EP3044642B1 - Vielseitiger kompakter piezoelektrischer stick-slip-motor - Google Patents

Vielseitiger kompakter piezoelektrischer stick-slip-motor Download PDF

Info

Publication number
EP3044642B1
EP3044642B1 EP14765935.3A EP14765935A EP3044642B1 EP 3044642 B1 EP3044642 B1 EP 3044642B1 EP 14765935 A EP14765935 A EP 14765935A EP 3044642 B1 EP3044642 B1 EP 3044642B1
Authority
EP
European Patent Office
Prior art keywords
motor
base
preload
friction pad
mounting base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14765935.3A
Other languages
English (en)
French (fr)
Other versions
EP3044642A2 (de
Inventor
William Culpi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Physik Instrumente PI GmbH and Co KG
Original Assignee
Physik Instrumente PI GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Physik Instrumente PI GmbH and Co KG filed Critical Physik Instrumente PI GmbH and Co KG
Publication of EP3044642A2 publication Critical patent/EP3044642A2/de
Application granted granted Critical
Publication of EP3044642B1 publication Critical patent/EP3044642B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/005Mechanical details, e.g. housings
    • H02N2/0055Supports for driving or driven bodies; Means for pressing driving body against driven body
    • H02N2/006Elastic elements, e.g. springs
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/40Open loop systems, e.g. using stepping motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/021Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors using intermittent driving, e.g. step motors, piezoleg motors
    • H02N2/025Inertial sliding motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/101Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using intermittent driving, e.g. step motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41344Piezo, electrostrictive linear drive

