EP3323597B1 - Vorrichtung und verfahren zur additiven herstellung eines dreidimensionalen produktes - Google Patents

Vorrichtung und verfahren zur additiven herstellung eines dreidimensionalen produktes Download PDF

Info

Publication number
EP3323597B1
EP3323597B1 EP17194385.5A EP17194385A EP3323597B1 EP 3323597 B1 EP3323597 B1 EP 3323597B1 EP 17194385 A EP17194385 A EP 17194385A EP 3323597 B1 EP3323597 B1 EP 3323597B1
Authority
EP
European Patent Office
Prior art keywords
powder
protective gas
action
gas unit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17194385.5A
Other languages
English (en)
French (fr)
Other versions
EP3323597A1 (de
Inventor
Aitor Echaniz
Martin Schoepf
Michael Walther
Hannes WILLECK
Lukas Loeber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3323597A1 publication Critical patent/EP3323597A1/de
Application granted granted Critical
Publication of EP3323597B1 publication Critical patent/EP3323597B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • B29C64/194Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control during lay-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • B29C64/371Conditioning of environment using an environment other than air, e.g. inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/291Arrangements for irradiation for operating globally, e.g. together with selectively applied activators or inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a device and a method for the additive production of a three-dimensional product, in particular from a powder by locally selective action on the powder.
  • From the DE 10 2006 014 835 A1 is a device for the production of articles by layering build-up of powdered, especially metallic and / or ceramic material known.
  • From the DE 10 2004 031881 A1 is a device for the extraction of gases, vapors and / or particles from the working range of a laser processing machine known.
  • From the DE 10 2013 215377 A1 a gas guiding device for supplying protective gas to a powder platform or to a powder bed is known.
  • a device for the additive production of a three-dimensional product from a powder by locally selective action on the powder according to claim 1 is presented.
  • the production of the three-dimensional product from the powder can be carried out in particular in layers.
  • a layer of the powder is produced on a working plane of the process chamber.
  • An apparatus for producing such a layer may be referred to, for example, as a coater.
  • the layer of the powder produced by the coater is preferably in an entire processing area in which the product to be produced Product is evenly formed. Due to the locally selective action on the powder of the layer, the powder is changed in such a way that it produces the material of the three-dimensional product at the instantaneous point of action (ie, where the powder is locally applied at a specific time).
  • the fact that the action takes place locally selectively means that only at the points on the powder is acted, at which the three-dimensional product in the respective layer should have material.
  • the powder remains powdery at all locations where no material of the three-dimensional product is to be formed.
  • This process can be performed for a plurality of successive layers.
  • a plurality of processing steps take place in succession, each comprising the production of a layer of powder and then the processing of the layer with the action device.
  • the powder is such that there is adhesion of the individual powder particles of the powder to one another in the layer. It is also preferred if the powder is such that it is held by its own weight within the layer.
  • This adhesion or the forces caused by the dead weight of the powder are preferably so strong that the use of the protective gas unit and the protective gas flow does not result in any undesired removal of powder or of powder particles from the layer.
  • the adhesion is suitable for ensuring that any powder particle of the layer remains in its present position within the layer when the protective gas unit and the protective gas flow in the immediate vicinity of this powder particle act on the powder or the powder layer.
  • the action device can be set up, for example, to locally selectively melt the powder.
  • the exposure device a source of radiation from a radiation source such. As a laser or other source for generating concentrated light.
  • the process chamber is preferably closed in such a way that, for example, a protective gas atmosphere can be generated therein and the protective gas does not escape undesirably from the process chamber.
  • the process chamber for gas-tight closure.
  • the inert gas atmosphere can improve the quality of the three-dimensional product to be produced. This is due in particular to the fact that chemical reactions (in particular oxidation reactions) can be prevented by the protective gas.
  • process by-products such as spatter or smoke
  • Such process by-products could deposit on the powder or layer of powder and thus reduce the quality of the three-dimensional product to be produced.
  • a protective gas flow is generated via the protective gas unit.
  • a local protective gas flow can be generated particularly well with a movable inert gas unit.
  • a local protective gas flow has the advantage that small flow velocities and small mass flows and volume flows of the protective gas flow are necessary to ensure a desired protective effect at a point of impact on the powder.
  • the device may also have at least one further non-movable protective gas unit.
  • a non-movable protective gas unit can be set up, for example, to pressurize the entire process chamber with a uniform flow of protective gas.
  • This protective gas flow can (as opposed to the locally generated protective gas flow) as a global protective gas flow be designated.
  • the global protective gas flow and the locally generated protective gas flow preferably overlap one another.
  • the local protective gas flow comprises an inert gas (such as nitrogen).
  • the shielding gas unit may be attached to a gripper or to a holder with drives, for example.
  • the local inert gas unit is moved or moved by a movement of the gripper or the position with the aid of the drives.
  • the protective gas unit can preferably be moved in such a way that the local protective gas flow can be generated at any possible instantaneous point of action. This means that with the shielding gas unit at least the areas of the process chamber can be reached, in which also with the action device on the powder can be acted (or the areas in which an action on the powder is provided).
  • the protective gas unit is movable within a plane parallel to the working plane.
  • the protective gas unit is designed so that it can be moved perpendicular to the working plane. This vertical mobility is also used in particular to align the protective gas unit according to the respective layer.
  • a distance of the protective gas unit to the respectively processed powder layer is preferably 1 to 15 mm [millimeters]. In a preferred embodiment variant, however, the distance between the protective gas unit and the respectively processed powder layer can also be adapted. An adaptation of this distance is advantageous, for example, in order to adapt the protective gas unit to the properties of the respectively used powder and the manner of the action of the powder with the action device. This may be useful, for example, to adapt the effect of the inert gas unit to the powder, especially when different types of powder are used.
  • the protective gas unit is coupled to the at least one action device in such a way that the protective gas unit is moved continuously to the instantaneous point of action.
  • both the process of the protective gas unit and the locally selective action on the powder is computer-controlled.
  • the shielding gas unit and the at least one action device are coupled via a (preferably common) computer control.
  • the shielding gas unit can be mechanically coupled to the action device, for example by a direct mechanical connection, which causes the shielding gas unit to always immediately follow the action device.
  • the protective gas unit has at least one gas outlet and at least one gas inlet, wherein the at least one gas outlet and the at least one gas inlet are aligned radially to a center of the protective gas unit.
  • the protective gas unit has a central opening, which is always located at the current point of action during operation.
  • the action device can act on the powder through the central opening.
