EP3168312B1 - Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part - Google Patents

Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part Download PDF

Info

Publication number
EP3168312B1
EP3168312B1 EP15194741.3A EP15194741A EP3168312B1 EP 3168312 B1 EP3168312 B1 EP 3168312B1 EP 15194741 A EP15194741 A EP 15194741A EP 3168312 B1 EP3168312 B1 EP 3168312B1
Authority
EP
European Patent Office
Prior art keywords
content
forging
engineering steel
steel
steel according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15194741.3A
Other languages
German (de)
French (fr)
Other versions
EP3168312A1 (en
Inventor
Ulrich Reichel
Till SCHNEIDERS
Frank van Soest
Hans-Günter KRULL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG
Original Assignee
Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PT15194741T priority Critical patent/PT3168312T/en
Application filed by Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG filed Critical Deutsche Edelstahlwerke Specialty Steel GmbH and Co KG
Priority to EP15194741.3A priority patent/EP3168312B1/en
Priority to PL15194741T priority patent/PL3168312T3/en
Priority to ES15194741T priority patent/ES2733805T3/en
Priority to DK15194741.3T priority patent/DK3168312T3/en
Priority to RU2018121935A priority patent/RU2703085C1/en
Priority to KR1020187014749A priority patent/KR102178736B1/en
Priority to CA3005378A priority patent/CA3005378C/en
Priority to JP2018521262A priority patent/JP6616501B2/en
Priority to US15/773,745 priority patent/US20180327873A1/en
Priority to CN201680069274.3A priority patent/CN108474049B/en
Priority to PCT/EP2016/077761 priority patent/WO2017085072A1/en
Publication of EP3168312A1 publication Critical patent/EP3168312A1/en
Application granted granted Critical
Publication of EP3168312B1 publication Critical patent/EP3168312B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to a structural steel with high strength and a structure which consists of at least 80 vol .-% of bainite.
  • the invention relates to a forged part, which is made of such a structural engineering steel.
  • the invention relates to a method for producing a forged component from a noble structural steel according to the invention.
  • the article states that promising materials with a bainitic structure have been found to combine good strength and toughness properties without the need for additional heat treatment resulting in tensile strengths greater than 1200 MPa, a yield strength of more than 850 MPa and an elongation at break of more than 10% at a impact energy of 27 J at room temperature.
  • the article contains a steel having (in wt%) 0.18% C, 1.53% Si, 1.47% Mn 0.007% S, 1.30% Cr , 0.07% Mo, 0.0020% B, 0.027% Nb, 0.026% Ti, 0.0080% N, balance iron and unavoidable impurities and a steel with 0.22% C, 1.47% Si, 1, 50% Mn, 0.006% S, 1.31% Cr, 0.09% Mo, 0.0025% B, 0.035% Nb, 0.026% Ti, 0.0108% N, balance iron and unavoidable impurities presented.
  • the forging is subjected to a heat treatment comprising cooling at a cooling rate Vr of more than 0.5 ° C / sec from a temperature at which the steel is austenitic to a temperature Tm of between Ms +100 ° C and Ms -20 ° C is.
  • the forging is then held for at least two minutes at a temperature which is between the temperature Tm and a temperature Tf, for which Tf> Tm -100 ° C.
  • a steel component having a substantially bainitic structure comprising at least 15% lower bainite and preferably at least 20% bainite formed between Tm and Tf.
  • the steel may also contain 0.005 - 0.03% Ti, 0.005 - 0.06% Nb, 0.0005 - 0.01% B, ⁇ 0.3% V, ⁇ 0.35% Cu, 0.005 - 0, 06% Al, 0.005-0.1% S, ⁇ 0.006% Ca, ⁇ 0.03% Te, ⁇ 0.05% Se, ⁇ 0.05% Bi, ⁇ 0.1% Pb, with the remainder of the Steel consists of iron and unavoidable impurities.
  • the contents of V and N, of S, Al, Nb, Ti and Mn, Cr, Ni, Cu, Mo are matched to each other according to special requirements.
  • the composite steel should be particularly suitable for the production of drop forged parts, especially chassis parts, with high strength and high toughness without final compensation.
  • the object of the invention to provide a steel which has a high strength, without the need to complete complex heat treatment processes, the has a low tendency to delay and is suitable as such in particular for the forging production of forgings with over its length large cross-sectional changes.
  • a forged part should be specified, which has an optimal combination of properties without complex heat treatment process.
  • the invention has achieved the object mentioned above by the structural steel specified in claim 1.
  • the solution according to the invention of the abovementioned object consists in that such a steel component is produced from a steel according to the invention.
  • the invention has finally achieved the abovementioned object in that during the production of a forging component, the working steps mentioned in claim 12 are run through.
  • a noble structural steel according to the invention has a yield strength of at least 750 MPa and a tensile strength of at least 950 MPa and at least 80% by volume bainitic structure, the remaining 20% by volume of the microstructure being retained austenite, ferrite, perlite or martensite.
  • the steel according to the invention is characterized by a high elongation at break A of at least 10%, in particular at least 12%, whereby it is shown in practice that steels according to the invention regularly achieve an elongation at break A of at least 15%.
  • the engineering structural steel consists of (in% by weight) up to 0.25% C, up to 1.5% Si, in particular up to 1% Si or up to 0.45% Si, 0.20-2, 00% Mn, up to 4.00% Cr, 0.7-3.0% Mo, 0.004-0.020% N, up to 0.40% S, 0.001-0.035% Al, 0.0005-0.0025% B, up to 0.015% Nb, up to 0.01% Ti, up to 0.50% V, up to 1.5% Ni, up to 2.0% Cu and balance iron and unavoidable impurities, the Al Content% Al, the Nb content% Nb, the Ti content% Ti, the V content% V and the N content% N of the noble structural steel each satisfy the following condition: % ⁇ al / 27 + % ⁇ Nb / 45 + % ⁇ Ti / 48 + % ⁇ V / 25 > % ⁇ N / 3.75
  • the unavoidable impurities due to production include all elements which are present in terms of alloying inefficiencies with regard to the properties of interest here and which enter the steel on the basis of the respectively selected melting route or the respective selected starting material (scrap).
  • the unavoidable impurities also include levels of P of up to 0.0035% by weight.
  • a steel according to the invention and the forging components produced therefrom are distinguished by a particularly uniform distribution of properties, even if locally greatly differing cooling conditions prevail as a result of changing component dimensions when cooling from forging heat through the forged part volume.
  • This insensitivity to the cooling conditions is achieved by the inventive structural steel a homogeneous, largely exclusively bainitic Structure with low variance of hardness possesses. At the same time, this homogeneous microstructure contains low residual stresses, which has a positive effect on the distortion behavior.
  • steel according to the invention is particularly suitable for the production of forged components in which sections of very different volumes and diameters abut one another.
  • forgings for whose forging technology production of the steel according to the invention is particularly suitable, are crankshafts, connecting rods and the like, which are intended in particular for internal combustion engines.
  • steel parts according to the invention in the area of the undercarriage and the suspension can be manufactured reliably with very different cross-sections without much subsequent reworking by grinding while maintaining the predetermined strength properties.
  • a particularly wide window can be used for bainitizing a noble structural steel according to the invention if the engineering steel according to the invention is continuously cooled from forging heat.
  • the alloy of the structural steel according to the invention is chosen so that in the course of cooling do not affect its properties affecting amounts of martensite or ferrite or perlite in the structure.
  • the structural steel according to the invention is thus characterized by having a predominantly, ie at least 80% by volume, bainic structure, wherein the content of non-bainitic structural constituents in steels according to the invention is typically minimized to such an extent that the steel according to the invention is completely complete in the technical sense possesses bainitic structure.
  • the noble steel steel according to the invention largely independent of the cooling rate in bainite an almost constant hardness.
  • the constant hardness is a consequence of the almost complete transformation of the former austenite into bainite, preferably into a bainitic transformation stage.
  • a noble structural steel according to the invention has good elongation and toughness properties despite its maximized strength.
  • the low C content also contributes to the acceleration of the bainite transformation in a steel according to the invention, so that the formation of undesired structural constituents is avoided.
  • a certain amount of carbon in the engineering steel according to the invention can also contribute to the strength.
  • a content of at least 0.09 wt .-% C is provided in the steel.
  • An optimized effect of the presence of C in the steel according to the invention is thus achieved by setting the C content to 0.09-0.25% by weight.
  • the Si content of a steel according to the invention is limited to 1.5% by weight, in particular 1% by weight or 0.75% by weight, in order to allow the bainite transformation to proceed as early as possible. In order to achieve this effect particularly reliably, the Si content can also be limited to at most 0.45 wt .-%.
  • Mo is present in the noble structural steel according to the invention in contents of 0.6-3.0% by weight, in order to delay the transformation of the microstructure into ferrite or perlite. This effect occurs in particular when at least 0.7 wt .-%, in particular more than 0.70 wt .-% Mo, are present in the steel. At contents of more than 3.0% by weight, no economically viable further increase occurs in the steel according to the invention the positive effect of Mo more. In addition, above 3.0 wt% Mo, there is a risk of forming a molybdenum-rich carbide phase which may adversely affect the toughness properties. Optimum effects of Mo in the steel of the present invention can be expected when the Mo content is at least 0.7 wt%. Mo contents of not more than 2.0% by weight have proved to be particularly effective.
  • Manganese is present at levels of 0.20-2.00% by weight in the steel of the present invention to adjust the tensile strength and yield strength.
  • a minimum content of 0.20% by weight of Mn is required in order to increase the strength. If this effect is to be achieved particularly reliably, then an Mn content of at least 0.35 wt .-% can be provided. Too high Mn contents lead to the delay of the bainite transformation and thus to a predominantly martensitic transformation. Therefore, the Mn content is limited to at most 2.00 wt%, especially 1.5 wt%. Negative influences of the presence of Mn can be avoided particularly reliably by limiting the Mn content in the steel according to the invention to a maximum of 1.1% by weight.
  • the sulfur content of a steel according to the invention can be up to 0.4 wt .-%, in particular max. 0.1% by weight or max. 0.05 wt .-% to assist the machinability of the steel.
  • the fine-tuning with regard to the mechanical properties and the microstructure of a structural steel according to the invention is carried out according to the inventive alloy concept via a combined microalloying of the elements boron in contents of 0.0005-0.0025 wt.%, Nitrogen in contents of 0.004-0.020 % By weight, in particular at least 0.006% by weight of N or up to 0.0150% by weight of N, aluminum in contents of 0.001-0.035% by weight and niobium in contents of up to 0.015% by weight, titanium at levels of up to 0.01% by weight and vanadium at levels of up to 0.10% by weight.
  • the contents% Al,% Nb,% Ti,% V and% N of Al, Nb, Ti, V and N are on the condition % ⁇ al / 27 + % ⁇ Nb / 45 + % ⁇ Ti / 48 + % ⁇ V / 25 > % ⁇ N / 3.75 linked together so that the nitrogen contained in the structural steel over the respective existing contents of Al and the addition of necessary additionally added levels of Nb, Ti and V is fully bonded and boron can thus delay conversion.
  • the setting of N according to the invention makes it possible for boron to become effective as a dissolved element in the matrix and to suppress the formation of ferrite and / or perlite.
  • the micro-alloying elements V, Ti, Nb on the one hand and Al on the other hand may be present in each case in combination with one or more elements of the group "Al, V, Ti, Nb" or alone in amounts above said minimum contents.
  • contents of Cr of up to 4.00 wt .-%, in particular up to 3 wt .-% or up to 2.5 wt .-%, contribute to the hardenability and corrosion resistance of the steel according to the invention.
  • at least 0.5% by weight or at least 0.8% by weight of Cr may be provided for this purpose.
  • levels of Ni of up to 1.5 wt .-% may also contribute to the hardenability of the steel.
  • a positive effect of the optional presence of copper in the alloy of a structural steel according to the invention consists in the formation of finest Austenitfilmen and the associated significant increase in the toughness level. This effect can be achieved by providing at least 0.3% by weight of Cu, in particular more than 0.3% by weight of Cu, in the structural steel according to the invention. By limiting the Cu content to at most 0.9 wt%, an optimized positive effect of the copper content can be obtained.
  • steel according to the invention is heated to thermal temperatures of at least 100.degree. C. above the respective Ac.sub.3 temperature, in particular more than 900.degree. C., then heat-deformed and finally regulated or uncontrolled to quiescent or agitated air to a temperature cooled to less than 200 ° C, especially at room temperature, so it turns out at an extremely wide range the cooling rate after the transformation a uniform bainitic structure.
  • the Ac3 temperature of the steel may be determined in a manner known per se based on its composition.
  • the upper limit of the range of the heat temperature is typically 1300 ° C, especially 1250 ° C or 1200 ° C.
  • the t8 / 5 time can be used here, ie the time within which each thermoformed part cools from 800 ° C to 500 ° C. This t8 / 5 time should be at 10 - 1000 s in the cooling of manufactured from inventive steel components.
  • the specific cooling time selected should be selected as a function of the respective heat temperature.
  • the influence of the heat temperature can be calculated using the Fig. 2 enclosed ZTU diagram is reproduced, in which for the heat temperatures 900 ° C (solid line), 1100 ° C (dashed line) and 1300 ° C (dotted line) the respective position of the respective bainite over the cooling time is shown.
  • the heat temperatures 900 ° C (solid line), 1100 ° C (dashed line) and 1300 ° C (dotted line) the respective position of the respective bainite over the cooling time is shown.
  • the alloying concept according to the invention thus permits high thermoforming temperatures of more than 1150 ° C., as a result of which the forming forces during hot forming can be reduced without undesired grain growth occurring.
  • a further adjustment of the mechanical properties, in particular the strength and toughness, of the hot-formed according to the invention steel, in particular forged components can by means of a tempering treatment be carried out in which the respective part over a duration of 0.5 - 2 h in the temperature range of 180 - 375 ° C is maintained.
  • tensile strengths of at least 950 MPa, a yield strength of at least 750 MPa, and an elongation at break A of at least 15% can be reliably determined in the steel according to the invention, with it being found in practice that even higher elongation values A of at least 17% are regularly achieved become.
  • This combination of properties in forged steel according to the invention occur in particular when they have been produced in the manner according to the invention.
  • the semi-finished products are heated to a thermal temperature Tw for forging deformation, then thermoformed in a conventional manner by swaging to forgings and then cooled in air to room temperature. For some of the obtained forgings a tempering treatment was then carried out.
  • the thermal temperatures Tw used in the examples, the t8 / 5 time required for the passage of the critical temperature range of 800 - 500 ° C, respectively, are the temperature and duration of the t8 / 5 time Tempering treatment, if one has been carried out, as well as the bainite content in the structure, the tensile strength Rm, the yield strength Re, the elongation A and the impact energy W of the forging obtained after forging indicated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Steel (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)

