JP5729803B2 - High-tensile steel plate and manufacturing method thereof - Google Patents

High-tensile steel plate and manufacturing method thereof Download PDF

Info

Publication number
JP5729803B2
JP5729803B2 JP2010121665A JP2010121665A JP5729803B2 JP 5729803 B2 JP5729803 B2 JP 5729803B2 JP 2010121665 A JP2010121665 A JP 2010121665A JP 2010121665 A JP2010121665 A JP 2010121665A JP 5729803 B2 JP5729803 B2 JP 5729803B2
Authority
JP
Japan
Prior art keywords
less
amount
excluding
rolling
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010121665A
Other languages
Japanese (ja)
Other versions
JP2011246768A (en
Inventor
喜臣 岡崎
喜臣 岡崎
秀徳 名古
秀徳 名古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010121665A priority Critical patent/JP5729803B2/en
Priority to CN201110145090XA priority patent/CN102260825A/en
Priority to KR1020110049869A priority patent/KR20110130354A/en
Publication of JP2011246768A publication Critical patent/JP2011246768A/en
Application granted granted Critical
Publication of JP5729803B2 publication Critical patent/JP5729803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築構造物や橋梁などの大型構造物に好適に用いられ、引張強度が570MPa以上の高張力鋼板(以下、「570MPa級鋼板」と称する場合がある。)およびその製造方法に関するものであり、殊に溶接性(HAZ靭性および耐溶接割れ性)と安定した母材性能を有する高張力鋼板およびその製造方法に関するものである。   The present invention is suitably used for large structures such as building structures and bridges, and relates to a high-tensile steel plate having a tensile strength of 570 MPa or more (hereinafter sometimes referred to as “570 MPa-grade steel plate”) and a method for producing the same. In particular, the present invention relates to a high-tensile steel sheet having weldability (HAZ toughness and weld crack resistance) and stable base material performance and a method for producing the same.

高張力鋼板で優れた溶接性を確保するためには、従来からC量を低減した成分設計がなされており、引張強度については合金元素を添加することで確保されている。   In order to ensure excellent weldability with a high-strength steel sheet, a component design with a reduced amount of C has been conventionally performed, and the tensile strength is ensured by adding an alloy element.

本発明者らはこれまでに特許文献1、2などの技術を開示し、溶接性(HAZ靭性、耐溶接割れ性など)や母材強度に優れる鋼板を開示してきた。特許文献1、2は、C量を0.06%程度以下に低減した成分系において、Mo、Nb、Vといった炭化物を形成しやすい元素を添加したものであり、これらの成分組成は優れた溶接性と母材性能(引張強度や靭性)を発揮することができるが、母材性能のばらつきという点において改善の余地があった。   The present inventors have disclosed techniques such as Patent Documents 1 and 2 so far, and have disclosed steel sheets excellent in weldability (HAZ toughness, weld crack resistance, etc.) and base metal strength. Patent Documents 1 and 2 are those in which elements that easily form carbides such as Mo, Nb, and V are added to the component system in which the C content is reduced to about 0.06% or less, and these component compositions are excellent in welding. However, there is room for improvement in terms of variations in base material performance.

また、HAZ靭性や母材靭性を向上させる技術として例えば特許文献3〜6が挙げられる。特許文献3では、O、Sの一方もしくは両方を含む介在物を分散させた鋼材をAc3点以上、1350℃以下に加熱し、未再結晶温度域にて累積圧下率40〜90%の熱間圧延をした後、1〜60℃/secの冷却速度で600℃以下まで冷却することによって、母材靭性と超大入熱溶接HAZ靭性を向上させることが開示されている。特許文献3は、C量を低減した成分系における母材性能のばらつきに着目したものではなく、また溶接性の中でも耐溶接割れ性については検討されていない。 Moreover, patent documents 3-6 are mentioned as a technique which improves HAZ toughness and base material toughness, for example. In Patent Document 3, a steel material in which inclusions containing one or both of O and S are dispersed is heated to an Ac 3 point or higher and 1350 ° C. or lower, and the cumulative reduction ratio is 40 to 90% in the non-recrystallization temperature range. It is disclosed that the base metal toughness and the super large heat input welding HAZ toughness are improved by performing cold rolling and cooling to 600 ° C. or lower at a cooling rate of 1 to 60 ° C./sec. Patent Document 3 does not focus on the variation in the performance of the base material in the component system in which the amount of C is reduced, and the weld crack resistance is not studied among the weldability.

特許文献4では引張強度780MPa以上の鋼板において、C量を0.080%以下とし、合金成分を添加した成分系において、Ac3〜1350℃程度に加熱後、800℃以下の累積圧下率が50%以上となるように熱間圧延を行い、0.05〜50℃/s程度で冷却する技術が開示されている。特許文献4では、母材強度の安定性が不十分であり、また仕上圧延温度が700〜720℃と比較的低めであるため、570MPa級鋼板に適用するにはコストの点で問題がある。 In Patent Document 4, in a steel sheet having a tensile strength of 780 MPa or more, in a component system in which the C content is 0.080% or less and an alloy component is added, a cumulative reduction ratio of 800 ° C. or less after heating to about Ac 3 to 1350 ° C. is 50. A technique of performing hot rolling so as to be at least% and cooling at about 0.05 to 50 ° C./s is disclosed. In Patent Document 4, the stability of the base metal strength is insufficient, and the finish rolling temperature is relatively low at 700 to 720 ° C., so there is a problem in terms of cost when applied to a 570 MPa grade steel plate.

特許文献5では、C量を0.04%未満に制御して合金成分を添加した鋼材を、1020℃以上、1300℃以下に加熱し、1020℃以下、920℃超における累積圧下率を60%未満とし、920℃以下、Ar3点超での累積圧下率が50%以上、90%以下となるように圧延し、冷却速度1℃/秒以上の加速冷却を開始し、550℃未満、300℃以上の温度範囲で加速冷却を停止し、その後放冷する技術が開示されている。しかし特許文献5では母材靭性の安定性が不十分であった。 In Patent Document 5, a steel material to which the C content is controlled to be less than 0.04% and an alloy component is added is heated to 1020 ° C. or higher and 1300 ° C. or lower, and the cumulative rolling reduction at 1020 ° C. or lower and above 920 ° C. is 60%. Less than 920 ° C. and rolled so that the cumulative reduction rate at Ar 3 point is 50% or more and 90% or less, and accelerated cooling at a cooling rate of 1 ° C./second or more is started. A technique is disclosed in which accelerated cooling is stopped in a temperature range of ° C. or higher and then allowed to cool. However, in Patent Document 5, the stability of the base material toughness is insufficient.

特許文献6では、C量を0.02mass%以下と一層低減した成分系において、Ac3点〜1350℃の温度に加熱後、800℃から650℃の温度域での圧下率が20%以上となる熱間圧延を施し、その後冷却する、材質ばらつきが少なくかつ溶接性に優れる高強度鋼材の製造方法が開示されている。しかし特許文献6では、HAZ靭性が不十分であり、大入熱溶接に適用するには問題があった。 In Patent Document 6, in a component system in which the amount of C is further reduced to 0.02 mass% or less, the reduction rate in the temperature range of 800 ° C. to 650 ° C. is 20% or more after heating to a temperature of Ac 3 point to 1350 ° C. A method for producing a high-strength steel material that is hot-rolled and then cooled and has little material variation and excellent weldability is disclosed. However, in Patent Document 6, the HAZ toughness is insufficient and there is a problem in applying to high heat input welding.

特許第3863413号公報Japanese Patent No. 3863413 特許第4220871号公報Japanese Patent No. 4220871 特開2003−49237号公報JP 2003-49237 A 特許第4354754号公報Japanese Patent No. 4354754 特開2008−261012号公報JP 2008-261012 A 特許第3500838号公報Japanese Patent No. 3500838

本発明は、溶接性(HAZ靭性および耐溶接割れ性)と安定した母材性能(引張強度および靭性)を達成できる高張力鋼板を提供することを目的とする。   An object of the present invention is to provide a high-tensile steel sheet capable of achieving weldability (HAZ toughness and weld crack resistance) and stable base material performance (tensile strength and toughness).

