EP3234277B1 - Procédure pour construire des structures précontraintes et des éléments précontraints par des éléments de précontrainte en amf et une structure et un élément équipés d'un tel élément de précontrainte - Google Patents

Procédure pour construire des structures précontraintes et des éléments précontraints par des éléments de précontrainte en amf et une structure et un élément équipés d'un tel élément de précontrainte Download PDF

Info

Publication number
EP3234277B1
EP3234277B1 EP15817138.9A EP15817138A EP3234277B1 EP 3234277 B1 EP3234277 B1 EP 3234277B1 EP 15817138 A EP15817138 A EP 15817138A EP 3234277 B1 EP3234277 B1 EP 3234277B1
Authority
EP
European Patent Office
Prior art keywords
component
tension
tension element
shape memory
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15817138.9A
Other languages
German (de)
English (en)
Other versions
EP3234277B8 (fr
EP3234277A1 (fr
Inventor
Masoud MOTAVALLI
Benedikt WEBER
Wookijn LEE
Rolf BRÖNNIMANN
Christoph CZADERSKI
Christian Leinenbach
Moslem Shahverdi
Julien Michels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDGENOESSISCHE MATERIALPRUEFUNGS- UNDFORSCHUNGSANSTALT EMPA
RE-FER AG
Original Assignee
Re-Fer AG
Eidgenoessische Materialprufungs und Forschungsanstalt EMPA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Re-Fer AG, Eidgenoessische Materialprufungs und Forschungsanstalt EMPA filed Critical Re-Fer AG
Publication of EP3234277A1 publication Critical patent/EP3234277A1/fr
Application granted granted Critical
Publication of EP3234277B1 publication Critical patent/EP3234277B1/fr
Publication of EP3234277B8 publication Critical patent/EP3234277B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/04Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
    • E04B1/06Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material the elements being prestressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G23/0225Increasing or restoring the load-bearing capacity of building construction elements of circular building elements, e.g. by circular bracing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • E04G2021/127Circular prestressing of, e.g. columns, tanks, domes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49616Structural member making
    • Y10T29/49623Static structure, e.g., a building component
    • Y10T29/49632Metal reinforcement member for nonmetallic, e.g., concrete, structural element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49863Assembling or joining with prestressing of part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49863Assembling or joining with prestressing of part
    • Y10T29/49865Assembling or joining with prestressing of part by temperature differential [e.g., shrink fit]