Description

Die Erfindung betrifft einen Edelbaustahl mit hoher Festigkeit und einem Gefüge, das zu mindestens 80 Vol.-% aus Bainit besteht.The invention relates to a structural steel with high strength and a structure which consists of at least 80 vol .-% of bainite.

Des Weiteren betrifft die Erfindung ein Schmiedeteil, das aus einem solchen Edelbaustahl hergestellt ist.Furthermore, the invention relates to a forged part, which is made of such a structural engineering steel.

Schließlich betrifft die Erfindung ein Verfahren zur Herstellung eines Schmiedebauteils aus einem erfindungsgemäßen Edelbaustahl.Finally, the invention relates to a method for producing a forged component from a noble structural steel according to the invention.

Wenn nachfolgend "%"-Angaben zu Legierungen oder Stahlzusammensetzungen gemacht werden, so beziehen diese sich jeweils auf das Gewicht, soweit nichts ausdrücklich anderes angegeben ist.If "%" information is given below on alloys or steel compositions, these are in each case based on the weight, unless expressly stated otherwise.

Sämtlich der im vorliegenden Text angegebenen mechanischen Eigenschaften des erfindungsgemäßen Stahls und der gegebenenfalls zum Vergleich angeführten Stähle sind, soweit nicht anders angegeben, nach DIN EN ISO 6892-1 bestimmt worden.All of the mechanical properties of the steel according to the invention and of the steels which may be mentioned for comparison have been determined according to DIN EN ISO 6892-1, unless stated otherwise.

Wie von Dipl.-Ing. Christoph Keul et al. im Artikel "Entwicklung eines hochfesten duktilen bainitischen (HDB) Stahls für hochbeanspruchte Schmiedebauteile ", erschienen im Schmiede-Journal, Ausgabe September 2010, herausgegeben vom Industrieverband Massivumformung e.V., berichtet, besteht speziell in der Schmiedeindustrie die Forderung nach Stahlwerkstoffkonzepten, die die Möglichkeit bieten, eine hohe Festigkeit und Zähigkeit bei gleichzeitig verkürzter Prozesskette ihrer Herstellung zu realisieren. Weiter heißt es in dem Artikel, dass sich dazu als vielversprechend Werkstoffe mit einem bainitischen Gefüge herausgestellt haben, bei denen gute Festigkeits- und Zähigkeitseigenschaften ohne die Notwendigkeit einer zusätzlichen Wärmebehandlung vereint werden, die durch Zugfestigkeiten von mehr als 1200 MPa, eine Streckgrenze von mehr 850 MPa und eine Bruchdehnung von mehr 10 % bei einer Kerbschlagarbeit von 27 J bei Raumtemperatur gekennzeichnet sind. Als Beispiel für Legierungskonzepte, die solche Eigenschaften bieten, werden in dem Artikel ein Stahl mit (in Gew.-%) 0,18 % C, 1,53 % Si, 1,47 % Mn 0,007 % S, 1,30 % Cr, 0,07 % Mo, 0,0020 % B, 0,027 % Nb, 0,026 % Ti, 0,0080 % N, Rest Eisen und unvermeidbare Verunreinigungen sowie ein Stahl mit 0,22 % C, 1,47 % Si, 1,50 % Mn, 0,006 % S, 1,31 % Cr, 0,09 % Mo, 0,0025 % B, 0,035 % Nb, 0,026 % Ti, 0,0108 % N, Rest Eisen und unvermeidbare Verunreinigungen vorgestellt.As described by Dipl.-Ing. Christoph Keul et al. in the article "Development of a high strength ductile bainitic (HDB) steel for heavy duty forgings ", published in the Schmiede-Journal, issue September 2010, published by Industrieverband Massivumformung eV, reports that there is a demand in the forging industry for steel material concepts that offer the possibility of high strength and to realize toughness with a simultaneously shortened process chain of their production. Further, the article states that promising materials with a bainitic structure have been found to combine good strength and toughness properties without the need for additional heat treatment resulting in tensile strengths greater than 1200 MPa, a yield strength of more than 850 MPa and an elongation at break of more than 10% at a impact energy of 27 J at room temperature. As an example of alloy concepts offering such properties, the article contains a steel having (in wt%) 0.18% C, 1.53% Si, 1.47% Mn 0.007% S, 1.30% Cr , 0.07% Mo, 0.0020% B, 0.027% Nb, 0.026% Ti, 0.0080% N, balance iron and unavoidable impurities and a steel with 0.22% C, 1.47% Si, 1, 50% Mn, 0.006% S, 1.31% Cr, 0.09% Mo, 0.0025% B, 0.035% Nb, 0.026% Ti, 0.0108% N, balance iron and unavoidable impurities presented.

Eine andere Entwicklung, welche ebenfalls auf einen Stahl zur Herstellung von Gesenkschmiedeteilen abzielt, die ohne eine zusätzliche Wärmebehandlung eine hohe Festigkeit bei gleichzeitig hoher Zähigkeit besitzen, ist in der EP 1 546 426 B1 beschrieben. Der aus dieser Patentschrift bekannte Stahl enthält (in Gew.-%) 0,12 - 0,45 % C, 0,10 - 1,00 % Si, 0,50 - 1,95 % Mn, 0,005 - 0,060 % S, jeweils 0,004 - 0,050 % Al und Ti, jeweils bis zu 0,60 % Cr, Ni, Co, W, Mo und Cu, bis zu 0,01 % B, bis zu 0,050 % Nb, 0,10 - 0,40 % V, 0,015 - 0,04 % N und als Rest Eisen und unvermeidbare Verunreinigungen mit den Maßgaben, dass das Produkt aus den V- und N-Gehalten des Stahls 0,0021 - 0,0120 beträgt, dass der S-Gehalt %S, der Al-Gehalt %Al, der Nb-Gehalt %Nb und der Ti-Gehalt %Ti, die Bedingung 1,6 x %S + 1,5 x %Al + 2,4 x %Nb + 1,2 x %Ti = 0,040 - 0,080 % und der Mn-Gehalt %Mn, der Cr-Gehalt %Cr, der Ni-Gehalt %Ni, der Cu-Gehalt %Cu und der Mo-Gehalt %Mo die Bedingung 1,2 x %Mn + 1,4 x %Cr + 1,0 x %Ni + 1,1 x %Cu + 1,8 x %Mo = 1,00 - 3,50 % erfüllen. Als wesentlich wird dabei angesehen, dass die notwendige Zähigkeitsverbesserung durch eine Absenkung des Kohlenstoffgehaltes im Stahl erreicht wird. Der nach dem Stand der Technik damit prinzipiell einhergehende Festigkeitsverlust wird durch die übrigen Legierungselemente ausgeglichen, deren Gehalte so abgestimmt sind, dass es zur Verfestigung durch Mischkristallbildung kommt.Another development, which also aims at a steel for the production of drop forged parts, which have a high strength and high toughness without an additional heat treatment, is in the EP 1 546 426 B1 described. The steel known from this patent contains (in% by weight) 0.12-0.45% C, 0.10-1.00% Si, 0.50-1.95% Mn, 0.005-0.060% S, 0.004-0.050% Al and Ti each, up to 0.60% Cr, Ni, Co, W, Mo and Cu, up to 0.01% B, up to 0.050% Nb, 0.10-0.40% V, 0.015-0.04% N and balance iron and unavoidable impurities with the proviso that the product of the V and N contents of the steel is 0.0021-0.0120, that the S content is% S, the Al content% Al, the Nb content% Nb and the Ti content% Ti, the condition 1.6 x% S + 1.5 x% Al + 2.4 x% Nb + 1.2 x% Ti = 0.040-0.080% and the Mn content% Mn, the Cr content% Cr, the Ni content% Ni, the Cu content% Cu and the Mo content% Mo the condition 1.2 ×% Mn + 1 , 4 x% Cr + 1.0 x% Ni + 1.1 x% Cu + 1.8 x% Mo = 1.00 - 3.50%. It is regarded as essential that the necessary toughness improvement is achieved by lowering the carbon content in the steel. The strength loss associated with this in principle according to the prior art is compensated by the other alloying elements, the contents of which are adjusted so that solidification by solid solution formation takes place.