  • the shielding gas unit is moved and positioned so that the place of action and the central opening overlap.
  • the local protective gas flow can be generated.
  • the center of the protective gas unit is preferably located within the central opening (in particular in the center of the central opening).
  • the protective gas can escape from the protective gas unit via the at least one gas outlet (preferably into the opening). This can be done, for example, parallel to a surface of the working plane or of a top layer (and thus currently to be processed) on it.
  • the at least one gas outlet is designed such that the protective gas at an angle of 1 ° to 20 °. directed away from the powder layer or the processing plane from the at least one gas outlet.
  • the at least one gas outlet is inclined away from the working plane by a corresponding angle. This can be achieved, for example, by a corresponding arrangement and orientation of the at least one gas outlet and / or by flow guide structures (in particular guide plates) in the region of the at least one gas outlet.
  • the protective gas is sucked.
  • the at least one gas inlet and the at least one gas outlet are arranged such that a circulating flow above the powder layer at can be generated at the momentary impact location.
  • the at least one gas inlet is preferably arranged above the at least one gas outlet.
  • the protective gas flow flowing out of the at least one gas outlet preferably initially flows over the point of action, in order subsequently to flow away from the working plane in the direction of the at least one gas outlet.
  • the protective gas unit has at least one gas outlet and at least one gas inlet, wherein the at least one gas outlet and the at least one gas inlet are aligned at least partially tangentially with respect to a center of the protective gas unit.
  • a central opening preferably overlaps, which overlaps with the point of action of the action device.
  • the at least one gas outlet is preferably arranged at a smaller distance from the center of the central opening or the place of action than the at least one gas inlet.
  • the at least one gas inlet and the at least one gas outlet are arranged such that a helical protective gas flow can be generated which in particular flows outward from the point of action in order to ensure removal of impurities and by-products from the point of action.
  • the protective gas unit is executed circumferentially around the instantaneous point of action.
  • the protective gas unit can, for. B. be executed rectangular or polygonal.
  • the protective gas unit comprises a central opening, within which the local protective gas flow can be generated.
  • the protective gas unit is preferably moved such that the opening is always located at the current site of action.
  • the local flow of inert gas can thus act on all sides (preferably evenly) on the current site of action.
  • a plurality of gas inlets and a plurality of gas outlets may exist, which are distributed along a circumference around the central opening or the impact location.
  • the protective gas unit is designed annular.
  • An annular embodiment of the protective gas unit is characterized in particular in that it is formed in a circle around the location of action. Gas inlets and gas outlets are preferably arranged in each radial direction (starting from the point of action) at an equal distance from the site of action.
  • a particularly uniform local protective gas flow can be achieved. It is particularly preferable here that a plurality of gas outlets and a plurality of gas inlets are respectively distributed uniformly (i.e., equidistantly from each other) over the annular shielding gas unit.
  • the at least one action device is designed as a radiation source, wherein the powder is at least partially formed by a metal.
  • the radiation source is particularly preferably a laser.
  • the metallic powder can be locally melted.
  • three-dimensional metal products can be obtained.
  • the melting of metal with a laser produces by-products, which can be removed particularly efficiently with the device described comprising a movable inert gas unit.
  • the specified process steps a), b) and c) are preferably carried out repeatedly in the stated order, these process steps being carried out for each powder layer.
  • the powder is at least partially formed by a metal, wherein the action on the powder in step b) is realized by selective laser beam melting.
  • Fig. 1 shows a device 1 for the additive production of a three-dimensional product of a powder 2 by locally selective action on the powder 2.
  • the device 1 comprises a process chamber 3, within which the three-dimensional product can be produced.
  • the powder 2 is present here in a working plane 15 as a layer.
  • the device 1 comprises an action device 4 for locally selective action on the powder 2.
  • the action device 4 is designed as a laser 8, which acts with a laser beam 14 at an impact location 12 on the powder.
  • the device 1 comprises a protective gas unit 5 for providing a protective gas and for locally generating a protective gas flow at a current point of action 12.
  • the protective gas unit 5 is movable within the process chamber 3 arranged.
  • the protective gas unit 5 is designed to run around and around the instantaneous point of action 12.
  • the protective gas unit 5 is off Fig. 1 shown in more detail in a sectional view. It can be seen, in particular, that the protective gas unit 5 has gas outlets 6 and gas inlets 7, two of which can be seen in this sectional view. The gas outlets 6 and the gas inlets 7 are arranged radially to a center of the protective gas unit 5. By this arrangement of the gas outlets 6 and the gas inlets 7, the drawn flow of the protective gas can be generated. The flow is directed away from a surface of the powder 2 at the exit from the gas outlets 6, z. B. turbulence of the powder 2 to avoid. Furthermore, it can be seen that the protective gas unit 5 has an opening 13. The opening 13 is moved continuously during operation of the device 1 to the current site of action 12.
  • Fig. 3 shows a first embodiment of a holder 9 for a protective gas unit 5 in a cross-sectional view.
  • the protective gas unit 5 can be moved in the drawing both to the right and left (as indicated by the double arrow) and perpendicular to the plane of the drawing.
  • the latter is in Fig. 4 clarified.
  • Fig. 3 also shows a vertical travel direction 17 according to which the holder 9 and the protective gas unit 2 are movable perpendicular to the working plane to adjust the position of the inert gas unit for different layers of powder.
  • the Fig. 4 shows the holder 9 for the protective gas unit 5 from Fig. 4 in a top view. It can be seen that with the holder 9 and the protective gas unit 5, the entire working plane 15 can be traversed to position the protective gas unit at any point of action 12 in the processing plane 15.
  • drives 10 are provided, via which the holder 9 and / or the protective gas unit 5 can be moved.
  • the protective gas unit 5 is designed to be annular and circulating around the instantaneous point of action 12, so that a central opening 13 is formed.
  • a coater 11 is shown with which a new layer of powder can be brought into a working plane.
  • Fig. 5 shows a further embodiment of a holder 9 for a protective gas unit 5.
  • several drives 10 are provided for each direction of movement of the holder 9.
  • Opposite drives 10 are used in pairs in this embodiment.
  • a process of the protective gas unit 5 to the right / left or up / down can be achieved.
  • Such a configuration of the holder 9 can also be referred to as a backdrop shape.
  • Fig. 6 shows a further embodiment of a holder 9 for a protective gas unit 5 with drives 10.
  • a right / left movement of the inert gas unit 5 can be achieved in this embodiment. If the drives 10 are moved apart or together, then a movement of the protective gas unit can be achieved upwards or downwards.
  • Such a configuration of the holder 9 can also be referred to as a scissors shape.
  • Fig. 7 shows a further embodiment of a holder 9 for a protective gas unit 5.
  • Fig. 8 shows a further embodiment of a holder 9 for a protective gas unit 5 with drives 10.
  • a right / left movement of the inert gas unit 5 can be achieved in this embodiment. If the drives 10 are moved apart or together, then a movement of the protective gas unit can be achieved upwards or downwards.
  • Such a configuration of the holder 9 may also be referred to as lambda shape.