Definitions

  • Piezoelectric elements are used as driving components in positioning mechanical devices. These “piezoelectric motors” (sometimes called “piezoelectric actuators”) have some unique advantages over other types of traditional motors which make them a preferred choice for use in specific applications.
  • the typical use of a piezoelectric element as a motion device is by using its characteristic of expanding in one direction when placed in an electric field. By stacking multiple thin piezoelectric elements between a series of electrical electrodes it is possible to increase the relative expansion of a piezoelectric actuator but the motion still remains extremely small relative to the overall size of the device. For applications that require moves with travel ranges less than a few hundred microns and resolution in the nanometer range, the piezoelectric actuators are the usual favorite.
  • Piezoelectric-based motion devices using this type of driving mechanism typically use flexure-based mechanisms and are capable of fast speeds and resolutions less than a nanometer.
  • one type of piezoelectric motor that has been developed is a friction-based configuration where one or more friction "legs" are in contact with a friction "track".
  • a piezoelectric element is attached to either the friction "legs” or “track”.
  • the respective friction element will move. Due to the high friction forces, the two friction elements will “stick” and move together. If the electrical signal driving the piezoelectric elements changes very rapidly, the friction elements will "slip" relative to each other due to the inertia of the masses associated with the components involved.
  • the most popular current implementations of stick-slip motors can be grouped in two categories, based on the configuration of the friction legs relative to the friction track.
  • the first type arranges the friction legs around the friction track, effectively forming a clamp on a track shaped as a rod.
  • These motors have the advantage of a concentric configuration, allowing high preload forces to be applied without stressing the motion devices to which they are mounted.
  • the main disadvantages are that the preload force cannot be adjusted and the travel could be limited by the length of the rod.
  • the piezoelectric element can be attached to either the clamp or the rod, with advantages and disadvantages to each configuration.
  • the piezoelectric element is typically attached to one or more friction legs which are in contact with the friction track only on one side. This allows the active part of the motor (piezoelectric element and friction leg) to be built as a separate unit that could be tangentially attached to any track, linear or rotary.
  • These types of motors are more versatile but have the disadvantage of generating lower forces and adding stresses to the bearings of the motion devices to which they are attached.
  • WO 2008/087469 A2 discloses a motion control system comprising a first mount body, a second mount body supported by that first body and movable with respect to the latter and a piezoelectric inertia driver coupled to the first mount body and operable to move the second mount body, the driver including a rigid body portion arranged to connect the driver to the first mount body, a drive surface portion having a drive surface, engageable with the second mount body, a flexible resilient member, and a piezoelectric member disposed between the mounting base and an end of the coupling portion and operable in response to an electrical signal to move the drive surface portion and the second mount body.
  • the present invention makes a number of significant enhancements to existing designs.
  • the proposed stick-slip motor configuration improves on the manufacturability, usability, simplicity, cost and performance while significantly reducing the size of the motor for the same force generated.
  • Fig. 1 illustrates an exploded view of a portion of a motion control system 10 that includes a base 15, a stage 20, and a motor 25 in the form of a piezoelectric motor.
  • the base 15 can take virtually any form but generally includes a stationary component that supports the stage 20 for movement and supports the motor 25 to engage the stage 20 to produce the desired movement.
  • the base 15 includes a stage pocket 30 sized to receive the stage 20 and support the stage 20 for rotation about an axis of rotation 35.
  • the stage 20 may include bearings or other components that facilitate the smooth movement of the stage 20.
  • a linear stage might be supported within an elongated slot for linear movement along an axis parallel to the slot.
  • a motor pocket 40 is also formed in the base 15 and is sized and shaped to receive the motor 25.
  • a first aperture 45 extends through the base 15 into the motor pocket 40 along an axis 50 that is substantially parallel to the axis of rotation 35 of the stage 20 and is sized to receive a mounting screw 55. The mounting screw 55 engages the motor 25 to fixedly attach the motor 25 to the base 15.
  • a second aperture 60 extends into the motor pocket 40 and is disposed normal to the first aperture 45 and is generally radial with regard to the rotary stage 20.
  • a preload member 65 threadably engages the second aperture 60 and is movable into and out of the aperture 60 to accurately set a desired preload force 70 for application to the motor 25. In preferred constructions, a preload force 70 between about zero and 40 newtons is applied to the motor 25.
  • the mounting screw 55 passes through the first aperture 45 and threadably engages the motor 25.
  • the mounting screw 55 is fully accessible from outside of the base 15 to allow the user to tighten or loosen the screw 55, thereby controlling the engagement of the motor 25 and the stage 20 without disassembly of the motion control system 10 in any way.
  • the motor 25 and the stage 20 are illustrated in their respective operating positions within the motor pocket 40 and the stage pocket 30.
  • the preload screw 65 includes a first end 75 that engages the motor 25 and a second end 80 that is exposed at an exterior surface of the base 15. The second end 80 remains substantially flush with the base 15 and preferably recessed within the base 15 when the desired preload is applied. This arrangement of the preload screw 65 allows for periodic adjustment of the preload force 70 from outside of the base 15 without disassembly of the motion control system 10 and without significantly increasing the footprint of the motion control system 10.
  • Figs. 3-8 illustrate an implementation of the motor 25 of Figs. 1 and 2 in the form of a piezoelectric motor.
  • the motor 25 includes a body 85 machined to a desired shape from a hard metal or other suitable material, a piezoelectric stack 90, and a hard ceramic pad 95, all connected to one another as shown in Fig. 3 .
  • the particular shape of the body 85 achieves maximum functionality for the volume it occupies.
  • the body 85 includes a mounting base 100 that has a single threaded hole 105 which is used to rigidly attach the motor 25 to the base 15 as was described with regard to Figs. 1 and 2 .
