EP3203155A1 - Device and method for hydraulic balancing - Google Patents

Device and method for hydraulic balancing Download PDF

Info

Publication number
EP3203155A1
EP3203155A1 EP17000080.6A EP17000080A EP3203155A1 EP 3203155 A1 EP3203155 A1 EP 3203155A1 EP 17000080 A EP17000080 A EP 17000080A EP 3203155 A1 EP3203155 A1 EP 3203155A1
Authority
EP
European Patent Office
Prior art keywords
heating
flow
return
radiator
mass flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17000080.6A
Other languages
German (de)
French (fr)
Inventor
Erwin Hallabrin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57838169&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3203155(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Publication of EP3203155A1 publication Critical patent/EP3203155A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1015Arrangement or mounting of control or safety devices for water heating systems for central heating using a valve or valves
    • F24D19/1018Radiator valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1048Counting of energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/044Flow sensors

Definitions

  • the invention relates to a device and a method for hydraulic balancing of radiators or heating circuits of surface heating of a hot water heating system.
  • each room of the building is supplied with the previously calculated amount of heat through the radiator installed there or the surface heating installed there. If such a hydraulic balancing is not carried out, then those radiators or heating circuits, which are closer to the pump of the heating system, heated more than the more distant radiator or heating circuits. This allows the radiators or heating circuits in the more distant rooms only bad rules. It can also happen that these rooms can not be supplied with sufficient heat at all.
  • the return temperature is relatively high, since the return of the entire heating system consists primarily of the return water of the first radiator. Too hot a return can cause the pump or burner of the heating system to be switched off prematurely.
  • Hydraulic balancing has hitherto been carried out primarily by presetting thermostatic valves to restrict the flow to the radiators or to the heating circuits. Hydraulic balancing can also be achieved via return flow control valves or with the aid of pressure-controlled flow pumps.
  • the present invention is therefore based on the object to provide a way with which a hydraulic balance of a heating system in a simpler and more verifiable verifiable manner than before can be made.
  • the object is achieved by a device for hydraulic balancing of radiators or heating circuits of surface heating of a hot water heating system with a mass flow sensor which can be installed in the flow or in the return of the radiator or heating circuit.
  • the mass flow of each radiator can be measured exactly and adjusted to the desired value either on the thermostatic valves or on the return throttles of the radiators or heating circuits. Working with manufacturer diagrams can be omitted. In addition, a control of the mass flow of each radiator or heating circuit is also possible at any later time.
  • the total mass flow of the heating system is reduced.
  • the heating pumps can run at lower power. As a result, electrical energy for operating the heating system can be saved.
  • the mass flow sensor may preferably have a flow sensor which can be installed in the flow or return, the measurement signals of which are provided by a flow sensor can be read externally connected to the device evaluation unit and can be converted into a mass flow.
  • Flow sensors are known in different configurations. Frequently used, for example, ultrasonic flow sensors, differential pressure sensors or magnetic-inductive flow sensors.
  • the latter category includes turbine wheel flow sensors, which may preferably be used in the device according to the invention. In these sensors, the rotational speed of the turbine wheel can be detected contactlessly via a magnetic coupling or an induction coil from the evaluation unit.
  • the non-contact readout makes it possible to dispense with mechanical connections to the outside. There are thus no leakage problems on the device.
  • the rotational speed of the turbine wheel of each of the devices can be converted into a mass flow.
  • the speed of the turbine wheel behaves proportionally to the flow velocity, whereby the flow rate can be determined.
  • the mass flow is the product of the flow rate and the density of the heating fluid, d. H. usually from water.
  • the device also has a temperature sensor.
  • the return temperature can be detected with this temperature sensor.
  • the mass flow of the radiator or heating circuit can also be adjusted to influence the return temperature.
  • the device is designed in the form of a pipe piece, in which the mass flow sensor is installed.
  • the pipe section can be easily installed in the flow or return of a radiator or heating circuit. It is particularly advantageous if a turbine wheel flow sensor is provided and the turbine wheel is arranged in a central portion of the pipe section, which has a smaller inner diameter than the subsequent outer sections. By taking advantage of the Venturi principle, the turbine wheel rotates quickly, even at low flow rates, ensuring sufficient measuring accuracy.
  • the device may preferably be installed between a radiator or heating circuit and a return throttle. During the reading of the mass flow, the mass flow can then be set to the desired value parallel to the return throttle.
  • the invention also relates to a method for hydraulic balancing of the radiator and / or heating circuits and surface heating of a hot water heating system, which is characterized in that in the flow or return of each radiator and / or heating circuit, a device according to the invention is installed and the flow resistance of each radiator and / or heating circuit is set such that the mass flow measured with the devices corresponds to the desired heating power of the respective radiator or heating circuit.
  • the flow resistances can be adjusted either by presettable thermostatic valves in the flow and / or by means of return throttles. If the devices are installed in the return, there is the advantage that the measurement of the mass flow and its regulation by the return throttle take place directly adjacent to each other.
  • the flow resistances are additionally set in such a way that the return temperatures of all radiators and / or heating circuits are in the condensation temperature range of a burner of the heating system. If a burner is operated in the condensation temperature range, additional energy savings can be achieved.
  • the device according to the invention and the inventive method is used to simplify the hydraulic balancing a heating system, in addition, a much higher precision than with manufacturer diagrams is achieved.
  • the devices according to the invention can also be retrofitted at any time to existing radiators and / or heating circuits of a heating system.
  • a radiator 10 is shown with a thermostatic valve 11 in a flow 12. About the flow 12 of the radiator 10 is heated by a burner, not shown here, a heating system. This water flows through the radiator 10 and leaves it on a return line 13 again.
  • a device 14 according to the invention for hydraulic balancing is arranged, which is screwed directly into the heating element 10, such as Fig. 2 clarified.
  • a return throttle 15 is provided, with the help of which the water flow through the radiator 10 is adjustable. With the device 14, however, the flow and thus the mass flow of the radiator 10 can be measured.
  • the device 14 allows checking the setting of the flow by means of the return throttle 15th
  • the device 14 is in Fig. 2 shown in an enlarged view in longitudinal section. It consists essentially of a pipe section 16 which is screwed by means of a thread 27 in the radiator 10. Inside the pipe section 16, a turbine 17 is arranged, which is rotated by the return water in rotation. The effluent from the pipe section 16 water enters the return throttle 15, which is screwed into the pipe section 16. At the output of the return throttle 15, a return pipe, not shown here, can be screwed into a threaded bushing 18 provided for this purpose. For detecting the rotational speed of the turbine 17, an evaluation unit 19 is arranged on the outside of the pipe section 16. This determines the speed of the turbine 17 contactless.
  • the turbine 17 may be equipped with magnets and be provided in the evaluation unit 19, a Hall sensor, which converts the speed of the turbine 17 into a pulse signal.
  • the turbine 17 may be equipped with electrically conductive elements or made of an electrically conductive material.
  • the evaluation unit 19 can then integrate an induction coil, which also generates from the rotational speed of the turbine 17, a pulse signal having a frequency which depends on the rotational speed of the turbine 17. From the speed can be calculated with a known cross-section of the pipe section 16, the volume flow of the radiator 10 and from the mass flow. These calculations can also be made by the evaluation unit 19.
  • the required mass flow from the heat demand calculations for the room in which the radiator 10 is placed known. If the evaluation unit 19 displays a value deviating from the desired mass flow, the flow resistance of the heating element 10 can be increased or reduced via the return throttle 15 until the mass flow which is permanently measured by the evaluation unit 19 reaches the desired value.
  • the evaluation unit 19 can be removed from the pipe section 16 and used to determine the mass flow of similar devices 14 to other radiators 10 or heating circuits of surface heating.
  • the evaluation unit 19 is shown here with a power cable 20 for power supply. However, it could also be a battery powered unit. A mains connection to their operation would then not be required.
  • Fig. 3 shows an alternative embodiment of a device 14 'for hydraulic adjustment of the radiator 10.
  • the device 14' consists of a pipe section 16 ', which by means of a thread 27' in the radiator 10 can be screwed.
  • the pipe section 16 ' has a flow channel 21 with a substantially smaller diameter than the pipe section 16.
  • the inside of the Flow channel 21 arranged turbine 17 ' thus rotates much faster than the turbine 17.
  • the device 14' is therefore particularly suitable for radiators with relatively slowly flowing water. Due to the narrowing of the cross section in the passage 21, the measuring sensitivity of the device 14 'is significantly increased.
  • An evaluation unit 19 'for detecting the rotational speed of the turbine 17' and for calculating the mass flow can also be attached to the device 14 '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