Description

  • Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur additiven Herstellung eines dreidimensionalen Produktes, insbesondere aus einem Pulver durch lokal selektives Einwirken auf das Pulver.
  • Aus der DE 10 2006 014 835 A1 ist eine Vorrichtung zur Herstellung von Gegenständen durch schichtweises Aufbauen aus pulverförmigem, insbesondere metallischem oder/und keramischem Werkstoff bekannt. Aus der DE 10 2004 031881 A1 ist eine Vorrichtung zum Absaugen von Gasen, Dämpfen und/oder Partikeln aus dem Arbeitsbereich einer Laserbearbeitungsmaschine bekannt. Aus der DE 10 2013 215377 A1 ist eine Gasführungsvorrichtung zur Zuführung von Schutzgas zu einer Pulverplattform beziehungsweise zu einem Pulverbett bekannt.
  • Hiervon ausgehend ist es Aufgabe der hier vorliegenden Erfindung, die im Zusammenhang mit dem Stand der Technik bestehenden technischen Probleme zu lösen bzw. zumindest zu lindern.
  • Diese Aufgabe wird gelöst mit einer Vorrichtung und einem Verfahren gemäß den Merkmalen der unabhängigen Ansprüche. Durch die in den jeweiligen abhängigen Ansprüchen aufgeführten Merkmale sind vorteilhafte Weiterbildungen und Verbesserungen des Verfahrens und der Vorrichtung möglich.
  • Es wird eine Vorrichtung zur additiven Herstellung eines dreidimensionalen Produktes aus einem Pulver durch lokal selektives Einwirken auf das Pulver gemäß Anspruch 1 vorgestellt.
  • Die Herstellung des dreidimensionalen Produktes aus dem Pulver kann insbesondere schichtweise erfolgen. Dazu wird vorzugsweise zunächst eine Schicht des Pulvers auf einer Bearbeitungsebene der Prozesskammer erzeugt. Eine Vorrichtung zur Erzeugung einer solchen Schicht kann beispielsweise als ein Beschichter bezeichnet werden. Die von dem Beschichter erzeugte Schicht des Pulvers ist bevorzugt in einem gesamten Bearbeitungsbereich, in welchem sich das herzustellende Produkt befindet, gleichmäßig ausgebildet. Durch das lokal selektive Einwirken auf das Pulver der Schicht wird das Pulver derart verändert, dass daraus an dem momentanen Einwirkungsort (d.h. dort, wo zu einem bestimmten Zeitpunkt lokal auf das Pulver eingewirkt wird) das Material des dreidimensionalen Produktes entsteht. Dass das Einwirken lokal selektiv erfolgt, bedeutet, dass nur an den Stellen auf das Pulver eingewirkt wird, an denen das dreidimensionale Produkt in der jeweiligen Schicht Material aufweisen soll. Bevorzugt bleibt das Pulver an allen Orten an denen kein Material des dreidimensionalen Produktes entstehen soll pulverförmig. Dieser Vorgang kann für eine Vielzahl von aufeinander folgenden Schichten durchgeführt werden. Bevorzugt erfolgen mehrere Bearbeitungsschritte nacheinander, die jeweils das Erzeugen einer Schicht aus Pulver und anschließend das Bearbeiten der Schicht mit der Einwirkungsvorrichtung umfassen.
  • In einer bevorzugten Ausführungsvariante ist das Pulver so beschaffen, dass in der Schicht eine Haftung der einzelnen Pulverpartikel des Pulvers zueinander vorliegt. Es ist auch bevorzugt, wenn das Pulver so beschaffen ist, dass es durch sein Eigengewicht innerhalb der Schicht gehalten wird.
  • Diese Haftung bzw. die durch das Eigengewicht des Pulvers verursachten Kräfte sind bevorzugt so stark, dass durch die Verwendung der Schutzgaseinheit und die Schutzgasströmung kein unerwünschter Abtransport von Pulver bzw. von Pulverpartikeln aus der Schicht auftritt. Insbesondere ist die Haftung dazu geeignet zu gewährleisten, dass ein beliebiger Pulverpartikel der Schicht an seiner vorliegenden Position innerhalb der Schicht verbleibt, wenn die Schutzgaseinheit und die Schutzgasströmung in unmittelbarer Nähe diese Pulverpartikels auf das Pulver bzw. die Pulverschicht einwirken.
  • Die Einwirkungsvorrichtung kann beispielsweise dazu eingerichtet sein, das Pulver lokal selektiv aufzuschmelzen. Vorzugsweise ist die Einwirkungsvorrichtung eine Quelle für Strahlung aus einer Strahlenquelle wie z. B. ein Laser oder eine andere Quelle zur Erzeugung von gebündeltem Licht.
  • Die Prozesskammer ist vorzugsweise derart abgeschlossen, dass beispielsweise eine Schutzgasatmosphäre darin erzeugt werden kann und das Schutzgas nicht unerwünscht aus der Prozesskammer austritt. Bevorzugt ist die Prozesskammer dafür gasdicht verschließbar. Die Schutzgasatmosphäre kann die Qualität des herzustellenden dreidimensionalen Produkts verbessern. Dies liegt insbesondere daran, dass chemische Reaktionen (insbesondere Oxidationsreaktionen) durch das Schutzgas unterbunden werden können. Auch können durch eine Strömung des Schutzgases Prozessnebenprodukte (wie z. B. Spritzer oder Rauch) aus der Prozesskammer entfernt werden. Solche Prozessnebenprodukte könnten sich auf dem Pulver bzw. der Schicht aus Pulver ablagern und damit die Qualität des herzustellenden dreidimensionalen Produktes mindern.
  • Um die Prozessnebenprodukte besonders gut aus der Prozesskammer entfernen zu können, wird über die Schutzgaseinheit eine lokale Schutzgasströmung erzeugt. Eine lokale Schutzgasströmung ist mit einer verfahrbaren Schutzgaseinheit besonders gut erzeugbar. Eine lokale Schutzgasströmung hat den Vorteil, dass kleine Strömungsgeschwindigkeiten und kleine Massenströme und Volumenströme der Schutzgasströmung notwendig sind, um eine gewünschte Schutzwirkung an einem Einwirkungsort auf das Pulver zu gewährleisten.
  • Zusätzlich zu der mindestens einen verfahrbar angeordneten Schutzgaseinheit kann die Vorrichtung noch mindestens eine weitere nicht verfahrbare Schutzgaseiheit aufweisen. Eine solche nicht verfahrbare Schutzgaseinheit kann beispielsweise dazu eingerichtet sein die gesamte Prozesskammer mit einer gleichmäßigen Schutzgasströmung zu beaufschlagen. Diese Schutzgasströmung kann (in Abgrenzung zu der lokal erzeugten Schutzgasströmung) als globale Schutzgasströmung bezeichnet werden. Bevorzugt überlagern sich die globale Schutzgasströmung und die lokal erzeugte Schutzgasströmung miteinander.