上記課題を解決した本発明の高張力鋼板は、C:0.01〜0.06%(質量%の意味。以下、化学成分組成について同じ。)、Mn:1.25〜2.5%、Cr:0.1〜2.0%、Mo:0.01〜1.5%、V:0.040%以下(0%を含む)、Nb:0.001〜0.030%、B:0.0006〜0.005%、Ti:0.005〜0.05%、N:0.002〜0.010%、Si:0.5%以下(0%を含まない)、Al:0.07%以下(0%を含まない)、P:0.02%以下(0%を含まない)、S:0.01%以下(0%を含まない)を含有し、残部が鉄および不可避不純物であり、下記式(1)、(2)で表されるKPおよびKVがそれぞれ2.4≦KP≦4.5、およびKV≦0.060を満足するとともに、鋼組織の90面積%以上がベイナイトであり、残部がマルテンサイトとオーステナイトよりなる混合組織(MA組織)、フェライト、擬ポリゴナルフェライトであり、ベイナイト組織の平均結晶粒径が5〜20μmであり、旧オーステナイト粒の平均アスペクト比が5.0以上であることを特徴とする。
KP=[Mn]+1.5×[Cr]+2×[Mo] ・・・(1)
KV=[V]+[Nb] ・・・(2)
(但し、[ ]は各元素の含有量(質量%)を表す。)
The high-tensile steel sheet of the present invention that has solved the above problems is C: 0.01 to 0.06% (meaning mass%, hereinafter the same for chemical composition), Mn: 1.25 to 2.5%, Cr: 0.1 to 2.0%, Mo: 0.01 to 1.5%, V: 0.040% or less (including 0%), Nb: 0.001 to 0.030%, B: 0 0006-0.005%, Ti: 0.005-0.05%, N: 0.002-0.010%, Si: 0.5% or less (excluding 0%), Al: 0.07 % Or less (not including 0%), P: 0.02% or less (not including 0%), S: 0.01% or less (not including 0%), the balance being iron and inevitable impurities Yes, KP and KV represented by the following formulas (1) and (2) satisfy 2.4 ≦ KP ≦ 4.5 and KV ≦ 0.060, respectively. 90% by area or more of the structure is bainite, the balance is a mixed structure (MA structure) composed of martensite and austenite, ferrite and pseudopolygonal ferrite, and the average crystal grain size of the bainite structure is 5 to 20 μm. The average aspect ratio of the austenite grains is 5.0 or more.
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo] (1)
KV = [V] + [Nb] (2)
(However, [] represents the content (% by mass) of each element.)

本発明の高張力鋼板は、必要に応じて(a)Cu:2.0%以下(0%を含まない)、(b)Ni:5.0%以下(0%を含まない)、(c)Zr、Ca、Mg、およびREMよりなる群から選択される1種以上を、Ca、Mg、およびREMの合計含有量が0.010%以下(0%を含まない)であり、Zr量が0.020%以下(0%を含まない)となるように含有していても良い。   The high-strength steel sheet of the present invention includes (a) Cu: 2.0% or less (not including 0%), (b) Ni: 5.0% or less (not including 0%), (c) as necessary. ) One or more selected from the group consisting of Zr, Ca, Mg, and REM, the total content of Ca, Mg, and REM is 0.010% or less (not including 0%), and the amount of Zr is You may contain so that it may become 0.020% or less (0% is not included).

また、本発明には上記のいずれかの高張力鋼板を製造する方法であって、Ac3〜1300℃に加熱して熱間圧延を行うにあたり、加熱温度をT(℃)とする時、T/20−8(%)以上の圧下率で未再結晶域圧延を実施し、前記圧延後0.5〜50℃/秒の冷却速度で冷却することを特徴とする高張力鋼板の製造方法も包含される。 Further, the present invention is a method for producing any one of the above-described high-tensile steel plates, and when performing hot rolling by heating to Ac 3 to 1300 ° C., when the heating temperature is T (° C.), T A method for producing a high-strength steel sheet is also characterized in that non-recrystallized zone rolling is performed at a reduction rate of 20/20 (%) or more, and cooling is performed at a cooling rate of 0.5 to 50 ° C./second after the rolling. Is included.

本発明によれば、化学成分を適切に制御するとともに、製造条件を適切に制御(特に、熱間圧延するにあたって加熱温度に応じた圧下率で未再結晶域圧延を施している)しているため、ベイナイト組織の分率、形態、および旧オーステナイト粒の平均アスペクト比を適切に調整することができ、溶接性(HAZ靭性および耐溶接割れ性)と安定した母材性能(引張強度および靭性)を達成することができる。   According to the present invention, the chemical components are appropriately controlled, and the production conditions are appropriately controlled (particularly, the non-recrystallized region rolling is performed at the reduction rate corresponding to the heating temperature in hot rolling). Therefore, the fraction of the bainite structure, the shape, and the average aspect ratio of the prior austenite grains can be adjusted appropriately, and the weldability (HAZ toughness and weld crack resistance) and stable base material performance (tensile strength and toughness) Can be achieved.

本発明者らは、優れた溶接性を有する鋼材について、生産性を低下させることなく母材性能を安定化させた鋼板を得るために検討した結果、化学成分組成を適切に制御した上で、製造条件の中でも特に、熱間圧延の加熱温度に応じて未再結晶域の圧下率を適切に制御した圧延を行えば良いことを見出した。   As a result of studying the steel material having excellent weldability, in order to obtain a steel plate that has stabilized the base material performance without reducing productivity, the chemical composition is appropriately controlled, In particular, it has been found that rolling can be performed while appropriately controlling the reduction rate of the non-recrystallized region in accordance with the heating temperature of hot rolling.

まず、本発明の高張力鋼板の化学成分について以下に説明する。   First, the chemical components of the high-tensile steel plate of the present invention will be described below.

C:0.01〜0.06%
Cは溶接時におけるHAZ部の耐溶接割れ性と母材強度を両立させ、且つ大入熱HAZ靭性を改善するために重要な元素である。Cが0.06%を超えると高冷却速度側で低温変態ベイナイトでなく、マルテンサイトが生成するようになり、耐溶接割れ性および大入熱HAZ靭性が改善されない。またCが0.01%未満では必要最小限の母材強度が得られない。そこでC量は0.01〜0.06%と定めた。C量の下限は、好ましくは0.020%であり、より好ましくは0.024%である。C量の上限は、好ましくは0.050%以下であり、より好ましくは0.045%以下である。
C: 0.01 to 0.06%
C is an important element for achieving both the weld crack resistance of the HAZ part during welding and the strength of the base material and improving the high heat input HAZ toughness. When C exceeds 0.06%, martensite is generated instead of low-temperature transformation bainite on the high cooling rate side, and weld crack resistance and high heat input HAZ toughness are not improved. Further, if C is less than 0.01%, the necessary minimum base material strength cannot be obtained. Therefore, the C amount is determined to be 0.01 to 0.06%. The lower limit of the C amount is preferably 0.020%, more preferably 0.024%. The upper limit of the C amount is preferably 0.050% or less, and more preferably 0.045% or less.

Mn:1.25〜2.5%
Mnは焼入れ性を改善する作用を有するとともに、ベイナイトブロックを微細化して母材靭性を改善する効果を発揮する。Mn量が1.25%未満であると、所望の焼入れ性改善作用が発揮されず、母材強度が不足する。一方、Mn量が2.5%を超えて過剰になるとHAZ部の耐溶接割れ性が劣化することになる。そこでMn量を1.25〜2.5%と定めた。Mn量の下限は、好ましくは1.35%であり、より好ましくは1.45%(特に1.50%)である。Mn量の上限は、好ましくは2.3%であり、より好ましくは2.0%である。
Mn: 1.25 to 2.5%
Mn has the effect of improving hardenability and also exhibits the effect of improving the base material toughness by refining the bainite block. If the amount of Mn is less than 1.25%, the desired hardenability improving effect is not exhibited and the base material strength is insufficient. On the other hand, if the amount of Mn exceeds 2.5% and becomes excessive, the weld crack resistance of the HAZ part will deteriorate. Therefore, the amount of Mn is set to 1.25 to 2.5%. The lower limit of the amount of Mn is preferably 1.35%, more preferably 1.45% (particularly 1.50%). The upper limit of the amount of Mn is preferably 2.3%, more preferably 2.0%.

Cr:0.1〜2.0%
Crは本発明において重要な元素であり、焼入れ性を改善するだけでなく、Bによる焼入れ性の改善効果を安定的に確保する作用を有する。また、ベイナイトブロックの微細化を達成し、母材靭性を改善する効果も発揮する。Cr量が0.1%未満ではこれらの効果が有効に発揮されず、一方、Cr量が2.0%を超えて過剰になるとHAZ部の耐溶接割れ性が劣化する。そこでCr量を0.1〜2.0%と定めた。Cr量の下限は、好ましくは0.20%であり、より好ましくは0.40%(特に0.50%)である。Cr量の上限は、好ましくは1.5%であり、より好ましくは1.4%である。
Cr: 0.1 to 2.0%
Cr is an important element in the present invention, and not only improves hardenability but also has an effect of stably securing the effect of improving hardenability by B. Moreover, the refinement | miniaturization of a bainite block is achieved and the effect which improves base material toughness is also exhibited. If the Cr content is less than 0.1%, these effects cannot be exhibited effectively. On the other hand, if the Cr content exceeds 2.0% and becomes excessive, the weld crack resistance of the HAZ part deteriorates. Therefore, the Cr content is set to 0.1 to 2.0%. The lower limit of the Cr amount is preferably 0.20%, more preferably 0.40% (particularly 0.50%). The upper limit of the Cr amount is preferably 1.5%, more preferably 1.4%.