Des Weiteren ist aus der DE 697 28 076 T2 ( EP 0 787 812 B1 ) ein Herstellungsverfahren eines Stahlschmiedestücks bekannt, bei dem ein Stahl mit (in Gew.-%) 0,1 -0,4 % C, 1 - 1,8 % Mn, 0,15 - 1,7 % Si, bis zu 1 % Ni, bis zu 1,2 % Cr, bis zu 0,3 % Mo, bis zu 0,3 % V, bis zu 0,35 % Cu sowie jeweils optional 0,005 - 0,06 % Al, 0,0005 - 0,01 % B, 0,005 - 0,03 % Ti, 0,005 % - 0,06 % Nb, 0,005 - 0,1 % S, bis zu 0,006 % Calcium, bis zu 0,03 % Te, bis zu 0,05 % Se, bis zu 0,05 % Bi und als Rest Eisen und unvermeidbare Verunreinigungen zu einem Halbzeug vergossen wird, dass dann in konventioneller Weise zu einem Schmiedeteil warmgeschmiedet wird. Anschließend wird das Schmiedeteil einer Wärmebehandlung unterzogen, die eine mit einer Kühlgeschwindigkeit Vr von mehr als 0,5 °C/s ablaufende Abkühlung von einer Temperatur, bei der der Stahl austenitisch ist, bis auf eine Temperatur Tm umfasst, die zwischen Ms +100 °C und Ms -20 °C liegt. Das Schmiedeteil wird dann über mindestens zwei Minuten bei einer Temperatur gehalten, die zwischen der Temperatur Tm und einer Temperatur Tf liegt, für die gilt Tf > Tm -100 °C. Auf diesem Weg soll man ein Stahlbauteil mit im Wesentlichen bainitischen Gefüge erhalten, das mindestens 15 % unteres Bainit und vorzugsweise mindestens 20 % zwischen Tm und Tf gebildeten Bainit umfasst.Furthermore, from the DE 697 28 076 T2 ( EP 0 787 812 B1 ) discloses a production method of a steel forgings in which a steel having (in wt .-%) 0.1 -0.4% C, 1 - 1.8% Mn, 0.15 - 1.7% Si, up to 1 % Ni, up to 1.2% Cr, up to 0.3% Mo, up to 0.3% V, up to 0.35% Cu and each optionally 0.005-0.06% Al, 0.0005-0 , 01% B, 0.005 - 0.03% Ti, 0.005% - 0.06% Nb, 0.005 - 0.1% S, up to 0.006% calcium, up to 0.03% Te, up to 0.05% Se, up to 0.05% Bi and the remainder cast iron and unavoidable impurities to a semi-finished product, which is then hot-forged to a forging in a conventional manner. Subsequently, the forging is subjected to a heat treatment comprising cooling at a cooling rate Vr of more than 0.5 ° C / sec from a temperature at which the steel is austenitic to a temperature Tm of between Ms +100 ° C and Ms -20 ° C is. The forging is then held for at least two minutes at a temperature which is between the temperature Tm and a temperature Tf, for which Tf> Tm -100 ° C. In this way, one should obtain a steel component having a substantially bainitic structure comprising at least 15% lower bainite and preferably at least 20% bainite formed between Tm and Tf.

Neben dem voranstehend erläuterten Stand der Technik ist aus der DE 697 28 076 T2 ein Verfahren zur Herstellung eines Schmiedestücks bekannt, das aus einem Stahl erzeugt wird, der (in Gew.-%) > 0,1 %, vorzugsweise > 0,15 % C, jedoch < 0,4 % und vorzugsweise < 0,3 % C, enthält, um eine ausreichende Härte und die Zugfestigkeit Rm auf 1200 MPa zu begrenzen, > 1 % Mangan, um eine ausreichende Härtbarkeit zu erhalten, jedoch < 1,8 %, vorzugsweise < 1,6 %, Mn, um die Bildung von Bändern mit Seigerungen zu vermeiden, > 0,15 % Si, um den Ferrit zu härten und um gegebenenfalls die Bildung von Restaustenit zu begünstigen, was die Dauerfestigkeit verbessert, jedoch < 1,7 % Si, da mehr Silizium den Stahl spröde machen würde, sowie ≤ 1 % Ni, ≤ 1,2 % Cr und ≤ 0,3 % Mo enthält, um die Härtbarkeit einzustellen. Optional kann der Stahl auch noch 0,005 - 0,03 % Ti, 0,005 - 0,06 % Nb, 0,0005 - 0,01 % B, ≤ 0,3 % V, < 0,35 % Cu, 0,005 - 0,06 % Al, 0,005 - 0,1 % S, ≤ 0,006 % Ca, ≤ 0,03 % Te, ≤ 0,05 % Se, ≤ 0,05 % Bi, ≤ 0,1 % Pb enthalten, wobei der Rest des Stahls jeweils aus Eisen und unvermeidbaren Verunreinigungen besteht.In addition to the above-described prior art is from the DE 697 28 076 T2 a method for producing a forging produced from a steel containing (in% by weight)> 0.1%, preferably> 0.15% C, but <0.4% and preferably <0.3% C, contains sufficient hardness and tensile strength Rm to 1200 MPa > 1% manganese to obtain sufficient hardenability, but <1.8%, preferably <1.6%, Mn, to avoid the formation of ribbons with segregations,> 0.15% Si to the Ferrite to harden and possibly to promote the formation of retained austenite, which improves the fatigue life, but <1.7% Si, as more silicon would make the steel brittle, and ≤ 1% Ni, ≤ 1.2% Cr and ≤ 0 , 3% Mo to adjust the hardenability. Optionally, the steel may also contain 0.005 - 0.03% Ti, 0.005 - 0.06% Nb, 0.0005 - 0.01% B, ≤ 0.3% V, <0.35% Cu, 0.005 - 0, 06% Al, 0.005-0.1% S, ≤ 0.006% Ca, ≤ 0.03% Te, ≤ 0.05% Se, ≤ 0.05% Bi, ≤ 0.1% Pb, with the remainder of the Steel consists of iron and unavoidable impurities.

Des Weiteren ist aus der EP 1 408 131 A1 eine Stahlzusammensetzung bekannt, die aus (in Gew.-%) C: 0,12 - 0,45 %, Si: 0,10 - 1,00 %, Mn: 0,50 - 1,95 %, S: 0,005 - 0,060 %, Al: 0,004 - 0,050 %, Cr: 0 - 0,60 %, Ni: 0 - 0,60 %, Co: 0 - 0,60 %, W: 0 - 0,60 %, B: 0 - 0,01 %, Mo: 0 - 0,60 %, Cu: 0 - 0,60 %, Nb: 0 - 0,050 %, V: 0,10 - 0,40 %, N: 0,015 - 0,040 % und als Rest aus Fe und unvermeidbaren Verunreinigungen besteht. Dabei werden die Gehalte an V und N, an S, Al, Nb, Ti und Mn, Cr, Ni, Cu, Mo nach besonderen Maßgaben aufeinander abgestimmt. Der so zusammengesetzte Stahl soll besonders zur Herstellung von Gesenkschmiedeteilen, insbesondere Fahrwerksteilen, mit hoher Festigkeit und hoher Zähigkeit ohne Schlussvergütung geeignet sein.Furthermore, from the EP 1 408 131 A1 a steel composition consisting of (in wt%) C: 0.12-0.45%, Si: 0.10-1.00%, Mn: 0.50-1.95%, S: 0.005 0.060%, Al: 0.004 - 0.050%, Cr: 0 - 0.60%, Ni: 0 - 0.60%, Co: 0 - 0.60%, W: 0 - 0.60%, B: 0 - 0.01%, Mo: 0 - 0.60%, Cu: 0 - 0.60%, Nb: 0 - 0.050%, V: 0.10 - 0.40%, N: 0.015 - 0.040%, and balance consists of Fe and unavoidable impurities. The contents of V and N, of S, Al, Nb, Ti and Mn, Cr, Ni, Cu, Mo are matched to each other according to special requirements. The composite steel should be particularly suitable for the production of drop forged parts, especially chassis parts, with high strength and high toughness without final compensation.

Praktische Versuche mit Stahlwerkstoffen der voranstehend erläuterten Art haben gezeigt, dass derartige bainitische Stähle aufgrund ihrer Neigung zum Verzug und stark schwankenden mechanischen Eigenschaften für Bauteile mit großen Querschnittsänderungen ungeeignet sind.Practical experiments with steel materials of the type described above have shown that such bainitic steels are unsuitable for components with large cross-sectional changes due to their tendency to warp and greatly fluctuating mechanical properties.

Vor diesem Hintergrund bestand die Aufgabe der Erfindung darin, einen Stahl zu schaffen, der eine hohe Festigkeit besitzt, ohne dass dazu aufwändige Wärmebehandlungsverfahren absolviert werden müssen, der eine geringe Neigung zum Verzug hat und der als solcher insbesondere für die schmiedetechnische Herstellung von Schmiedeteilen mit über ihre Länge großen Querschnittsänderungen geeignet ist.Against this background, the object of the invention to provide a steel which has a high strength, without the need to complete complex heat treatment processes, the has a low tendency to delay and is suitable as such in particular for the forging production of forgings with over its length large cross-sectional changes.

Ebenso sollte ein Schmiedeteil angegeben werden, das ohne aufwändige Wärmebehandlungsverfahren eine optimale Eigenschaftskombination besitzt.Likewise, a forged part should be specified, which has an optimal combination of properties without complex heat treatment process.

Schließlich sollte ein Verfahren zur Herstellung eines Schmiedestücks vorgeschlagen werden, das mit einfachen Mitteln die Erzeugung von Schmiedeteilen mit optimierter Eigenschaftskombination ermöglicht.Finally, a method for producing a forging should be proposed, which allows the production of forgings with optimized property combination by simple means.

In Bezug auf den Stahl hat die Erfindung die voranstehend genannte Aufgabe durch den in Anspruch 1 angegebenen Edelbaustahl gelöst.With respect to the steel, the invention has achieved the object mentioned above by the structural steel specified in claim 1.