Eine Vorrichtung (14) und ein Verfahren zum hydraulischen Abgleich von Heizkörpern oder Heizkreisen von Flächenheizungen einer Warmwasser-Heizanlage mit einem Massenstromsensor, der in den Vorlauf (12) oder in den Rücklauf (13) der Heizkörper (10) oder Heizkreise eingebaut wirdA device (14) and a method for hydraulic balancing of radiators or heating circuits of surface heating of a hot water heating system with a mass flow sensor, which is installed in the flow (12) or in the return (13) of the radiator (10) or heating circuits

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum hydraulischen Abgleich von Heizkörpern oder Heizkreisen von Flächenheizungen einer Warmwasser-Heizanlage.The invention relates to a device and a method for hydraulic balancing of radiators or heating circuits of surface heating of a hot water heating system.

Mit einem hydraulischen Abgleich einer Heizanlage soll erreicht werden, dass bei einer gegebenen Vorlauftemperatur der Heizanlage jeder Raum des Gebäudes mit der zuvor errechneten Wärmemenge über den dort installierten Heizkörper oder die dort installierte Flächenheizung versorgt wird. Wenn ein solcher hydraulischer Abgleich nicht durchgeführt wird, so werden diejenigen Heizkörper oder Heizkreise, die sich dichter an der Pumpe der Heizungsanlage befinden, stärker erwärmt als die weiter entfernt liegenden Heizkörper oder Heizkreise. Damit lassen sich die Heizkörper oder Heizkreise in den weiter entfernt liegenden Räumen nur schlecht regeln. Es kann auch dazu kommen, dass diese Räume überhaupt nicht mit ausreichender Wärme versorgt werden können.With a hydraulic balancing of a heating system is to be achieved that at a given flow temperature of the heating system, each room of the building is supplied with the previously calculated amount of heat through the radiator installed there or the surface heating installed there. If such a hydraulic balancing is not carried out, then those radiators or heating circuits, which are closer to the pump of the heating system, heated more than the more distant radiator or heating circuits. This allows the radiators or heating circuits in the more distant rooms only bad rules. It can also happen that these rooms can not be supplied with sufficient heat at all.

Außerdem ist die Rücklauftemperatur relativ hoch, da der Rücklauf der gesamten Heizungsanlage in erster Linie aus dem Rücklaufwasser des ersten Heizkörpers besteht. Ein zu heißer Rücklauf kann dazu führen, dass die Pumpe oder der Brenner der Heizungsanlage vorzeitig abgeschaltet werden.In addition, the return temperature is relatively high, since the return of the entire heating system consists primarily of the return water of the first radiator. Too hot a return can cause the pump or burner of the heating system to be switched off prematurely.