Mo:0.01〜1.5%
Moは、Mo、NbおよびBの複合効果によって焼入れ性を改善する作用を有する。こうした効果を有効に発揮させるためには、Mo量は0.01%以上含有させる必要がある。一方、Moが1.5%を超えて過剰になるとHAZの耐溶接割れ性が劣化する。そこでMo量は0.01〜1.5%と定めた。Mo量の下限は、好ましくは0.10%、より好ましくは0.13%である。Mo量の上限は、好ましくは1.3%であり、より好ましくは1.0%である。
Mo: 0.01 to 1.5%
Mo has the effect of improving the hardenability by the combined effect of Mo, Nb and B. In order to exhibit such an effect effectively, the Mo amount needs to be 0.01% or more. On the other hand, if Mo exceeds 1.5% and becomes excessive, the weld crack resistance of HAZ deteriorates. Therefore, the Mo amount is determined to be 0.01 to 1.5%. The lower limit of the amount of Mo is preferably 0.10%, more preferably 0.13%. The upper limit of the amount of Mo is preferably 1.3%, more preferably 1.0%.

2.4≦KP≦4.5、KP=[Mn]+1.5×[Cr]+2×[Mo]
本発明において、上記したMn、Cr、Moの含有量を個々に制御するのみならず、これら元素の含有量によって定まるKPを制御することも重要である。KPの値が2.4未満では上記した焼入れ性改善効果を十分に発揮することができず、擬ポリゴナルフェライトやフェライトが生成しやすくなり、570MPa以上の母材強度を得ることができなくなる。一方、KPの値が4.5を超えて大きくなると大入熱HAZ靭性が低下する。そこでKPは2.4以上4.5以下と定めた。KPの下限は、好ましくは2.6であり、より好ましくは2.8である。KPの上限は、好ましくは4.3であり、より好ましくは4.0である。
2.4 ≦ KP ≦ 4.5, KP = [Mn] + 1.5 × [Cr] + 2 × [Mo]
In the present invention, it is important not only to individually control the contents of Mn, Cr and Mo described above, but also to control KP determined by the contents of these elements. If the value of KP is less than 2.4, the effect of improving the hardenability cannot be sufficiently exhibited, and pseudo-polygonal ferrite and ferrite are easily generated, and a base material strength of 570 MPa or more cannot be obtained. On the other hand, when the KP value exceeds 4.5, the high heat input HAZ toughness decreases. Therefore, KP was determined to be 2.4 or more and 4.5 or less. The lower limit of KP is preferably 2.6, and more preferably 2.8. The upper limit of KP is preferably 4.3, and more preferably 4.0.

V:0.040%以下(0%を含む)、Nb:0.001〜0.030%
Vは少量の添加で焼入れ性および焼戻し軟化抵抗を高める作用を有する元素である。このような作用を有効に発揮させるため、V量は0.01%以上とすることが好ましく、より好ましくは0.02%以上である。Nbも少量の添加で焼入れ性を高め、母材強度の向上に寄与する元素であるため、Nb量は0.001%以上と定めた。Nb量の下限は、好ましくは0.005%であり、より好ましくは0.006%である。一方、V量およびNb量が過剰になると大入熱HAZ靭性が低下する。そこでV量は0.040%以下、Nb量は0.030%以下と定めた。V量の上限は、好ましくは0.035%であり、より好ましくは0.030%である。Nb量の上限は、好ましくは0.025%であり、より好ましくは0.022%である。
V: 0.040% or less (including 0%), Nb: 0.001 to 0.030%
V is an element having an effect of increasing hardenability and temper softening resistance with a small amount of addition. In order to effectively exhibit such an action, the V amount is preferably 0.01% or more, and more preferably 0.02% or more. Nb is also an element that increases the hardenability by adding a small amount and contributes to the improvement of the strength of the base metal, so the Nb amount was determined to be 0.001% or more. The lower limit of the Nb amount is preferably 0.005%, more preferably 0.006%. On the other hand, if the amount of V and the amount of Nb are excessive, the high heat input HAZ toughness decreases. Therefore, the V amount is set to 0.040% or less, and the Nb amount is set to 0.030% or less. The upper limit of the amount of V is preferably 0.035%, more preferably 0.030%. The upper limit of the amount of Nb is preferably 0.025%, more preferably 0.022%.

KV≦0.060、KV=[V]+[Nb]
本発明において、上記したVとNbは、個々の含有量を制御するのみならず、これら元素の含有量によって定まるKVの値を制御することも重要である。上記の通り、これらの元素が過剰になりすぎると、大入熱HAZ靭性を低下させるためである。そこでKVは0.060以下と定めた。KVは好ましくは0.055以下であり、より好ましくは0.040以下である。
KV ≦ 0.060, KV = [V] + [Nb]
In the present invention, it is important not only to control the individual contents of V and Nb described above, but also to control the value of KV determined by the contents of these elements. As described above, if these elements are excessive, the high heat input HAZ toughness is reduced. Therefore, KV was determined to be 0.060 or less. KV is preferably 0.055 or less, more preferably 0.040 or less.

B :0.0006〜0.005%
Bは焼入れ性を改善する作用を有する元素であり、低冷却速度でベイナイトを生成しやすくすると共に、極低Cとし、同時に適量のMn、Cr、Moを添加することで小入熱溶接時におけるHAZ部の耐溶接割れ性と母材強度を高める作用を発揮する。このような作用を有効に発揮させるためB量を0.0006%以上と定めた。B量の下限は、好ましくは0.0008%であり、より好ましくは0.0010%である。一方、B量が過剰になるとかえって焼入れ性が低下し、母材靭性と溶接性が不足する。そこでB量は0.005%以下と定めた。B量の上限は、好ましくは0.004%、より好ましくは0.003%、さらに好ましくは0.0015%(特に0.0012%)である。
B: 0.0006 to 0.005%
B is an element that has an effect of improving hardenability, makes it easy to produce bainite at a low cooling rate, and makes it extremely low C, and at the same time, by adding an appropriate amount of Mn, Cr, Mo, at the time of small heat input welding It exhibits the effect of increasing the weld crack resistance and the base metal strength of the HAZ part. In order to effectively exhibit such an action, the B amount is set to 0.0006% or more. The lower limit of the amount of B is preferably 0.0008%, more preferably 0.0010%. On the other hand, if the amount of B is excessive, the hardenability is lowered and the base metal toughness and weldability are insufficient. Therefore, the amount of B is set to 0.005% or less. The upper limit of the amount of B is preferably 0.004%, more preferably 0.003%, still more preferably 0.0015% (particularly 0.0012%).

Bについて、特にNbとVを添加している成分系においては、B量を精緻に制御することが重要である。特にNbとBを複合添加することで鋼材の再結晶温度が上昇することが知られている。すなわち、NbとBを複合添加した場合には比較的高温域で未再結晶域圧延を実施できるという効果が発現するが、本発明者らはNbとBの複合添加が、靭性(特にHAZ靭性)に対して大きな悪影響を及ぼすことを見出している。このような観点から、Nb量とB量の合計は、0.005〜0.033%とすることが好ましく、より好ましくは0.010〜0.030%である。   Regarding B, particularly in a component system to which Nb and V are added, it is important to precisely control the amount of B. In particular, it is known that the recrystallization temperature of a steel material increases when Nb and B are added in combination. That is, when Nb and B are added in combination, the effect that non-recrystallized zone rolling can be carried out at a relatively high temperature range is manifested. However, the inventors have added Nb and B combined toughness (especially HAZ toughness). ). From such a viewpoint, the total amount of Nb and B is preferably 0.005 to 0.033%, and more preferably 0.010 to 0.030%.

Ti:0.005〜0.05%
Tiは、Nと窒化物を形成して大入熱溶接時におけるHAZ部のオーステナイト粒を微細化し、HAZ靭性の改善に寄与する点で有用である。そこでTi量を0.005%以上と定めた。Ti量の下限は、好ましくは0.008%であり、より好ましくは0.010%である。一方、Ti量が過剰になるとかえってHAZ靭性が低下する。そこでTi量は0.05%以下と定めた。Ti量の上限は、好ましくは0.040%以下であり、より好ましくは0.030%以下である。
Ti: 0.005 to 0.05%
Ti is useful in that it forms nitrides with N to refine the austenite grains in the HAZ part during high heat input welding and contributes to the improvement of HAZ toughness. Therefore, the Ti content is set to 0.005% or more. The lower limit of the Ti amount is preferably 0.008%, more preferably 0.010%. On the other hand, if the amount of Ti becomes excessive, the HAZ toughness decreases. Therefore, the Ti amount is determined to be 0.05% or less. The upper limit of the amount of Ti is preferably 0.040% or less, and more preferably 0.030% or less.