Definitions

  • This invention relates to a method for creating tensioned components in new constructions (cast in situ on the construction site) or in prefabrication, as well as for the subsequent reinforcement of existing structures or, more generally, of any components.
  • Tension elements made of shape memory alloys often referred to by experts as shape memory alloy profiles or SMA profiles for short, are applied to the structure for the subsequent application of tension. This subsequent tensioning can also be used to attach extensions to an existing structure under prestress.
  • the invention also relates to a structure or component that was created or subsequently reinforced using this method, or to which extensions were docked using this method.
  • shape memory alloys based on steel in the form of tension elements or tension rods are used to generate the prestress.
  • Prestressing a structure generally increases its usability by reducing existing cracks, preventing cracks from forming altogether, or causing them to only occur under higher loads.
  • Such prestressing is already used today to strengthen concrete parts against bending or to strap supports, for example, to increase axial loads or to increase shear.
  • Tesla's new "Gygafactory" battery factory in Nevada, USA is to be the largest factory in the world, with 1 million m 2 of manufacturing space, namely two floors of 500,000m 2 each. (The largest factory to date of the aircraft manufacturer Boeing in Everett in the state of Washington, USA, covers a total of 400,000m 2 ).
  • concrete blocks measuring 20m x 5m are laid in a row.
  • prestressing components made of concrete or other building materials is pipes for liquid transport and silos or tank containers, which are tied around to create prestressing.
  • round steel bars or cables are inserted into the concrete or building material for prestressing or subsequently fixed externally to the surface of the component on the tension side.
  • Anchoring and force introduction from the prestressing element into the concrete is complex with all of these known methods.
  • the anchoring elements (anchor heads) are very expensive.
  • the prestressing steels or cables must also be protected against corrosion by means of a coating. This is necessary because conventionally used steels are not corrosion-resistant.
  • prestressing cables are inserted into the concrete, they must be protected against corrosion with a lot of effort using cement mortar, which is injected into the sheathing pipes.
  • external prestressing is also achieved using fiber composite materials that are bonded to the surface of concrete or to a structure or component. In this case, Fire protection is often very complex because the adhesives have a low glass transition temperature.
  • Corrosion protection is the reason why a minimum cover of around 3cm between the steel inserts in traditional concrete must be maintained. As a result of environmental influences (namely CO2 and SO2 in the air), carbonation takes place in the concrete. Because of this carbonation, the basic environment in the concrete (pH 12) drops to a lower value, i.e. to a pH of 8 to 9. If the internal reinforcement is in this carbonated range, the corrosion protection of conventional steel is no longer guaranteed. The 3cm thick cover of the steel guarantees corrosion resistance for the internal reinforcement over a service life of the structure of around 70 years. When using the new shape memory alloy, carbonation is much less critical because the new shape memory alloy is much more corrosion resistant than conventional structural steel. As a result of the prestressing of a concrete part, or Mortar closes cracks and the penetration of harmful substances is greatly reduced.
  • WO 2014/166003 A2 and WO96/12588 A1 each disclose generic methods for constructing prestressed structures or components.
  • the object of the present invention is therefore to create a method for prestressing new structures and components of all kinds for reinforcement, optionally to improve the serviceability or the fracture state of the structure or component, to ensure more flexible use of the building for subsequent cantilevered extensions, or to increase the durability and fire resistance of the structure or component. It is also an object of the invention to specify a structure and a component which has prestressing or reinforcements produced using this method.
  • the object is initially achieved by a method for creating prestressed structures or components made of concrete or other materials using tension elements made of a shape memory alloy, whether for new structures and components or for reinforcing existing structures and components, which is characterized in that at least one tension element made of a steel-based shape memory alloy of polymorphic and polycrystalline structure, which can be brought from its state as martensite to its permanent state as austenite by increasing its temperature, is placed on the structure or component in the form of a flat steel or is placed freely on it, or this tension element is guided around at least one corner, with one or more end anchors penetrating the structure or component, or the tension element wraps around a structure or component one or more times as a band, in which case the two ends of the tension element are either connected to one another in a tensile manner or are each separately connected to the structure or component with one or more end or intermediate anchors that penetrate the structure or component, or the tension element overlaps or crosses one or more times for clamping, and that
  • a structure or component created according to this method, which is characterized in that it has at least one tension element made of a shape memory alloy, which runs along the outside of the structure or component or is freely extending on the structure or component and is connected to it by means of end anchors or additionally an adhesive bond, or the structure or component is completely enclosed by the tension element as a band, wherein the two end regions of the tension element are end-anchored or connected in a tensile force-locking manner, and the tension element is permanently prestressed by heat input.
  • buildings can be effectively prestressed retrospectively and components such as balcony cantilevers, balcony parapets, pipelines, etc. can be dimensioned thinner. This makes the components lighter and more economical to use.
  • shape memory alloys SMA
  • SMA shape memory alloys
  • SMA shape memory alloys
  • SMA shape memory alloys
  • the dominant crystal structure of shape memory alloys (SMA) depends on their temperature on the one hand, and on the external stress - be it tension or pressure - on the other. At high temperatures, it is an austenite, and at low temperatures it is a martensite.
  • SMA shape memory alloys