Ein hydraulischer Abgleich wird bisher in erster Linie durch eine Voreinstellung von Thermostatventilen zur Durchflussbegrenzung an den Heizkörpern oder an den Heizkreisen vorgenommen. Der hydraulische Abgleich lässt sich auch über Rücklaufdrosselventile oder mit Hilfe von druckgeregelten Vorlaufpumpen erzielen.Hydraulic balancing has hitherto been carried out primarily by presetting thermostatic valves to restrict the flow to the radiators or to the heating circuits. Hydraulic balancing can also be achieved via return flow control valves or with the aid of pressure-controlled flow pumps.

Diese bekannten Verfahren haben jedoch den Nachteil, dass die Einstellungen an den Heizkörpern oder Heizkreisen entsprechend der gewünschten Wärmemenge für den zu heizenden Raum umständlich aus Diagrammen der Hersteller der Ventile oder Pumpen entnommen werden müssen. Außerdem ist mit den bekannten Verfahren eine Überprüfung der tatsächlichen Durchflussverhältnisse an den einzelnen Heizkörpern oder Heizkreisen nicht möglich.However, these known methods have the disadvantage that the settings on the radiators or heating circuits according to the desired amount of heat for the room to be heated awkward to be taken from diagrams of the manufacturer of the valves or pumps. In addition, a check of the actual flow conditions of the individual radiators or heating circuits is not possible with the known methods.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Möglichkeit zu schaffen, mit der sich ein hydraulischer Abgleich einer Heizungsanlage auf einfachere und besser überprüfbare Weise als bisher vorgenommen werden kann.The present invention is therefore based on the object to provide a way with which a hydraulic balance of a heating system in a simpler and more verifiable verifiable manner than before can be made.

Die Aufgabe wird gelöst durch eine Vorrichtung zum hydraulischen Abgleich von Heizkörpern oder Heizkreisen von Flächenheizungen einer Warmwasser-Heizanlage mit einem Massenstromsensor, der in den Vorlauf oder in den Rücklauf der Heizkörper oder Heizkreis einbaubar ist.The object is achieved by a device for hydraulic balancing of radiators or heating circuits of surface heating of a hot water heating system with a mass flow sensor which can be installed in the flow or in the return of the radiator or heating circuit.

Durch den Massenstromsensor kann der Massenstrom jedes Heizkörpers exakt gemessen und entweder an den Thermostatventilen oder an den Rücklaufdrosseln der Heizkörper oder Heizkreise exakt auf den gewünschten Wert eingestellt werden. Das Arbeiten mit Herstellerdiagrammen kann entfallen. Außerdem ist auch nachträglich jederzeit eine Kontrolle des Massenstroms jedes Heizkörpers oder Heizkreises möglich. Der erforderliche Massenstrom dm/dt rechnet sich dabei nach folgender Formel: dm dt = Q c ΔT ,

Figure imgb0001
wobei Q die gewünschte Wärmeenergie, c die spezifische Wärmekapazität und ΔT die Temperaturdifferenz zwischen Vor- und Rücklauf sind.Due to the mass flow sensor, the mass flow of each radiator can be measured exactly and adjusted to the desired value either on the thermostatic valves or on the return throttles of the radiators or heating circuits. Working with manufacturer diagrams can be omitted. In addition, a control of the mass flow of each radiator or heating circuit is also possible at any later time. The required mass flow dm / dt is calculated according to the following formula: dm dt = Q c .DELTA.T .
Figure imgb0001
where Q is the desired heat energy, c the specific heat capacity and ΔT the temperature difference between flow and return.

Durch das Anpassen des korrekten Massenstroms an jedem Heizkörper oder Heizkreis wird der Gesamtmassenstrom der Heizanlage geringer. Die Heizungspumpen können bei geringerer Leistung laufen. Dadurch lässt sich elektrische Energie zum Betrieb der Heizungsanlage einsparen.By adjusting the correct mass flow at each radiator or heating circuit, the total mass flow of the heating system is reduced. The heating pumps can run at lower power. As a result, electrical energy for operating the heating system can be saved.

Zur Messung des Massenstroms eines Heizkörpers oder Heizkreises sind verschiedene Sensoren einsetzbar. Eine Möglichkeit besteht darin, kalorimetrische Massenstromsensoren einzusetzen. Vorzugsweise kann der Massenstromsensor jedoch einen in den Vor- oder Rücklauf einbaubaren Durchflusssensor aufweisen, dessen Messsignale von einer extern an die Vorrichtung anschließbaren Auswerteeinheit auslesbar und in einen Massenstrom umrechenbar sind.Various sensors can be used to measure the mass flow of a radiator or heating circuit. One possibility is to use calorimetric mass flow sensors. However, the mass flow sensor may preferably have a flow sensor which can be installed in the flow or return, the measurement signals of which are provided by a flow sensor can be read externally connected to the device evaluation unit and can be converted into a mass flow.