N:0.002〜0.010%
Nは上記した通り、Tiと窒化物を形成して大入熱溶接時におけるHAZ靭性改善に寄与する点で有用である。このような作用を有効に発揮させるため、N量は0.002%以上と定めた。N量の下限は、好ましくは0.0030%であり、より好ましくは0.0035%である。ただし、NはBと結合して固溶Bを減少させ、Bの焼入れ性向上作用を阻害し、母材の靭性および大入熱HAZ靭性を低下させる作用も有しており、Nの含有量が0.010%を超えるとその作用が顕著になる。そこでN量は、0.010%以下とする。N量の上限は、好ましくは0.0090%であり、より好ましくは0.0080%である。
N: 0.002 to 0.010%
As described above, N is useful in that it forms a nitride with Ti and contributes to the improvement of HAZ toughness during high heat input welding. In order to effectively exhibit such an action, the N content is set to 0.002% or more. The lower limit of the N amount is preferably 0.0030%, more preferably 0.0035%. However, N combines with B to reduce the solid solution B, inhibits the hardenability improvement effect of B, and also has the effect of lowering the toughness of the base metal and the high heat input HAZ toughness. When it exceeds 0.010%, the effect becomes remarkable. Therefore, the N amount is 0.010% or less. The upper limit of the N amount is preferably 0.0090%, and more preferably 0.0080%.

Si:0.5%以下(0%を含まない)
Siは脱酸剤として有用な元素であるが、0.5%を超えて含有すると溶接性および母材靭性が低下する。そこでSi量は0.5%以下とする。Si量の上限は好ましくは0.40%以下であり、より好ましくは0.35%以下である。
Si: 0.5% or less (excluding 0%)
Si is an element useful as a deoxidizer, but if it exceeds 0.5%, weldability and base metal toughness are lowered. Therefore, the Si amount is 0.5% or less. The upper limit of the amount of Si is preferably 0.40% or less, and more preferably 0.35% or less.

Al:0.07%以下(0%を含まない)
Alは脱酸元素であるとともに、Nを固定して固溶Bを確保することでBに基づく焼入れ性向上作用を高める元素であるが、0.07%を超えて含有すると母材靭性が低下する。そこでAl量は0.07%以下とする。Al量の上限は、好ましくは0.060%であり、より好ましくは0.040%以下である。
Al: 0.07% or less (excluding 0%)
Al is a deoxidizing element and is an element that enhances the hardenability improving action based on B by fixing N and securing solid solution B. However, if it exceeds 0.07%, the toughness of the base material decreases. To do. Therefore, the Al content is set to 0.07% or less. The upper limit of the amount of Al is preferably 0.060%, more preferably 0.040% or less.

P:0.02%以下(0%を含まない)、S:0.01%以下(0%を含まない)
PおよびSは、靭性等の物性に悪影響を及ぼす有害な不純物元素であるため、P量は0.02%以下、S量は0.01%以下に抑制する。P量の上限は、好ましくは0.015%、より好ましくは0.010%であり、S量の上限は、好ましくは0.007%、より好ましくは0.005%である。
P: 0.02% or less (not including 0%), S: 0.01% or less (not including 0%)
Since P and S are harmful impurity elements that adversely affect physical properties such as toughness, the P content is suppressed to 0.02% or less, and the S content is suppressed to 0.01% or less. The upper limit of the P content is preferably 0.015%, more preferably 0.010%, and the upper limit of the S content is preferably 0.007%, more preferably 0.005%.

本発明鋼板の基本成分は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避的不純物が含まれることは、当然に許容される。また、本発明の鋼板は、必要に応じて以下の元素を含有していても良い。   The basic components of the steel sheet of the present invention are as described above, and the balance is substantially iron. However, as a matter of course, it is allowed to contain inevitable impurities brought in depending on the situation of raw materials, materials, manufacturing facilities, and the like. Moreover, the steel plate of this invention may contain the following elements as needed.

Cu:2.0%以下(0%を含まない)
Cuは固溶強化および析出強化により母材強度を向上させると共に、焼入れ性向上作用を有する元素である。このような効果を有効に発揮させるため、Cu量は0.10%以上含有させることが好ましく、より好ましくは0.20%以上である。一方、Cu量が過剰になると大入熱HAZ靭性が低下する。そこでCu量は2.0%以下とすることが好ましい。Cu量の上限は、より好ましくは1.5%であり、さらに好ましくは0.5%である。
Cu: 2.0% or less (excluding 0%)
Cu is an element having an effect of improving the hardenability while improving the strength of the base metal by solid solution strengthening and precipitation strengthening. In order to effectively exhibit such an effect, the Cu content is preferably 0.10% or more, more preferably 0.20% or more. On the other hand, when the amount of Cu becomes excessive, the high heat input HAZ toughness decreases. Therefore, the Cu amount is preferably set to 2.0% or less. The upper limit of the amount of Cu is more preferably 1.5%, and further preferably 0.5%.

Ni:5.0%以下(0%を含まない)
Niは、母材靭性向上に有用な元素である。このような効果を有効に発揮させるため、Ni量は0.10%以上とすることが好ましく、より好ましくは0.20%以上である。一方、Ni量が過剰になるとスケール疵が発生しやすくなるため、Ni量は5.0%以下とすることが好ましい。Ni量の上限は、より好ましくは4%以下であり、さらに好ましくは3%以下である。
Ni: 5.0% or less (excluding 0%)
Ni is an element useful for improving the base material toughness. In order to effectively exhibit such an effect, the Ni content is preferably 0.10% or more, more preferably 0.20% or more. On the other hand, when the amount of Ni becomes excessive, scale wrinkles are likely to occur. Therefore, the amount of Ni is preferably 5.0% or less. The upper limit of the Ni amount is more preferably 4% or less, and further preferably 3% or less.

Zr、Ca、Mg、およびREMよりなる群から選択される1種以上を、Ca、Mg、およびREMの合計含有量が0.010%以下(0%を含まない)であり、Zr量が0.020%以下(0%を含まない)となるように含有
Zr、Ca、MgおよびREMはいずれも、介在物を微細化させる作用を有するため、母材靭性の安定化およびHAZ靭性の向上に寄与する元素である。このような効果を有効に発揮させるためCa、MgおよびREMは合計で0.0005%以上含有させることが好ましく、より好ましくは0.0010%以上である。またZr量は好ましくは0.002%以上であり、より好ましくは0.005%以上である。一方、これらの含有量が過剰になると介在物が粗大化することによりHAZ靭性が劣化する。そこでCa、MgおよびREMの含有量は合計で0.010%以下とすることが好ましく、より好ましくは0.008%以下であり、さらに好ましくは0.005%以下である。またZr量は好ましくは0.020%以下であり、より好ましくは0.015%以下であり、さらに好ましくは0.010%以下である。なお、本発明においてREMは、周期律表3族に属するスカンジウム(Sc)、イットリウム(Y)およびランタノイド系列希土類元素(原子番号57〜71)の元素のいずれをも用いることができる。
One or more selected from the group consisting of Zr, Ca, Mg, and REM, the total content of Ca, Mg, and REM is 0.010% or less (not including 0%), and the amount of Zr is 0 0.020% or less (not including 0%) Zr, Ca, Mg, and REM all have the effect of refining inclusions, which stabilizes the base material toughness and improves the HAZ toughness. It is a contributing element. In order to effectively exhibit such effects, Ca, Mg and REM are preferably contained in a total amount of 0.0005% or more, and more preferably 0.0010% or more. Further, the amount of Zr is preferably 0.002% or more, and more preferably 0.005% or more. On the other hand, if these contents are excessive, the inclusions become coarse, and the HAZ toughness deteriorates. Therefore, the total content of Ca, Mg and REM is preferably 0.010% or less, more preferably 0.008% or less, and further preferably 0.005% or less. The Zr content is preferably 0.020% or less, more preferably 0.015% or less, and still more preferably 0.010% or less. In the present invention, REM can use any of scandium (Sc), yttrium (Y), and lanthanoid series rare earth elements (atomic numbers 57 to 71) belonging to Group 3 of the periodic table.

次に、本発明の高張力鋼板の組織について以下に説明する。   Next, the structure of the high-tensile steel plate of the present invention will be described below.