In Bezug auf das Schmiedebauteil besteht die erfindungsgemäße Lösung der voranstehend genannten Aufgabe darin, dass ein solches Stahlbauteil aus einem erfindungsgemäßen Stahl hergestellt ist.With regard to the forging component, the solution according to the invention of the abovementioned object consists in that such a steel component is produced from a steel according to the invention.

In Bezug auf das Verfahren hat die Erfindung die oben genannte Aufgabe schließlich dadurch gelöst, dass bei der Herstellung eines Schmiedebauteils die in Anspruch 12 genannten Arbeitsschritte durchlaufen werden.With regard to the method, the invention has finally achieved the abovementioned object in that during the production of a forging component, the working steps mentioned in claim 12 are run through.

Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.Advantageous embodiments of the invention are specified in the dependent claims and are explained below as the general inventive concept in detail.

Ein erfindungsgemäßer Edelbaustahl besitzt bei einer Streckgrenze von mindestens 750 MPa und einer Zugfestigkeit von mindestens 950 MPa und ein zu mindestens 80 Vol.-% bainitisches Gefüge, wobei die verbleibenden 20 Vol.-% des Gefüges Restaustenit, Ferrit, Perlit oder Martensit sein können.A noble structural steel according to the invention has a yield strength of at least 750 MPa and a tensile strength of at least 950 MPa and at least 80% by volume bainitic structure, the remaining 20% by volume of the microstructure being retained austenite, ferrite, perlite or martensite.

Dabei zeichnet sich der erfindungsgemäß Stahl durch eine hohe Bruchdehnung A von mindestens 10 %, insbesondere mindestens 12 %, aus, wobei sich in der Praxis zeigt, dass erfindungsgemäße Stähle regelmäßig eine Bruchdehnung A von mindestens 15 % erreichen.In this case, the steel according to the invention is characterized by a high elongation at break A of at least 10%, in particular at least 12%, whereby it is shown in practice that steels according to the invention regularly achieve an elongation at break A of at least 15%.

Erfindungsgemäß besteht der Edelbaustahl dazu aus (in Gew.-%) bis zu 0,25 % C, bis zu 1,5 % Si, insbesondere bis zu 1 % Si oder bis zu 0,45 % Si, 0,20 - 2,00 % Mn, bis zu 4,00 % Cr, 0,7 - 3,0 % Mo, 0,004 - 0,020 % N, bis zu 0,40 % S, 0,001 - 0,035 % Al, 0,0005 - 0,0025 % B, bis zu 0,015 % Nb, bis zu 0,01 % Ti, bis zu 0,50 % V, bis zu 1,5 % Ni, bis zu 2,0 % Cu und als Rest Eisen und unvermeidbaren Verunreinigungen, wobei der Al-Gehalt %Al, der Nb-Gehalt %Nb, der Ti-Gehalt %Ti, der V-Gehalt %V und der N-Gehalt %N des Edelbaustahls jeweils folgende Bedingung erfüllen: % Al / 27 + % Nb / 45 + % Ti / 48 + % V / 25 > % N / 3,75

Figure imgb0001
According to the invention, the engineering structural steel consists of (in% by weight) up to 0.25% C, up to 1.5% Si, in particular up to 1% Si or up to 0.45% Si, 0.20-2, 00% Mn, up to 4.00% Cr, 0.7-3.0% Mo, 0.004-0.020% N, up to 0.40% S, 0.001-0.035% Al, 0.0005-0.0025% B, up to 0.015% Nb, up to 0.01% Ti, up to 0.50% V, up to 1.5% Ni, up to 2.0% Cu and balance iron and unavoidable impurities, the Al Content% Al, the Nb content% Nb, the Ti content% Ti, the V content% V and the N content% N of the noble structural steel each satisfy the following condition: % al / 27 + % Nb / 45 + % Ti / 48 + % V / 25 > % N / 3.75
Figure imgb0001

Zu den herstellungsbedingt unvermeidbaren Verunreinigungen gehören alle Elemente, die in Bezug auf die hier interessierenden Eigenschaften legierungstechnisch unwirksamen Mengen vorhanden sind und aufgrund der jeweils gewählten Erschmelzungsroute oder das jeweils gewählte Ausgangsmaterial (Schrott) in den Stahl gelangen. Insbesondere gehören zu den unvermeidbaren Verunreinigungen auch Gehalte an P von bis zu 0,0035 Gew.-%.The unavoidable impurities due to production include all elements which are present in terms of alloying inefficiencies with regard to the properties of interest here and which enter the steel on the basis of the respectively selected melting route or the respective selected starting material (scrap). In particular, the unavoidable impurities also include levels of P of up to 0.0035% by weight.

Ein erfindungsgemäßer Stahl und die daraus hergestellten Schmiedebauteile zeichnen sich selbst dann durch eine besonders gleichmäßige Eigenschaftsverteilung aus, wenn aufgrund wechselnder Bauteilabmessungen bei der Abkühlung aus der Schmiedehitze über das Schmiedeteilvolumen betrachtet lokal stark unterschiedliche Abkühlbedingungen herrschen. Diese Unempfindlichkeit gegen die Abkühlbedingungen wird dadurch erreicht, dass der erfindungsgemäße Edelbaustahl ein homogenes, weitestgehend ausschließlich bainitisches Gefüge mit geringer Varianz der Härte besitzt. Dieser homogene Gefügezustand beinhaltet gleichzeitig geringe Eigenspannungen, was sich positiv auf das Verzugsverhalten auswirkt.A steel according to the invention and the forging components produced therefrom are distinguished by a particularly uniform distribution of properties, even if locally greatly differing cooling conditions prevail as a result of changing component dimensions when cooling from forging heat through the forged part volume. This insensitivity to the cooling conditions is achieved by the inventive structural steel a homogeneous, largely exclusively bainitic Structure with low variance of hardness possesses. At the same time, this homogeneous microstructure contains low residual stresses, which has a positive effect on the distortion behavior.

Dementsprechend ist erfindungsgemäßer Stahl insbesondere zur Herstellung von geschmiedeten Bauteilen geeignet, bei denen Abschnitte mit stark unterschiedlichen Volumina und Durchmesser aneinander stoßen. Beispiele für solche Schmiedestücke, für deren schmiedetechnische Herstellung sich der erfindungsgemäße Stahl besonders eignet, sind Kurbelwellen, Pleuel und desgleichen, die insbesondere für Verbrennungsmotoren bestimmt sind.Accordingly, steel according to the invention is particularly suitable for the production of forged components in which sections of very different volumes and diameters abut one another. Examples of such forgings, for whose forging technology production of the steel according to the invention is particularly suitable, are crankshafts, connecting rods and the like, which are intended in particular for internal combustion engines.

Des Weiteren können aus erfindungsgemäßem Stahl Teile im Bereich des Fahrwerks und der Radaufhängung mit stark unterschiedlichen Querschnitten ohne große anschließende Nachbearbeitung durch Schleifen unter Einhaltung der vorgegebenen Festigkeitseigenschaften prozesssicher hergestellt werden.Furthermore, steel parts according to the invention in the area of the undercarriage and the suspension can be manufactured reliably with very different cross-sections without much subsequent reworking by grinding while maintaining the predetermined strength properties.

Wie anhand des als Fig. 1 beigefügten ZTU-Schaubilds eines erfindungsgemäßen Stahls nachvollziehbar, bedeutet dies aus werkstofftechnischer Sicht, dass bei einem erfindungsgemäßen Edelbaustahl ein besonders weites Fenster zur Bainitisierung genutzt werden kann, wenn der erfindungsgemäße Edelbaustahl aus der Schmiedehitze kontinuierlich abgekühlt wird. Die Legierung des erfindungsgemäßen Edelbaustahls ist dabei so gewählt, dass im Zuge der Abkühlung keine seine Eigenschaften beeinflussenden Mengen an Martensit oder Ferrit bzw. Perlit im Gefüge entstehen. Erfindungsgemäßer Edelbaustahl zeichnet sich somit dadurch aus, dass er ein vorwiegend, d.h. zu mindestens 80 Vol.-% bainitsches Gefüge besitzt, wobei der Gehalt an nicht bainitschen Gefügebestandteilen in erfindungsgemäßen Stählen typischerweise so stark minimiert ist, dass der erfindungsgemäße Stahl ein im technischen Sinne vollständig bainitisches Gefüge besitzt.As based on the as Fig. 1 From the point of view of material technology, it can be understood that a particularly wide window can be used for bainitizing a noble structural steel according to the invention if the engineering steel according to the invention is continuously cooled from forging heat. The alloy of the structural steel according to the invention is chosen so that in the course of cooling do not affect its properties affecting amounts of martensite or ferrite or perlite in the structure. The structural steel according to the invention is thus characterized by having a predominantly, ie at least 80% by volume, bainic structure, wherein the content of non-bainitic structural constituents in steels according to the invention is typically minimized to such an extent that the steel according to the invention is completely complete in the technical sense possesses bainitic structure.

Hierbei stellt sich beim erfindungsgemäßen Edelbaustahl weitestgehend unabhängig von der Abkühlgeschwindigkeit im Bainit eine nahezu konstante Härte ein. Die konstante Härte ist eine Folge der nahezu vollständigen Umwandlung des ehemaligen Austenits in Bainit, bevorzugt in eine bainitische Umwandlungsstufe.Here, the noble steel steel according to the invention largely independent of the cooling rate in bainite an almost constant hardness. The constant hardness is a consequence of the almost complete transformation of the former austenite into bainite, preferably into a bainitic transformation stage.

Durch die Begrenzung des C-Gehalts auf höchstens 0,25 Gew.-% wird einerseits erreicht, dass ein erfindungsgemäßer Edelbaustahl trotz seiner maximierten Festigkeit gute Dehnungs- und Zähigkeitseigenschaften besitzt. Der geringe C-Gehalt trägt bei einem erfindungsgemäßen Stahl auch zur Beschleunigung der Bainitumwandlung bei, so dass die Entstehung von unerwünschten Gefügebestandteilen vermieden wird.By limiting the C content to at most 0.25% by weight, on the one hand it is achieved that a noble structural steel according to the invention has good elongation and toughness properties despite its maximized strength. The low C content also contributes to the acceleration of the bainite transformation in a steel according to the invention, so that the formation of undesired structural constituents is avoided.

Gleichzeitig kann eine gewisse Menge an Kohlenstoff im erfindungsgemäßen Edelbaustahl aber auch zur Festigkeit beitragen. Hierzu ist ein Gehalt von mindestens 0,09 Gew.-% C im Stahl vorgesehen. Eine optimierte Wirkung der Anwesenheit von C im erfindungsgemäßen Stahl wird somit dadurch erreicht, dass der C-Gehalt auf 0,09 - 0,25 Gew.-% eingestellt ist.At the same time, however, a certain amount of carbon in the engineering steel according to the invention can also contribute to the strength. For this purpose, a content of at least 0.09 wt .-% C is provided in the steel. An optimized effect of the presence of C in the steel according to the invention is thus achieved by setting the C content to 0.09-0.25% by weight.