  • the shape memory alloys (SMA) are stable within a type-specific temperature range, i.e. their structure does not change within certain limits of mechanical stress. For applications in the construction industry in outdoor areas, the ambient temperature fluctuation range of -20°C to +60°C is assumed. Within this temperature range, a shape memory alloy (SMA) used here should not change its structure.
  • the transformation temperatures at which the structure of the Shape memory alloy (SMA) changes can vary considerably depending on the composition of the shape memory alloy (SMA). The transformation temperatures are also load-dependent. As the mechanical load on the shape memory alloy (SMA) increases, its transformation temperatures also increase.
  • shape memory alloy (SMA) is to remain stable within certain load limits, these limits must be paid close attention to. If shape memory alloys (SMA) are used for structural reinforcement, in addition to the corrosion resistance and relaxation effects, the fatigue quality of the shape memory alloy (SMA) must also be taken into account, especially when the loads vary over time. A distinction is made between structural fatigue and functional fatigue. Structural fatigue concerns the accumulation of microstructural defects as well as the formation and propagation of surface cracks until the material finally breaks. Functional fatigue, on the other hand, is the result of the gradual degradation of either the shape memory effect or the damping capacity due to microstructural changes in the shape memory alloy (SMA). The latter is associated with the modification of the stress-strain curve under cyclic loading. The transformation temperatures are also changed.
  • Shape memory alloys based on iron Fe, manganese Mn and silicon Si are suitable for absorbing permanent loads in the construction sector, whereby the addition of up to 10% chromium Cr and nickel Ni gives the SMA a similar corrosion behavior to that of rust-proof steel.
  • carbon C, cobalt Co, copper Cu, nitrogen N, niobium Nb, niobium carbide NbC, vanadium nitrogen VN and zirconium carbide ZrC can improve the shape memory properties in various ways.
  • a shape memory alloy (SMA) made of Fe-Ni-Co-Ti shows particularly good properties, which absorbs fracture stresses of up to 1000 MPa, is highly resistant to corrosion and whose upper temperature for conversion to the austenite state is approx. 100 - 250°C.
  • the Prestress (recovery stress) for this alloy is typically 40-50% of the breaking load.
  • the present reinforcement system makes use of the properties of shape memory alloys (SMAs) and those of a shape memory alloy (SMA) based on steel that is significantly more corrosion-resistant than structural steel, because such shape memory alloys (SMAs) are significantly less expensive than SMAs made of nickel-titanium (NiTi), for example.
  • SMAs shape memory alloys
  • the shape memory alloys (SMAs) based on steel are used in the form of flat steels.
  • this process involves attaching a flat steel made of a shape memory alloy, or SMA flat steel, to a structure or component and anchoring it in the structure at its end. If necessary, the flat steel is also anchored in between. Additional bonding makes sense for safety reasons.
  • the SMA flat steel is then heated using electricity. The heating softens the adhesive, but this is not a problem because the adhesive hardens again when it cools down and can guarantee safety in the final state. This leads to a contraction of the SMA flat steel and therefore causes a prestress on the structure or component. The prestressing forces are introduced into the structure or component at the end areas of the SMA flat steel via end anchors.
  • the two ends of the flat steel 1 can either be connected to each other in a tensile manner or can be connected to the building or component 2 separately with one or more end anchors 4 which penetrate into the building or component 2, or can be connected to the building or component 2 once or several times for clamping. Intermediate anchors 12 can of course also be used.
  • the flat steel 1 is then contracted as a result of an active and controlled heat input with heating means and generates a permanent tensile stress and accordingly a permanent prestress on the structure or the component 2.
  • electrical connections 3 are present so that the flat steel can be subjected to an electrical voltage which induces a current flow through it.
  • a suitable adhesive 18 can be introduced between the flat steel and the structure or component for additional bonding, for example on an epoxy or PU basis.
  • tension elements with a rough surface at least on the side facing the bond are used to improve the adhesive bond.
  • the end anchorage can also be used only to generate a prestressing force and a safety reserve can be designed so that the breaking load of the tension elements is introduced into the structure or component solely through the hardened bond.
  • end anchors and additional bonding are used, the end anchors or any intermediate anchors can be removed after the tension elements have contracted for reasons of space or aesthetic reasons.
  • the end anchor can also be dimensioned so that it only has to withstand the pre-tension of the tension element as a result of heating plus a reserve force.
  • the additional bond provided by the bonding offers additional safety, as the risk of explosive flaking is greatly reduced if the tension element is damaged. This is important for personal protection, especially when passers-by can be close to the structure, as is the case in urban areas.
  • a tension element 1 in the form of a flat steel is guided around two corners 5 of a cantilevered concrete slab 2.
  • it is firmly connected to the concrete slab 2 by means of several end anchors 4.
  • the tension element 1 or flat steel can be anchored at the end or additionally anchored in between, or its tensile force can be introduced to the structure by means of an adhesive bond, or the force can be introduced via a combination of mechanical anchors and an adhesive bond.
  • the Figure 3 shows an application in which a tension element 1 in the form of an SMA flat steel was wrapped around a component. Because the flat steel is first guided around one end of the cylindrical component, such as a column, more than once as a band and then wraps the cylindrical component upwards as a band along a helical line and also wraps the component several times at the upper end in an overlapping manner, a strong end anchor is hardly necessary anymore. The contraction of the flat steel band causes it to jam at the two rings 10 formed at the ends, and the contraction also causes a very strong constriction of the component over the entire wrapping, which substantially stabilizes it and protects it from cracking. This application by means of a wrap can also be used to reinforce cement or other pipes.
  • the Figure 4 shows an application on a large silo 11 with a diameter of many meters as a liquid container, whether made of concrete or steel segments.