  • the mounting base 100 is formed at one end of the body 85 and includes a substantially solid rectangular portion through which the threaded hole 105 is formed.
  • the mounting base 100 also defines a first piezoelectric element interface surface 110 that is arranged to receive the piezoelectric stack 90 or element. The piezoelectric stack 90 is bonded to the first piezoelectric element interface surface 110 using an adhesive or other suitable attachment means.
  • the body 85 also includes a coupling portion 115 that includes a coupling pad 120, a thin flexure 125, a rigid coupler 130, a tapered spring 135, and a preload arm 140.
  • the coupling pad 120 includes a second piezoelectric element interface surface 145 that is arranged to be substantially parallel to the first piezoelectric element interface surface 110.
  • the piezoelectric stack 90 is bonded to the second piezoelectric element interface surface 145 such that a direction of expansion 150 is substantially perpendicular to the two piezoelectric element interface surfaces 110,145.
  • the thin flexure 125 interconnects the ceramic pad 95 (friction pad) and the rigid coupler 130.
  • the friction pad 95 is coupled to the rigid coupler 130 or formed as part of the rigid coupler 130 and is arranged to engage the stage 20, and more specifically the friction track 20 on the stage to provide the desired motion in response to the expansion and contraction of the piezoelectric stack 90.
  • the friction pad 95 is bonded to the rigid coupler 130 using an adhesive with other attachment means being suitable for use.
  • the friction pad 95 is preferably made from an ultra-hard ceramic material and has a spherical friction surface 155 with other surface arrangements being possible e.g., cylindrical, flat, elliptical, oval, etc.).
  • the motor arrangement of Fig. 3 ensures the desired stiffness between the piezoelectric stack 90 and the friction pad 95, thereby enhancing the efficiency of the motor 25 and the stiffness of the motion control system 10 in the direction of expansion 150.
  • Previous motor implementations use a longer thin coupling arm which reduces the stiffness and the efficiency of the motor.
  • some prior motors use a longer, thin and sometimes curved coupling arm in place of the described rigid coupler 130. In those configurations the coupling arm compresses or buckles during the "slip" phase of the motor creating a small spring. This reduces the efficiency of the motor by reducing the amount the motor slips during the slip phase. To compensate for this, users are forced to use higher driving voltages which generate higher power losses, higher vibrations, and higher noise.
  • the tapered spring 135 of the piezoelectric motor 25 of Fig. 3 includes a double tapered spring 135 which utilizes the entire center of the body 85 to attain the maximum possible force and displacement in the least amount of space.
  • the spring 135 includes a first arm 160 that extends from a first end 165 having a first thickness to a turn portion 170 having a second thickness. In the illustrated construction, the thickness of the first arm 160 increases linearly from the first thickness to the second thickness.
  • the turn portion 170 is a U-shaped portion that connects the first arm 160 to a second arm 175.
  • the second arm extends from the turn portion 170 having a first thickness to a second end 180 having a second thickness.
  • the thickness of the second arm 175 decreases linearly from the first thickness to the second thickness.
  • the cross section of the spring arms 160, 175 are arranged such that the material is substantially equally stressed throughout the entire spring length as illustrated in Fig. 8 . This configuration allows for the most efficient utilization of the space occupied by the motor 25, thus enabling the construction of smaller miniature high performance motors 25 than was previously possible.
  • the preload arm 140 includes a preload surface 185 and a flexible element 190 that extends between the preload surface 185 and the mounting base 100. At least a portion of the flexible element 190 is angled with respect to the expansion direction 150 to define a recessed area 195.
  • the preload surface 185 is defined in this recessed area 195 to reduce the space taken by the preload screw 65. This feature enables the design of smaller motion devices 10 by reducing the amount of material needed to support the preload screw 65.
  • the coupling portion 115 follows a generally circuitous path that extends from the coupling pad 120 through the thin flexure 125 and the rigid coupler 130 in a direction that is substantially parallel to the direction of expansion 150. This assures that this portion of the coupling portion 115 is rigid in the direction of expansion 150 but more flexible in other directions.
  • the coupling portion 115 then turns about 180 degrees and follows the first arm 160 of the spring 135 to the turning portion 170.
  • the coupling portion 115 turns again about 180 degrees and follows the second arm 175 to the preload arm 140.
  • the preload arm 140 then turns slightly less than 180 degrees to the flexible element 190 which extends at an acute angle with respect to the direction of expansion 150 for at least a portion of its length until it meets the mounting base 100.
  • the arrangement of the motor 25 of Fig. 3 is such that a very efficient use of available volume is achieved.
  • the motor 25 of Fig. 3 defines an outer motor perimeter 200 (shown in Fig. 5 ) and at least 70 percent of the possible space within that motor perimeter 200 is occupied by the motor 25 and the piezoelectric element 90. In preferred constructions, at least about 75 percent (plus or minus 2 percent) of the space is used, with more preferred constructions using about 80 percent of the space.
  • the air spaces employed in the motor 25 make-up no more than 30 percent of the space within the motor perimeter 200.
  • the entire motor 25 is attached to the base 15 through the single mounting hole 105 in the mounting base 100.
  • This attachment is the sole connection between the base 15 and the motor 25 that retains the motor 25 within the base 15.
  • the single connection allows the entire motor 25 to pivot around the mounting hole 105 as shown in Fig. 4 .
  • the screw 55 is preferably accessible from outside the motion control device 10 to allow the entire motor 25 to be rotated or locked down without having to open the motion control device 10 or disassemble the device 10 in anyway. This is a tremendous help in production, simplifying the assembly and calibration procedures of the motion control devices 10. It also plays an important role in extending the life of the motion control device 10 as the preload adjustment can be made by any qualified user in the field, thereby making it more likely that necessary periodic adjustments are made.
  • the user applies the preload force 70 to the preload surface 185 using the preload screw 65 as illustrated in Fig. 5 .
  • the preload force 70 once applied produces the needed pressure between the friction pad 95 and the friction track on the stage 20.