Der Si-Gehalt eines erfindungsgemäßen Stahls ist auf 1,5 Gew.-%, insbesondere 1 Gew.-% oder 0,75 Gew.-%, beschränkt, um die Bainitumwandlung möglichst früh ablaufen zu lassen. Um diesen Effekt besonders sicher zu erreichen, kann der Si-Gehalt auch auf höchstens 0,45 Gew.-% beschränkt werden.The Si content of a steel according to the invention is limited to 1.5% by weight, in particular 1% by weight or 0.75% by weight, in order to allow the bainite transformation to proceed as early as possible. In order to achieve this effect particularly reliably, the Si content can also be limited to at most 0.45 wt .-%.

Mo ist im erfindungsgemäßen Edelbaustahl in Gehalten von 0,6 - 3,0 Gew.-% vorhanden, um die Umwandlung des Gefüges in Ferrit oder Perlit zu verzögern. Diese Wirkung tritt insbesondere dann ein, wenn mindestens 0,7 Gew.-%, insbesondere mehr als 0,70 Gew.-% Mo, im Stahl vorhanden sind. Bei Gehalten von mehr als 3,0 Gew.-% tritt im erfindungsgemäßen Stahl keine wirtschaftlich vertretbare weitere Steigerung der positiven Wirkung von Mo mehr ein. Außerdem besteht oberhalb 3,0 Gew.-% Mo die Gefahr der Bildung einer molybdänreichen Karbidphase, welche die Zähigkeitseigenschaften negativ beeinflussen kann. Optimale Wirkungen von Mo im erfindungsgemäßen Stahl können erwartet werden, wenn der Mo-Gehalt mindestens 0,7 Gew.-% beträgt. Als besonders effektiv haben sich dabei Mo-Gehalte von höchstens 2,0 Gew.-% erwiesen.Mo is present in the noble structural steel according to the invention in contents of 0.6-3.0% by weight, in order to delay the transformation of the microstructure into ferrite or perlite. This effect occurs in particular when at least 0.7 wt .-%, in particular more than 0.70 wt .-% Mo, are present in the steel. At contents of more than 3.0% by weight, no economically viable further increase occurs in the steel according to the invention the positive effect of Mo more. In addition, above 3.0 wt% Mo, there is a risk of forming a molybdenum-rich carbide phase which may adversely affect the toughness properties. Optimum effects of Mo in the steel of the present invention can be expected when the Mo content is at least 0.7 wt%. Mo contents of not more than 2.0% by weight have proved to be particularly effective.

Mangan ist in Gehalten von 0,20 - 2,00 Gew.-% im erfindungsgemäßen Stahl vorhanden, um die Zugfestigkeit und Streckgrenze einzustellen. Ein Mindestgehalt von 0,20 Gew.-% Mn ist erforderlich, damit es zu einer Festigkeitssteigerung kommt. Soll dieser Effekt besonders sicher erreicht werden, so kann ein Mn-Gehalt von mindestens 0,35 Gew.-% vorgesehen werden. Zu hohe Mn-Gehalte führen zur Verzögerung der Bainitumwandlung und damit zu einer überwiegend martensitischen Umwandlung. Daher ist der Mn-Gehalt auf höchstens 2,00 Gew.-%, insbesondere 1,5 Gew.-%, beschränkt. Negative Einflüsse der Anwesenheit von Mn lassen sich besonders sicher vermeiden, indem der Mn-Gehalt beim erfindungsgemäßen Stahl auf maximal 1,1 Gew.-% beschränkt wird.Manganese is present at levels of 0.20-2.00% by weight in the steel of the present invention to adjust the tensile strength and yield strength. A minimum content of 0.20% by weight of Mn is required in order to increase the strength. If this effect is to be achieved particularly reliably, then an Mn content of at least 0.35 wt .-% can be provided. Too high Mn contents lead to the delay of the bainite transformation and thus to a predominantly martensitic transformation. Therefore, the Mn content is limited to at most 2.00 wt%, especially 1.5 wt%. Negative influences of the presence of Mn can be avoided particularly reliably by limiting the Mn content in the steel according to the invention to a maximum of 1.1% by weight.

Der Schwefelgehalt eines erfindungsgemäßen Stahls kann bis zu 0,4 Gew.-%, insbesondere max. 0,1 Gew.-% oder max. 0,05 Gew.-% betragen, um die Zerspanbarkeit des Stahls zu unterstützen.The sulfur content of a steel according to the invention can be up to 0.4 wt .-%, in particular max. 0.1% by weight or max. 0.05 wt .-% to assist the machinability of the steel.

Die legierungstechnische Feinjustierung in Bezug auf die mechanischen Eigenschaften und die Gefügebeschaffenheit eines erfindungsgemäßen Edelbaustahls erfolgt nach dem erfindungsgemäßen Legierungskonzept über eine kombinierte Mikrolegierung aus den Elementen Bor in Gehalten von 0,0005 - 0,0025 Gew.-%, Stickstoff in Gehalten von 0,004 - 0,020 Gew.-%, insbesondere mindestens 0,006 Gew.-% N oder bis zu 0,0150 Gew.-% N, Aluminium in Gehalten von 0,001 - 0,035 Gew.-% sowie Niob in Gehalten von bis zu 0,015 Gew.-%, Titan in Gehalten von bis 0,01 Gew.-% und Vanadium in Gehalten von bis zu 0,10 Gew.-%.The fine-tuning with regard to the mechanical properties and the microstructure of a structural steel according to the invention is carried out according to the inventive alloy concept via a combined microalloying of the elements boron in contents of 0.0005-0.0025 wt.%, Nitrogen in contents of 0.004-0.020 % By weight, in particular at least 0.006% by weight of N or up to 0.0150% by weight of N, aluminum in contents of 0.001-0.035% by weight and niobium in contents of up to 0.015% by weight, titanium at levels of up to 0.01% by weight and vanadium at levels of up to 0.10% by weight.

Die Gehalte %Al, %Nb, %Ti, %V und %N an Al, Nb, Ti, V und N sind dabei über die Bedingung % Al / 27 + % Nb / 45 + % Ti / 48 + % V / 25 > % N / 3,75

Figure imgb0002
miteinander so verknüpft, dass der im Edelbaustahl enthaltene Stickstoff über die jeweils vorhandenen Gehalte an Al sowie die erforderlichenfalls zusätzlich zugegebenen Gehalte an Nb, Ti und V vollständig abgebunden ist und Bor somit umwandlungsverzögernd wirken kann. Gleichzeitig tragen die erfindungsgemäß vorgesehenen und aufeinander sowie den N-Gehalt abgestimmten Gehalte an Mikroelementen zur Erhöhung der Feinkornstabilität und Festigkeit bei.The contents% Al,% Nb,% Ti,% V and% N of Al, Nb, Ti, V and N are on the condition % al / 27 + % Nb / 45 + % Ti / 48 + % V / 25 > % N / 3.75
Figure imgb0002
linked together so that the nitrogen contained in the structural steel over the respective existing contents of Al and the addition of necessary additionally added levels of Nb, Ti and V is fully bonded and boron can thus delay conversion. At the same time, the inventively provided and matched to each other and the N content levels of microelements to increase the fine grain stability and strength.

Die erfindungsgemäße Abbindung von N ermöglicht darüber hinaus, dass Bor als gelöstes Element in der Matrix wirksam wird und die Bildung von Ferrit und oder Perlit unterdrückt.Moreover, the setting of N according to the invention makes it possible for boron to become effective as a dissolved element in the matrix and to suppress the formation of ferrite and / or perlite.

Um die Vorteile der Anwesenheit der Mikrolegierungselemente und von Aluminium sicher zu nutzen, kann es zweckmäßig sein, den Al-Gehalt auf mindestens 0,004 Gew.-%, den Ti-Gehalt auf mindestens 0,001 Gew.-%, den V-Gehalt auf mindestens 0,02 Gew.-% oder den Nb-Gehalt auf mindestens 0,003 Gew.-% einzustellen. Dabei können die Mikrolegierungselemente V, Ti, Nb einerseits und Al andererseits jeweils in Kombination mit einem oder mehreren Elementen der Gruppe "Al, V, Ti, Nb" oder alleine in oberhalb der genannten Mindestgehalte liegenden Mengen vorhanden sein.In order to safely utilize the advantages of the presence of the micro-alloying elements and of aluminum, it may be expedient to set the Al content to at least 0.004% by weight, the Ti content to at least 0.001% by weight, the V content to at least 0 , 02 wt .-% or the Nb content to at least 0.003 wt .-% set. In this case, the micro-alloying elements V, Ti, Nb on the one hand and Al on the other hand may be present in each case in combination with one or more elements of the group "Al, V, Ti, Nb" or alone in amounts above said minimum contents.

Bei Gehalten von bis zu 0,008 Gew.-% Ti, von bis zu 0,01 Gew.-% Nb, von bis zu 0,075 Gew.-% V oder von bis zu 0,020 Gew.-% Al lassen sich die Wirkungen dieser Elemente im erfindungsgemäßen Baustahl besonders wirksam nutzen. Gleichzeitig führen die gebildeten Nitride bzw. Karbonitride zu einem Anstieg der Festigkeit und tragen zur Feinkornstabilität bei. Auch hier können die genannten Obergrenzen der Gehalte an Ti, Nb, V oder Al jeweils alleine oder in Kombination miteinander eingehalten werden, um die jeweils optimale Wirkung des betreffenden Legierungselements zu erzielen.At levels of up to 0.008 wt.% Ti, up to 0.01 wt.% Nb, up to 0.075 wt.% V or up to 0.020 wt.% Al, the effects of these elements can be seen in Use particularly effective construction steel according to the invention. At the same time, the nitrides or carbonitrides formed increase the strength and contribute to fine grain stability. Here, too, the stated upper limits of the contents of Ti, Nb, V or Al each alone or in combination with each other, in order to achieve the optimum effect of the respective alloying element.

Optional vorhandene Gehalte an Cr von bis zu 4,00 Gew.-%, insbesondere bis zu 3 Gew.-% oder bis zu 2,5 Gew.-%, tragen zur Härtbarkeit und Korrosionsbeständigkeit des erfindungsgemäßen Stahls bei. Hierzu können beispielsweise mindestens 0,5 Gew.-% oder mindestens 0,8 Gew.-% Cr vorgesehen sein.Optionally present contents of Cr of up to 4.00 wt .-%, in particular up to 3 wt .-% or up to 2.5 wt .-%, contribute to the hardenability and corrosion resistance of the steel according to the invention. For example, at least 0.5% by weight or at least 0.8% by weight of Cr may be provided for this purpose.

Ebenso optional vorhandene Gehalte an Ni von bis zu 1,5 Gew.-% können ebenfalls zur Härtbarkeit des Stahls beitragen.Also optionally present levels of Ni of up to 1.5 wt .-% may also contribute to the hardenability of the steel.