  • several tension elements 1 are looped around the entire structure at a certain distance from each other, connected with their overlapping end areas in a force-locking manner and then contracted by heat input, so that a firm and permanent pre-stressed strapping is created, which strengthens the structure considerably.
  • the Figure 5 shows an application to a timber construction.
  • Timber constructions with vertical supports 15 and beams 16 supported on them are widespread, with the beams 16 and supports 15 being connected by means of special steel connector elements 14 are screwed or nailed together.
  • the steel connector elements 14 are connected to each other as shown with crossing tension elements 1 in the form of SMA profiles, whereby the end anchoring is carried out by means of bolts which penetrate the steel connector elements and SMA profiles. The penetration is carried out by pre-drilling the SMA profile and the steel connector element and then inserting a nail or screw connection through these two elements into the wood. Heat is then introduced and the SMA profiles contract and brace the wooden structure to a previously unknown level of stability.
  • the end anchors of the flat steel can be realized in many different designs. In the Figures 6 to 9 Examples of this are shown.
  • the Figure 6 shows a variant in which the end areas 6 of the flat steel have a toothing in their surface area.
  • Two flat steels 1 can be placed on top of each other in such a way that their toothing interlocks, creating a claw and thus a tight connection.
  • This connection can be secured by means of a band wrap or a screw connection, but it cannot come loose as long as it is under tension.
  • this connection can also be used if the two identically designed end areas of a single flat steel come to lie on top of each other by enclosing a component.
  • the Figure 7 shows an example where a connection is designed in such a way that the two flat steels run towards each other with the top and bottom sides lying in the same plane, thus creating a flush transition.
  • a helical gear is implemented, which can also be secured by means of a screw connection or by means of a wrapping band.
  • the Figure 8 shows a connection in which the ends of the flat steels to be connected to each other are formed into open hooks, whereby in the example shown the flat steel coming from the left has three such hooks 13, each with a recess between the hooks 13.
  • Two identical hooks 13, in the example shown curved upwards instead of downwards, engage in the two recesses thus formed at the ends of the flat steel coming from the right.
  • FIG. 9 shows a further connection in which the end regions 6 of the flat steels are formed into two barbs of equal strength which fit together in a form-fitting manner, whereby the connection can also be secured with a screw connection as shown, for example as shown by means of a connection at two points at each of which a screw 8 or a bolt passes through the two flat steels and these are ultimately clamped together by means of a lock nut 9.
  • connection of the end regions of the flat steels can therefore generally be achieved by interlocking and claw-locking on the overlapping sides of the end regions 6. However, they can also simply be mechanically connected to one another at the overlapping points using one or more screws 8 in a tensile manner, with the penetrating screws 8 being tightened with a lock nut 9.
  • Another anchoring option is to wrap at least one flat steel 1 made of a shape memory alloy as a band around a component 7 so that the band overlaps over an area, after which a voltage is applied between electrical contacts at the end regions of the band so that the flat steel 1 heats up as a result of its electrical resistance and is converted from its state as martensite to a permanent state as austenite. This causes a permanent confinement of the component 7.
  • a structure or component equipped with such an SMA flat steel always has at least one tension element 1 in the form of a flat steel made of a shape memory alloy, which runs along the outside of the structure or component and is connected to it by means of end anchors 4.
  • the structure or component 7 can be designed as in Figure 3 or 4 shown be completely enclosed or wrapped by one or more flat steels 1, wherein the two end areas of the flat steels 1 are connected in a tensile manner, and the flat steel(s) 1 are permanently prestressed by heat input.
  • the wraps can also form overlapping areas, so that the flat steel 1 causes a permanent constriction of the component 7 after heat input and contraction and the overlapping areas 10 generate a sufficient static friction force to maintain the constriction.
  • SMA shape memory alloy
  • the SMA flat steel is placed on a concrete structure in any direction, but mainly in the direction of tension, and anchored to the same at the end.
  • the SMA flat steel is then heated using electricity, which causes the SMA flat steel to shorten.
  • the shortening causes a prestress and the forces are introduced directly into the concrete structure or component via the end anchors, or in the case of wrapping even over the entire length of the steel profile.
  • the heating of the SMA flat steels 1 is advantageously carried out electrically by setting up a resistance heater by applying a voltage to the heating cables 3, as in Figure 1 shown so that the SMA flat steel or the SMA flat steel strip 1 heats up as a current conductor. Because with long SMA flat steel or strips, heating by means of electrical resistance heating would take too long and then too much heat would be introduced into the concrete, several power connections are set up along the length of the SMA flat steel or strip. The SMA flat steel can then be heated in stages by applying a voltage to two adjacent heating cables, and then to the next two which are adjacent, and so on, until the entire SMA flat steel is brought to the austenitic state.
  • the batteries must be connected in series. The number, size and type of batteries must be selected accordingly so that the required current (amperes) and voltage (volts) can be called up, and the energy supply must be regulated by a control system so that at the push of a button - tailored to a specific flat steel length and thickness - exactly the right
  • the flat steel is under voltage for a certain period of time and the necessary current flows. In the case of long flat steels of several meters, heating can be carried out in stages by providing power connections after certain sections, where the voltage can then be applied. In this way, the necessary heat can be applied section by section - one section after the other over the entire length of a flat steel, in order to finally bring the entire length into the austenitic state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Claims (15)