  • Es ist bevorzugt, dass die lokale Schutzgasströmung ein inertes Gas (wie z. B. Stickstoff) umfasst. Die Schutzgaseinheit kann beispielsweise an einem Greifer oder an einer Halterung mit Antrieben befestigt sein. Durch eine Bewegung des Greifers oder der Haltung mit Hilfe der Antriebe wird die lokale Schutzgaseinheit bewegt bzw. verfahren. Vorzugsweise kann die Schutzgaseinheit derart verfahren werden, dass die lokale Schutzgasströmung an jedem möglichen momentanen Einwirkungsort erzeugt werden kann. Das bedeutet, dass mit der Schutzgaseinheit zumindest die Bereiche der Prozesskammer erreicht werden können, in denen auch mit der Einwirkungsvorrichtung auf das Pulver eingewirkt werden kann (bzw. die Bereiche, in denen eine Einwirkung auf das Pulver vorgesehen ist). Weiterhin ist es bevorzugt, dass die Schutzgaseinheit innerhalb einer Ebene parallel zu der Bearbeitungsebene verfahrbar ist. Wenn nacheinander eine Mehrzahl von Schichten des Pulvers mit der Einwirkungsvorrichtung bearbeitet werden, verschiebt sich die Bearbeitungsebene dabei von Schicht zu Schicht. Bevorzugt ist die Schutzgaseinheit so ausgeführt, dass sie senkrecht zu der Bearbeitungsebene verfahrbar ist. Diese senkrechte Verfahrbarkeit dient insbesondere auch dazu, die Schutzgaseinheit entsprechend zur jeweiligen Schicht auszurichten. Ein Abstand der Schutzgaseinheit zu der jeweils bearbeiteten Pulverschicht beträgt vorzugsweise 1 bis 15 mm [Millimeter]. In einer bevorzugten Ausführungsvariante ist der Abstand der Schutzgaseinheit zur jeweils bearbeiteten Pulverschicht jedoch ebenfalls anpassbar. Eine Anpassung dieses Abstandes ist beispielsweise vorteilhaft, um die Schutzgaseinheit an die Eigenschaften des jeweils verwendeten Pulvers und die Art- und Weise der Einwirkung auf das Pulver mit der Einwirkungsvorrichtung anzupassen. Dies kann beispielsweise sinnvoll sein, um die Wirkung der Schutzgaseinheit auf das Pulver anzupassen, insbesondere wenn unterschiedliche Arten von Pulver verwendet werden.
  • In einer bevorzugten Ausführungsform der Vorrichtung ist die Schutzgaseinheit derart mit der mindestens einen Einwirkungsvorrichtung gekoppelt, dass die Schutzgaseinheit kontinuierlich an den momentanen Einwirkungsort verfahren wird.
  • Vorzugsweise erfolgt sowohl das Verfahren der Schutzgaseinheit als auch das lokal selektive Einwirken auf das Pulver computergesteuert. In dem Fall sind die Schutzgaseinheit und die mindestens eine Einwirkungsvorrichtung über eine (vorzugsweise gemeinsame) Computersteuerung gekoppelt. Alternativ ist es bevorzugt, dass nur die Einwirkungsvorrichtung aktiv gesteuert wird und dass die Schutzgaseinheit der Einwirkungsvorrichtung passiv folgt. Dazu kann z. B. durch einen Sensor der momentane Einwirkungsort ermittelt werden und die Schutzgaseinheit an diesen verfahren werden. Auch ist es möglich, dass die Schutzgaseinheit mechanisch mit der Einwirkungsvorrichtung gekoppelt ist, beispielsweise durch eine direkte mechanische Verbindung, welche bewirkt, dass die Schutzgaseinheit immer unmittelbar der Einwirkungsvorrichtung folgt.
  • Diese Ausführungsform bietet den Vorteil, dass die lokale Schutzgasströmung an dem momentanen Einwirkungsort erzeugt werden kann. Insbesondere am momentanen Einwirkungsort können Prozessnebenprodukte entstehen und/oder den Herstellungsprozess ungewünscht beeinflussen. In dieser Ausführungsform können die Prozessnebenprodukte besonders schnell nach deren Entstehung entfernt werden. Dabei ist bevorzugt eine besonders geringe Schutzgasströmung notwendig. In einer weiteren bevorzugten Ausführungsform der Vorrichtung weist die Schutzgaseinheit mindestens einen Gasauslass und mindestens einen Gaseinlass auf, wobei der mindestens eine Gasauslass und der mindestens eine Gaseinlass radial zu einem Zentrum der Schutzgaseinheit ausgerichtet sind.
  • Vorzugsweise weist die Schutzgaseinheit eine zentrale Öffnung auf, die sich im Betrieb immer an dem momentanen Einwirkungsort befindet. Die Einwirkungsvorrichtung kann durch die zentrale Öffnung auf das Pulver einwirken. Die Schutzgaseinheit wird dafür so verfahren und positioniert, dass der Einwirkungsort und die zentrale Öffnung überlappen. Insbesondere innerhalb und oberhalb der zentralen Öffnung kann die lokale Schutzgasströmung erzeugt werden. Das Zentrum der Schutzgaseinheit befindet sich vorzugsweise innerhalb der zentralen Öffnung (insbesondere im Zentrum der zentralen Öffnung). Über den mindestens einen Gasauslass kann das Schutzgas aus der Schutzgaseinheit austreten (vorzugsweise in die Öffnung hinein). Dies kann beispielsweise parallel zu einer Oberfläche der Bearbeitungsebene bzw. einer darauf befindlichen (obersten und damit momentan zu bearbeitenden) Pulverschicht erfolgen.
  • Erfindungsgemäß ist es jedoch, dass der mindestens eine Gasauslass derart ausgeführt ist, dass das Schutzgas mit einem Winkel von 1° bis 20°. von der Pulverschicht bzw. der Bearbeitungsebene weggerichtet aus dem mindestens einen Gasauslass austritt. Dazu ist der mindestens eine Gasauslass um einen entsprechenden Winkel von der Bearbeitungsebene weg geneigt. Dies kann beispielsweise durch eine entsprechende Anordnung und Orientierung des mindestens einen Gasauslasses und/oder durch Strömungsleitstrukturen (insbesondere Leitbleche) im Bereich des mindestens einen Gasauslasses erreicht werden. Tritt das Schutzgas wie beschrieben etwas von der Pulverschicht weggerichtet aus dem mindestens einen Gasauslass aus, kann ein (insbesondere mechanisches) Wechselwirken der lokalen Schutzgasströmung mit dem Pulver reduziert oder vermieden werden. Insbesondere könnte z. B. bei einer auf das Pulver gerichteten Schutzgasströmung das Pulver verwirbelt werden. Hierdurch ist nur eine geringe Haftung bzw. eine geringe Kraft zum Halten von Pulverpartikeln innerhalb der jeweiligen Pulverschicht erforderlich.
