EP3014119B1 - Pumpe - Google Patents

Pumpe Download PDF

Info

Publication number
EP3014119B1
EP3014119B1 EP14720619.7A EP14720619A EP3014119B1 EP 3014119 B1 EP3014119 B1 EP 3014119B1 EP 14720619 A EP14720619 A EP 14720619A EP 3014119 B1 EP3014119 B1 EP 3014119B1
Authority
EP
European Patent Office
Prior art keywords
pressure
low
piston
chamber
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP14720619.7A
Other languages
English (en)
French (fr)
Other versions
EP3014119A1 (de
Inventor
Achim Koehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3014119A1 publication Critical patent/EP3014119A1/de
Application granted granted Critical
Publication of EP3014119B1 publication Critical patent/EP3014119B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/102Mechanical drive, e.g. tappets or cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0408Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/0008Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using accumulators
    • F04B11/0033Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using accumulators with a mechanical spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/03Fuel-injection apparatus having means for reducing or avoiding stress, e.g. the stress caused by mechanical force, by fluid pressure or by temperature variations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/09Fuel-injection apparatus having means for reducing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations

Definitions

  • the invention relates to a pump, in particular a high-pressure pump for fuel injection systems or hydraulic applications. Specifically, the invention relates to the field of diesel pumps, gasoline pumps and hydraulic pumps.
  • the known high-pressure pump has a pump assembly and a drive shaft, wherein the drive shaft comprises a cam associated with the pump assembly.
  • the pump assembly includes a roller that rolls on a tread of the cam.
  • the drive shaft is mounted at bearings in housing parts of the high-pressure pump. During operation of the high-pressure pump, a reciprocating movement of a piston is achieved, so that the delivery of high-pressure fuel to a common rail takes place.
  • the drive shaft rotates about an axis.
  • a damping device which, on the one hand, is connected at least indirectly to the low-pressure space and, on the other hand, is connected to a low-pressure level which is below a pressure in the low-pressure space during operation.
  • the Damping device has a piston displaceable in a piston bore, which is acted upon on the one hand by the pressure in the low-pressure chamber against a spring force and on the other hand limits a space in the piston bore.
  • the damping device also has a discharge device which connects the space with the low pressure level.
  • the relief device is a line that connects the room with the low pressure level.
  • the volume flowed off to the low pressure level must be compensated for again by a corresponding delivery of fuel into the low pressure chamber.
  • a gas volume is arranged to be compensated by the pressure pulsations. Over the lifetime it is difficult to ensure the required seal between gas volume and fuel.
  • the pump according to the invention with the features of claim 1 has the advantage that an improved structure and improved operation are possible.
  • pressure pulsations generated in the low-pressure space can be effectively damped, since during the movement of the piston of the damping device, a vapor volume is forced, which is available as a damping volume.
  • the throttle is in this case advantageously adjusted depending on a pulsation frequency and a pulsation amplitude and the low pressure level after the throttle so that when expanding the steam chamber as large a vapor volume is generated, the re-immersion of the piston until complete condensation of the steam as a damping volume Is available without a renewed volume displacement takes place.
  • a piston leakage can be removed via the check valve and by the check valve, a vapor volume is enforced, which is available as a damping volume.
  • the pump can in particular be configured as a high-pressure pump, which serves for conveying a fluid, in particular fuel, with high pressure.
  • the high pressure pump may be integrated with a fuel injection system or other hydraulic system.
  • a low-pressure circuit can be formed, which runs over the low-pressure chamber of the pump.
  • the low-pressure space can in this case be designed as an engine room of the pump, the drive being arranged at least partially in the low-pressure space designed as an engine compartment.
  • lubrication of the drive can be achieved via the low-pressure circuit at the same time.
  • Pressure pulsations, which are generated by the drive in the engine room designed as the low-pressure space of the pump are then preferably already damped within the housing of the pump by the at least one damping device.
  • the fluid, in particular the fuel can be guided in an advantageous manner via the low-pressure space at least indirectly to a pump working space of a pump assembly.
  • the low-pressure space may in particular be the engine room.
  • the pump has a plurality of pump assemblies and correspondingly a plurality of pump working chambers, to which the fluid, in particular the fuel, is led via the low-pressure chamber.
  • the throttle of the relief device opens radially into the piston bore.
  • the piston bore can be closed by a suitable closure element.
  • low low pressure level are kept, with which the vapor space is connected via the throttle.
  • a closure element is arranged, that the vapor space between the piston and the closure element is formed in the piston bore and that the throttle of the relief device is integrated into the closure element. In this way, the access required for the piston bore can be used at the same time to maintain the low pressure level.