  1. Procédé de réalisation d'ouvrages ou d'éléments de construction précontraints (2) en béton ou autres matériaux au moyen d'éléments de traction (1) en alliage à mémoire de forme, que ce soit de nouveaux ouvrages et éléments de construction ou pour le renforcement d'ouvrages et d'éléments de construction existants, caractérisé en ce qu'au moins un élément de traction (1) en alliage à mémoire de forme à base d'acier de structure polymorphe et polycristalline, qui peut être amené par augmentation de sa température de son état de martensite à son état permanent d'austénite, se présente sous la forme d'un acier plat
    a) posée sur l'ouvrage ou l'élément de construction (2), ou
    b) est posé librement sur l'ouvrage ou l'élément de construction, ou
    c) cet élément de traction (1) est guidé autour d'au moins un coin (5),
    i) où, dans les variantes a) à c), un ou plusieurs ancrages d'extrémité (4) pénètrent dans la structure ou l'élément de construction (2), ou bien
    d) l'élément de traction (1) entoure un ouvrage ou un élément de construction (2) une ou plusieurs fois sous forme de bande, auquel cas
    ii) les deux extrémités de l'élément de traction (1) sont soit reliées entre elles par une force de traction, soit
    iii) chacun étant relié séparément à la structure ou à l'élément de construction (1) par un ou plusieurs ancrages d'extrémité (4) ou intermédiaires (12) qui pénètrent dans la structure ou l'élément de construction, ou encore
    iv) l'élément de traction (1) se chevauche ou se croise une ou plusieurs fois pour un coincement,
    et en ce que l'élément de traction (1) se contracte à la suite d'un apport de chaleur actif et contrôlé subséquent avec des moyens de chauffage et génère une contrainte de traction permanente et produit en conséquence une précontrainte permanente ainsi qu'une force de traction résiduelle jusqu'à la charge de rupture de l'élément de traction (1) sur l'ouvrage ou le composant (2).
  2. Procédé de réalisation d'ouvrages ou d'éléments de construction précontraints au moyen d'éléments de traction (1) en un alliage à mémoire de forme selon la revendication 1, caractérisé en ce que les éléments de traction (1) sont utilisés sous forme de bande, et en ce que, lors de la réalisation d'ancrages par chevauchement ou croisement des éléments de traction en forme de bande, on utilise en outre des boulons traversant les éléments de traction.
  3. Procédé de réalisation d'ouvrages ou d'éléments de construction précontraints au moyen d'éléments de traction (1) en un alliage à mémoire de forme selon la revendication 1, caractérisé en ce qu'au moins un élément de traction (1) droit est posé sur un mur d'un ouvrage ou sur la face extérieure d'un élément de construction (2), et ses deux zones d'extrémité sont reliées solidement à l'ouvrage ou à l'élément de construction (2) par un ou plusieurs ancrages d'extrémité (4), ces ancrages d'extrémité (4) pénétrant dans l'ouvrage ou l'élément de construction (2), et ensuite, une tension U est appliquée aux zones d'extrémité de l'élément de traction (1) au moyen de contacts électriques (3), de sorte que l'élément de traction (1) s'échauffe en raison de sa résistance électrique et passe de son état de martensite à un état permanent d'austénite, de sorte que l'élément de traction (1) exerce une contrainte de traction permanente ainsi qu'une force de traction résiduelle jusqu'à la charge de rupture de l'élément de traction (1) sur l'ouvrage ou le composant (2) et que celle-ci est introduite dans celui-ci (2) au niveau des ancrages d'extrémité (4).
  4. Procédé de réalisation d'ouvrages ou d'éléments de construction précontraints au moyen de tirants en alliage à mémoire de forme selon la revendication 1, caractérisé en ce qu'au moins un élément de traction (1) est posé sur la face extérieure d'un ouvrage ou sur la face extérieure d'un élément de construction (2) en étant courbé une ou plusieurs fois (5), et ses deux zones d'extrémité (6) sont reliées solidement à l'ouvrage ou à l'élément de construction (2) par un ou plusieurs ancrages d'extrémité (4) ou des ancrages intermédiaires supplémentaires (12), ces ancrages d'extrémité (4) pénétrant dans l'ouvrage ou l'élément de construction (2), et ensuite, une tension est appliquée au moyen de contacts électriques aux zones d'extrémité (6) de l'acier plat, de sorte que l'acier plat (1) s'échauffe en raison de sa résistance électrique et passe de son état de martensite à un état permanent d'austénite, de sorte qu'il exerce une contrainte de traction permanente autour de la partie encastrée de l'ouvrage ou de l'élément de construction (2), ainsi qu'une force de traction résiduelle jusqu'à la charge de rupture de l'élément de traction (1), et que celle-ci est introduite dans l'élément de construction au niveau des ancrages d'extrémité (4).
  5. Procédé de réalisation de constructions ou d'éléments de construction précontraints au moyen d'éléments de traction en un alliage à mémoire de forme selon la revendication 1, caractérisé en ce qu'au moins un élément de traction (1) est enroulé autour d'un élément de construction (7), de sorte que les deux extrémités de l'élément de traction (1) se chevauchent et sont reliées mécaniquement entre elles par une force de traction, après quoi une tension est appliquée aux zones d'extrémité de l'élément de traction (1) au moyen de contacts électriques, de sorte que l'élément de traction (1) s'échauffe en raison de sa résistance électrique et passe de son état de martensite à un état permanent d'austénite, de sorte que l'élément de traction (1) provoque un rétrécissement permanent du composant (7).