Zu den über das Ausgangsmaterial in den erfindungsgemäßen Stahl gelangenden oder gezielt zugegebenen Legierungselementen gehört auch Cu, dessen Gehalt zur Vermeidung von negativen Einflüssen im erfindungsgemäßen Stahl auf max. 2,0 Gew.-% begrenzt ist. Eine positive Wirkung der optionalen Anwesenheit von Kupfer in der Legierung eines erfindungsgemäßen Baustahls besteht in der Ausbildung von feinsten Restaustenitfilmen und der damit einhergehenden deutlichen Anhebung des Zähigkeitsniveaus. Dieser Effekt kann dadurch erzielt werden, dass mindestens 0,3 Gew.-% Cu, insbesondere mehr als 0,3 Gew.-% Cu, im erfindungsgemäßen Baustahl vorhanden sind. Indem der Cu-Gehalt auf höchstens 0,9 Gew.-% beschränkt wird, kann eine optimierte positive Wirkung des Kupfergehalts erzielt werden.Among the alloying elements which pass through the starting material into the steel according to the invention or which have been deliberately added, is Cu, whose content, in order to avoid negative influences in the steel according to the invention, is limited to max. 2.0 wt .-% is limited. A positive effect of the optional presence of copper in the alloy of a structural steel according to the invention consists in the formation of finest Austenitfilmen and the associated significant increase in the toughness level. This effect can be achieved by providing at least 0.3% by weight of Cu, in particular more than 0.3% by weight of Cu, in the structural steel according to the invention. By limiting the Cu content to at most 0.9 wt%, an optimized positive effect of the copper content can be obtained.

Wird erfindungsgemäßer Stahl auf für eine Warmumformung typische Wärmetemperaturen von mindestens 100 °C oberhalb der jeweiligen Ac3-Temperatur liegende, insbesondere mehr als 900 °C betragende Wärmetemperatur für die Warmverformung erwärmt, dann warmverformt und schließlich geregelt oder ungeregelt an ruhender oder bewegter Luft auf eine Temperatur von weniger als 200 °C, insbesondere auf Raumtemperatur, abgekühlt, so stellt sich bei einer extrem weiten Spanne der Abkühlgeschwindigkeit nach der Umwandlung ein gleichmäßig bainitisches Gefüge ein. Die Ac3-Temperatur des Stahls kann in an sich bekannter Weise auf Grundlage seiner jeweiligen Zusammensetzung bestimmt werden. Die Obergrenze des Bereichs der Wärmetemperatur beträgt typischerweise 1300 °C, insbesondere 1250 °C oder 1200 °C.If steel according to the invention is heated to thermal temperatures of at least 100.degree. C. above the respective Ac.sub.3 temperature, in particular more than 900.degree. C., then heat-deformed and finally regulated or uncontrolled to quiescent or agitated air to a temperature cooled to less than 200 ° C, especially at room temperature, so it turns out at an extremely wide range the cooling rate after the transformation a uniform bainitic structure. The Ac3 temperature of the steel may be determined in a manner known per se based on its composition. The upper limit of the range of the heat temperature is typically 1300 ° C, especially 1250 ° C or 1200 ° C.

Als Maß für die Spanne der Abkühlgeschwindigkeiten kann hier die t8/5-Zeit herangezogen werden, also die Zeit, innerhalb der das jeweils warmgeformte Teil von 800 °C auf 500 °C abkühlt. Diese t8/5-Zeit soll bei der Abkühlung von aus erfindungsgemäßem Stahl hergestellten Bauteilen bei 10 - 1000 s liegen.As a measure of the range of cooling rates, the t8 / 5 time can be used here, ie the time within which each thermoformed part cools from 800 ° C to 500 ° C. This t8 / 5 time should be at 10 - 1000 s in the cooling of manufactured from inventive steel components.

Die jeweils konkret gewählte Abkühlzeit sollte in Abhängigkeit von der jeweiligen Wärmetemperatur gewählt werden. Der Einfluss der Wärmetemperatur kann anhand des als Fig. 2 beigefügten ZTU-Schaubilds nachvollzogen werden, in dem für die Wärmetemperaturen 900 °C (durchgezogene Linie), 1100 °C (gestrichelte Linie) und 1300 °C (punktierte Linie) die jeweilige Lage des jeweiligen Bainitgebiets über der Abkühlzeit dargestellt ist. Demnach sollten bei niedrigen Wärmetemperaturen von 900 °C kürzere t8/5-Zeiten gewählt werden, um das gewünschte Bainitgefüge zu erreichen, wogegen bei höheren Wärmetemperaturen die Abkühlung langsamer erfolgen kann. Eine hohe Sicherheit, dass bei der Abkühlung von erfindungsgemäßem Stahl das Bainitgebiet unabhängig von der jeweiligen Wärmetemperatur getroffen wird, besteht für erfindungsgemäße Stähle bei im Bereich von 900 - 1300 °C liegenden Wärmetemperaturen demnach dann, wenn die t8/5 Zeit 100 - 800 s beträgt.The specific cooling time selected should be selected as a function of the respective heat temperature. The influence of the heat temperature can be calculated using the Fig. 2 enclosed ZTU diagram is reproduced, in which for the heat temperatures 900 ° C (solid line), 1100 ° C (dashed line) and 1300 ° C (dotted line) the respective position of the respective bainite over the cooling time is shown. Thus, at low heat temperatures of 900 ° C, shorter t8 / 5 times should be selected to achieve the desired bainite texture, whereas at higher heat temperatures, cooling may be slower. A high certainty that the bainite is made regardless of the respective heat temperature in the cooling of steel according to the invention, therefore for steels according to the invention at lying in the range of 900 - 1300 ° C heat temperatures when the t8 / 5 time is 100 - 800 s ,

Das erfindungsgemäße Legierungskonzept lässt somit hohe Warmformtemperaturen von mehr als 1150 °C zu, wodurch sich die Umformkräfte bei der Warmformgebung vermindern lassen, ohne dass ein unerwünschtes Kornwachstum eintritt.The alloying concept according to the invention thus permits high thermoforming temperatures of more than 1150 ° C., as a result of which the forming forces during hot forming can be reduced without undesired grain growth occurring.

Das erfindungsgemäße Verfahren zur Herstellung von Schmiedestücken mit einer Streckgrenze von mindestens 750 MPa und einer Zugfestigkeit von mindestens 950 MPa sowie einem zu mindestens 80 Vol.-% bainitischem Gefüge, das in Summe bis zu 20 Vol.-% Restaustenit, Ferrit, Perlit oder Martensit enthalten kann, umfasst dementsprechend folgende Arbeitsschritte:

  1. a) Bereitstellen eines Schmiedehalbzeugs, das aus einem in der voranstehend erläuterten Weise erfindungsgemäß zusammengesetzten Edelbaustahl besteht;
  2. b) Erwärmen des Schmiedehalbzeugs auf eine Schmiedetemperatur von mindestens 100 °C über der Ac3-Temperatur des jeweiligen Edelbaustahls, wobei die Ac3-Temperatur in konventioneller Weise in Abhängigkeit von der jeweiligen Zusammensetzung des Edelbaustahls bestimmt wird;
  3. c) Schmieden des auf die Schmiedetemperatur erwärmten Schmiedehalbzeugs zu dem Schmiedestück;
  4. d) Abkühlen des Schmiedestücks aus der Schmiedehitze auf eine unterhalb von 500 °C liegende Temperatur, wobei die t8/5-Zeit bei der Abkühlung 10 - 1000 s beträgt.
The inventive method for the production of forgings with a yield strength of at least 750 MPa and a tensile strength of at least 950 MPa and at least 80 vol .-% bainitic structure, in total up to 20 vol .-% retained austenite, ferrite, pearlite or martensite can therefore contain the following steps:
  1. a) providing a forging tool, which consists of a composite according to the invention in the above-explained construction engineering steel;
  2. b) heating the forging die to a forging temperature of at least 100 ° C above the Ac3 temperature of the particular engineering steel, the Ac3 temperature being determined in a conventional manner depending on the particular composition of the engineering grade steel;
  3. c) forging the forging temperature heated forging to the forging;
  4. d) cooling the forging from forging heat to a temperature below 500 ° C, the t8 / 5 time during cooling being 10-1000 sec.

Zur Verminderung der Umformkräfte kann es sich auch im Zuge des erfindungsgemäßen Verfahrens im Hinblick auf eine Minimierung der erforderlichen Schmiedekräfte als vorteilhaft erweisen, wenn das jeweils den Ausgangspunkt der Schmiedeverformung bildende Halbzeug für das Schmieden auf eine Schmiedetemperatur von mehr als 1150 °C erwärmt wird.In order to reduce the forming forces, it may also be advantageous in the course of the process according to the invention to minimize the forging forces required if the semifinished product forming the starting point of the forging deformation is heated to a forging temperature of more than 1150 ° C. for forging.

Eine weitere Einstellung der mechanischen Eigenschaften, insbesondere die Festigkeit und Zähigkeit, der aus erfindungsgemäßem Stahl warmgeformten, insbesondere geschmiedeten Bauteile kann mittels einer Anlassbehandlung erfolgen, bei der das jeweilige Teil über eine Anlassdauer von 0,5 - 2 h im Temperaturintervall von 180 - 375 °C gehalten wird.A further adjustment of the mechanical properties, in particular the strength and toughness, of the hot-formed according to the invention steel, in particular forged components can by means of a tempering treatment be carried out in which the respective part over a duration of 0.5 - 2 h in the temperature range of 180 - 375 ° C is maintained.

In der Praxis lassen sich beim erfindungsgemäßen Stahl zuverlässig Zugfestigkeiten von mindestens 950 MPa, eine Streckgrenze von mindestens 750 MPa, und eine Bruchdehnung A von mindestens 15 %, wobei sich in der Praxis zeigt, dass regelmäßig sogar noch höhere Dehnwerte A von mindestens 17 % erreicht werden. Diese Eigenschaftskombination bei aus erfindungsgemäßem Stahl bestehenden Schmiedestücken kommen insbesondere dann vor, wenn sie in der erfindungsgemäßen Weise erzeugt worden sind.In practice, tensile strengths of at least 950 MPa, a yield strength of at least 750 MPa, and an elongation at break A of at least 15% can be reliably determined in the steel according to the invention, with it being found in practice that even higher elongation values A of at least 17% are regularly achieved become. This combination of properties in forged steel according to the invention occur in particular when they have been produced in the manner according to the invention.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.The invention will be explained in more detail by means of exemplary embodiments.

Es wurden erfindungsgemäße Stahlschmelzen E1 - E6 und eine Vergleichsschmelze V1 mit den in Tabelle 1 angegebenen Zusammensetzungen erschmolzen und zu Halbzeugen vergossen, bei denen es sich um Blöcke handelte, wie sie üblicherweise für die schmiedetechnische Weiterverarbeitung zur Verfügung gestellt werden.Steel melts E1-E6 according to the invention and a comparative melt V1 having the compositions specified in Table 1 were melted and cast into semi-finished products which were blocks, as are customarily made available for forging technology further processing.

Die Halbzeuge sind für eine Schmiedeverformung auf eine Wärmtemperatur Tw durcherwärmt, anschließend in konventioneller Weise durch Gesenkschmieden zu Schmiedestücken warmumgeformt und dann an Luft auf Raumtemperatur abgekühlt worden. Bei einigen der erhaltenen Schmiedeteile ist anschließend eine Anlassbehandlung durchgeführt worden.The semi-finished products are heated to a thermal temperature Tw for forging deformation, then thermoformed in a conventional manner by swaging to forgings and then cooled in air to room temperature. For some of the obtained forgings a tempering treatment was then carried out.