  • Fig. 6 illustrates the friction pad 95 engaging a linear stage 205 while
  • Fig. 7 illustrates the friction pad 95 engaging a rotary stage 20.
  • the force 70 on the preload surface 185 is transmitted to the friction pad 95 through the tapered spring 135.
  • the spring 135 is connected to the preload surface 185 and the friction pad 95 through two thin flexures 210 which are stiff in the direction of the preload force 70 and flexible in the direction of the piezoelectric expansion 150.
  • the preload surface 185 is connected to the mounting base 100 through the flexible element 190.
  • the flexible element 190 functions to connect the preload arm 140 to the base 100. It is designed to be somewhat rigid in the direction of the piezoelectric element expansion 150 and much more flexible in the perpendicular direction.
  • the spherical friction surface 155 of the friction pad 95 in combination with the pivoting capability of the motor 25 around the mounting hole 105, and the use of the preload screw 65, allows for a very quick and easy assembly procedure, significantly reducing the production cost of the motion device 10. Specifically, the user places the friction pad 95 in contact with the friction track and the entire motor body is rotated around the mounting hole 105 without introducing any stress in the motor. When the preload force is applied on the surface 185, the tapered preload spring compresses while the friction pad 95 and the connecting arm 130 do not move. This insures that the preload adjustment does not introduce any undesirable forces on the piezoelectric element 90.
  • the motor 25 can be easily attached to a linear track (or stage) 205 ( Fig. 7 ) to generate a linear motion or to a cylindrical track (or stage) 20 ( Fig. 8 ) to generate a rotary motion.
  • the preload screw 65 is exposed to the exterior of the base 15, thereby allowing for the adjustment of the preload 70 without having to open the motion control device 10 or disassemble the device 10 in anyway.
  • the force the stick-slip motor 25 is capable of generating in the direction of motion 150 is proportional to the friction force between the friction pad 95 and the friction track. This friction force is in turn proportional to the force with which the friction pad 95 is pushed against the friction track (i.e., the preload force 70).
  • the preload force 70 is determined by the amount of compression of the tapered spring 135.
  • the tapered spring 135 is compressed by the preload screw 65 pushing on the preload surface 185.
  • the externally accessible preload screw 65 combined with the externally accessible mounting screw 55 are a significant improvement over existing designs. They simplify the assembly and calibration procedures of the motion devices 10 thus reducing the production time and cost. They also allow qualified users to make preload adjustment in the field to compensate for eventual wear in high duty cycle applications, effectively extending the life of the motion device 10.
  • Fig. 9 illustrates another construction of a motor 220 that is suitable for use in the motion control system 10 of Figs. 1 and 2 .
  • the motor 220 includes a mounting base 100, a friction pad 95, a preload surface 185, and a piezoelectric stack 90 that are substantially the same as those components of the motor 25 of Fig. 3 .
  • the motor 220 of Fig. 9 includes a thin flexure 225 that is longer than the thin flexure 125 of the motor 25 of Fig. 3 and is arranged at an acute angle with respect to a direction of expansion 150.
  • the thin flexure 225 extends from a coupling pad 230 to a rigid coupler 235 that supports the friction pad 95.
  • a U-shaped member 240 includes two legs 245, 250 that extend in a direction substantially parallel to an applied preload force 70.
  • the U-shaped member 240, including the two legs 245, 250 are substantially uniform in thickness with the first leg 245 coupled to the rigid coupler 235 and the second leg 250 extending into a tapered linkage 255.
  • the tapered linkage 255 extends from the second leg 250 of the U-shaped member 240 to a flexible element 260 and includes a thickness that increases from the U-shaped member 240 to the flexible element 260.
  • the tapered linkage 255 includes a first portion 265 that increases thickness at a first linear rate, a second portion 270 that increases thickness at a second linear rate, and a third portion 275 that increases thickness at a third rate. In other constructions, other thickness variations (e.g., non-linear) are possible.
  • the flexible element 260 includes a first portion 280 that extends at an acute angle with respect to the expansion direction 150 and a second portion 285 that is substantially parallel to the expansion direction 150.
  • the flexible element 260 is substantially uniform in thickness.
  • a preload arm 290 extends from the tapered linkage 255 in a cantilever fashion and follows a circuitous path from the tapered linkage 255 to the preload surface 185.
  • the preload arm 290 includes a first portion 295 that follows a substantially U-shaped path, a second portion 300 that follows a path that turns through approximately 270 degrees, and a third portion 305 that is substantially L-shaped.
  • An angled portion 314 extends from the end of the L-shaped portion 305 to the preload surface 185 to define a recess space 310 for the preload screw 65.
  • the motor 220 of Fig. 9 has a star configuration with three distinct arms. One arm is connected to the base 100, a second arm is connected to the piezoelectric element on the surface 145 and a third arm where the preload is applied on surface 185.
  • Flexible element 260 is flexible in both directions and functions to support the entire preload structure. The forces applied to the mounting base 100 are applied near one another and are parallel to the direction of motion. The main force is applied by the piezoelectric element which is in line with the mounting hole 105 with the flexible arm 260 applying relatively little force to the mounting base 100.
  • the U-shaped member 240 is substantially rigid in the direction of the preload force 70 and relatively flexible in the direction of the piezoelectric element expansion 150.
  • the tapered linkage 255, together with the preload arm 290 forms a tapered U-shaped preload spring.
  • the particular shape of the preload arm 290 provides a longer travel range of the adjustment surface 185, thereby providing for finer preload adjustment with the preload screw.
  • Fig. 10 is a symbolic illustration of the motor 220 of Fig. 9 and better illustrates the flexibility and rigidity of the motor.
  • the motor includes a complex structure that, in the simplified illustration has a star configuration with three distinct ends; a fixed end 350, a moving end 355 attached to the piezoelectric element or stack 90, and a floating end 360 which is used for preload adjustment.
  • the mounting base or rigid base 100 is mounted to a motion platform using the mounting or threaded hole 105. This provides a relatively rigid fixed point from which all motion is measured.
