freiformflächen aufweist, wobei eine erste Freiformfläche derart ausgestaltet ist, dass diese für sich genommen eine gerade verlaufende Abtastlichtlinie (28) auf der Abtastebene (26) erzeugen würde, und wobei eine zweite Freiformfläche derart ausgestaltet ist, dass diese die Krümmung der Abtastlichtlinie (28) bewirkt.
  9. Flurgebundenes Fahrzeug (10), insbesondere fahrerloses Transportfahrzeug, mit einem Überwachungssensor (12) nach einem der vorhergehenden Ansprüche zum Überwachen eines Fahrwegs (26) des Fahrzeugs (10).
  10. Fahrzeug (10) nach Anspruch 9,
    dadurch gekennzeichnet,
    dass der Überwachungssensor (12) von dem zu überwachenden Fahrweg (26) beabstandet an dem Fahrzeug (10) angeordnet ist und derart ausgerichtet ist, dass die optische Achse (O) der Sendeoptik (16) einen ebenen Fahrweg (26) in einem vorgegebenen Abstand von dem Fahrzeug (10) schneidet.
EP17150936.7A 2017-01-11 2017-01-11 Überwachungssensor und flurgebundenes fahrzeug Active EP3349042B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17150936.7A EP3349042B1 (de) 2017-01-11 2017-01-11 Überwachungssensor und flurgebundenes fahrzeug
US15/866,835 US10634773B2 (en) 2017-01-11 2018-01-10 Monitoring sensor and floor-bound vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP17150936.7A EP3349042B1 (de) 2017-01-11 2017-01-11 Überwachungssensor und flurgebundenes fahrzeug

Publications (2)

Publication Number Publication Date
EP3349042A1 EP3349042A1 (de) 2018-07-18
EP3349042B1 true EP3349042B1 (de) 2019-05-08

Family

ID=57777541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17150936.7A Active EP3349042B1 (de) 2017-01-11 2017-01-11 Überwachungssensor und flurgebundenes fahrzeug

Country Status (2)

Country Link
US (1) US10634773B2 (de)
EP (1) EP3349042B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3349042B1 (de) * 2017-01-11 2019-05-08 Sick Ag Überwachungssensor und flurgebundenes fahrzeug
CN112415494B (zh) * 2020-12-11 2021-08-13 福勤智能科技(昆山)有限公司 Agv双激光雷达位置标定方法、装置、设备和存储介质