  • the piston bore is arranged in a housing, that a low-pressure channel is formed in the housing, which opens into the vapor space of the piston bore, and that the check valve is arranged in the low-pressure channel.
  • a low-pressure channel is formed in the housing, which opens into the vapor space of the piston bore, and that the check valve is arranged in the low-pressure channel.
  • a spring element is arranged in the vapor space, which acts on the piston with the spring force.
  • the steam space can thus serve as a spring chamber at the same time.
  • the spring element can be pressurized by the piston in this case.
  • the piston may also be suitably connected to the spring element to urge the piston both on pressure and on train.
  • the piston is guided in the piston bore such that a leakage flow from the low-pressure space into the vapor space is made possible between the piston and the piston bore.
  • a lubrication of the piston guide is realized in the piston bore.
  • a Nachpound of fluid, in particular fuel is realized in the vapor space.
  • the leakage is then removed via the throttle or the check valve to the low pressure level. Thus, a maintenance-free operation is possible.
  • Fig. 1 shows a high pressure pump 1 of a fuel injection system 2 with a low pressure circuit 3 in a schematic representation according to a first embodiment.
  • the high-pressure pump 1 can be used in particular for air-compressing, self-igniting internal combustion engines or mixture-compressing, spark-ignited internal combustion engines. Furthermore, the high-pressure pump 1 can also be designed as a hydraulic pump for other hydraulic applications.
  • the high-pressure pump 1 has a low-pressure chamber 4 and a drive 5. In this case 5 pressure pulsations in the low-pressure space 4 are generated in operation by the drive.
  • the low-pressure space 4 is formed by an engine room, in which an axis 6 with a multiple cam 7 at least partially arranged is.
  • the multiple cam 7 of the axis 6 is used to drive a pump piston 8 of a pump assembly 9 of the high pressure pump 1.
  • a part of a cylinder head 10 is shown schematically, in which a cylinder bore 11 is configured.
  • the pump piston 8 is guided in the cylinder bore 11.
  • the actuation of the pump piston 8 by the multiple cam 7 is illustrated by a double arrow 12.
  • a metering unit 13 is provided, is guided over the operating at low pressure fuel in a pump working chamber 14.
  • the pump working chamber 14 is in this case limited by the pump piston 8 in the cylinder bore 11.
  • the high-pressure fuel is conducted via an outlet valve 15, for example, to a common rail.
  • the low-pressure circuit 3 comprises a tank 20 and a prefeed pump 21, which may be configured, for example, as an electric fuel pump 21.
  • a prefeed pump 21 By the prefeed pump 21, the fuel from the tank 20 is conveyed via a filter device 22 in the low-pressure chamber 4.
  • the filter device 22 comprises a filter and optionally also a water separator.
  • part of the fuel is led via a housing bearing 23 and a flange bearing 24 to a low-pressure level 25.
  • the axis 6 is mounted with the multiple cam 7.
  • the housing bearing 23 and the flange bearing 24 are hereby illustrated by throttles 23, 24, since they act as throttles.
  • a pressure p 1 prevails.
  • the low pressure level 25 has a pressure p 2 which is smaller than the pressure p 1 .
  • a device 26 can optionally be provided.
  • the pressure p 2 for example, be held slightly above the optionally pressure-relieved tank 20.
  • the device 26 may for example have a throttle or other low pressure limit.
  • the device 26 may also be omitted. Especially can already by the length of a return line 27, which leads from the low pressure level 25 to the tank 20, the desired low pressure p 2 in the low pressure level 25 can be achieved.
  • the high-pressure pump 1 has a damping device 30. Depending on the design of the high pressure pump 1, a plurality of such damping devices 30 may be provided.
  • the damping device 30 is connected on the one hand by means of a line 31 to the low pressure chamber 4 and on the other hand connected to the low pressure level 25.
  • the low pressure level 25 is at its pressure p 2 under the pressure p 1 in the low pressure space 4.
  • the damping device 30 in this embodiment, a piston 32, which serves as a compensating piston 32.
  • the piston 32 is guided displaceably in a piston bore 33.
  • the piston 32 divides the piston bore 33 into a vapor space 34 and a space 35.
  • the vapor space 34 serves at the same time as a spring space 34, in which a spring element 36 is arranged, which is designed, for example, as a spiral spring 36.
  • the damping device 30 also has a relief device 37, which connects the vapor space 34 with the low pressure level 25.
  • the relief device 37 includes a check valve 38.
  • the check valve 38 opens in this case to the low pressure level 25 back.
  • the fuel flow in the low-pressure circuit 3 is illustrated by arrows.
  • the piston 32 is guided in the piston bore 32 in such a way that a leakage flow from the space 35 connected to the low-pressure space 4 into the vapor space 34 is made possible between the piston 32 and the piston bore 33.