  6. Procédé de réalisation d'ouvrages ou d'éléments de construction précontraints au moyen de barres de traction en un alliage à mémoire de forme selon la revendication 5, caractérisé en ce que les deux extrémités de l'élément de traction (1) sont reliées mécaniquement l'une à l'autre par une force de traction, en s'engageant l'une dans l'autre par une liaison de forme sur les côtés des zones d'extrémité (6) qui se chevauchent et en s'accrochant l'une à l'autre.
  7. Procédé de réalisation d'ouvrages ou d'éléments de construction précontraints au moyen de tirants en alliage à mémoire de forme selon la revendication 5, caractérisé en ce que les deux extrémités de l'élément de traction (1) sont reliées mécaniquement l'une à l'autre par une force de traction, en les reliant l'une à l'autre au moyen d'au moins une vis (8) les traversant à l'endroit où elles se chevauchent ou, en cas d'accrochage, au moyen de crochets (13) situés aux extrémités et munis d'un boulon (17) les traversant.
  8. Procédé de construction de bâtiments ou d'éléments de construction précontraints au moyen de barres de traction en alliage à mémoire de forme selon la revendication 1, caractérisé en ce qu'au moins un élément de traction (1) est enroulé sous forme de bande autour d'un élément de construction (7), de sorte que celui-ci se chevauche sur une zone, après quoi une tension est appliquée au moyen de contacts électriques sur les zones d'extrémité de cette bande d'acier plat, de sorte que l'acier plat s'échauffe en raison de sa résistance électrique et passe de son état de martensite à un état permanent d'austénite, de sorte que la bande provoque un rétrécissement permanent de la pièce (7) et que la zone de chevauchement génère une force de friction adhésive suffisante pour maintenir le rétrécissement.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que l'ancrage à l'ouvrage ou à l'élément de construction est réalisé, selon la base porteuse de celui-ci, au moyen d'un ou de plusieurs des moyens de fixation suivants : Chevilles, chevilles à expansion, clous, ancrages, ancrages collés, ancrages remplis de ciment, ou au moyen d'un rivetage ou d'un vissage,
  10. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que, en plus de l'ancrage final des éléments de traction (1) sur les ouvrages ou les éléments de construction, on procède à un collage des éléments de traction (1) sur le fond porteur des ouvrages ou des éléments de construction avec une colle (18) à base d'époxy ou de PU, en utilisant des éléments de traction qui présentent au moins sur l'une de leurs faces une surface rugueuse pour améliorer la liaison par collage.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'ancrage d'extrémité des éléments de traction (1) est conçu uniquement pour la force de précontrainte, y compris une réserve de sécurité, de sorte que l'introduction de la charge de rupture des éléments de traction (1) dans la structure ou l'élément de construction s'effectue uniquement par le collage durci au moyen d'une colle (18).
  12. Procédé selon la revendication 10, caractérisé en ce que l'ancrage d'extrémité des éléments de traction (10) est retiré après le durcissement de la colle (18) du collage.
  13. Ouvrage ou élément de construction, réalisé selon l'un des procédés selon les revendications 1 à 12, caractérisé en ce qu'il présente au moins un élément de traction (1) qui s'étend le long du côté extérieur de l'ouvrage ou de l'élément de construction ou qui est posé sur l'ouvrage ou l'élément de construction en s'étendant librement et qui est relié à celui-ci au moyen d'ancrages d'extrémité (4) ou en plus d'un collage au moyen d'une colle (18), ou l'ouvrage ou l'élément de construction (2) est entièrement entouré par l'élément de traction (1) sous forme de bande, les deux zones d'extrémité de l'élément de traction (1) étant ancrées aux extrémités ou reliées par une force de traction, et l'élément de traction (1) étant précontraint en permanence par un apport de chaleur.
  14. Ouvrage ou élément de construction selon la revendication 13, caractérisé en ce qu'il présente au moins un élément de traction (1) qui s'étend autour d'une ou plusieurs courbures (5) le long du côté extérieur de l'ouvrage ou de l'élément de construction (2) et qui est relié à celui-ci au moins au moyen d'ancrages d'extrémité (4) ou en outre au moyen d'ancrages intermédiaires (12).
  15. Ouvrage ou élément de construction selon la revendication 13, caractérisé en ce qu'il présente au moins un élément de traction (1) qui entoure plusieurs fois l'élément de construction (7) sous forme de bande et forme des zones de chevauchement, de sorte qu'il provoque un rétrécissement permanent de l'élément de construction (7) après l'application de chaleur et que les zones de chevauchement (10) génèrent une force de friction adhésive suffisante pour maintenir le rétrécissement.
EP15817138.9A 2014-12-18 2015-12-14 Procédure pour construire des structures précontraintes et des éléments précontraints par des éléments de précontrainte en amf et une structure et un élément équipés d'un tel élément de précontrainte Active EP3234277B8 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01980/14A CH710538B1 (de) 2014-12-18 2014-12-18 Verfahren zum Erstellen von vorgespannten Bauwerken oder Bauteilen mittels Zugelementen aus Formgedächtnis-Legierungen sowie damit ausgerüstetes Bauwerk oder Bauteil.
PCT/EP2015/079607 WO2016096737A1 (fr) 2014-12-18 2015-12-14 Procédé pour la réalisation d'ouvrages de construction et d'éléments de construction précontraints au moyen d'éléments de traction sma et ouvrage de construction et élément de construction ainsi équipé