  • Durch den mindestens einen Gaseinlass wird das Schutzgas eingesaugt. Vorzugsweise sind der mindestens eine Gaseinlass und der mindestens eine Gasauslass derart angeordnet, dass eine zirkulierende Strömung oberhalb der Pulverschicht an dem momentanen Einwirkungsort erzeugt werden kann. Ausgehend von der Bearbeitungsebene ist der mindestens eine Gaseinlass bevorzugt oberhalb des mindestens einen Gasauslasses angeordnet. Bevorzugt strömt die aus dem mindestens einen Gasauslass ausströmende Schutzgasströmung zunächst über den Einwirkungsort, um anschließend von der Bearbeitungsebene weg in Richtung zum mindestens einen Gasauslass zu strömen.
  • In einer weiteren bevorzugten Ausführungsform der Vorrichtung weist die Schutzgaseinheit mindestens einen Gasauslass und mindestens einen Gaseinlass auf, wobei der mindestens eine Gasauslass und der mindestens eine Gaseinlass gegenüber gegenüber einem Zentrum der Schutzgaseinheit zumindest teilweise tangential ausgerichtet sind.
  • Die weiter oben in Zusammenhang mit einer radialen Ausrichtung beschriebenen Merkmale sind auf eine Vorrichtung mit zumindest teilweise tangential ausgerichtetem Einlass und Auslass übertragbar. Insbesondere existiert auch bei dieser Ausführungsvariante bevorzugt eine zentrale Öffnung, die mit dem Einwirkungsort der Einwirkungsvorrichtung überlappt.
  • Bevorzugt ist der mindestens eine Gasauslass in einem geringeren Abstand von dem Zentrum der zentralen Öffnung bzw. dem Einwirkungsort angeordnet als der mindestens eine Gaseinlass. Bevorzugt sind der mindestens eine Gaseinlass und der mindestens eine Gasauslass derart angeordnet, dass eine spiralförmige Schutzgasströmung erzeugt werden kann, die insbesondere von dem Einwirkungsort nach außen strömt, um einen Abtransport von Verunreinigungen und Nebenprodukten von dem Einwirkungsort zu gewährleisten.
  • In einer weiteren bevorzugten Ausführungsform der Vorrichtung ist die Schutzgaseinheit um den momentanen Einwirkungsort umlaufend ausgeführt.
  • Die Schutzgaseinheit kann z. B. rechteckig oder mehreckig ausgeführt sein. Insbesondere in dieser Ausführungsform umfasst die Schutzgaseinheit eine zentrale Öffnung, innerhalb derer die lokale Schutzgasströmung erzeugt werden kann. Die Schutzgaseinheit wird vorzugsweise derart verfahren, dass sich die Öffnung immer an dem momentanen Einwirkungsort befindet. Die lokale Schutzgasströmung kann damit von allen Seiten auf den momentanen Einwirkungsort (vorzugsweise gleichmäßig) einwirken.
  • Bei einer umlaufenden Ausführungsform der Schutzgaseinheit können mehrere Gaseinlässe und mehrere Gasauslässe existieren, die entlang eines Umfangs um die zentrale Öffnung bzw. den Einwirkungsort herum verteilt angeordnet sind.
  • In einer weiteren bevorzugten Ausführungsform der Vorrichtung ist die Schutzgaseinheit ringförmig ausgeführt. Eine ringförmige Ausführungsform der Schutzgaseinheit zeichnet sich insbesondere dadurch aus, dass diese kreisförmig um den Einwirkungsort herum ausgebildet ist. Gaseinlässe und Gasauslässe sind bevorzugt in jeder radialen Richtung (ausgehend vom Einwirkungsort) in einem gleichen Abstand zu dem Einwirkungsort angeordnet.
  • In dieser Ausführungsform kann eine besonders gleichmäßige lokale Schutzgasströmung erreicht werden. Besonders bevorzugt ist es hier, dass eine Mehrzahl von Gasauslässen und eine Mehrzahl von Gaseinlässen jeweils gleichmäßig (d.h. mit gleichen Abständen zueinander) über die ringförmige Schutzgaseinheit verteilt angeordnet sind.
  • In einer weiteren bevorzugten Ausführungsform der Vorrichtung ist die mindestens eine Einwirkungsvorrichtung als eine Strahlenquelle ausgeführt, wobei das Pulver zumindest teilweise von einem Metall gebildet ist.
  • Die Strahlenquelle ist besonders bevorzugt ein Laser. Mit einem Laser kann das metallische Pulver lokal zum Schmelzen gebracht werden. Mit dieser Ausführungsform können dreidimensionale Produkte aus Metall erhalten werden. Insbesondere beim Schmelzen von Metall mit einem Laser entstehen Nebenprodukte, die mit der beschriebenen Vorrichtung umfassend eine verfahrbare Schutzgaseinheit besonders effizient abtransportiert werden können.
  • Als weiterer Aspekt wird ein Verfahren zur additiven Herstellung eines dreidimensionalen Produktes aus einem Pulver durch lokal selektives Einwirken auf das Pulver gemäß Anspruch 7 vorgestellt.
  • Die angegebenen Verfahrensschritte a), b) und c) werden bevorzugt in der angegebenen Reihenfolge wiederholt durchgeführt, wobei diese Verfahrensschritte für jede Pulverschicht ausgeführt werden.
  • Die weiter vorne beschriebenen besonderen Vorteile und Ausgestaltungsmerkmale der Vorrichtung sind auf das beschriebene Verfahren anwendbar und übertragbar. Für die Ausführung des Verfahrens wird eine Vorrichtung wie weiter oben beschrieben verwendet.
  • In einer bevorzugten Ausführungsform des Verfahrens ist das Pulver zumindest teilweise von einem Metall gebildet, wobei die Einwirkung auf das Pulver in Schritt b) durch selektives Laserstrahlschmelzen realisiert wird.
  • Mit diesem Verfahren können dreidimensionale Produkte aus einem Metall erzeugt werden.
  • Die Erfindung und das technische Umfeld werden nachfolgend anhand der Figuren näher erläutert. Die Figuren zeigen besonders bevorzugte Ausführungsbeispiele, auf die die Erfindung jedoch nicht begrenzt ist. Insbesondere ist darauf hinzuweisen, dass die Figuren und insbesondere die dargestellten Größenverhältnisse nur schematisch sind. Es zeigen:
  • Fig. 1:
    eine Querschnittsansicht einer Vorrichtung zur additiven Herstellung eines dreidimensionalen Produktes aus einem Pulver durch lokal selektives Einwirken auf das Pulver,
    Fig. 2:
    eine detailliertere Querschnittsansicht der Schutzgaseinheit aus Fig. 1,
    Fig. 3:
    eine Querschnittsansicht einer ersten Ausführungsform einer Halterung für eine Schutzgaseinheit,
    Fig. 4:
    eine Draufsicht auf die Halterung für die Schutzgaseinheit aus Fig. 3, und
    Fig. 5 bis 8:
    weitere Ausführungsformen einer Halterung für eine Schutzgaseinheit.
  • Fig. 1 zeigt eine Vorrichtung 1 zur additiven Herstellung eines dreidimensionalen Produktes aus einem Pulver 2 durch lokal selektives Einwirken auf das Pulver 2. Die Vorrichtung 1 umfasst eine Prozesskammer 3, innerhalb derer das dreidimensionale Produkt hergestellt werden kann. Das Pulver 2 liegt hier in einer Bearbeitungsebene 15 als Schicht vor. Weiterhin umfasst die Vorrichtung 1 eine Einwirkungsvorrichtung 4 zum lokal selektiven Einwirken auf das Pulver 2. Die Einwirkungsvorrichtung 4 ist als ein Laser 8 ausgeführt, welcher mit einem Laserstrahl 14 an einem Einwirkungsort 12 auf das Pulver einwirkt. Außerdem umfasst die Vorrichtung 1 eine Schutzgaseinheit 5 zum Bereitstellen eines Schutzgases und zur lokalen Erzeugung einer Schutzgasströmung an einem momentanen Einwirkungsort 12. Die Schutzgaseinheit 5 ist innerhalb der Prozesskammer 3 verfahrbar angeordnet. Die Schutzgaseinheit 5 ist umlaufend und um den momentanen Einwirkungsort 12 herum ausgeführt.
  • In Fig. 2 ist die Schutzgaseinheit 5 aus Fig. 1 detaillierter in einer Schnittdarstellung dargestellt. Zu erkennen ist insbesondere, dass die Schutzgaseinheit 5 Gasauslässe 6 und Gaseinlässe 7 aufweist, von denen in dieser Schnittdarstellung jeweils zwei zu erkennen sind. Die Gasauslässe 6 und die Gaseinlässe 7 sind radial zu einem Zentrum der Schutzgaseinheit 5 angeordnet. Durch diese Anordnung der Gasauslässe 6 und der Gaseinlässe 7 kann die eingezeichnete Strömung des Schutzgases erzeugt werden. Die Strömung ist beim Austritt aus den Gasauslässen 6 von einer Oberfläche des Pulvers 2 weggerichtet, um z. B. Verwirbelungen des Pulvers 2 zu vermeiden. Weiterhin ist zu erkennen, dass die Schutzgaseinheit 5 eine Öffnung 13 aufweist. Die Öffnung 13 wird im Betrieb der Vorrichtung 1 kontinuierlich an den momentanen Einwirkungsort 12 verfahren. Zu erkennen ist auch eine Strömungsleitstruktur 16, die die aus den Gasauslässen auströmende Strömung mit einem Winkel von einer Bearbeitungsebene 15 weg lenkt. Zu erkennen ist, außerdem, dass Gasauslässe 6 einen geringeren Abstand von dem Einwirkungsort 12 haben als Gaseinlässe 7. Damit werden Verunreinigungen und Nebenprodukte von innen nach außen von dem Einwirkungsort 12 weg transportiert.
  • Fig. 3 zeigt eine erste Ausführungsform einer Halterung 9 für eine Schutzgaseinheit 5 in einer Querschnittsansicht. Durch die Halterung 9 kann die Schutzgaseinheit 5 in der Zeichnung sowohl nach rechts und links (wie durch den Doppelpfeil angedeutet) als auch senkrecht zur Zeichnungsebene verfahren werden. Letzteres ist in Fig. 4 verdeutlicht. Fig. 3 zeigt außerdem eine senkrechte Verfahrrichtung 17 gemäß welcher die Halterung 9 und die Schutzgaseinheit 2 senkrecht zur Bearbeitungsebene verfahrbar sind, um die Position der Schutzgaseinheit für verschiedene Schichten von Pulver anzupassen.
  • Die Fig. 4 zeigt die Halterung 9 für die Schutzgaseinheit 5 aus Fig. 4 in einer Draufsicht. Zu erkennen ist, dass mit der Halterung 9 und der Schutzgaseinheit 5 die gesamte Bearbeitungsebene 15 abgefahren werden können, um die Schutzgaseinheit an jedem beliebigen Einwirkungsort 12 in der Bearbeitungsebene 15 zu positionieren. Dazu sind Antriebe 10 vorgesehen, über die die Halterung 9 und/oder die Schutzgaseinheit 5 bewegt werden können. In dieser Darstellung ist besonders gut zu erkennen, dass die Schutzgaseinheit 5 ringförmig und um den momentanen Einwirkungsort 12 umlaufend ausgeführt ist, sodass eine zentrale Öffnung 13 gebildet ist. Weiterhin ist ein Beschichter 11 eingezeichnet mit welchem eine neue Schicht von Pulver in eine Bearbeitungsebene gebracht werden kann.
  • Fig. 5 zeigt eine weitere Ausführungsform einer Halterung 9 für eine Schutzgaseinheit 5. Hier sind für jede Bewegungsrichtung der Halterung 9 mehrere Antriebe 10 vorgesehen. Sich gegenüberliegende Antriebe 10 werden in dieser Ausführungsform jeweils paarweise verwendet. Damit kann ein Verfahren der Schutzgaseinheit 5 nach rechts/links bzw. nach oben/unten erreicht werden. Eine derartige Ausgestaltung der Halterung 9 kann auch als Kulissenform bezeichnet werden.
  • Fig. 6 zeigt eine weitere Ausführungsform einer Halterung 9 für eine Schutzgaseinheit 5 mit Antrieben 10. Durch paralleles Verfahren der Antriebe 10 kann in dieser Ausführungsform eine rechts/links-Bewegung der Schutzgaseinheit 5 erreicht werden. Werden die Antriebe 10 auseinander bzw. zusammen gefahren, so kann damit eine Bewegung der Schutzgaseinheit nach oben bzw. unten erreicht werden. Eine derartige Ausgestaltung der Halterung 9 kann auch als Scherenform bezeichnet werden.
  • Fig. 7 zeigt eine weitere Ausführungsform einer Halterung 9 für eine Schutzgaseinheit 5. In dieser Ausführungsform erfolgt die Bewegung der Schutzgaseinheit 5 durch dreidimensionales Zusammenspiel von drei Antrieben 10.
  • Fig. 8 zeigt eine weitere Ausführungsform einer Halterung 9 für eine Schutzgaseinheit 5 mit Antrieben 10. Durch paralleles Verfahren der Antriebe 10 kann in dieser Ausführungsform eine rechts/links-Bewegung der Schutzgaseinheit 5 erreicht werden. Werden die Antriebe 10 auseinander bzw. zusammen gefahren, so kann damit eine Bewegung der Schutzgaseinheit nach oben bzw. unten erreicht werden. Eine derartige Ausgestaltung der Halterung 9 kann auch als Lambdaform bezeichnet werden.