本発明の高張力鋼板の組織は、90面積%以上がベイナイトであり、残部がマルテンサイトとオーステナイトよりなる混合組織(MA組織)、フェライト、擬ポリゴナルフェライトである。ベイナイト分率を90面積%以上とすることによって、母材の引張強度を確保することが可能となる。ベイナイト分率は好ましくは95面積%以上であり、より好ましくは97%以上であり、特に100%であることが好ましい。なお、上述した特許文献3はフェライトの微細化を前提とする技術であって、組織において本発明とは異なっている。   The structure of the high-tensile steel sheet of the present invention is 90% by area or more of bainite, and the balance is a mixed structure (MA structure) composed of martensite and austenite, ferrite, and pseudopolygonal ferrite. By setting the bainite fraction to 90 area% or more, the tensile strength of the base material can be ensured. The bainite fraction is preferably 95 area% or more, more preferably 97% or more, and particularly preferably 100%. Note that the above-mentioned Patent Document 3 is a technique premised on the refinement of ferrite and differs in structure from the present invention.

前記ベイナイト組織の平均結晶粒径は5〜20μmである。ベイナイトの平均結晶粒径は5μm未満であるとベイナイトはグラニュラー状になり強度および靭性が低下する。一方、ベイナイト平均結晶粒径が20μmを超えて粗大になると母材靭性が不安定となる。ベイナイト組織の平均結晶粒径は、好ましくは8〜16μmである。   The average crystal grain size of the bainite structure is 5 to 20 μm. When the average crystal grain size of bainite is less than 5 μm, the bainite becomes granular and the strength and toughness are lowered. On the other hand, if the bainite average grain size exceeds 20 μm and becomes coarse, the base metal toughness becomes unstable. The average crystal grain size of the bainite structure is preferably 8 to 16 μm.

また、本発明において旧オーステナイト粒の平均アスペクト比は5.0以上である。旧オーステナイト粒の平均アスペクト比は、本発明において重要な要件であり、5.0以上とすることにより母材靭性を安定して確保する、すなわち母材靭性を所定以上確保するとともにばらつきを抑制することができる。旧オーステナイト粒の平均アスペクト比は好ましくは6.0以上であり、より好ましくは6.2以上である。該平均アスペクト比の上限は特に限定されないが、通常10程度である。   In the present invention, the average aspect ratio of the prior austenite grains is 5.0 or more. The average aspect ratio of the prior austenite grains is an important requirement in the present invention. By setting the average aspect ratio to 5.0 or more, the base material toughness is stably secured, that is, the base material toughness is ensured at a predetermined level or more and the variation is suppressed. be able to. The average aspect ratio of the prior austenite grains is preferably 6.0 or more, and more preferably 6.2 or more. The upper limit of the average aspect ratio is not particularly limited, but is usually about 10.

本発明の高張力鋼板は母材強度および母材靭性を安定して確保することができる。母材強度については、例えば後述する実施例に記載した要領に従って測定した引張試験において、570MPa以上となることが好ましい。母材靭性については、例えば後述する実施例に記載した要領に従って測定したシャルピー衝撃試験において、3本の試験片について測定したシャルピー吸収エネルギー(vE-5)の平均値および最低値がともに200J以上であることが好ましい。 The high-tensile steel plate of the present invention can stably ensure the base material strength and base material toughness. The base material strength is preferably 570 MPa or more, for example, in a tensile test measured according to the procedure described in Examples described later. Regarding the base material toughness, for example, in the Charpy impact test measured according to the procedure described in the examples described later, the average value and the minimum value of the Charpy absorbed energy (vE -5 ) measured for three test pieces are both 200 J or more. Preferably there is.

また本発明の高張力鋼板を用いて溶接を行った場合、良好な溶接性を得ることができる。例えば入熱量15kJ/mmの溶接を行った場合のHAZの靭性は、−5℃でのシャルピー吸収エネルギー(vE-5)で80J以上であることが好ましく、より好ましくは100J以上(特に150J以上)である。また耐溶接割れ性については、例えば後述する実施例において測定した、断面割れ率が0となるルート割れ防止予熱温度が25℃以下となることが好ましく、より好ましくは0℃以下である。 Moreover, when welding is performed using the high-tensile steel plate of the present invention, good weldability can be obtained. For example, the HAZ toughness when welding with a heat input of 15 kJ / mm is preferably 80 J or more, more preferably 100 J or more (particularly 150 J or more) in terms of Charpy absorbed energy (vE −5 ) at −5 ° C. It is. As for the weld crack resistance, for example, the root crack prevention preheating temperature at which the cross-section crack ratio is 0, measured in the examples described later, is preferably 25 ° C. or less, more preferably 0 ° C. or less.

本発明の鋼板の板厚は、例えば6mm以上(好ましくは15mm以上、より好ましくは20mm以上)、100mm以下程度である。   The plate thickness of the steel sheet of the present invention is, for example, about 6 mm or more (preferably 15 mm or more, more preferably 20 mm or more) and about 100 mm or less.

上記した本発明の高張力鋼板を得るためには、化学成分組成を調整した鋼を通常の溶製法に従って溶製し、鋳造してスラブとした後、熱間圧延を行い所定の板厚の鋼板を得るという厚鋼板の通常の製造工程において、特に、Ac3〜1300℃に加熱して熱間圧延を行うにあたり、熱間圧延の加熱温度T(℃)に応じた圧下率で未再結晶域圧延を実施し、圧延後の冷却速度を所定範囲に制御することが必要である。また、仕上圧延温度を比較的高温にすることも好ましい。 In order to obtain the above-described high-tensile steel plate of the present invention, a steel plate having a predetermined thickness is prepared by melting a steel with a controlled chemical composition according to a normal melting method, casting it into a slab, and then hot rolling. In the normal manufacturing process of a thick steel plate to obtain hot steel, in particular, when performing hot rolling by heating to Ac 3 to 1300 ° C., an unrecrystallized region at a reduction rate corresponding to the heating temperature T (° C.) of hot rolling It is necessary to perform rolling and control the cooling rate after rolling to a predetermined range. It is also preferable to make the finish rolling temperature relatively high.

Ac3〜1300℃に加熱して熱間圧延を行うにあたり、熱間圧延の加熱温度をT(℃)とすると、本発明ではT/20−8(%)以上の圧下率で未再結晶域圧延を行うことが重要である。本発明において、未再結晶域とは、該温度域においてオーステナイト粒径:100±10μmとした鋼板試験片を、歪み速度:10/秒、相当歪:0.2の条件で圧下を加えて10秒後に組織を凍結(例えば、水冷など)したときに、20体積%以下が再結晶粒となる温度域を意味する。なお、この温度域は鋼板の化学組成に応じて変動するため、熱間圧延を実施する前に、各鋼板と同じ化学組成の試験片について上記操作を行って再結晶温度域を確認しておけば良い。 In performing hot rolling by heating to Ac 3 to 1300 ° C., assuming that the heating temperature of hot rolling is T (° C.), in the present invention, an unrecrystallized region at a reduction ratio of T / 20−8 (%) or more. It is important to perform rolling. In the present invention, the non-recrystallized region is 10 by applying a steel plate test piece with an austenite grain size of 100 ± 10 μm in the temperature region under a condition of strain rate: 10 / second and equivalent strain: 0.2. When the structure is frozen after 2 seconds (for example, water cooling), it means a temperature range in which 20% by volume or less becomes recrystallized grains. Since this temperature range varies depending on the chemical composition of the steel plate, the recrystallization temperature range should be confirmed by performing the above operation on the test piece having the same chemical composition as each steel plate before hot rolling. It ’s fine.

未再結晶域圧延での圧下率がT/20−8(%)未満となると、上記した旧オーステナイト粒のアスペクト比を5.0以上確保することができず、その結果、安定的な母材靭性を確保することができない。未再結晶域圧延での好ましい圧下率は、40%以上である。一方、該圧下率が大きくなりすぎるとフェライト変態が生じてしまうため、上限は60%とすることが好ましい。   When the reduction ratio in non-recrystallization zone rolling is less than T / 20-8 (%), the aspect ratio of the above prior austenite grains cannot be secured to 5.0 or more, and as a result, a stable base material is obtained. Toughness cannot be ensured. A preferable rolling reduction in non-recrystallized zone rolling is 40% or more. On the other hand, if the rolling reduction is too large, ferrite transformation occurs, so the upper limit is preferably 60%.

また、圧延後の冷却速度は0.5〜50℃/秒とする。冷却速度が0.5℃/秒未満であるとベイナイト分率が確保できなくなり、母材強度が不十分となる。一方、冷却速度が50℃/秒を超えると強度が過剰となり母材靭性が不安定となる。冷却速度は、好ましくは2.0〜40℃/秒である。   Moreover, the cooling rate after rolling shall be 0.5-50 degreeC / second. When the cooling rate is less than 0.5 ° C./second, the bainite fraction cannot be secured, and the base material strength becomes insufficient. On the other hand, when the cooling rate exceeds 50 ° C./second, the strength becomes excessive and the base material toughness becomes unstable. The cooling rate is preferably 2.0 to 40 ° C./second.