  • One side of the piezoelectric element 90 attaches to the rigid base 100 such that the direction of expansion 365 is perpendicular to the mounting hole 105.
  • the opposite side of the piezoelectric element 90 attaches to the coupling pad 230 (sometimes referred to as a rigid plate).
  • the thin flexure 225 connects to the coupling pad at the moving end.
  • the opposite end of the thin flexure 225 connects to the rigid coupler 235 with the friction pad 95 connected to the rigid coupler for engagement with the moving portion of the motion device.
  • the thin flexure 225 is illustrated as a beam that extends in a direction that is substantially parallel to the direction of expansion.
  • the thin flexure is relatively rigid in the direction of expansion, thereby assuring that most of the expansion of the piezoelectric element is transferred to the friction pad 95. Only the coupling pad, the thin flexure, and the rigid coupler are involved in transferring motion from the piezoelectric element to the friction pad.
  • the thin flexure 225 is relatively flexible in a direction perpendicular to the direction of expansion 365. Thus, during operation, inconsistencies in the surface that engages the friction pad are absorbed by displacement of the thin flexure without affecting the preload or the expansion of the piezoelectric element.
  • a preload force perpendicular to the direction of expansion (and motion) is applied to the friction pad in order to generate the necessary friction between the friction pad and the opposing track to assure the desired motion.
  • This preload force is generated, in the motor of Figs. 9 and 10 entirely by the preload arm in the shape of a U-shaped tapered spring 290 by compressing the floating end 360 of a floating spring arm 370.
  • the preload force generated by the U-shaped tapered spring 290 is transferred to the rigid coupler 235 and the friction pad 95 through the U-shaped member 240.
  • the arrangement of the U-shaped member 240 is such that it is relatively stiff in the direction of the preload force and substantially normal to the direction of expansion. However, the U-shaped member is relatively flexible and offers little resistance in the direction of the expansion. This arrangement allows users to apply a high preload force in a direction normal to the direction of expansion independent of, and without affecting the forces generated by the piezoelectric element during expansion.
  • the flexible element 260 does not perform any significant structural function.
  • the flexible element is flexible in directions both parallel to and perpendicular to the direction of expansion (and motion).
  • the flexible element 260 functions to connect the U-shaped member 240 to the mounting base 100 to complete a generally U-shaped segment that includes two ends connected to the mounting base with the friction pad supported opposite the open end of U-shaped segment.
  • the U-shaped tapered spring connects to the U-shaped segment such that one leg of the U-shaped tapered spring resides on the U-shaped segment with the floating spring arm essentially cantilevering from the U-shaped segment.
  • the leg of the U-shaped spring that attaches to the U-shaped segment attaches at a first joint 375 adjacent the U-shaped element and a second joint 380.
  • the first joint and the second joint are aligned along a line that is substantially parallel to the direction of expansion.
  • Fig. 10 illustrates the U-shaped tapered spring 290 as being a simple U-shape. If a simple U-shape was used, the small size of the motor would allow for the necessary preload force with little displacement of the floating end 360. However, because such a small displacement would be required, it would be difficult to adjust the desired preload and the level of the preload would be susceptible to variations caused by imperfections in the track. To reduce this sensitivity and to make setting the preload easier, the floating spring arm 370 is arranged to follow a winding path (identified in Fig. 10 as U-shaped tapered spring 290 in Fig. 9 ) that occupies as much of the space that is available as possible. In doing so, the adjustment range of the floating end can be the entire gap between the floating spring arm and the U-shaped element 240, thereby maximizing the preload adjustability.
  • a winding path identified in Fig. 10 as U-shaped tapered spring 290 in Fig. 9
  • wire EDM is used to cut the circuitous path that defines the various features of the motor.
  • Wire EDM is limited in that a slot of about 0.3 mm or greater is typically made during the cutting process.
  • other manufacturing methods or systems could be employed to reduce the size of these slots to further improve the motor designs.
  • Figs. 9 and 10 provide a very compact motor for a given size piezoelectric stack.
  • the height of the motor (normal to the direction of expansion) is only 0.6 mm more than the height of the piezoelectric stack in the same direction.
  • the motor height is only 3.6 mm.
  • the floating end, and therefore the preload screw has a travel range of about 0.3 mm. This is a relatively large value for such a small motor size, and allows for an easy and accurate preload value adjustment.
  • the preload arrangements described herein are capable of generating up to about 40 N of force with about 0.3 mm of adjustment range for a preload force between about (plus or minus 25%) 0 and 40 N.
  • the arrangement of the motor 220 of Fig. 9 is such that a very efficient use of available volume is achieved.
  • the motor 220 of Fig. 9 defines an outer motor perimeter 400 that defines a total motor volume. In the illustrated construction, at least about 70 percent (plus or minus 2 percent) of the possible space within that total motor volume is occupied by the motor 220 and the piezoelectric element 90. In preferred constructions, at least about 75 percent (plus or minus 2 percent) of the space is used, with more preferred embodiments using about 80 percent of the space. Thus, the air spaces employed in the motor 220 make-up no more than 30 percent of the space within the motor perimeter 400.
  • the arrangements of the motors 25, 220 and other motors embodying the invention are compact and efficient in the use of space while still remaining stiff in the desired direction and flexible in other directions.
  • the dimensions of the motor are often related to or compared to the size of the piezoelectric stack.
  • stiffness it is generally desirable that the motor be very stiff in the direction of motion when compared to the stiffness in the direction of the preload.
  • the following table illustrates the desired value for the various ratios as well as the actual ratios achieved for a piezoelectric motor that includes a piezoelectric stack that is 3 mm by 3 mm.
  • the width of the motor is its depth into the paper
  • the height of the motor is the largest dimension of the rotor in the "Y” direction of Fig. 3
  • the length of the motor is the largest dimension of the rotor in the "X” direction of Fig. 3 .
  • the direction of motion is the "X" direction with the preload direction being in the "Y” direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Manipulator (AREA)