Durchflusssensoren sind in unterschiedlichen Ausgestaltungen bekannt. Häufig eingesetzt werden beispielsweise Ultraschalldurchflusssensoren, Differenzdrucksensoren oder magnetisch-induktive Durchflusssensoren. Zu der letztgenannten Kategorie gehören Turbinenrad-Durchflusssensoren, die bei der erfindungsgemäßen Vorrichtung bevorzugt eingesetzt werden können. Bei diesen Sensoren kann die Drehzahl des Turbinenrades berührungslos über eine Magnetkupplung oder eine Induktionsspule von der Auswerteeinheit erfasst werden. Durch das berührungslose Auslesen kann auf mechanische Verbindungen nach außen verzichtet werden. Es entstehen an der Vorrichtung somit keinerlei Dichtigkeitsprobleme.Flow sensors are known in different configurations. Frequently used, for example, ultrasonic flow sensors, differential pressure sensors or magnetic-inductive flow sensors. The latter category includes turbine wheel flow sensors, which may preferably be used in the device according to the invention. In these sensors, the rotational speed of the turbine wheel can be detected contactlessly via a magnetic coupling or an induction coil from the evaluation unit. The non-contact readout makes it possible to dispense with mechanical connections to the outside. There are thus no leakage problems on the device.

Bei dieser Ausgestaltung ist außerdem lediglich eine Auswerteeinheit für sämtliche Heizkörper und Heizkreise der Heizungsanlage erforderlich. Mit der Auswerteeinheit kann die Drehzahl des Turbinenrades jeder der Vorrichtungen in einen Massenstrom umgerechnet werden. Die Drehzahl des Turbinenrades verhält sich proportional zur Strömungsgeschwindigkeit, womit die Durchflussmenge bestimmbar ist. Der Massenstrom ist das Produkt aus der Durchflussmenge und der Dichte der Heizflüssigkeit, d. h. in der Regel von Wasser.In this embodiment, only one evaluation unit for all radiators and heating circuits of the heating system is also required. With the evaluation unit, the rotational speed of the turbine wheel of each of the devices can be converted into a mass flow. The speed of the turbine wheel behaves proportionally to the flow velocity, whereby the flow rate can be determined. The mass flow is the product of the flow rate and the density of the heating fluid, d. H. usually from water.

Weitere Vorteile ergeben sich, wenn die Vorrichtung außerdem einen Temperatursensor aufweist. Mit diesem Temperatursensor kann insbesondere die Rücklauftemperatur erfasst werden. Damit kann der Massenstrom des Heizkörpers oder Heizkreises auch zur Beeinflussung der Rücklauftemperatur eingestellt werden.Further advantages arise when the device also has a temperature sensor. In particular, the return temperature can be detected with this temperature sensor. Thus, the mass flow of the radiator or heating circuit can also be adjusted to influence the return temperature.

Bei einer besonders bevorzugten Ausführungsform ist die Vorrichtung in Form eines Rohrstücks ausgebildet, in das der Massenstromsensor eingebaut ist. Das Rohrstück lässt sich einfach in den Vor- oder Rücklauf eines Heizkörpers oder Heizkreises einbauen. Besonders vorteilhaft ist es dabei, wenn ein Turbinenrad-Durchflusssensor vorgesehen ist und das Turbinenrad in einem mittleren Abschnitt des Rohrstücks angeordnet ist, der einen geringeren Innendurchmesser aufweist als die anschließenden äußeren Abschnitte. Unter Ausnutzung de Venturi-Prinzips dreht sich dadurch das Turbinenrad auch bei kleinem Massenstrom schnell, sodass eine ausreichende Messgenauigkeit gewährleistet ist.In a particularly preferred embodiment, the device is designed in the form of a pipe piece, in which the mass flow sensor is installed. The pipe section can be easily installed in the flow or return of a radiator or heating circuit. It is particularly advantageous if a turbine wheel flow sensor is provided and the turbine wheel is arranged in a central portion of the pipe section, which has a smaller inner diameter than the subsequent outer sections. By taking advantage of the Venturi principle, the turbine wheel rotates quickly, even at low flow rates, ensuring sufficient measuring accuracy.

Die Vorrichtung kann vorzugsweise zwischen einem Heizkörper oder Heizkreis und einer Rücklaufdrossel einbaubar sein. Während des Ablesens des Massenstroms kann dann parallel an der Rücklaufdrossel der Massenstrom auf den gewünschten Wert eingestellt werden.The device may preferably be installed between a radiator or heating circuit and a return throttle. During the reading of the mass flow, the mass flow can then be set to the desired value parallel to the return throttle.

Die Erfindung betrifft außerdem ein Verfahren zum hydraulischen Abgleich der Heizkörper und/oder Heizkreise und Flächenheizungen einer Warmwasser-Heizanlage, das dadurch gekennzeichnet ist, dass in den Vor- oder Rücklauf jedes Heizkörpers und/oder Heizkreises eine erfindungsgemäße Vorrichtung eingebaut wird und der Durchflusswiderstand jedes Heizkörpers und/oder Heizkreises derart eingestellt wird, dass der mit den Vorrichtungen gemessene Massenstrom der gewünschten Heizleistung des jeweiligen Heizkörpers oder Heizkreises entspricht. Die Durchflusswiderstände können dabei entweder mittels voreinstellbarer Thermostatventile im Vorlauf und/oder mittels Rücklaufdrosseln eingestellt werden. Sind die Vorrichtungen in den Rücklauf eingebaut, ergibt sich der Vorteil, dass die Messung des Massenstroms und seine Regulierung durch die Rücklaufdrossel direkt benachbart zueinander stattfinden.The invention also relates to a method for hydraulic balancing of the radiator and / or heating circuits and surface heating of a hot water heating system, which is characterized in that in the flow or return of each radiator and / or heating circuit, a device according to the invention is installed and the flow resistance of each radiator and / or heating circuit is set such that the mass flow measured with the devices corresponds to the desired heating power of the respective radiator or heating circuit. The flow resistances can be adjusted either by presettable thermostatic valves in the flow and / or by means of return throttles. If the devices are installed in the return, there is the advantage that the measurement of the mass flow and its regulation by the return throttle take place directly adjacent to each other.