本発明の製造方法においては、仕上圧延温度を高めに設定することも好ましい。上記した特許文献1、4は仕上圧延温度が比較的低温であるが、仕上圧延温度が低温であると生産性が低下するとともに、旧オーステナイト粒に歪を蓄積することになるためフェライトが生成しやすくなり母材強度が低くなり、またばらつきも起こりやすくなる。そこで、仕上圧延温度は750℃以上であることが好ましく、より好ましくは770℃以上である。仕上圧延温度の上限は、未再結晶温度域で圧延を終了できる限り特に限定されず、また化学成分組成によっても異なるが、概ね800℃以下である。   In the production method of the present invention, it is also preferable to set the finish rolling temperature higher. In Patent Documents 1 and 4 described above, the finish rolling temperature is relatively low. However, if the finish rolling temperature is low, productivity decreases and strain is accumulated in the prior austenite grains, so that ferrite is generated. It becomes easier and the base material strength is lowered, and variations are likely to occur. Therefore, the finish rolling temperature is preferably 750 ° C. or higher, more preferably 770 ° C. or higher. The upper limit of the finish rolling temperature is not particularly limited as long as the rolling can be completed in the non-recrystallization temperature range, and is approximately 800 ° C. or less although it varies depending on the chemical composition.

以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range.

表1、2に示す化学組成のAlキルド鋼を通常の溶製法に従って溶製し、鋳造してスラブとした後、表3、4に示す条件で熱間圧延して高張力鋼板を製造した(板厚:50mm)。なお、表1におけるREMは、Laを25%程度、Ceを25%程度含むミッシュメタルを用いた。   The Al killed steel having the chemical composition shown in Tables 1 and 2 was melted in accordance with a normal melting method, cast into a slab, and then hot-rolled under the conditions shown in Tables 3 and 4 to produce a high-tensile steel plate ( (Plate thickness: 50 mm). The REM in Table 1 was a misch metal containing about 25% La and about 25% Ce.

Figure 0005729803
Figure 0005729803

Figure 0005729803
Figure 0005729803

得られた各鋼板について、以下の要領に従って母材強度、母材靭性、組織、および溶接性(HAZ靭性、耐溶接割れ性)を測定した。   About each obtained steel plate, base material strength, base material toughness, structure, and weldability (HAZ toughness, weld crack resistance) were measured according to the following procedures.

(1)母材強度の測定
得られた各鋼板のt/4位置(t:板厚)からJIS4号試験片を採取し、JIS Z2241に従って引張試験を行い、引張強度(TS)を測定した。
(1) Measurement of base material strength A JIS No. 4 test piece was taken from the t / 4 position (t: plate thickness) of each steel plate obtained, and subjected to a tensile test according to JIS Z2241, to measure the tensile strength (TS).

(2)母材靭性の測定
得られた各鋼板のt/4位置(t:板厚)からJIS4号試験片を3本採取し、JIS Z2242に従って−5℃でシャルピー衝撃試験を行い、シャルピー吸収エネルギー(vE-5)を測定した。なお、表3、4にはこれらの値の平均値および最小値をそれぞれ示した。
(2) Measurement of base metal toughness Three JIS No. 4 test pieces were sampled from t / 4 positions (t: plate thickness) of each steel plate obtained, and subjected to Charpy impact test at -5 ° C in accordance with JIS Z2242, absorbing Charpy. The energy (vE- 5 ) was measured. Tables 3 and 4 show the average and minimum values of these values, respectively.

(3)組織評価
各鋼板のt/4位置(t:板厚)の圧延方向に平行な断面を鏡面研磨した試験片を、2%ナイタール液でエッチングを行い、観察視野:200μm×150μmの範囲を、光学顕微鏡を用いて400倍で観察して10視野について写真撮影をした。これら10視野についてMedical Cybernetics社製「Image−Pro Plus」を用いて画像解析を行い、組織中の旧オーステナイト粒の平均アスペクト比、およびベイナイト分率を測定した。この際、フェライト、擬ポリゴナルフェライト、およびMA以外のラス状組織はベイナイトとみなした。
(3) Microstructure evaluation A test piece obtained by mirror-polishing a cross section parallel to the rolling direction at the t / 4 position (t: plate thickness) of each steel plate is etched with 2% nital solution, and the observation field of view is in a range of 200 μm × 150 μm. Were observed at 400 times using an optical microscope and photographed for 10 fields of view. These 10 visual fields were subjected to image analysis using “Image-Pro Plus” manufactured by Medical Cybernetics, and the average aspect ratio and bainite fraction of the prior austenite grains in the structure were measured. At this time, a lath-like structure other than ferrite, pseudopolygonal ferrite, and MA was regarded as bainite.

ベイナイト粒径については、各鋼板のt/4位置(t:板厚)から試験片を切り出し、電界放出式走査電子顕微鏡(FE−SEM、「SUPRA35」、Carl Zeiss社製)を用いて、観察倍率:600倍、観察視野:0.04mm2、観察箇所:5箇所の条件で観察し、EBSD(Electron BackScatter Diffraction)法で解析することによって算出した。ベイナイト粒径は、隣接組織との結晶方位差が15°以上となるところを境界線として、当該境界線に囲まれる領域のサイズを抽出した。なお、EBSD解析にはEDAX/TSL社のOIMシステムを用いた。 For the bainite particle size, a specimen was cut out from the t / 4 position (t: plate thickness) of each steel plate and observed using a field emission scanning electron microscope (FE-SEM, “SUPRA35”, manufactured by Carl Zeiss). Magnification: 600 times, observation field of view: 0.04 mm 2 , observation place: observed at 5 places, and calculated by analyzing by EBSD (Electron BackScatter Diffraction) method. For the bainite grain size, the size of the region surrounded by the boundary line was extracted with the boundary line where the crystal orientation difference with the adjacent structure was 15 ° or more. For EBSD analysis, an EDAX / TSL OIM system was used.

(4)溶接性の測定
(i)HAZ靭性の測定
得られた鋼板に、最高加熱温度:1400℃、800〜500℃の冷却時間Tc:120秒の条件の熱サイクル(入熱量15kJ/mmで溶接を行った場合のHAZの熱履歴に相当)を与えた後、JIS4号試験片を採取して、−5℃でシャルピー衝撃試験を行って、シャルピー吸収エネルギー(vE-5)を求めた。
(4) Measurement of weldability (i) Measurement of HAZ toughness The obtained steel sheet was subjected to a heat cycle (cooling time Tc of 120 ° C. at a maximum heating temperature of 1400 ° C. and 800 to 500 ° C. (with a heat input of 15 kJ / mm). (Corresponding to the thermal history of HAZ in the case of welding), a JIS No. 4 test piece was sampled and subjected to a Charpy impact test at −5 ° C. to determine Charpy absorbed energy (vE −5 ).

(ii)耐溶接割れ性の測定
JIS Z3158に記載のy形溶接割れ試験法に基づいて、入熱1.7kJ/mmで被覆アーク溶接を行い、ルート割れ防止予熱温度を測定した。断面割れ率が0となる割れ停止予熱温度で耐溶接割れ性を評価した。なお、割れ停止予熱温度が50℃以上となる場合は全て不合格であると評価し、表3、4において「−」で示した。
(Ii) Measurement of weld crack resistance Based on the y-type weld crack test method described in JIS Z3158, covered arc welding was performed at a heat input of 1.7 kJ / mm, and the root crack prevention preheating temperature was measured. Weld crack resistance was evaluated at a crack stop preheating temperature at which the cross-sectional crack rate was zero. In addition, when the crack stop preheating temperature became 50 degreeC or more, it evaluated that it was all disqualified and it showed with "-" in Tables 3 and 4.

上記の測定結果を表3、4に示す。   The measurement results are shown in Tables 3 and 4.

Figure 0005729803
Figure 0005729803

Figure 0005729803
Figure 0005729803

試験No.1−1〜1−20は、成分組成および製造条件ともに本発明の要件を満たしているため、母材強度および母材靭性に優れ、母材靭性についてはばらつきも抑制され、また溶接性も良好であった。   Test No. 1-1 to 1-20 satisfy the requirements of the present invention for both the component composition and the production conditions, and thus excellent in the base material strength and base material toughness, and the base material toughness is also suppressed in variation and also has good weldability. Met.

一方、試験No.2−1〜2−21は、成分組成および製造条件のいずれかが本発明の要件を満たさなかった例である。   On the other hand, test no. 2-1 to 2-21 are examples in which any of the component composition and production conditions did not satisfy the requirements of the present invention.