Claims (12)

  1. Bewegungssteuerungssystem (10), Folgendes aufweisend:
    einen Sockel (15);
    eine Bühne (20), die vom Sockel gehaltert und in Bezug auf den Sockel beweglich ist;
    einen Motor (25; 220), der an den Sockel angeschlossen und funktionsfähig ist, die Bühne zu bewegen; wobei der Motor verfügt über:
    einen Montagesockel (100), der dazu eingerichtet ist, den Motor mit dem Sockel zu verbinden;
    einen Reibungsblock (95), der mit der Bühne in Eingriff gebracht werden kann;
    einen Kopplungsabschnitt (230; 235) mit einem ersten Ende, das an den Montagesockel angeschlossen ist, und einem zweiten Ende, wobei der Reibungsblock zwischen dem ersten Ende und dem zweiten Ende an den Kopplungsabschnitt angeschlossen ist; und
    ein piezoelektrisches Element (90), das zwischen dem Montagesockel und dem zweiten Ende vorgesehen und im Ansprechen auf ein elektrisches Signal funktionsfähig ist, den Reibungsblock und die Bühne zu bewegen;
    dadurch gekennzeichnet, dass das Bewegungssteuerungssystem darüber hinaus aufweist:
    eine Montageschraube (55), die von außerhalb des Sockels her zugänglich ist, wobei die Montageschraube den Kopplungsabschnitt feststellt und der einzige Befestigungsmechanismus zwischen dem Motor und dem Sockel ist, und
    ein Vorspannteil (65), das über ein Motorende und ein Einstellende verfügt, wobei das Motorende in Kontakt mit dem Motor steht und beweglich ist, um eine variable Vorspannkraft an den Motor anzulegen, wobei das Einstellende so angeordnet ist, dass es von außerhalb des Sockels her zugänglich ist;
    und dadurch, dass
    der Motor einen sternförmigen Aufbau mit einem ersten Arm (245), der an den Montagesockel an einem feststehenden Ende angeschlossen ist, einem zweiten Arm (250), der ein sich bewegendes, am piezoelektrischen Element befestigtes Ende hat, und einem dritten Arm (290) hat, der ein schwebendes Ende hat, an das die Vorspannung angelegt wird, und das zur Einstellung der Vorspannung verwendet wird.
  2. Bewegungssteuerungssystem nach Anspruch 1, wobei der Montagesockel über eine mit Gewinde versehene Öffnung (45; 105) verfügt, und wobei die Montageschraube (55) die mit Gewinde versehene Öffnung in Gewindeeingriff nimmt, um den Motor (25; 220) fest mit dem Sockel (15) zu verbinden.
  3. Bewegungssteuerungssystem nach Anspruch 1, wobei die Vorspannkraft zwischen Null und 40 N einstellbar ist.
  4. Bewegungssteuerungssystem nach Anspruch 1, wobei der Motor (25; 220) einen Motorperimeter definiert, und wobei mindestens 70 Prozent des Raums innerhalb des Perimeters mit dem über das piezoelektrische Element verfügenden Motor gefüllt sind.
  5. Bewegungssteuerungssystem nach Anspruch 1, wobei der Kopplungsabschnitt über einen Kopplungsblock (230) am zweiten Ende und einen starren Koppler (235) verfügt, der sich zwischen dem Kopplungsblock und dem Reibungsblock (95) erstreckt.
  6. Bewegungssteuerungssystem nach Anspruch 5, wobei der Kopplungsabschnitt (230) über eine konische Feder (290) verfügt, die ein erstes Ende mit einer ersten Breite, ein zweites Ende mit einer zweiten Breite und einen Biegungsabschnitt mit einer Biegungsbreite hat, wobei die erste Breite und die zweite Breite kleiner sind als die Biegungsbreite.
  7. Bewegungssteuerungssystem nach Anspruch 1, wobei der dritte Arm (290) des Motors (220) über einen ersten Abschnitt, der einem im Wesentlichen U-förmigen Teil folgt, einen zweiten Abschnitt, der einem Weg folgt, der sich über ungefähr 270 Grad krümmt, und einen dritten Abschnitt verfügt, der im Wesentlichen L-förmig ist.
  8. Bewegungssteuerungssystem nach Anspruch 1, wobei sich ein dünnes Biegeelement (225) ausgehend vom Kopplungsabschnitt (230) zu einem starren Koppler (235) erstreckt, der den Reibungsblock (95) haltert, und ein flexibles Element (260) den Montagesockel (100) mit einem U-förmigen Teil (240) verbindet, um eine allgemein U-förmiges Segment zu vervollständigen, das über zwei Enden verfügt, die mit dem Montagesockel verbunden sind, wobei der Reibungsblock (95) dem offenen Ende des U-förmigen Segments entgegengesetzt gehaltert ist.
  9. Piezoelektrischer Motor (220) zur Verwendung in einem Bewegungssteuerungssystem (10), wobei der piezoelektrische Motor dazu angepasst ist, in einem Sockel (15) gehaltert und funktionsfähig zu sein, eine Bühne (20) zu bewegen, wobei der piezoelektrische Motor aufweist:
    einen Montagesockel (100), der dazu angepasst ist, den piezoelektrischen Motor mit dem Sockel zu verbinden;
    einen Reibungsblock (95), der mit der Bühne in Eingriff gebracht werden kann;
    ein piezoelektrisches Element (90), das an den Montagesockel angeschlossen und im Ansprechen auf ein elektrisches Signal funktionsfähig ist, um den Reibungsblock zu bewegen;
    einen Kopplungsabschnitt (230) mit einem ersten Ende, das an den Montagesockel angeschlossen ist, und einem zweiten Ende, das an das piezoelektrische Element angeschlossen ist, wobei der Reibungsblock zwischen dem ersten Ende und dem zweiten Ende an den Kopplungsabschnitt angeschlossen ist;
    dadurch gekennzeichnet, dass
    der Kopplungsabschnitt darüber hinaus über eine konische Feder verfügt, die ein erstes Ende mit einer ersten Breite, ein zweites Ende mit einer zweiten Breite und einen Biegungsabschnitt mit einer Biegungsbreite hat, wobei die erste Breite und die zweite Breite kleiner sind als die Biegungsbreite;
    und dadurch, dass
    der Motor einen sternförmigen Aufbau mit einem ersten Arm (245), der an den Montagesockel an einem feststehenden Ende angeschlossen ist, einem zweiten Arm (250), der ein sich bewegendes, am piezoelektrischen Element befestigtes Ende hat, und einem dritten Arm hat, der ein schwebendes Ende hat, an das eine Vorspannung angelegt werden kann, und das sich zur Einstellung der Vorspannung verwenden lässt.
  10. Motor nach Anspruch 9, wobei der Kopplungsabschnitt über einen Kopplungsblock (230) am zweiten Ende und einen starren Koppler (235) verfügt, der sich zwischen dem Kopplungsblock und dem Reibungsblock (95) erstreckt.
  11. Motor nach Anspruch 9, wobei der dritte Arm (290) des Motors (220) über einen ersten Abschnitt, der einem im Wesentlichen U-förmigen Teil folgt, einen zweiten Abschnitt, der einem Weg folgt, der sich über ungefähr 270 Grad krümmt, und einen dritten Abschnitt verfügt, der im Wesentlichen L-förmig ist.
  12. Motor nach Anspruch 9, wobei sich ein dünnes Biegeelement (225) ausgehend vom Kopplungsabschnitt (230) zu einem starren Koppler (235) erstreckt, der den Reibungsblock (95) haltert, und ein flexibles Element (260) den Montagesockel (100) mit einem U-förmigen Teil (240) verbindet, um ein allgemein U-förmiges Segment zu vervollständigen, das über zwei Enden verfügt, die mit dem Montagesockel verbunden sind, wobei der Reibungsblock (95) dem offenen Ende des U-förmigen Segments entgegengesetzt gehaltert ist.
EP14765935.3A 2013-09-13 2014-09-12 Vielseitiger kompakter piezoelektrischer stick-slip-motor Active EP3044642B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/026,666 US9312790B2 (en) 2013-09-13 2013-09-13 Compact versatile stick-slip piezoelectric motor
PCT/EP2014/069504 WO2015036545A2 (en) 2013-09-13 2014-09-12 Compact versatile stick-slip piezoelectric motor