Weitere Vorteile ergeben sich, wenn die Durchflusswiderstände zusätzlich derart eingestellt werden, dass die Rücklauftemperaturen aller Heizkörper und/oder Heizkreise im Kondensationstemperaturbereich eines Brenners der Heizungsanlage liegen. Wird ein Brenner im Kondensationstemperaturbereich betrieben, so lassen sich zusätzliche Energieeinsparungen erzielen.Further advantages result if the flow resistances are additionally set in such a way that the return temperatures of all radiators and / or heating circuits are in the condensation temperature range of a burner of the heating system. If a burner is operated in the condensation temperature range, additional energy savings can be achieved.

Insgesamt dient daher die erfindungsgemäße Vorrichtung sowie das erfindungsgemäße Verfahren dazu, den hydraulischen Abgleich einer Heizungsanlage zu vereinfachen, wobei zusätzlich eine deutlich höhere Präzision als mit Herstellerdiagrammen erreicht wird. Die erfindungsgemäßen Vorrichtungen lassen sich auch jederzeit an bestehenden Heizkörpern und/oder Heizkreisen einer Heizungsanlage nachrüsten.Overall, therefore, the device according to the invention and the inventive method is used to simplify the hydraulic balancing a heating system, in addition, a much higher precision than with manufacturer diagrams is achieved. The devices according to the invention can also be retrofitted at any time to existing radiators and / or heating circuits of a heating system.

Nachfolgend werden zwei bevorzugte Ausführungsbeispiele einer erfindungsgemäßen Vorrichtung anhand der Zeichnung näher beschrieben.Hereinafter, two preferred embodiments of a device according to the invention will be described in more detail with reference to the drawing.

Es zeigen:

Fig. 1
eine Ansicht eines Heizkörpers mit einer erfindungsgemäßen Vorrichtung;
Fig. 2
eine vergrößerte Darstellung einer ersten Ausführungsform einer erfindungsgemäßen Vorrichtung im Längsschnitt;
Fig. 3
eine der Fig. 2 entsprechende vergrößerte Darstellung einer zweiten Ausführungsform einer erfindungsgemäßen Vorrichtung im Längsschnitt.
Show it:
Fig. 1
a view of a radiator with a device according to the invention;
Fig. 2
an enlarged view of a first embodiment of a device according to the invention in longitudinal section;
Fig. 3
one of the Fig. 2 corresponding enlarged view of a second embodiment of a device according to the invention in longitudinal section.

In Fig. 1 ist ein Heizkörper 10 mit einem Thermostatventil 11 in einem Vorlauf 12 dargestellt. Über den Vorlauf 12 erhält der Heizkörper 10 von einem hier nicht dargestellten Brenner einer Heizungsanlage erwärmtes Wasser. Dieses Wasser durchströmt den Heizkörper 10 und verlässt ihn an einem Rücklauf 13 wieder. Im Bereich des Rücklaufs 13 ist eine erfindungsgemäße Vorrichtung 14 zum hydraulischen Abgleich angeordnet, die direkt in den Heizkörper 10 eingeschraubt ist, wie Fig. 2 verdeutlicht. Der Vorrichtung 14 nachgeordnet ist eine Rücklaufdrossel 15 vorgesehen, mit deren Hilfe der Wasserdurchfluss durch den Heizkörper 10 einstellbar ist. Mit der Vorrichtung 14 dagegen kann der Durchfluss und damit der Massenstrom des Heizkörpers 10 gemessen werden. Damit ermöglicht die Vorrichtung 14 ein Überprüfen der Einstellung des Durchflusses mit Hilfe der Rücklaufdrossel 15.In Fig. 1 a radiator 10 is shown with a thermostatic valve 11 in a flow 12. About the flow 12 of the radiator 10 is heated by a burner, not shown here, a heating system. This water flows through the radiator 10 and leaves it on a return line 13 again. In the region of the return line 13, a device 14 according to the invention for hydraulic balancing is arranged, which is screwed directly into the heating element 10, such as Fig. 2 clarified. Downstream of the device 14, a return throttle 15 is provided, with the help of which the water flow through the radiator 10 is adjustable. With the device 14, however, the flow and thus the mass flow of the radiator 10 can be measured. Thus, the device 14 allows checking the setting of the flow by means of the return throttle 15th