試験No.2−1はC量が多く、溶接性が低下した。試験No.2−2はSi量が多く、母材靭性および溶接性が低下した。試験No.2−3はMn量が少なく、ベイナイト分率を確保することができず、母材強度が低下した。試験No.2−4はMn量が多く、Mo量が少なく、溶接性が低下した。試験No.2−5はCr量が多く、Mo量が少なく、耐溶接割れ性が低下した。試験No.2−6はCr量が少なく、ベイナイト分率を確保することができず、母材強度が低下するとともに、母材靭性にばらつきが発生し、HAZ靭性も低下した。試験No.2−7はMn量が少なく、Mo量が多く耐溶接割れ性が低下した。試験No.2−8はKPの値が小さいため、ベイナイト分率を確保できず、強度およびHAZ靭性が低下した。試験No.2−9は、KP値が大きいためHAZ靭性が低下した。試験No.2−10は、KV値が大きいためHAZ靭性が低下するとともに、耐溶接割れ性も低下した。   Test No. 2-1 had a large amount of C, and weldability decreased. Test No. 2-2 had a large amount of Si, and the base metal toughness and weldability decreased. Test No. In 2-3, the amount of Mn was small, the bainite fraction could not be secured, and the base material strength was lowered. Test No. 2-4 had a large amount of Mn, a small amount of Mo, and weldability deteriorated. Test No. 2-5 had a large amount of Cr, a small amount of Mo, and the weld crack resistance decreased. Test No. In No. 2-6, the Cr content was small, the bainite fraction could not be secured, the base material strength was reduced, the base material toughness was varied, and the HAZ toughness was also reduced. Test No. 2-7 had a small amount of Mn, a large amount of Mo, and reduced weld crack resistance. Test No. Since 2-8 had a small KP value, the bainite fraction could not be secured, and the strength and HAZ toughness were lowered. Test No. In 2-9, since the KP value was large, the HAZ toughness was lowered. Test No. In 2-10, the KAZ value was large, so the HAZ toughness was lowered and the weld crack resistance was also lowered.

試験No.2−11はV量が多く、HAZ靭性、及び耐溶接割れ性が低下している。試験No.2−12はNb量が多くHAZ靭性、及び耐溶接割れ性が低下している。試験No.2−13はCu量が多く、HAZ靭性が低下した。試験No.2−14はTi量が多かったため、HAZ靭性が低下した。   Test No. 2-11 has a large amount of V, and has reduced HAZ toughness and weld crack resistance. Test No. 2-12 has a large amount of Nb and has reduced HAZ toughness and weld crack resistance. Test No. 2-13 had a large amount of Cu, and the HAZ toughness decreased. Test No. Since 2-14 had a large amount of Ti, HAZ toughness decreased.

試験No.2−15は、B量が多く、母材靭性と溶接性が低下した。試験No.2−16は、N量が多く、母材靭性が不安定になるとともにHAZ靭性が低下した。   Test No. In 2-15, the amount of B was large, and the base metal toughness and weldability were lowered. Test No. In No. 2-16, the N content was large, the base material toughness became unstable, and the HAZ toughness decreased.

試験No.2−17は、圧延後の冷却速度が遅かったため、ベイナイト分率を確保することができず、母材靭性が低下した。試験No.2−18は、圧延後の冷却速度が速かったために強度が過剰となり母材靭性が不安定となった。試験No2−19は、未再結晶温度域での圧下率が小さかった例であり、旧オーステナイト粒のアスペクト比が小さかったために母材靭性が不安定になった。試験No.2−20は、未再結晶温度域での圧下率が大きかった例であり、フェライト変態したためにベイナイト分率が確保できず、母材強度が低下した。試験No.2−21は、仕上圧延温度が低かった例であり、フェライトが多く生成したためにベイナイト分率が確保できず、強度が低下した。   Test No. In No. 2-17, since the cooling rate after rolling was slow, the bainite fraction could not be ensured, and the base metal toughness decreased. Test No. In No. 2-18, since the cooling rate after rolling was high, the strength was excessive and the base material toughness became unstable. Test No2-19 was an example in which the rolling reduction in the non-recrystallization temperature range was small, and the base material toughness became unstable because the aspect ratio of the prior austenite grains was small. Test No. No. 2-20 was an example in which the rolling reduction in the non-recrystallization temperature range was large, and since the ferrite transformation was performed, the bainite fraction could not be secured and the base material strength was lowered. Test No. No. 2-21 was an example in which the finish rolling temperature was low. Since a large amount of ferrite was produced, the bainite fraction could not be ensured and the strength was lowered.

Claims (8)

C :0.01〜0.06%(質量%の意味。以下、化学成分組成について同じ。)、
Mn:1.25〜2.5%、
Cr:0.1〜2.0%、
Mo:0.01〜1.5%、
V :0.040%以下(0%を含む)、
Nb:0.001〜0.030%、
B :0.0006〜0.0012%、
Ti:0.005〜0.05%、
N :0.002〜0.010%、
Si:0.5%以下(0%を含まない)、
Al:0.07%以下(0%を含まない)、
P :0.02%以下(0%を含まない)、
S :0.01%以下(0%を含まない)を含有し、残部が鉄および不可避不純物であり、
下記式(1)、(2)で表されるKPおよびKVがそれぞれ2.4≦KP≦4.5、およびKV≦0.043を満足するとともに、
鋼組織の90面積%以上がベイナイトであり、残部がマルテンサイトとオーステナイトよりなる混合組織(MA組織)、フェライト、擬ポリゴナルフェライトであり、
ベイナイト組織の平均結晶粒径が5〜20μmであり、
旧オーステナイト粒の平均アスペクト比が5.0以上であることを特徴とする引張強度が570MPa以上715MPa以下の高張力鋼板。
KP=[Mn]+1.5×[Cr]+2×[Mo] ・・・(1)
KV=[V]+[Nb] ・・・(2)
(但し、[ ]は各元素の含有量(質量%)を表す。)
C: 0.01 to 0.06% (meaning mass%, hereinafter the same for chemical composition)
Mn: 1.25 to 2.5%,
Cr: 0.1 to 2.0%,
Mo: 0.01 to 1.5%,
V: 0.040% or less (including 0%),
Nb: 0.001 to 0.030%,
B: 0.0006 to 0.0012%,
Ti: 0.005 to 0.05%,
N: 0.002 to 0.010%,
Si: 0.5% or less (excluding 0%),
Al: 0.07% or less (excluding 0%),
P: 0.02% or less (excluding 0%),
S: 0.01% or less (excluding 0%), with the balance being iron and inevitable impurities,
KP and KV represented by the following formulas (1) and (2) satisfy 2.4 ≦ KP ≦ 4.5 and KV ≦ 0.043, respectively.
90 area% or more of the steel structure is bainite, and the balance is a mixed structure (MA structure) composed of martensite and austenite, ferrite, pseudopolygonal ferrite,
The average crystal grain size of the bainite structure is 5 to 20 μm,
A high-tensile steel sheet having a tensile strength of 570 MPa or more and 715 MPa or less, wherein an average aspect ratio of prior austenite grains is 5.0 or more.
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo] (1)
KV = [V] + [Nb] (2)
(However, [] represents the content (% by mass) of each element.)
更に、Cu:2.0%以下(0%を含まない)を含有する請求項1に記載の高張力鋼板。   Furthermore, the high-tensile steel plate according to claim 1, further comprising Cu: 2.0% or less (not including 0%). 更に、Ni:5.0%以下(0%を含まない)を含有する請求項1または2に記載の高張力鋼板。   The high-tensile steel sheet according to claim 1 or 2, further comprising Ni: 5.0% or less (not including 0%). 更に、Zr、Ca、Mg、およびREMよりなる群から選択される1種以上を、Ca、Mg、およびREMの合計含有量が0.010%以下(0%を含まない)であり、Zr量が0.020%以下(0%を含まない)となるように含有する請求項1〜3のいずれかに記載の高張力鋼板。   Furthermore, at least one selected from the group consisting of Zr, Ca, Mg, and REM, the total content of Ca, Mg, and REM is 0.010% or less (not including 0%), and the amount of Zr The high-tensile steel sheet according to any one of claims 1 to 3, which is contained so as to be 0.020% or less (not including 0%). C :0.01〜0.06%、
Mn:1.25〜2.5%、
Cr:0.1〜2.0%、
Mo:0.01〜1.5%、
V :0.040%以下(0%を含む)、
Nb:0.001〜0.030%、
B :0.0006〜0.005%、
Ti:0.005〜0.05%、
N :0.002〜0.010%、
Si:0.5%以下(0%を含まない)、
Al:0.07%以下(0%を含まない)、
P :0.02%以下(0%を含まない)、
S :0.01%以下(0%を含まない)を含有し、残部が鉄および不可避不純物であり、
下記式(1)、(2)で表されるKPおよびKVがそれぞれ2.4≦KP≦4.5、およびKV≦0.060を満足するとともに、
鋼組織の90面積%以上がベイナイトであり、残部がマルテンサイトとオーステナイトよりなる混合組織(MA組織)、フェライト、擬ポリゴナルフェライトであり、
ベイナイト組織の平均結晶粒径が5〜20μmであり、
旧オーステナイト粒の平均アスペクト比が5.0以上である高張力鋼板を製造する方法であって、
KP=[Mn]+1.5×[Cr]+2×[Mo] ・・・(1)
KV=[V]+[Nb] ・・・(2)
(但し、[ ]は各元素の含有量(質量%)を表す。)
Ac3〜1300℃に加熱して熱間圧延を行うにあたり、加熱温度をT(℃)とする時、T/20−8(%)以上、60%以下の圧下率で未再結晶域圧延を実施すると共に、仕上圧延温度を750℃以上、800℃以下に制御し、前記圧延後0.5〜50℃/秒の冷却速度で冷却することを特徴とする高張力鋼板の製造方法。
C: 0.01 to 0.06%,
Mn: 1.25 to 2.5%,
Cr: 0.1 to 2.0%,
Mo: 0.01 to 1.5%,
V: 0.040% or less (including 0%),
Nb: 0.001 to 0.030%,
B: 0.0006 to 0.005%,
Ti: 0.005 to 0.05%,
N: 0.002 to 0.010%,
Si: 0.5% or less (excluding 0%),
Al: 0.07% or less (excluding 0%),
P: 0.02% or less (excluding 0%),
S: 0.01% or less (excluding 0%), with the balance being iron and inevitable impurities,
KP and KV represented by the following formulas (1) and (2) satisfy 2.4 ≦ KP ≦ 4.5 and KV ≦ 0.060, respectively.
90 area% or more of the steel structure is bainite, and the balance is a mixed structure (MA structure) composed of martensite and austenite, ferrite, pseudopolygonal ferrite,
The average crystal grain size of the bainite structure is 5 to 20 μm,
A method of producing a high-tensile steel plate having an average aspect ratio of prior austenite grains of 5.0 or more,
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo] (1)
KV = [V] + [Nb] (2)
(However, [] represents the content (% by mass) of each element.)
In performing hot rolling by heating to Ac 3 to 1300 ° C., when the heating temperature is T (° C.), non-recrystallization zone rolling is performed at a rolling reduction of T / 20−8 (%) or more and 60% or less. A method for producing a high-tensile steel sheet, characterized in that the finish rolling temperature is controlled to 750 ° C. or higher and 800 ° C. or lower and cooling is performed at a cooling rate of 0.5 to 50 ° C./second after the rolling.
更に、Cu:2.0%以下(0%を含まない)を含有する請求項5に記載の製造方法。   Furthermore, the manufacturing method of Claim 5 containing Cu: 2.0% or less (0% is not included). 更に、Ni:5.0%以下(0%を含まない)を含有する請求項5または6に記載の製造方法。   Furthermore, Ni: The manufacturing method of Claim 5 or 6 containing 5.0% or less (excluding 0%). 更に、Zr、Ca、Mg、およびREMよりなる群から選択される1種以上を、Ca、Mg、およびREMの合計含有量が0.010%以下(0%を含まない)であり、Zr量が0.020%以下(0%を含まない)となるように含有する請求項5〜7のいずれかに記載の製造方法。   Furthermore, at least one selected from the group consisting of Zr, Ca, Mg, and REM, the total content of Ca, Mg, and REM is 0.010% or less (not including 0%), and the amount of Zr The manufacturing method in any one of Claims 5-7 which contains so that it may become 0.020% or less (0% is not included).
JP2010121665A 2010-05-27 2010-05-27 High-tensile steel plate and manufacturing method thereof Active JP5729803B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010121665A JP5729803B2 (en) 2010-05-27 2010-05-27 High-tensile steel plate and manufacturing method thereof
CN201110145090XA CN102260825A (en) 2010-05-27 2011-05-24 High-strength Steel Board And Manufacturing Method Thereof
KR1020110049869A KR20110130354A (en) 2010-05-27 2011-05-26 High tensile steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121665A JP5729803B2 (en) 2010-05-27 2010-05-27 High-tensile steel plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011246768A JP2011246768A (en) 2011-12-08
JP5729803B2 true JP5729803B2 (en) 2015-06-03