Publications (2)

Publication Number Publication Date
EP3044642A2 EP3044642A2 (de) 2016-07-20
EP3044642B1 true EP3044642B1 (de) 2018-01-17

Family

ID=51539268

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14765935.3A Active EP3044642B1 (de) 2013-09-13 2014-09-12 Vielseitiger kompakter piezoelektrischer stick-slip-motor

Country Status (6)

Country Link
US (1) US9312790B2 (de)
EP (1) EP3044642B1 (de)
JP (2) JP2016533159A (de)
KR (1) KR101821736B1 (de)
CN (1) CN105556824B (de)
WO (1) WO2015036545A2 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205280B3 (de) * 2014-03-21 2015-06-11 Physik Instrumente (Pi) Gmbh & Co. Kg Trägheitsantrieb
DE102015208591B4 (de) * 2015-05-08 2016-12-08 Physik Instrumente (Pi) Gmbh & Co. Kg Piezoelektrischer Drehantrieb mit einem als Blattfeder ausgebildeten Spannmittel
CN106026765B (zh) * 2016-06-06 2017-09-22 长春工业大学 非对称菱形放大机构压电粘滑直线电机及其激励方法
CN105827144B (zh) * 2016-06-06 2017-08-29 长春工业大学 斜梯形正交驱动型压电粘滑直线马达及其复合激励方法
CN106059381B (zh) * 2016-06-06 2017-09-05 长春工业大学 斜梯型振幅放大机构压电粘滑直线电机及其激励方法
CN105827141B (zh) * 2016-06-06 2017-12-15 长春工业大学 斜梯形运动转换式精密压电粘滑直线马达及其驱动方法
CN105897043B (zh) * 2016-06-06 2017-08-29 长春工业大学 菱形铰链斜拉式正交驱动型压电粘滑直线马达及其复合激励方法
US10644616B2 (en) * 2016-09-30 2020-05-05 Intel Corporation Piezoelectric package-integrated motor
DE102017102884A1 (de) 2017-02-14 2018-08-16 Aspre Ag Piezomotor
CN106899228B (zh) * 2017-04-01 2019-01-08 西安交通大学 内含光电编码器的旋转式惯性压电作动器及作动方法
CN107681917A (zh) * 2017-10-18 2018-02-09 南京邮电大学 一种基于单个压电叠堆的惯性纳米步进马达
CA3088745A1 (en) * 2018-01-19 2019-07-25 Thorlabs, Inc. Compact piezoelectric inertial drive stage
US11606045B2 (en) * 2018-01-19 2023-03-14 Thorlabs, Inc. Compact piezoelectric inertial drive stage
EP3547529B1 (de) 2018-03-29 2021-05-05 Physik Instrumente (PI) GmbH & Co. KG Zweimoden-bewegungssteuerungssystem und verfahren für einen piezomotor
US11396928B2 (en) 2018-07-15 2022-07-26 Delbert Tesar Actuator with a parallel eccentric gear train driven by a mechanically amplified piezoelectric assembly
CN108923682B (zh) * 2018-08-08 2019-09-27 苏州大学 一种粘滑驱动跨尺度大行程运动平台
CN108923683B (zh) * 2018-08-13 2019-09-27 苏州大学 一种微型粘滑驱动跨尺度精密运动平台
TWI699958B (zh) * 2019-01-11 2020-07-21 精浚科技股份有限公司 摩擦驅動致動器及其緩衝支架
US11711031B2 (en) 2019-04-24 2023-07-25 Micro-Controle—Spectra-Physics Piezoelectric inertia actuator
FR3095910A1 (fr) 2019-05-06 2020-11-13 Telemaq Moteur piézoélectrique à onde progressive à résolution micrométrique
EP3790183A1 (de) 2019-09-06 2021-03-10 Physik Instrumente (PI) GmbH & Co. Kg Piezoelektrischer stick-slip-motor und verfahren zu dessen steuerung
CN114079401A (zh) * 2020-08-17 2022-02-22 华为技术有限公司 驱动组件、马达及终端
CN112290828B (zh) * 2020-10-30 2023-02-17 河南师范大学 一种具有轴向预加载的超声电机
CA3103330A1 (en) 2020-11-17 2022-05-17 Thorlabs, Inc. Compact piezoelectric inertial drive stage
CN116388609B (zh) * 2023-05-26 2023-08-04 吉林大学 一种基于惯性步进原理驱动的平-转两自由度压电执行器

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320580A (en) 1963-02-27 1967-05-16 Alan O Sykes Multipurpose piezoelectric transducer system
US3902085A (en) 1974-11-25 1975-08-26 Burleigh Instr Electromechanical translation apparatus
SE436675B (sv) 1975-08-12 1985-01-14 Ki Politekhnichsky I Im 50 Let Elektrisk motor driven genom piezoelektriska krafter
AT384912B (de) 1982-04-16 1988-01-25 Ki Polt I Piezoelektrischer motor
US4525852A (en) 1983-03-15 1985-06-25 Micronix Partners Alignment apparatus
US4622483A (en) 1983-03-24 1986-11-11 Staufenberg Jr Charles W Piezoelectric electromechanical translation apparatus and method
DE3336991A1 (de) 1983-10-11 1985-05-02 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Vorrichtung zur feststellung und/oder ueberwachung eines vorbestimmten fuellstands in einem behaelter
JPS60116506U (ja) 1984-01-18 1985-08-07 日本精工株式会社 テ−ブルの超精密位置決め機構
US4613782A (en) 1984-03-23 1986-09-23 Hitachi, Ltd. Actuator
US4775815A (en) 1984-05-15 1988-10-04 Rockwell International Corporation Shear motor for dynamic mount for laser-beam steering mirror
JPS6162369A (ja) 1984-08-30 1986-03-31 Tokyo Juki Ind Co Ltd 圧電素子を用いたアクチユエ−タ
JPS61258679A (ja) 1985-05-07 1986-11-17 Nec Corp 回転角制御装置
FR2586853B1 (fr) * 1985-08-30 1988-07-29 Suisse Electronique Microtech Dispositif de micropositionnement
US4727278A (en) 1985-10-04 1988-02-23 Micro Pulse Systems, Inc. Piezoelectric multiaxis micropositioner
JP2632811B2 (ja) 1986-08-29 1997-07-23 キヤノン株式会社 振動駆動モータ
JP2524346B2 (ja) 1987-03-27 1996-08-14 オリンパス光学工業株式会社 超音波モ−タ
JPH01234067A (ja) 1988-03-11 1989-09-19 Nec Corp 超音波モータ
US4831306A (en) 1988-05-04 1989-05-16 Micro-Pulse Research And Development Piezoelectric motor having a pivotally mounted annular shaped housing
JPH0295180A (ja) 1988-09-29 1990-04-05 Canon Inc 尺取り虫型駆動機構
US5059850A (en) 1989-02-14 1991-10-22 Brother Kogyo Kabushiki Kaisha Temperature compensation member composed of shape memory effect alloy for an actuator driven by a piezo-electric element
US4975615A (en) 1989-06-08 1990-12-04 Atlantic Richfield Company Piezoelectric transducer
US5027028A (en) 1989-08-29 1991-06-25 Skipper John D Piezoelectric motor
US5247220A (en) * 1989-10-20 1993-09-21 Seiko Epson Corporation Ultrasonic motor
US5017820A (en) 1990-04-23 1991-05-21 Rockwell International Corporation Piezoelectric rotary union system
US5079471A (en) 1990-06-04 1992-01-07 Martin Marietta Corporation High torque harmonic traction motor
US5140470A (en) 1991-01-07 1992-08-18 New Focus, Inc. Optical mounting apparatus
US5410206A (en) 1993-04-06 1995-04-25 New Focus, Inc. Piezoelectric actuator for optical alignment screws
US5543670A (en) * 1993-04-06 1996-08-06 New Focus, Inc. Magnetostrictive actuator for optical alignment screws
US5394049A (en) 1993-04-06 1995-02-28 New Focus, Inc. Piezoelectric actuator for optical alignment screws cross references to co-pending applications
US6565762B1 (en) * 1997-07-15 2003-05-20 Silverbrook Research Pty Ltd Method of manufacture of a shutter based ink jet printer
JPH1144899A (ja) 1997-07-25 1999-02-16 Minolta Co Ltd 電気機械変換素子を使用した駆動装置
WO2001033646A1 (en) 1999-11-03 2001-05-10 New Focus, Inc. Control for piezoelectric actuator
US6759790B1 (en) 2001-01-29 2004-07-06 Viking Technologies, L.C. Apparatus for moving folded-back arms having a pair of opposing surfaces in response to an electrical activation
JP3832260B2 (ja) * 2001-02-28 2006-10-11 セイコーエプソン株式会社 圧電アクチュエータ、時計および携帯機器
CA2405353A1 (en) 2001-09-26 2003-03-26 Mike Trzecieski Multi axis component actuator
US7430081B2 (en) 2002-02-28 2008-09-30 Emcore Corporation Sub-micron adjustable mount for supporting a component and method
US7119478B1 (en) 2004-02-11 2006-10-10 Honeywell Federal Manufacturing & Technologies, Llc Piezoelectric step-motion actuator
TW200531420A (en) * 2004-02-20 2005-09-16 Zyvex Corp Positioning device for microscopic motion
US7498719B2 (en) 2004-03-02 2009-03-03 Piezoelectric Technology Co., Ltd. Small piezoelectric or electrostrictive linear motor
US20060169837A1 (en) 2005-02-02 2006-08-03 Bird Ross W Flexible actuator with integral control circuitry and sensors
WO2007113794A2 (en) * 2006-03-30 2007-10-11 Nanomotion Ltd. Piezoelectric transmission systems
WO2008087469A2 (en) 2007-01-18 2008-07-24 Newport Corporation Optical adjustment mounts with piezoelectric inertia driver
JP2009136050A (ja) * 2007-11-29 2009-06-18 Nidec Copal Corp 駆動装置
JP2010141973A (ja) * 2008-12-09 2010-06-24 Olympus Corp 超音波モータ
EP2216837A1 (de) * 2009-02-07 2010-08-11 Physik Instrumente (PI) GmbH & Co. KG Piezoelektrischer Motor
JP2010233339A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 圧電モーター、液体噴射装置及び時計
US8237334B2 (en) * 2009-04-22 2012-08-07 Parker-Hannifin Corporation Piezo actuator
US8482868B2 (en) 2010-07-15 2013-07-09 Newport Corporation Optical adjustable mounts with absolute position feedback
DE102011109590A1 (de) * 2011-08-05 2013-02-07 Physik Instrumente (Pi) Gmbh & Co. Kg Piezoelektrischer Drehantrieb für eine Welle