Claims (8)

  1. Vorrichtung (1) zur additiven Herstellung eines dreidimensionalen Produktes aus einem Pulver (2) durch lokal selektives Einwirken auf das Pulver (2), wobei die Vorrichtung (1) zumindest aufweist:
    - eine Prozesskammer (3), innerhalb derer das dreidimensionale Produkt hergestellt werden kann,
    - mindestens eine Einwirkungsvorrichtung (4) zum lokal selektiven Einwirken auf das Pulver (2) an einem Einwirkungsort (12), und
    - mindestens eine Schutzgaseinheit (5) zum Bereitstellen eines Schutzgases und zur lokalen Erzeugung einer Schutzgasströmung an einem momentanen Einwirkungsort (12), wobei die Schutzgaseinheit (5) innerhalb der Prozesskammer (3) verfahrbar angeordnet ist;
    wobei die Schutzgaseinheit (5) mindestens einen Gasauslass (6) und mindestens einen Gaseinlass (7) aufweist, und wobei der mindestens eine Gasauslass (6) und der mindestens eine Gaseinlass (7) radial zu einem Zentrum der Schutzgaseinheit (5) oder gegenüber einem Zentrum der Schutzgaseinheit (5) zumindest teilweise tangential ausgerichtet sind und wobei der mindestens eine Gasauslass (6) derart ausgeführt ist, dass das Schutzgas mit einem Winkel von 1° bis 20° von der Pulverschicht bzw. der Bearbeitungsebene weggerichtet aus dem mindestens einen Gasauslass (6) austritt.
  2. Vorrichtung (1) nach Anspruch 1, wobei die Schutzgaseinheit (5) derart mit der mindestens einen Einwirkungsvorrichtung (4) gekoppelt ist, dass die Schutzgaseinheit (5) kontinuierlich an den momentanen Einwirkungsort (12) verfahren wird.
  3. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei die Schutzgaseinheit (5) mindestens einen Gasauslass (6) und mindestens einen Gaseinlass (7) aufweist, wobei der mindestens eine Gaseinlass (7) ausgehend von einer Bearbeitungsebene (15) und/oder einem Einwirkungsort (12) oberhalb des mindestens einen Gasauslass (6) angeordnet ist.
  4. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei die Schutzgaseinheit (5) um den momentanen Einwirkungsort (12) umlaufend ausgeführt ist.
  5. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei die Schutzgaseinheit (5) ringförmig ausgeführt ist.
  6. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, wobei die mindestens eine Einwirkungsvorrichtung (4) als eine Strahlenquelle (8) ausgeführt ist, und wobei das Pulver (2) zumindest teilweise von einem Metall gebildet ist.
  7. Verfahren zur additiven Herstellung eines dreidimensionalen Produktes aus einem Pulver (2) durch lokal selektives Einwirken auf das Pulver (2) mittels einer Vorrichtung (1) nach einem der vorhergehenden Ansprüche, umfassend zumindest die folgenden Verfahrensschritte:
    a) schichtweises Bereitstellen des Pulvers (2),
    b) lokal selektives Einwirken auf das Pulver (2), wobei durch die Einwirkung aus dem Pulver (2) das Material des Produktes entsteht, und
    c) lokales Erzeugen einer Schutzgasströmung an einem momentanen Einwirkungsort (12).
  8. Verfahren nach Anspruch 7, wobei das Pulver (2) zumindest teilweise von einem Metall gebildet ist, und wobei die Einwirkung auf das Pulver (2) in Schritt b) durch selektives Laserstrahlschmelzen realisiert wird.
EP17194385.5A 2016-11-21 2017-10-02 Vorrichtung und verfahren zur additiven herstellung eines dreidimensionalen produktes Active EP3323597B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016222947.8A DE102016222947A1 (de) 2016-11-21 2016-11-21 Vorrichtung und Verfahren zur additiven Herstellung eines dreidimensionalen Produktes