In Tabelle 2 sind die bei den Beispielen angewendeten Wärmetemperaturen Tw, die jeweils für den Durchlauf des kritischen Temperaturbereichs von 800 - 500 °C benötigte t8/5-Zeit, die Temperatur und Dauer der Anlassbehandlung, sofern eine solche durchgeführt worden ist, sowie der Bainitanteil im Gefüge, die Zugfestigkeit Rm, die Streckgrenze Re, die Dehnung A und die Kerbschlagarbeit W des nach dem Schmieden erhaltenen Schmiedestücks angegeben.In Table 2, the thermal temperatures Tw used in the examples, the t8 / 5 time required for the passage of the critical temperature range of 800 - 500 ° C, respectively, are the temperature and duration of the t8 / 5 time Tempering treatment, if one has been carried out, as well as the bainite content in the structure, the tensile strength Rm, the yield strength Re, the elongation A and the impact energy W of the forging obtained after forging indicated.

Die Beispiele zeigen, dass sich bei Einhaltung der erfindungsgemäßen Vorgaben Schmiedestücke herstellen lassen, die es erlauben, die bei ihrer Erzeugung eingestellten Betriebsparameter über eine große Bandbreite zu variieren und dabei zuverlässig warmgeformte Bauteile mit optimierten mechanischen Eigenschaften zu erhalten. Tabelle 1 Stahl C Si Mn Cr Mo N S Al B Nb Ti V Ni Cu P (1) (2) (1)>(2) E1 0,13 0,4 0,55 2,37 1,04 0,0069 0,003 0,015 0,0012 0,003 0,002 0,03 0,24 0,19 0,019 0,006864 0,00184 JA E2 0,17 0,25 0,72 2,05 0,71 0,0100 0,005 0,020 0,0012 0,021 0,001 0,10 0,24 0,23 0,021 0,005228 0,002667 JA E3 0,17 0,24 0,90 1,72 0,74 0,0082 0,003 0,031 0,0008 0,007 0,001 0,03 0,22 0,62 0,017 0,002525 0,002187 JA E4 0,23 0,27 0,43 1,23 0,77 0,0076 0,034 0,017 0,0013 0,003 0,001 0,04 0,17 0,21 0,017 0,002317 0,002027 JA E5 0,16 0,73 1,49 0,94 0,78 0,0077 0,004 0,027 0,0013 0,003 0,001 0,06 0,21 0,17 0,016 0,003488 0,002050 JA E6 0,19 0,67 0,89 1,47 0,79 0,0092 0,005 0,035 0,0012 0,003 0,001 0,03 0,22 0,13 0,020 0,002584 0,002453 JA V1 0,24 0,10 1,50 2,00 0,03 0,0100 0,002 0,023 - 0,020 0,015 0,02 0,40 0,50 0,018 0,002409 0,002667 NEIN Angaben in Gew.-%, Rest Eisen und unvermeidbare Verunreinigungen
(1): %Al/27 + %Nb/45 + %Ti/48 + %V/25
(2): %N/3,75
Tabelle 2 Stahl Tw t8/5 Anlassbehandlung Bainitanteil im Gefüge Rm Re A Erfindungsgemäß? [°C] [s] [°C],[h] [Vol.-%] [MPa] [MPa] [%] E1 1050 320 ohne >97 % 965 763 22 JA E2 1080 580 ohne >97 % 1225 972 17 JA E3 1080 640 ohne >97 % 1174 840 25 JA E4 1150 500 300 °C, 1,5 h >97 % 1192 1034 24 JA E5 950 100 ohne >97 % 1353 1112 24 JA E6 950 200 ohne >97 % 1367 1167 22 JA V1 1075 500 ohne 75 % (Rest MS) 1352 897 8 NEIN
The examples show that forgings can be produced when the specifications according to the invention are adhered to, which make it possible to vary the operating parameters set during their production over a wide range and thereby reliably obtain thermoformed components with optimized mechanical properties. Table 1 stole C Si Mn Cr Mo N S al B Nb Ti V Ni Cu P (1) (2) (1)> (2) E1 0.13 0.4 0.55 2.37 1.04 0.0069 0,003 0,015 0.0012 0,003 0,002 0.03 0.24 0.19 0.019 0.006864 0.00184 YES E2 0.17 0.25 0.72 2.05 0.71 0.0100 0.005 0,020 0.0012 0,021 0.001 0.10 0.24 0.23 0,021 0.005228 0.002667 YES E3 0.17 0.24 0.90 1.72 0.74 0.0082 0,003 0.031 0.0008 0,007 0.001 0.03 0.22 0.62 0,017 0.002525 0.002187 YES E4 0.23 0.27 0.43 1.23 0.77 0.0076 0.034 0,017 0.0013 0,003 0.001 0.04 0.17 0.21 0,017 0.002317 0.002027 YES E5 0.16 0.73 1.49 0.94 0.78 0.0077 0,004 0.027 0.0013 0,003 0.001 0.06 0.21 0.17 0.016 0.003488 0.002050 YES E6 0.19 0.67 0.89 1.47 0.79 0.0092 0.005 0,035 0.0012 0,003 0.001 0.03 0.22 0.13 0,020 0.002584 0.002453 YES V1 0.24 0.10 1.50 2.00 0.03 0.0100 0,002 0.023 - 0,020 0,015 0.02 0.40 0.50 0,018 0.002409 0.002667 NO Data in wt .-%, balance iron and unavoidable impurities
(1):% Al / 27 +% Nb / 45 +% Ti / 48 +% V / 25
(2):% N / 3.75
stole tw t8 / 5 tempering treatment Bainite content in the structure rm re A According to the invention? [° C] [S] [° C], [h] [Vol .-%] [MPa] [MPa] [%] E1 1050 320 without > 97% 965 763 22 YES E2 1080 580 without > 97% 1225 972 17 YES E3 1080 640 without > 97% 1174 840 25 YES E4 1150 500 300 ° C, 1.5 h > 97% 1192 1034 24 YES E5 950 100 without > 97% 1353 1112 24 YES E6 950 200 without > 97% 1367 1167 22 YES V1 1075 500 without 75% (rest of MS) 1352 897 8th NO

Claims (14)

  1. Engineering steel having a yield strength of at least 750 MPa, a tensile strength of at least 950 MPa and a structure consisting of at least 80 vol.-% of bainite and in total a maximum of 20 vol.-% of retained austenite, ferrite, perlite and/or martensite, wherein the steel comprises (in wt.-%) C: 0,09 - 0.25%, Si: 0 - 1.5%, Mn: 0.20 - 2.00%, Cr: 0 - 4.00%, Mo: 0.6 - 3.0%, N: 0.004 - 0.020%, S: 0 - 0.40%, Al: 0.001 - 0.035%, B: 0.0005 - 0.0025%, Nb: 0 - 0.015%, Ti: 0 - 0.01%, V: 0 - 0.10%, Ni: 0 - 1.5%, Cu: 0 - 2.0 %,
    retained iron and unavoidable impurities, and
    the Al content %Al, the Nb content %Nb, the Ti content %Ti, the V content %V and the N content %N of the engineering steel in each case meet the following condition: % Al / 27 + % Nb / 45 + % Ti / 48 + % V / 25 > % N / 3.75.
    Figure imgb0004
  2. Engineering steel according to claim 1, characterised in that its Al content is at least 0.004 wt.-%.
  3. Engineering steel according to any one of the preceding claims, characterised in that its Al content is a maximum of 0.020 wt.-%.
  4. Engineering steel according to any one of the preceding claims, characterised in that its Nb content is at least 0.003 wt.-%.
  5. Engineering steel according to any one of the preceding claims, characterised in that its Nb content is a maximum of 0.01 wt.-%.
  6. Engineering steel according to any one of the preceding claims, characterised in that its Ti content is at least 0.001 wt.-%.
  7. Engineering steel according to any one of the preceding claims, characterised in that its Ti content is a maximum of 0.008 wt.-%.
  8. Engineering steel according to any one of the preceding claims, characterised in that its V content is at least 0.02 wt.-%.
  9. Engineering steel according to any one of the preceding claims, characterised in that its V content is a maximum of 0.075 wt.-%.
  10. Engineering steel according to any one of the preceding claims, characterised in that its elongation at rupture A is at least 10%.
  11. Forged part comprising a steel obtained in accordance with any one of the preceding claims.
  12. Method for producing a forged part having a yield strength of at least 750 MPa and a tensile strength of at least 950 MPa and an at least 80 vol.-% bainitic structure, wherein the remaining maximum of 20 vol.-% of other proportions of the structure can be retained austenite, ferrite, perlite or martensite, comprising the following process steps:
    a. providing a semi-finished product for forging, comprising an engineering steel with a composition according to any one of claims 1-9;
    b. heating the semi-finished product for forging to a forging temperature of at least 100°C above the Ac3 temperature of the engineering steel;
    c. forging the semi-finished product for forging heated to the forging temperature into the forged part;
    d. cooling the forged part from the forging heat to a temperature of below 200°C, wherein the t8/5-time for cooling is 10-1,000 s.
  13. Method according to claim 12, characterised in that the forging temperature is higher than 1,150°C.
  14. Method according to either of claims 12 or 13, characterised in that following cooling the forged part undergoes tempering treatment, during which it is maintained for a duration of 0.5-2 h at a tempering temperature of 180-375°C.
EP15194741.3A 2015-11-16 2015-11-16 Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part Active EP3168312B1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
EP15194741.3A EP3168312B1 (en) 2015-11-16 2015-11-16 Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
PL15194741T PL3168312T3 (en) 2015-11-16 2015-11-16 Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
ES15194741T ES2733805T3 (en) 2015-11-16 2015-11-16 Structural fine steel with bainitic structure, forged part manufactured from it and procedure for manufacturing a forged part
DK15194741.3T DK3168312T3 (en) 2015-11-16 2015-11-16 Structural steel with bainitic structure, forging blank made therefrom and method for producing a forging blank
PT15194741T PT3168312T (en) 2015-11-16 2015-11-16 Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
KR1020187014749A KR102178736B1 (en) 2015-11-16 2016-11-15 High-grade structural steel with bainite structure, high-grade structural steel with bainite structure, and method for manufacturing forgings and forgings
RU2018121935A RU2703085C1 (en) 2015-11-16 2016-11-15 Structural steel with bainitic structure, obtained from it forged parts and method of forged part production
CA3005378A CA3005378C (en) 2015-11-16 2016-11-15 Engineering steel with a bainitic structure, forged parts produced therefrom and method for producing a forged part
JP2018521262A JP6616501B2 (en) 2015-11-16 2016-11-15 Industrial steel materials having a bainite structure, forged parts produced from the steel materials, and methods for producing forged parts
US15/773,745 US20180327873A1 (en) 2015-11-16 2016-11-15 Engineering Steel with a Bainitic Structure, Forged Parts Produced Therefrom and Method for Producing a Forged Part
CN201680069274.3A CN108474049B (en) 2015-11-16 2016-11-15 High-quality structural steel having a bainitic microstructure, forged part produced therefrom and method for producing forged part
PCT/EP2016/077761 WO2017085072A1 (en) 2015-11-16 2016-11-15 High-grade structural steel with bainitic structure, forged part produced therefrom and method for producing a forged part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15194741.3A EP3168312B1 (en) 2015-11-16 2015-11-16 Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part