Publications (3)

Publication Number Publication Date
EP3234277A1 EP3234277A1 (fr) 2017-10-25
EP3234277B1 true EP3234277B1 (fr) 2024-06-26
EP3234277B8 EP3234277B8 (fr) 2024-07-31

Family

ID=55027707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15817138.9A Active EP3234277B8 (fr) 2014-12-18 2015-12-14 Procédure pour construire des structures précontraintes et des éléments précontraints par des éléments de précontrainte en amf et une structure et un élément équipés d'un tel élément de précontrainte

Country Status (7)

Country Link
US (1) US10246887B2 (fr)
EP (1) EP3234277B8 (fr)
KR (1) KR102445949B1 (fr)
CN (1) CN107407100B (fr)
CA (1) CA2971244C (fr)
CH (1) CH710538B1 (fr)
WO (1) WO2016096737A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2592554B1 (es) * 2016-10-14 2017-11-08 Universitat De Les Illes Balears Método de refuerzo activo frente a esfuerzo cortante o punzonamiento en elementos portantes estructurales, y sistema de refuerzo activo
DE102017106114A1 (de) * 2017-03-22 2018-09-27 Fischerwerke Gmbh & Co. Kg Verfahren, Befestigungselement und Befestigungsanordnung zur Anbringung und Aktivierung von Formgedächtnislegierungselementen an zu bewehrenden Bauwerken
CN108035598B (zh) * 2017-12-18 2023-12-26 黄淮学院 一种半主动/被动混合减震装置
WO2019175065A1 (fr) * 2018-03-15 2019-09-19 Re-Fer Ag Procédé d'établissement d'une précontrainte sur un composant en acier, en métal ou en alliage au moyen d'une plaque sma et composant précontraint
IT201800005076A1 (it) * 2018-05-04 2019-11-04 Sistema di precompressione di una struttura
CN108824636B (zh) * 2018-06-06 2020-10-02 同济大学 一种抗震耐火的预应力装配式混凝土节点
CN108842754B (zh) * 2018-07-05 2020-03-17 浙江科技学院 富含流动地下水砾卵石层中的注浆加固方法及装置
CN109001035B (zh) * 2018-07-25 2020-04-24 大连理工大学 一种形状记忆合金的低温冷拉装置
DE102019128494A1 (de) * 2018-11-22 2020-05-28 Fischerwerke Gmbh & Co. Kg Spannelement zur Verstärkung eines Bauteils im Bauwesen und Verfahren zur Einleitung einer Druckspannung in ein Bauteil
EP3656948A1 (fr) * 2018-11-22 2020-05-27 fischerwerke GmbH & Co. KG Élément de serrage pour un composant et procédé d'introduction d'une tension de pression dans un composant
DE102018129640A1 (de) 2018-11-23 2020-05-28 Thyssenkrupp Ag Verfahren zum Vorspannen eines Bauwerks mit einer Spannvorrichtung und Verwendung einer solchen Spannvorrichtung zum Befestigen an einem Bauwerk
KR102115909B1 (ko) * 2019-10-18 2020-05-27 김원기 철계형상기억합금의 회복능력특성을 이용한 기존 철근콘크리트 구조물의 균열, 변형회복 및 내하력 보강공법
US20230024816A1 (en) * 2019-12-13 2023-01-26 The Board of Trustees of the University of Illlinois Concrete product comprising an adaptive prestressing system, and method of locally prestressing a concrete product
CN111155785B (zh) * 2020-01-20 2024-03-26 同济大学 一种损伤钢板加固装置及加固方法
CN112832145B (zh) * 2021-01-08 2022-04-29 福建工程学院 一种镍钛铌记忆合金纤维线外贴预制预应力板及施工方法
CN112963010B (zh) * 2021-04-30 2023-02-21 东南大学 一种加固榫卯节点装置
CN114059791A (zh) * 2021-11-12 2022-02-18 中国电建集团华东勘测设计研究院有限公司 一种预应力混凝土技术加固加高圆形构筑物水池的方法
FR3139149A1 (fr) * 2022-08-26 2024-03-01 Soletanche Freyssinet Procédé pour renforcer un ouvrage de construction et dispositif pour un tel procédé
CN115653338B (zh) * 2022-10-14 2024-05-17 重庆科技学院 一种cfrp板材-sma丝复合材料的组合锚具

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1084432A (en) * 1964-12-17 1967-09-20 Felix Max Adler Method and means for constructing pressure vessels
JPH06108656A (ja) * 1992-09-24 1994-04-19 Takenaka Komuten Co Ltd プレキャスト部材
JPH07217076A (ja) * 1994-01-26 1995-08-15 Nippon Steel Corp 棒鋼およびその締結方法
WO1996012588A1 (fr) 1994-10-19 1996-05-02 Dpd, Inc. Systeme de reparation au moyen de materiaux a memoire de forme et procede d'utilisation de ces materiaux a cet effet
DE19733067A1 (de) * 1997-07-31 1999-02-04 Sika Ag Flachband-Lamelle zur Verstärkung von Bauteilen sowie Verfahren zur Anbringung der Flachband-Lamelle an einem Bauteil
GB2358880A (en) 2000-01-12 2001-08-08 Stuart Ian Jackman Method for reinforcing material
KR100731211B1 (ko) * 2005-01-19 2007-06-22 안숙희 형상기억합금 판 또는 와이어를 이용한 기둥구조물보강시스템
KR101443444B1 (ko) * 2012-07-30 2014-09-23 경상대학교산학협력단 건설 구조물용 보강 구조체
US9745751B2 (en) * 2013-02-26 2017-08-29 University Of Connecticut Reinforced structural column system
CH707301B1 (de) * 2013-04-08 2014-06-13 Empa Verfahren zum Erstellen von vorgespannten Betonbauwerken mittels Profilen aus einer Formgedächtnis-Legierung sowie Bauwerk, hergestellt nach dem Verfahren.

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EUNSOO CHOI ET AL: "The confining effectiveness of NiTiNb and NiTi SMA wire jackets for concrete", SMART MATERIALS AND STRUCTURES, IOP PUBLISHING LTD., BRISTOL, GB, vol. 19, no. 3, 1 March 2010 (2010-03-01), pages 35024, XP020175634, ISSN: 0964-1726 *
JANKE L ET AL: "Applications of shape memory alloys in civil engineering structures - Overview, limits and new ideas", MATERIALS AND STRUCTURES, LONDON, GB, vol. 38, 1 June 2005 (2005-06-01), pages 578 - 592, XP002516103, ISSN: 1359-5997, DOI: 10.1617/14323 *
SOROUSHIAN PARVIZ ET AL: "Repair and Strengthening of Concrete Structures Through Application of Corrective Posttensioning Forces with Shape Memory Alloys SELECTION AND CHARACTERIZATION OF IRON-BASED SHAPE MEMORY ALLOYS", 31 December 2001 (2001-12-31), XP055794828, Retrieved from the Internet <URL:https://journals.sagepub.com/doi/pdf/10.3141/1770-03> [retrieved on 20210413] *