Die Vorrichtung 14 ist in Fig. 2 in vergrößerter Darstellung im Längsschnitt dargestellt. Sie besteht im Wesentlichen aus einem Rohrstück 16, das mittels eines Gewindes 27 in den Heizkörper 10 einschraubbar ist. Im Inneren des Rohrstücks 16 ist eine Turbine 17 angeordnet, die durch das Rücklaufwasser in Drehung versetzt wird. Das aus dem Rohrstück 16 ausströmende Wasser gelangt in die Rücklaufdrossel 15, die in das Rohrstück 16 eingeschraubt ist. Am Ausgang der Rücklaufdrossel 15 kann ein hier nicht dargestelltes Rücklaufrohr in eine dafür vorgesehene Gewindebuchse 18 eingeschraubt werden. Zur Erfassung der Drehzahl der Turbine 17 ist auf der Außenseite des Rohrstücks 16 eine Auswerteeinheit 19 angeordnet. Diese bestimmt die Drehzahl der Turbine 17 berührungslos. Dazu kann beispielsweise die Turbine 17 mit Magneten bestückt sein und in der Auswerteeinheit 19 ein Hall-Sensor vorgesehen sein, der die Drehzahl der Turbine 17 in ein Pulssignal umwandelt. Alternativ kann die Turbine 17 mit elektrisch leitfähigen Elementen bestückt oder aus einem elektrisch leitfähigen Material gefertigt sein. In der Auswerteeinheit 19 lässt sich dann eine Induktionsspule integrieren, die ebenfalls aus der Drehzahl der Turbine 17 ein Pulssignal mit einer Frequenz, die von der Drehzahl der Turbine 17 abhängt, generiert. Aus der Drehzahl lässt sich bei bekanntem Querschnitt des Rohrstücks 16 der Volumenstrom des Heizkörpers 10 und daraus der Massenstrom berechnen. Diese Berechnungen können ebenfalls von der Auswerteeinheit 19 vorgenommen werden.The device 14 is in Fig. 2 shown in an enlarged view in longitudinal section. It consists essentially of a pipe section 16 which is screwed by means of a thread 27 in the radiator 10. Inside the pipe section 16, a turbine 17 is arranged, which is rotated by the return water in rotation. The effluent from the pipe section 16 water enters the return throttle 15, which is screwed into the pipe section 16. At the output of the return throttle 15, a return pipe, not shown here, can be screwed into a threaded bushing 18 provided for this purpose. For detecting the rotational speed of the turbine 17, an evaluation unit 19 is arranged on the outside of the pipe section 16. This determines the speed of the turbine 17 contactless. For this example, the turbine 17 may be equipped with magnets and be provided in the evaluation unit 19, a Hall sensor, which converts the speed of the turbine 17 into a pulse signal. Alternatively, the turbine 17 may be equipped with electrically conductive elements or made of an electrically conductive material. In the evaluation unit 19 can then integrate an induction coil, which also generates from the rotational speed of the turbine 17, a pulse signal having a frequency which depends on the rotational speed of the turbine 17. From the speed can be calculated with a known cross-section of the pipe section 16, the volume flow of the radiator 10 and from the mass flow. These calculations can also be made by the evaluation unit 19.

Zur Erzielung einer bestimmten Heizleistung des Heizkörpers 10 ist der dazu erforderliche Massenstrom aus den Wärmebedarfsberechnungen für den Raum, in dem der Heizkörper 10 aufgestellt ist, bekannt. Zeigt die Auswerteeinheit 19 einen von dem gewünschten Massenstrom abweichenden Wert an, so kann über die Rücklaufdrossel 15 der Durchflusswiderstand des Heizkörpers 10 erhöht oder verringert werden, bis der Massenstrom, der durch die Auswerteeinheit 19 permanent gemessen wird, den gewünschten Wert erreicht.To achieve a specific heating power of the radiator 10, the required mass flow from the heat demand calculations for the room in which the radiator 10 is placed, known. If the evaluation unit 19 displays a value deviating from the desired mass flow, the flow resistance of the heating element 10 can be increased or reduced via the return throttle 15 until the mass flow which is permanently measured by the evaluation unit 19 reaches the desired value.

Die Auswerteeinheit 19 kann vom Rohrstück 16 abgenommen und zur Bestimmung des Massenstroms gleichartiger Vorrichtungen 14 an weiteren Heizkörpern 10 oder Heizkreisen von Flächenheizungen eingesetzt werden. Die Auswerteeinheit 19 ist hier mit einem Stromkabel 20 zur Spannungsversorgung dargestellt. Sie könnte jedoch auch eine batteriebetriebene Einheit sein. Ein Netzanschluss zu ihrem Betrieb wäre dann nicht erforderlich.The evaluation unit 19 can be removed from the pipe section 16 and used to determine the mass flow of similar devices 14 to other radiators 10 or heating circuits of surface heating. The evaluation unit 19 is shown here with a power cable 20 for power supply. However, it could also be a battery powered unit. A mains connection to their operation would then not be required.

Fig. 3 zeigt eine alternative Ausgestaltung einer Vorrichtung 14' zum hydraulischen Abgleich des Heizkörpers 10. Auch die Vorrichtung 14' besteht aus einem Rohrstück 16', das mittels eines Gewindes 27' in den Heizkörper 10 einschraubbar ist. Im Gegensatz zum Rohrstück 16 weist das Rohrstück 16' jedoch einen Durchflusskanal 21 mit wesentlich geringerem Durchmesser als das Rohrstück 16 auf. Die im Inneren des Durchflusskanals 21 angeordnete Turbine 17' dreht sich dadurch deutlich schneller als die Turbine 17. Die Vorrichtung 14' eignet sich daher insbesondere für Heizkörper mit relativ langsam durchfließendem Wasser. Durch die Verengung des Querschnitts im Durchgangskanal 21 wird die Messempfindlichkeit der Vorrichtung 14' deutlich erhöht. Auch an die Vorrichtung 14' kann eine Auswerteeinheit 19' zur Erfassung der Drehzahl der Turbine 17' und zur Berechnung des Massenstroms aufgesetzt werden. Zur Einstellung des gewünschten Massenstromwertes kann der Durchflusswiderstand des Heizkörpers 10 ebenfalls wieder über eine Rücklaufdrossel, die in Fig. 3 nicht dargestellt ist, beeinflusst werden. Fig. 3 shows an alternative embodiment of a device 14 'for hydraulic adjustment of the radiator 10. Also, the device 14' consists of a pipe section 16 ', which by means of a thread 27' in the radiator 10 can be screwed. In contrast to the pipe section 16, however, the pipe section 16 'has a flow channel 21 with a substantially smaller diameter than the pipe section 16. The inside of the Flow channel 21 arranged turbine 17 'thereby rotates much faster than the turbine 17. The device 14' is therefore particularly suitable for radiators with relatively slowly flowing water. Due to the narrowing of the cross section in the passage 21, the measuring sensitivity of the device 14 'is significantly increased. An evaluation unit 19 'for detecting the rotational speed of the turbine 17' and for calculating the mass flow can also be attached to the device 14 '. To set the desired mass flow value of the flow resistance of the radiator 10 also again via a return throttle, the in Fig. 3 not shown, are influenced.