Publications (2)

Publication Number Publication Date
EP3168312A1 EP3168312A1 (en) 2017-05-17
EP3168312B1 true EP3168312B1 (en) 2019-04-10

Family

ID=54695477

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15194741.3A Active EP3168312B1 (en) 2015-11-16 2015-11-16 Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part

Country Status (12)

Country Link
US (1) US20180327873A1 (en)
EP (1) EP3168312B1 (en)
JP (1) JP6616501B2 (en)
KR (1) KR102178736B1 (en)
CN (1) CN108474049B (en)
CA (1) CA3005378C (en)
DK (1) DK3168312T3 (en)
ES (1) ES2733805T3 (en)
PL (1) PL3168312T3 (en)
PT (1) PT3168312T (en)
RU (1) RU2703085C1 (en)
WO (1) WO2017085072A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT3591081T (en) 2018-07-05 2021-06-01 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co Kg Use of a steel for producing a steel component, namely for a gearwheel, a shaft, an axle or a tool holder to a thermochemically cured edge layer and such steel component having a thermochemically cured edge layer
PT3591078T (en) 2018-07-05 2022-03-14 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co Kg Use of a steel for an additive production method, method for producing a steel component and steel component
CZ308108B6 (en) * 2018-07-20 2020-01-08 Univerzita Pardubice Bainitic steel with increased contact-fatigue resistance
WO2021009543A1 (en) * 2019-07-16 2021-01-21 Arcelormittal Method for producing a steel part and steel part
CN110527912A (en) * 2019-09-24 2019-12-03 王平 A kind of preparation of the high tough weather-proof refractory alloy structural steel of smelting laterite-nickel ores
CN111041344A (en) * 2019-10-23 2020-04-21 舞阳钢铁有限责任公司 High-strength-toughness low-yield-ratio easy-to-weld fixed offshore structure steel plate and production method thereof
CN111394661B (en) * 2020-04-30 2021-07-27 西京学院 Preparation process of low-alloy high-strength-toughness martensite duplex phase steel
CN115094350B (en) * 2022-07-13 2023-01-24 江油市长祥特殊钢制造有限公司 Preparation method of nuclear power SA182F316L valve body forging
CN115491605B (en) * 2022-09-27 2023-03-31 东风商用车有限公司 Bainite steel for hot forging, process, device and system for manufacturing hot forged parts

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394187A (en) * 1981-02-25 1983-07-19 Sumitomo Metal Industries, Ltd. Method of making steels which are useful in fabricating pressure vessels
JPH05287439A (en) * 1992-04-07 1993-11-02 Nippon Steel Corp Mo-v type ultrahigh tensile strength resistance welded steel tube excellent in ductility
JPH0741856A (en) * 1993-07-28 1995-02-10 Nkk Corp Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JP3241897B2 (en) * 1993-10-12 2001-12-25 新日本製鐵株式会社 Non-heat treated steel for hot forging with excellent tensile strength, fatigue strength and machinability
JP3300500B2 (en) * 1993-10-12 2002-07-08 新日本製鐵株式会社 Method for producing hot forging steel excellent in fatigue strength, yield strength and machinability
FR2744733B1 (en) 1996-02-08 1998-04-24 Ascometal Sa STEEL FOR MANUFACTURING FORGED PART AND METHOD FOR MANUFACTURING FORGED PART
CN1163942A (en) * 1996-02-08 1997-11-05 阿斯克迈塔尔公司 Steel for manufacture of forging and process for manufacturing forging
FR2757877B1 (en) * 1996-12-31 1999-02-05 Ascometal Sa STEEL AND PROCESS FOR THE MANUFACTURE OF A SHAPED STEEL PART BY COLD PLASTIC DEFORMATION
JP3854807B2 (en) * 2001-03-08 2006-12-06 株式会社神戸製鋼所 High tensile steel plate with excellent weldability and uniform elongation
JP3901994B2 (en) * 2001-11-14 2007-04-04 新日本製鐵株式会社 Non-tempered high-strength and high-toughness forged product and its manufacturing method
JP3668713B2 (en) * 2001-11-26 2005-07-06 株式会社神戸製鋼所 High tensile steel plate with excellent weldability and uniform elongation
EP1408131A1 (en) * 2002-09-27 2004-04-14 CARL DAN. PEDDINGHAUS GMBH &amp; CO. KG Steel composition and forged workpieces made thereof
FR2847273B1 (en) * 2002-11-19 2005-08-19 Usinor SOLDERABLE CONSTRUCTION STEEL PIECE AND METHOD OF MANUFACTURE
JP4174041B2 (en) * 2004-08-06 2008-10-29 新日本製鐵株式会社 Method for producing welding steel having a tensile strength of 1150 MPa or more
US7214278B2 (en) * 2004-12-29 2007-05-08 Mmfx Technologies Corporation High-strength four-phase steel alloys
JP5472423B2 (en) * 2005-03-29 2014-04-16 Jfeスチール株式会社 High-strength, high-toughness steel plate with excellent cutting crack resistance
DE102005052069B4 (en) * 2005-10-28 2015-07-09 Saarstahl Ag Process for the production of semi-finished steel by hot working
EP2123787A1 (en) * 2008-05-06 2009-11-25 Industeel Creusot High-grade steel for massive parts.
JP5176885B2 (en) * 2008-11-10 2013-04-03 新日鐵住金株式会社 Steel material and manufacturing method thereof
JP5729803B2 (en) * 2010-05-27 2015-06-03 株式会社神戸製鋼所 High-tensile steel plate and manufacturing method thereof
CN102337478B (en) * 2010-07-15 2012-11-14 宝山钢铁股份有限公司 Excellent 100 kg-grade quenched and tempered steel plate with strong toughness and plasticity, and manufacturing method thereof
KR20130083925A (en) * 2011-05-26 2013-07-23 신닛테츠스미킨 카부시키카이샤 Steel component for mechanical structural use and manufacturing method for same
JP5152441B2 (en) * 2011-05-26 2013-02-27 新日鐵住金株式会社 Steel parts for machine structure and manufacturing method thereof
JP2013104124A (en) * 2011-11-16 2013-05-30 Jfe Steel Corp Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same
US20140283954A1 (en) * 2013-03-22 2014-09-25 Caterpiller Inc. Bainitic microalloy steel with enhanced nitriding characteristics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN108474049A (en) 2018-08-31
CN108474049B (en) 2021-01-08
DK3168312T3 (en) 2019-07-01
US20180327873A1 (en) 2018-11-15
EP3168312A1 (en) 2017-05-17
KR20180071357A (en) 2018-06-27
KR102178736B1 (en) 2020-11-13
PL3168312T3 (en) 2019-09-30
RU2703085C1 (en) 2019-10-15
PT3168312T (en) 2019-07-16
JP2019501280A (en) 2019-01-17
WO2017085072A1 (en) 2017-05-26
ES2733805T3 (en) 2019-12-03
CA3005378A1 (en) 2017-05-26
JP6616501B2 (en) 2019-12-04
CA3005378C (en) 2020-07-14

Similar Documents

Publication Publication Date Title
EP3168312B1 (en) Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
DE69427189T3 (en) HIGH-RESISTANCE, ABRASIVE-RESISTANT RAIL WITH PERLIT STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
EP3083239B1 (en) Flat steel product for components of a car body for a motor vehicle
DE102008051992B4 (en) Method for producing a workpiece, workpiece and use of a workpiece
DE102005052069B4 (en) Process for the production of semi-finished steel by hot working
EP3591078B1 (en) Use of a steel for an additive production method, method for producing a steel component and steel component
DE69908124T2 (en) STEEL MATERIAL FOR HOT TOOLS
DE60300561T3 (en) Process for producing a hot-rolled steel strip
EP2905348B1 (en) High strength flat steel product with bainitic-martensitic structure and method for manufacturing such a flat steel product
EP1905857B1 (en) High-strength steel and applications for such steel
WO2019223854A1 (en) Shaped sheet-metal part with a high tensile strength formed from a steel and method for the production thereof
DE60205419T2 (en) Low alloy and heat resistant steel, heat treatment process and turbine rotor
EP1300482B1 (en) Hot-work tool-steel article
DE2800444C2 (en) Use of a Cr-Mo steel
DE112006003553B4 (en) Thick steel plate for a welded construction having excellent strength and toughness in a central region of thickness and small property changes by its thickness and production process therefor
EP3211109A1 (en) Method for producing a thermoforming tool and thermoforming tool made from same
DE112008001181B4 (en) Use of a steel alloy for axle tubes and axle tube
DE19920324B4 (en) Use of a steel with excellent fracture splittability and fatigue strength in connecting rods
WO2021032893A1 (en) Tool steel for cold-working and high-speed applications
DE60011115T2 (en) STEEL MATERIAL, ITS USE AND MANUFACTURE
DE4125648A1 (en) HIGH TOE, UNCOVERED STEEL AND METHOD FOR THEIR PRODUCTION
EP3225702B1 (en) Steel with reduced density and method for producing a steel flat or long product made from such steel
EP4000762A1 (en) Steel powder, use of a steel for producing a steel powder and method of manufacturing a component from a steel powder
WO2021063746A1 (en) Method for producing a steel product and corresponding steel product
DE112020004121T5 (en) HOT ROLLED STEEL FOR WHEELS WITH A TENSILE STRENGTH EXCEEDING 500 MPA AND PRODUCTION PROCESS THEREOF

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170920

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180122

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DEUTSCHE EDELSTAHLWERKE SPECIALTY STEEL GMBH & CO.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180912

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1118713

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015008616

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190624

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3168312

Country of ref document: PT

Date of ref document: 20190716

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190703

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190710

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190711

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2733805

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190810

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015008616

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20191120

Year of fee payment: 5

Ref country code: NL

Payment date: 20191119

Year of fee payment: 5

Ref country code: FI

Payment date: 20191119

Year of fee payment: 5

Ref country code: SE

Payment date: 20191119

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20191121

Year of fee payment: 5

Ref country code: BE

Payment date: 20191122

Year of fee payment: 5

26N No opposition filed

Effective date: 20200113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191119

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191116

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: NO

Ref legal event code: MMEP

Ref country code: DK

Ref legal event code: EBP

Effective date: 20201130

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151116

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201116

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201117

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20211011

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221116

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231222

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20231024

Year of fee payment: 9

Ref country code: IT

Payment date: 20231122

Year of fee payment: 9

Ref country code: FR

Payment date: 20231121

Year of fee payment: 9

Ref country code: DE

Payment date: 20231121

Year of fee payment: 9

Ref country code: AT

Payment date: 20231123

Year of fee payment: 9