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204916B1 (en) * 1998-02-03 2001-03-20 Minolta Co., Ltd. Three dimensional information measurement method and apparatus
JP2001004746A (ja) * 1999-06-16 2001-01-12 Nec Corp レール走行車両の衝突防止装置
JP3875813B2 (ja) * 1999-08-30 2007-01-31 株式会社リコー 複数ビーム走査装置及び画像形成装置
DE102004047022A1 (de) * 2004-09-28 2006-04-06 Siemens Ag Vorrichtung zur Überwachung von Raumbereichen
DE102007003024A1 (de) * 2007-01-20 2008-07-31 Sick Ag Triangulationssensor mit Entfernungsbestimmung aus Lichtfleckposition und -form
ATE545045T1 (de) * 2009-12-17 2012-02-15 Sick Ag Optoelektronischer sensor
JP5321915B2 (ja) * 2010-02-18 2013-10-23 株式会社リコー 光源装置、光走査装置及び画像形成装置
DE102011000863A1 (de) * 2011-02-22 2012-08-23 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten
US20120218564A1 (en) * 2011-02-24 2012-08-30 Sick Ag Method for the secure detection and position determination of objects and safety apparatus
JP5729358B2 (ja) * 2011-09-22 2015-06-03 株式会社リコー 光ビームスキャナ及びレーザレーダユニット
EP2722684B1 (de) * 2012-10-19 2019-08-28 Sick Ag Laserscanner
EP2722687B1 (de) * 2012-10-22 2015-04-29 Sick Ag Sicherheitsvorrichtung für ein Fahrzeug
EP2746808B1 (de) * 2012-12-18 2015-02-25 Sick Ag Optoelektronischer Sensor zur Erfassung von Objekten
JP6292534B2 (ja) * 2014-01-23 2018-03-14 株式会社リコー 物体検出装置及びセンシング装置
DE102014101312B3 (de) * 2014-02-04 2014-12-04 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
DE102014115260B3 (de) * 2014-10-20 2015-11-12 Sick Ag Sicherheitssystem zur Absicherung der Umgebung eines Objekts
JP6587385B2 (ja) * 2014-11-27 2019-10-09 キヤノン株式会社 被検体情報取得装置および被検体情報取得方法
DE102015121840A1 (de) * 2015-12-15 2017-06-22 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung eines Objekts
JP6637331B2 (ja) * 2016-02-22 2020-01-29 株式会社キーエンス 安全スキャナ及び光学安全システム
JP6851137B2 (ja) * 2016-02-22 2021-03-31 株式会社キーエンス 安全スキャナ
EP3220164B1 (de) * 2016-03-14 2018-03-07 Sick Ag Verfahren zum betreiben eines abstandsmessenden überwachungssensors und überwachungssensor
EP3349042B1 (de) * 2017-01-11 2019-05-08 Sick Ag Überwachungssensor und flurgebundenes fahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3349042A1 (de) 2018-07-18
US20180196128A1 (en) 2018-07-12
US10634773B2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
EP3350615B1 (de) Lidarsensor
EP3474033B1 (de) Sende-empfangsmodul für einen optoelektronischen sensor und verfahren zur erfassung von objekten
EP2936193B1 (de) Optische objekterfassungseinrichtung mit einem mems und kraftfahrzeug mit einer solchen erfassungseinrichtung
EP3347732B1 (de) Laserscanner für kraftfahrzeuge
EP1355128B1 (de) Automatische Ausrichtung eines Sensors
EP2629050B1 (de) Triangulationslichttaster
DE102006013292A1 (de) Vorrichtung zur optischen Distanzmessung
DE102013012789A1 (de) Abtastende optoelektronische Detektionseinrichtung und Kraftfahrzeug mit einer solchen Detektionseinrichtung
EP3168642A1 (de) Optoelektronischer sensor und verfahren zur erfassung eines objekts
DE10146639A1 (de) Lichtgitter mit Strahlteiler
DE10341548A1 (de) Optoelektronische Erfassungseinrichtung
CH695633A5 (de) Laserentfernungsmessgerät für den Nah- und Fernbereich mit speziellem Empfänger.
EP3349042B1 (de) Überwachungssensor und flurgebundenes fahrzeug
EP3695245A1 (de) Optische vorrichtung für eine abstandsmessvorrichtung nach dem lidar-prinzip
DE102010003544A1 (de) 3D-TOF-Kamera
DE202017100095U1 (de) Überwachungssensor und flurgebundenes Fahrzeug
DE102005007945A1 (de) Optische Linse
DE102018216201A1 (de) Optische Anordnung und LIDAR-Vorrichtung mit einer derartigen Anordnung
DE102019207867A1 (de) Optische Anordnung mit einem verbesserten Aberrationsverhalten und LIDAR-Vorrichtung mit einer derartigen Anordnung
WO2020207740A1 (de) Lidar-sensor zur optischen erfassung eines sichtfeldes und verfahren zur ansteuerung eines lidar-sensors
EP3914926A1 (de) Optisches system, insbesondere lidar-system, sowie fahrzeug
EP3454094A1 (de) Optoelektronisches sensorsystem
EP2690398A1 (de) Vorrichtung zum Ermitteln der Lage von mechanischen Elementen
WO2019038063A1 (de) Optische anordnung für ein lidar-system, lidar-system und arbeitsvorrichtung
EP3018500B1 (de) Optoelektronischer Sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 17/02 20060101ALI20181026BHEP

Ipc: G01S 17/48 20060101AFI20181026BHEP

Ipc: G01S 17/93 20060101ALI20181026BHEP

INTG Intention to grant announced

Effective date: 20181128

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1131044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001233

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001233

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SICK AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1131044

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 8

Ref country code: GB

Payment date: 20240124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240123

Year of fee payment: 8