Family

ID=45007655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121665A Active JP5729803B2 (en) 2010-05-27 2010-05-27 High-tensile steel plate and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP5729803B2 (en)
KR (1) KR20110130354A (en)
CN (1) CN102260825A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704706B2 (en) * 2011-03-16 2015-04-22 株式会社神戸製鋼所 High-strength thick steel plate with excellent HAZ toughness
JP5833966B2 (en) * 2012-04-20 2015-12-16 株式会社神戸製鋼所 Welded joint with excellent fatigue characteristics
CN105506494B (en) * 2014-09-26 2017-08-25 宝山钢铁股份有限公司 A kind of yield strength 800MPa grade high ductilities hot-rolling high-strength steel and its manufacture method
JP6358027B2 (en) * 2014-10-06 2018-07-18 新日鐵住金株式会社 Thick steel plate
JP6226163B2 (en) * 2014-10-28 2017-11-08 Jfeスチール株式会社 High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method
JP6582590B2 (en) * 2015-06-17 2019-10-02 日本製鉄株式会社 Steel sheet for LPG storage tank and method for producing the same
PT3168312T (en) * 2015-11-16 2019-07-16 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co Kg Engineering steel with bainitic structure, forged part produced therefrom and method for making a forged part
CN110846594B (en) * 2019-11-28 2021-02-09 钢铁研究总院 Copper-containing ultra-low carbon bainite steel and preparation method thereof
JP7396322B2 (en) * 2020-06-24 2023-12-12 Jfeスチール株式会社 steel plate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3602396B2 (en) * 2000-02-15 2004-12-15 株式会社神戸製鋼所 Low yield ratio high strength steel sheet with excellent weldability
JP3602471B2 (en) * 2000-05-24 2004-12-15 株式会社神戸製鋼所 High tensile strength steel sheet excellent in weldability and method for producing the same
JP3746707B2 (en) * 2001-11-26 2006-02-15 株式会社神戸製鋼所 High-tensile steel plate with excellent weldability
JP4220871B2 (en) * 2003-03-19 2009-02-04 株式会社神戸製鋼所 High-tensile steel plate and manufacturing method thereof
JP4044470B2 (en) * 2003-03-25 2008-02-06 株式会社神戸製鋼所 High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same
JP4313730B2 (en) * 2004-06-21 2009-08-12 株式会社神戸製鋼所 High-tensile steel plate with low material anisotropy and excellent low-temperature toughness
JP4676871B2 (en) * 2005-12-19 2011-04-27 株式会社神戸製鋼所 Steel sheet with excellent fatigue crack growth control
JP4972451B2 (en) * 2007-04-20 2012-07-11 株式会社神戸製鋼所 Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP5433964B2 (en) * 2008-03-31 2014-03-05 Jfeスチール株式会社 Method for producing high-tensile steel sheet with excellent bending workability and low-temperature toughness

Also Published As

Publication number Publication date
JP2011246768A (en) 2011-12-08
CN102260825A (en) 2011-11-30
KR20110130354A (en) 2011-12-05

Similar Documents

Publication Publication Date Title
JP5729803B2 (en) High-tensile steel plate and manufacturing method thereof
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP5846311B2 (en) Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same
JP5354164B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP2008255458A (en) Thick steel plate having haz toughness and base metal toughness
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP2008255459A (en) Thick steel plate having excellent haz toughness, base metal toughness, elongation and strength-elongation balance
JP4656417B2 (en) Low yield ratio refractory steel
JP5796636B2 (en) Steel material for large heat input welding
JP5201301B1 (en) Steel for welding
JP5276871B2 (en) Low yield specific thickness steel plate with excellent toughness of weld heat affected zone
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP5906147B2 (en) High-tensile steel plate with excellent base metal toughness and HAZ toughness
KR101365351B1 (en) HIGH-STRENGTH STEEL PLATE WITH 980 MPa OR ABOVE TENSILE STRENGTH EXCELLENT IN LOW TEMPERATURE TOUGHNESS OF MULTI-LAYER JOINT
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2006118007A (en) High strength steel having excellent toughness in weld heat affected zone
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP5390922B2 (en) Low yield ratio high toughness steel plate
JP5103037B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP5297692B2 (en) High-tensile steel plate excellent in toughness of weld heat-affected zone and suppression of fatigue crack growth and manufacturing method thereof
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP2021509434A (en) High-strength, high-toughness hot-rolled steel sheet and its manufacturing method
JP7243826B2 (en) steel plate
JP2016117932A (en) Rolling h-shaped steel and manufacturing method therefor
JP6226163B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150403

R150 Certificate of patent or registration of utility model

Ref document number: 5729803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150