Also Published As

Publication number Publication date
WO2015036545A3 (en) 2015-09-24
US9312790B2 (en) 2016-04-12
CN105556824A (zh) 2016-05-04
JP3218046U (ja) 2018-09-20
EP3044642A2 (de) 2016-07-20
KR20160053950A (ko) 2016-05-13
JP2016533159A (ja) 2016-10-20
WO2015036545A2 (en) 2015-03-19
US20150076965A1 (en) 2015-03-19
CN105556824B (zh) 2018-06-01
KR101821736B1 (ko) 2018-01-24

Similar Documents

Publication Publication Date Title
EP3044642B1 (de) Vielseitiger kompakter piezoelektrischer stick-slip-motor
US7466062B2 (en) Vibration wave motor and lens barrel
CN100403570C (zh) 近共振机电电动机
EP0592030B1 (de) Elektromechanische Verschiebevorrichtung und geeigneter Aktuator zur Verwendung in einer derartigen Verschiebevorrichtung
RU2179363C2 (ru) Пьезоэлектрический привод или двигатель, способ приведения его в действие и способ его изготовления
US20060113867A1 (en) Vibration wave motor
US20050231077A1 (en) Apparatus and process for optimizing work from a smart material actuator product
US7514845B2 (en) Vibrational actuator and method for driving vibrational actuator
US7528527B2 (en) Driving device
WO2010088937A1 (en) Piezoelectric actuator
US20120297880A1 (en) Smart Material Actuator with Enclosed Compensator
US20020000518A1 (en) Linear motor having piezo actuators
GB2349738A (en) Rotary ultrasonic motors
WO2017086785A1 (en) Ortho-planar spring and device equipped with such an ortho-planar spring
US7695389B2 (en) Conductive polymer drive for actuating eccentric members of a motor
US20040178699A1 (en) Actuator
US9048758B2 (en) Provision of a normal force to electromechanical motor
TW200826468A (en) Linear ultrasonic motor
JP2022518058A (ja) 電気機械式リニアドライブ
CN116015097B (zh) 压电驱动组件、旋转电机和电子设备
JP4758035B2 (ja) 圧電アクチュエータおよび磁気ヘッド駆動装置
JPH10123405A (ja) レンズ駆動機構
JPS62125408A (ja) 微動機構
JP3202499B2 (ja) 振動波モータおよび振動波モータを駆動源とする装置
CN114865945A (zh) 一种压电驱动三自由度微动电机

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160316

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170227

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 964827

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014020101

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 964827

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180417

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180517

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180417

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014020101

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

26N No opposition filed

Effective date: 20181018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140912

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180117

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230920

Year of fee payment: 10

Ref country code: GB

Payment date: 20230921

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 10

Ref country code: DE

Payment date: 20230919

Year of fee payment: 10