  • the leakage is in this case discharged via the check valve 38 to the low pressure level 25 during operation.
  • Fig. 2 shows a partial, schematic sectional view of the in Fig. 1 illustrated high-pressure pump 1 according to a second embodiment.
  • a housing part 45 is shown, which is part of a housing 46 of the high pressure pump 1, in which the low-pressure chamber 4 is configured.
  • the housing part 45 may also be the cylinder head 10.
  • a tubular sleeve 47 is inserted into the housing part 45, in which the piston bore 33 is configured.
  • a closure element 48 is inserted into the sleeve 47, which closes the piston bore 33 to an outer side 49 of the housing part 45 through.
  • the vapor space 34 is formed between the piston 32 and the closure member 48 in the piston bore 33.
  • a channel 50 is formed, which extends to the sleeve 47.
  • the low pressure level 25 with the pressure p 2 is in this case realized in the channel 50.
  • the relief device 37 has a throttle 51, which opens radially into the piston bore 33.
  • the throttle 51 is configured in the sleeve 47 in this embodiment. In this case, the throttle 51 connects the vapor space 34 with the channel 50.
  • the throttle effect of the throttle 51 is set so strong that at a pressure reduction in the low-pressure chamber 4, which is caused by a pressure pulsation and an adjustment of the piston 32 with the spring force of the spring element 36 allows up to a provision of the piston 32, by the of caused the pressure pulsation following increase in pressure in the low-pressure chamber 4 is carried out, temporarily a vapor volume is generated in the vapor space 34.
  • the damping device 30 can be tuned in particular by the spring element 36 and the throttle 51.
  • the throttling effect of the throttle 51 in response to a pulsation frequency and a pulsation amplitude and the low pressure level 25 with the pressure p 2 after the throttle 51 are tuned so that when expanding the spring element 36 as large a vapor volume is generated in the vapor space 34, the upon re-immersion of the piston 32 until complete condensation of the vapor is available as a damping volume, without a renewed volume displacement takes place.
  • Fig. 3 shows a partial, schematic sectional view of the in Fig. 1 illustrated high-pressure pump 1 according to a third embodiment.
  • the closure element 48 has a through hole 52.
  • the through hole 52 may be formed at least in sections with a sufficiently small diameter to form the throttle 51.
  • the throttle 51 can be integrated into the closure element 48.
  • the low pressure level 25 can be ensured with the pressure p 2 .
  • Fig. 4 shows a partial, schematic sectional view of the in Fig. 1 illustrated high pressure pump 1 according to a fourth embodiment.
  • the damping device 30 has a part 54 which is designed as a screw or plug-in part 54 and is screwed or inserted into the housing part 45.
  • the part 54 has a tubular portion 55 in which the piston bore 33 is formed.
  • the tubular portion 55 of the part 54 is sealed with respect to the housing part 55 with a sealing ring 56.
  • the closure element 48 is arranged in the piston bore 33 of the tubular portion 55. Furthermore, a further closure element 57 is provided, which closes the piston bore 33 from the environment. Between the further closure element 57 and the closure element 48, the low pressure level 25 is predetermined in a gap 58.
  • the gap 58 is suitably connected to the return line 27.
  • the check valve 38 is integrated into the closure element 48.
  • the check valve 38 enables a fuel flow from the vapor space 34 into the gap 58.
  • the leakage which enters the vapor space 34 due to the leakage flow between the piston 32 and the piston bore 33, are led to the return line 37.
  • Fig. 5 shows a partial, schematic sectional view of the in Fig. 1 illustrated high-pressure pump 1 according to a fifth embodiment.
  • the piston bore 33 of the part 54 is closed by the closure member 48 from the environment.
  • the tubular portion 55 has at least one radial connecting hole 59, 60, wherein in this embodiment, a plurality of radial connecting holes 59, 60 are provided.
  • the housing part 45 of the channel 50 is configured.
  • the channel 50 can be configured for example by a housing bore 50 in the housing part 45.
  • the check valve 38 is arranged in the channel 50.
  • the vapor space 34 is connected to the low pressure level 25 via the radial communication bores 59, 60 and the check valve 38.
  • Fig. 6 shows a diagram for explaining the operation of the high-pressure pump 1 according to a possible embodiment of the invention.
  • the time t is plotted on the abscissa, while the pressure p is plotted on the ordinate.
  • the pressure p results here from the pressure p 1 in the low pressure chamber 4 plus the pressure fluctuations caused by pressure pulsations.
  • the pressure pulsations are caused by the drive 5.
  • One possible pressure pulsation is illustrated by curve 61.