Claims (12)

Vorrichtung zum hydraulischen Abgleich von Heizkörpern oder Heizkreisen von Flächenheizungen einer Warmwasser-Heizanlage mit einem Massenstromsensor, der in den Vorlauf (12) oder in den Rücklauf (13) der Heizkörper (10) oder Heizkreise einbaubar ist.Device for the hydraulic adjustment of radiators or heating circuits of surface heating of a hot water heating system with a mass flow sensor, which is installed in the flow (12) or in the return (13) of the radiator (10) or heating circuits. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Massenstromsensor einen in den Vor- oder Rücklauf einbaubaren Durchflusssensor aufweist, dessen Messsignale von einer extern an die Vorrichtung anschließbaren Auswerteeinheit (19, 19') auslesbar und in einen Massenstrom umrechenbar sind.Apparatus according to claim 1, characterized in that the mass flow sensor has a flow sensor which can be installed in the supply or return, the measurement signals of which can be read out by an evaluation unit (19, 19 ') which can be externally connected to the device and converted into a mass flow. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Durchflusssensor ein Turbinenrad-Durchflusssensor ist.Apparatus according to claim 2, characterized in that the flow sensor is a turbine wheel flow sensor. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Drehzahl des Turbinenrades (17, 17') berührungslos über eine Magnetkupplung oder eine Induktionsspule von der Auswerteeinheit (19, 19') erfassbar ist.Apparatus according to claim 3, characterized in that the rotational speed of the turbine wheel (17, 17 ') contactlessly via a magnetic coupling or an induction coil of the evaluation unit (19, 19') can be detected. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Drehzahl des Turbinenrades (17, 17') von der Auswerteeinheit (19, 19') in einen Massenstrom umrechenbar ist.Apparatus according to claim 4, characterized in that the rotational speed of the turbine wheel (17, 17 ') of the evaluation unit (19, 19') is convertible into a mass flow. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie außerdem einen Temperatursensor aufweist.Device according to one of the preceding claims, characterized in that it also comprises a temperature sensor. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie die Form eines Rohrstücks (16, 16') aufweist, in das der Massenstromsensor eingebaut ist.Device according to one of the preceding claims, characterized in that it has the shape of a pipe section (16, 16 '), in which the mass flow sensor is installed. Vorrichtung nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass das Turbinenrad in einem mittleren Abschnitt (21) des Rohrstücks angeordnet ist, das einen geringeren Innendurchmesser aufweist als die anschließenden äußeren Abschnitte.Device according to one of claims 3 to 7, characterized in that the turbine wheel in a central portion (21) of the pipe section is arranged, which has a smaller inner diameter than the subsequent outer portions. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie zwischen einem Heizkörper (10) oder Heizkreis und einer Rücklaufdrossel (15) einbaubar ist.Device according to one of the preceding claims, characterized in that it can be installed between a radiator (10) or heating circuit and a return throttle (15). Verfahren zum hydraulischen Abgleich der Heizkörper und/oder Heizkreise von Flächenheizungen einer Warmwasser-Heizanlage, dadurch gekennzeichnet, dass in den Vor- oder Rücklauf (12, 13) jedes Heizkörpers (10) und/oder Heizkreises eine Vorrichtung (14, 14') nach einem der Ansprüche 1 bis 8 eingebaut wird und der Durchflusswiderstand jedes Heizkörpers (10) und/oder Heizkreises derart eingestellt wird, dass der mit den Vorrichtungen (14, 14') gemessene Massenstrom der gewünschten Heizleistung des jeweiligen Heizköpers (10) oder Heizkreises entspricht.Method for hydraulic balancing of radiators and / or heating circuits of surface heating of a hot water heating system, characterized in that in the flow or return (12, 13) of each radiator (10) and / or heating circuit, a device (14, 14 ') after one of claims 1 to 8 is installed and the flow resistance of each radiator (10) and / or heating circuit is set such that the measured with the devices (14, 14 ') mass flow of the desired heating power of the respective Heizköpers (10) or heating circuit corresponds. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Durchflusswiderstände mittels voreinstellbarer Thermostatventile (11) im Vorlauf (12) und/oder mittels Rücklaufdrosseln (15) eingestellt werden.A method according to claim 10, characterized in that the flow resistances by means of presettable thermostatic valves (11) in the flow (12) and / or by means of return throttles (15) can be adjusted. Verfahren nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Durchflusswiderstände zusätzlich derart eingestellt werden, dass die Rücklauftemperaturen aller Heizkörper (10) und/oder Heizkreise im Kondensationstemperaturbereich eines Brenners der Heizanlage liegen.A method according to claim 10 or 11, characterized in that the flow resistances are additionally adjusted such that the return temperatures of all radiators (10) and / or heating circuits are in the condensation temperature range of a burner of the heating system.
EP17000080.6A 2016-01-20 2017-01-17 Device and method for hydraulic balancing Withdrawn EP3203155A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016100883.4A DE102016100883C5 (en) 2016-01-20 2016-01-20 Device and method for hydraulic balancing

Publications (1)