Publications (2)

Publication Number Publication Date
EP3323597A1 EP3323597A1 (de) 2018-05-23
EP3323597B1 true EP3323597B1 (de) 2019-10-02

Family

ID=60009509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17194385.5A Active EP3323597B1 (de) 2016-11-21 2017-10-02 Vorrichtung und verfahren zur additiven herstellung eines dreidimensionalen produktes

Country Status (2)

Country Link
EP (1) EP3323597B1 (de)
DE (1) DE102016222947A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11485083B2 (en) * 2016-12-18 2022-11-01 Csir Preheating of material in an additive manufacturing apparatus
EP4069455B1 (de) * 2019-12-05 2023-04-26 Stratasys Powder Production Ltd Verbesserte thermische kontrolle für eine vorrichtung zur herstellung von dreidimensionalen gegenständen
WO2023217831A1 (de) 2022-05-11 2023-11-16 Inspire Ag Vorrichtung und verfahren zur additiven fertigung eines dreidimensionalen gegenstandes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10022794B1 (en) 2017-01-13 2018-07-17 General Electric Company Additive manufacturing using a mobile build volume

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031881B4 (de) * 2004-06-30 2007-11-22 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zum Absaugen von Gasen, Dämpfen und/oder Partikeln aus dem Arbeitsbereich einer Laserbearbeitungsmaschine
DE102006014835A1 (de) 2006-03-30 2007-10-04 Fockele, Matthias, Dr. Vorrichtung zur Herstellung von Gegenständen durch schichtweises Aufbauen aus pulverförmigem Werkstoff
DE102011075748B4 (de) * 2011-05-12 2024-04-25 Realizer Gmbh Vorrichtung zur aufeinander folgenden Herstellung von Formkörpern durch schichtweises Aufbauen aus Werkstoffpulver
DE102013215377A1 (de) * 2013-08-05 2015-02-05 Bayerische Motoren Werke Aktiengesellschaft Gasführungsvorrichtung, Vorrichtung zum Herstellen eines Bauteils mittels Auftragung von Pulverschichten sowie Verfahren zur Zuführung und Absaugung von Gas bei einer derartigen Vorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11485083B2 (en) * 2016-12-18 2022-11-01 Csir Preheating of material in an additive manufacturing apparatus
EP4069455B1 (de) * 2019-12-05 2023-04-26 Stratasys Powder Production Ltd Verbesserte thermische kontrolle für eine vorrichtung zur herstellung von dreidimensionalen gegenständen
WO2023217831A1 (de) 2022-05-11 2023-11-16 Inspire Ag Vorrichtung und verfahren zur additiven fertigung eines dreidimensionalen gegenstandes

Also Published As

Publication number Publication date
EP3323597A1 (de) 2018-05-23
DE102016222947A1 (de) 2018-05-24

Similar Documents

Publication Publication Date Title
EP2857139B1 (de) Vorrichtung zur Laser-Materialbearbeitung mit einem entlang einer Raumrichtung beweglichen Laserkopf
EP2978589B1 (de) Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
EP3323597B1 (de) Vorrichtung und verfahren zur additiven herstellung eines dreidimensionalen produktes
EP3131740B1 (de) Steuereinheit, vorrichtung und verfahren zum herstellen eines dreidimensionalen objekts
EP3174691B1 (de) Verfahren, vorrichtung und steuereinheit zum herstellen eines dreidimensionalen objekts
EP3050648B1 (de) Vorrichtung und verfahren zur herstellung oder reparatur eines dreidimensionalen objekts
DE19935274C1 (de) Vorrichtung und Verfahren zur Herstellung von Bauteilen aus einer Werkstoffkombination
WO2015197039A1 (de) Generatives herstellungsverfahren und vorrichtung hierzu mit entgegengesetzt gerichteten schutzgasströmen parallel zur pulverschicht
EP2886226A2 (de) Belichtung bei generativer Fertigung
EP1137504A1 (de) Prozesskammer für das selektive laser-schmelzen
EP3328619B1 (de) Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
WO2018024757A1 (de) Vorrichtung zur generativen fertigung eines dreidimensionalen körpers in einem pulverbett mit mehreren rakeln
WO2020173970A1 (de) Prozess zur strahlbearbeitung eines platten- oder rohrförmigen werkstücks
DE102017210718A1 (de) Absaugvorrichtung für die additive Fertigung
DE102018210260A1 (de) Vorrichtung und Verfahren zum generativen Herstellen eines dreidimensionalen Objekts
WO2021047821A1 (de) MATERIALABSCHEIDUNGSEINHEIT MIT MEHRFACHER MATERIALFOKUSZONE SOWIE VERFAHREN ZUM AUFTRAGSCHWEIßEN
DE102016212571A1 (de) Vorrichtung und Verfahren zur Herstellung von dreidimensionalen Bauteilen mit einem pulverbettbasierten Strahlschmelzverfahren
WO2015055361A1 (de) Elektronenstrahlschmelzverfahren sowie elektronenstrahlanordnung
EP3015198A1 (de) Vorrichtung und Verfahren zur generativen Herstellung zumindest eines Bauteilbereichs eines Bauteils
WO2017009093A1 (de) Vakuum sls verfahren zur additiven herstellung von metallischen bauteilen
WO2017001098A1 (de) Vorrichtung und verfahren zum pulverbasierten laser-auftragsschweissen
DE202017005866U1 (de) Vorrichtung zur Herstellung und Oberflächenbearbeitung eines dreidimensionalen Objekts
EP3972762A1 (de) Verfahren zur additiven fertigung dreidimensionaler bauteile sowie entsprechende vorrichtung
EP2929962A1 (de) Verfahren und vorrichtung zur verbesserung der werkstoffqualität bei generatvien herstellverfahren
DE102019214802A1 (de) Beschichtervorrichtung für die Verwendung in einem additiven Fertigungsverfahren, Fertigungsanlage für die Verwendung in einem additiven Fertigungsverfahren sowie ein Gehäuse für eine Beschichtervorrichtung für die Verwendung in einem additiven Fertigungsverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181123

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190628

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1185709

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017002450

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191002

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ROBERT BOSCH GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200203

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200103

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017002450

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191002

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200202

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

26N No opposition filed

Effective date: 20200703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201031

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171002

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221215

Year of fee payment: 6

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1185709

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 7