Also Published As

Publication number Publication date
CA2971244A1 (fr) 2016-06-23
CN107407100B (zh) 2020-02-21
CH710538B1 (de) 2018-09-28
US20170314277A1 (en) 2017-11-02
EP3234277B8 (fr) 2024-07-31
EP3234277A1 (fr) 2017-10-25
CH710538A2 (de) 2016-06-30
KR102445949B1 (ko) 2022-09-20
CA2971244C (fr) 2023-02-21
KR20170125321A (ko) 2017-11-14
US10246887B2 (en) 2019-04-02
WO2016096737A1 (fr) 2016-06-23
CN107407100A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
EP3234277B1 (fr) Procédure pour construire des structures précontraintes et des éléments précontraints par des éléments de précontrainte en amf et une structure et un élément équipés d&#39;un tel élément de précontrainte
EP2984197A2 (fr) Procédé de production de structures en béton précontraint au moyen de profilés en alliage à mémoire de forme, et structure fabriquée selon ledit procédé
EP2914790B1 (fr) Procédé de construction d&#39;une tour en béton armé
EP2885439B1 (fr) Système d&#39;ancrage dans un support dans le domaine du bâtiment, et son procédé d&#39;utilisation
DE69812399T2 (de) Umlaufende bügel und binder zur verstärkung von bauelementen, durch umlaufenden bügel oder binder verstärkte bauelemente und verfahren zur konstruktion solcher bauelemente
EP2997197B1 (fr) Procédé pour précontraindre un ouvrage en acier ainsi qu&#39;ouvrage en acier ainsi précontraint
EP2459813B1 (fr) Élément de béton armé à armature formée d&#39;éléments de tôle en l
DE102011105061A1 (de) Einbetonierbare,verschieblich ausgebildete und ermüdungsfreie Kopfkonstuktion zur Verankerung von Zugelementen an zyklischen Bauteilen
DE102011102987A1 (de) Das Taktschiebeverfahren mit Stützweitenreduzierung für Strassen- und Bahnbrücken mit Plattenbalkenquerschnitt
EP2459812B1 (fr) Élément de béton armé à armature formée d&#39;éléments de tôle en z
DE1759680A1 (de) Verfahren zum nachtraeglichen Verstaerken von Spannbeton-Deckentraegern,deren Bewehrung beschaedigt ist
DE102013100176A1 (de) Turm, insbesondere für Stromleitungen
DE2923370A1 (de) Gewoelbekonstruktion aus stahlbeton und verfahren zur errichtung derselben
CH716796A2 (de) Verfahren zum Erstellen von mit Profilen aus superelastischen Formgedächtnislegierungen verstärkten Betonbauwerken sowie Betonbauwerk mit solchen Profilen.
DE102012110184A1 (de) Schleuderbetonstütze
DE102008002899A1 (de) Bauelement mit Edelstahlträger
AT205213B (de) Verfahren zum verstärken von Fachwerks-Deckenträger
EP2733284B1 (fr) Station de radio
DE102010040332A1 (de) Gründungselement
DE7920741U1 (de) Verbundtraeger fuer gebaeudedecken
AT8918U1 (de) Verlorene schalung aus beton
DE102017102906A1 (de) Verzweigter Transportanker
Städing et al. Application of the partial safety factor concept for the structural design of tunnels in Germany
WO2010025702A1 (fr) Élément de construction
DE1181386B (de) Verfahren zum Herstellen von Daechern und nach dem Verfahren hergestellte Dachkonstruktion

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BROENNIMANN, ROLF

Inventor name: WEBER, BENEDIKT

Inventor name: MICHELS, JULIEN

Inventor name: SHAHVERDI, MOSLEM

Inventor name: LEINENBACH, CHRISTIAN

Inventor name: MOTAVALLI, MASOUD

Inventor name: CZADERSKI, CHRISTOPH

Inventor name: LEE, WOOKIJN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210419

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/10 20060101ALI20231221BHEP

Ipc: C22C 38/14 20060101ALI20231221BHEP

Ipc: E04C 5/08 20060101ALI20231221BHEP

Ipc: E04G 23/02 20060101ALI20231221BHEP

Ipc: E04G 21/12 20060101ALI20231221BHEP

Ipc: C22C 38/00 20060101ALI20231221BHEP

Ipc: B23P 6/04 20060101ALI20231221BHEP

Ipc: E04C 5/01 20060101AFI20231221BHEP

INTG Intention to grant announced

Effective date: 20240119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015016878

Country of ref document: DE

Owner name: RE- FER AG, CH

Free format text: FORMER OWNERS: EIDGENOESSISCHE MATERIALPRUEFUNGS- UND FORSCHUNGSANSTALT EMPA, DUEBENDORF, CH; RE-FER AG, WOLLERAU, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502015016878

Country of ref document: DE

Owner name: EIDGENOESSISCHE MATERIALPRUEFUNGS- UND FORSCHU, CH

Free format text: FORMER OWNERS: EIDGENOESSISCHE MATERIALPRUEFUNGS- UND FORSCHUNGSANSTALT EMPA, DUEBENDORF, CH; RE-FER AG, WOLLERAU, CH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015016878

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EIDGENOESSISCHE MATERIALPRUEFUNGS- UNDFORSCHUNGSANSTALT EMPA

Owner name: RE-FER AG