Publication Number Publication Date
EP3203155A1 true EP3203155A1 (en) 2017-08-09

Family

ID=57838169

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17000080.6A Withdrawn EP3203155A1 (en) 2016-01-20 2017-01-17 Device and method for hydraulic balancing

Country Status (2)

Country Link
EP (1) EP3203155A1 (en)
DE (1) DE102016100883C5 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007332A1 (en) * 2021-07-29 2023-02-02 Ariston S.P.A. Method for hydraulic balancing of a space heating system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811712A (en) * 2022-04-12 2022-07-29 中国航空国际建设投资有限公司 Magnetic suspension floating valve radiator and temperature control device thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19622438A1 (en) * 1995-06-06 1996-12-12 Eltek Spa Appliance for controlling liquid flow in closed circulation system
DE19725376A1 (en) * 1996-12-21 1998-06-25 Klein Schanzlin & Becker Ag String control valve
DE202006000626U1 (en) * 2006-01-17 2006-03-23 Robert Bosch Gmbh Heating body for heating system for building has at least one heating plate with water conducting channels, feed and return lines, flowmeter arranged in feed or return line or in connection block
DE102009004319A1 (en) * 2009-01-10 2010-07-22 Henry Klein Method for performing hydraulic balance of heat exchanger of circulatory composite system in building, involves detecting return temperature at heat exchanger and controlling volumetric flow rate by heat exchanger as function of temperature
EP2775370A2 (en) * 2013-03-08 2014-09-10 PAW GmbH & Co. KG Device for heating rooms, comprising at least one central heat source and comprising the heating circuits allocated to the rooms

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1134810B (en) * 1958-02-28 1962-08-16 Meier Schenk Arthur Device for automatic regulation of the flow rate of the heat exchanger for heating systems
ATA199190A (en) 1990-10-03 1994-06-15 Vaillant Gmbh CIRCUIT HEATING SYSTEM
DE102008049619A1 (en) 2008-09-30 2010-04-01 Simplex Armaturen + Fittings Gmbh Building heating system has two heating circuits, which have heating fluid, and electronic actual flow rate comparison arithmetic unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19622438A1 (en) * 1995-06-06 1996-12-12 Eltek Spa Appliance for controlling liquid flow in closed circulation system
DE19725376A1 (en) * 1996-12-21 1998-06-25 Klein Schanzlin & Becker Ag String control valve
DE202006000626U1 (en) * 2006-01-17 2006-03-23 Robert Bosch Gmbh Heating body for heating system for building has at least one heating plate with water conducting channels, feed and return lines, flowmeter arranged in feed or return line or in connection block
DE102009004319A1 (en) * 2009-01-10 2010-07-22 Henry Klein Method for performing hydraulic balance of heat exchanger of circulatory composite system in building, involves detecting return temperature at heat exchanger and controlling volumetric flow rate by heat exchanger as function of temperature
EP2775370A2 (en) * 2013-03-08 2014-09-10 PAW GmbH & Co. KG Device for heating rooms, comprising at least one central heat source and comprising the heating circuits allocated to the rooms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023007332A1 (en) * 2021-07-29 2023-02-02 Ariston S.P.A. Method for hydraulic balancing of a space heating system

Also Published As

Publication number Publication date
DE102016100883B4 (en) 2018-10-31
DE102016100883C5 (en) 2023-10-12
DE102016100883A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
DE69730613T2 (en) MODULATING LIQUID RATE DEVICE
DE112006003655B4 (en) Balancing heat siphoning in mass flow controllers
DE102007023840B4 (en) Thermal mass flow meter and method of operation
EP3217157B1 (en) Heat cost allocator and method for measuring the heat loss of a radiator
EP2070458B1 (en) Method for detecting a flow in a coffee machine and coffee machine to implement the method
EP2502033A1 (en) Self-monitoring flow measurement assembly and method for the operation thereof
DE102015001379B4 (en) Flow Meter
DE102016100883B4 (en) Device and method for hydraulic balancing
DE102014113404A1 (en) Magnetic-inductive flowmeter with a four-coil magnet system
EP0103150A1 (en) Method of measuring the flow velocity of a fluid and device for carrying out this method
DE4404395C2 (en) Method and device for measuring the flow rate of a liquid flowing in a line
EP3406806B1 (en) Fitting assembly with connection piece and water treatment unit and method of treating drinking water
DE102007019601B3 (en) Method for calibrating fluid flow measuring system, involves arranging line for fluid in upstream flow measuring device, and fluid transferring and discharging device is arranged between two upstream flow measuring devices
DE102005061107A1 (en) Arrangement for measuring and evaluating use of energy at radiator, comprises all components accommodated in single housing
DE102009060516A1 (en) Flow meter for liquids
DE102008011117A1 (en) Device for detecting air bubbles in a fluid flowing through the heater and a method for such a device
DE4308782C2 (en) Sanitary element for screwing into a pipe
WO1992001980A1 (en) Compact filling device for adjustable quantities of water for domestic use
DE10202210A1 (en) Fluid flow sensor has pulsed heater operation is more reliable
DE102023100867A1 (en) Flow meter for distribution pipes of hot water heating systems
DE501765C (en) Device for measuring the heat consumption in heating systems
DE19947992A1 (en) Flowmeter inspection method for flowmeter build into pipeline system, involves comparing detected measurement result of flowmeter with input signal corresponding to amount of fluid flowing in pipeline system
DE202010013811U1 (en) Device for measuring the flow rate of fluid media
DE102022121362A1 (en) Backwash filter with differential pressure measurement
DE202014100537U1 (en) Flow rate measuring device for tempering of molds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180210