  • the pressure fluctuations represented by the curve 61 are effectively damped by the damping device 30. As a result, such pressure fluctuations do not affect the remaining low-pressure circuit 3.
  • the functionality of the metering unit 13 is ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Reciprocating Pumps (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft eine Pumpe, insbesondere eine Hochdruckpumpe für Brennstoffeinspritzanlagen oder Hydraulikanwendungen. Speziell betrifft die Erfindung das Gebiet der Dieselpumpen, Benzinpumpen und Hydraulikpumpen.
  • Aus der DE 10 2011 006 092 A1 ist eine Hochdruckpumpe für Brennstoffeinspritzanlagen von luftverdichtenden, selbstzündenden Brennkraftmaschinen bekannt. Die bekannte Hochdruckpumpe weist eine Pumpenbaugruppe und eine Antriebswelle auf, wobei die Antriebswelle einen der Pumpenbaugruppe zugeordneten Nocken umfasst. Die Pumpenbaugruppe umfasst eine Laufrolle, die an einer Lauffläche des Nockens abrollt. Die Antriebswelle ist an Lagerstellen in Gehäuseteilen der Hochdruckpumpe gelagert. Im Betrieb der Hochdruckpumpe wird eine Hin- und Herbewegung eines Kolbens erzielt, so dass die Förderung von unter hohem Druck stehenden Brennstoff zu einem Common-Rail erfolgt. Hierbei rotiert im Betrieb der Hochdruckpumpe die Antriebswelle um eine Achse.
  • Bei der aus der DE 10 2011 006 092 A1 bekannten Hochdruckpumpe werden im Betrieb durch die Volumenverdrängung des Kolbens im Triebwerksraum, in dem die Antriebswelle vorgesehen ist, durch die Fördercharakteristik oder zusätzlich durch Triebwerksteilbewegungen Mengenwellen erzeugt, die in das weitere Niederdrucksystem beziehungsweise einen weiteren Niederdruckbereich emittiert werden können und dort zu erhöhten Druckbelastungen führen können. Der Triebwerksraum bildet einen Niederdruckraum. Insbesondere bei Hochdruckpumpen mit nur einer Pumpenbaugruppe beziehungsweise mit nur einem Hochdruckzylinder mit darin geführtem Pumpenkolben tritt diese Problematik besonders auf. In der Folge kann es zu Geräuschen oder auch zu einer Reduzierung der Lebensdauer der Hochdruckpumpe kommen. Bei der bekannten Hochdruckpumpe ist eine Dämpfungsvorrichtung vorgesehen, die einerseits zumindest mittelbar mit dem Niederdruckraum verbunden und andererseits an ein Niederdruckniveau angeschlossen ist, das im Betrieb unter einem Druck im Niederdruckraum liegt. Die Dämpfungsvorrichtung weist einen in einer Kolbenbohrung verschiebbaren Kolben auf, der einerseits von dem Druck im Niederdruckraum gegen eine Federkraft beaufschlagt ist und der andererseits einen Raum in der Kolbenbohrung begrenzt. Die Dämpfungsvorrichtung weist außerdem eine Entlastungseinrichtung auf, die den Raum mit dem Niederdruckniveau verbindet. Die Entlastungseinrichtung ist dabei eine Leitung, die den Raum mit dem Niederdruckniveau verbindet. Bei Druckanstieg im Niederdruckraum führt der Kolben eine Bewegung gegen die Federkraft aus und öffnet einen Abfluss zum Niederdruckniveau. Das zum Niederdruckniveau abgeflossene Volumen muss durch eine entsprechende Nachförderung von Brennstoff in den Niederdruckraum wieder ausgeglichen werden. Zusätzlich ist bei der bekannten Hochdruckpumpe im Niederdruckraum ein Gasvolumen angeordnet, durch das Druckpulsationen ausgeglichen werden sollen. Über die Lebensdauer ist es schwierig die erforderliche Abdichtung zwischen Gasvolumen und Brennstoff sicherzustellen.
  • Offenbarung der Erfindung
  • Die erfindungsgemäße Pumpe mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass ein verbesserter Aufbau und eine verbesserte Funktionsweise ermöglicht sind. Speziell können im Betrieb Druckpulsationen, die im Niederdruckraum erzeugt werden, wirkungsvoll gedämpft werden, da bei der Bewegung des Kolbens der Dämpfungsvorrichtung ein Dampfvolumen erzwungen wird, das als Dämpfungsvolumen zur Verfügung steht. Die Drossel wird hierbei in vorteilhafter Weise in Abhängigkeit von einer Pulsationsfrequenz und einer Pulsationsamplitude sowie dem Niederdruckniveau nach der Drossel so abgestimmt, dass beim Expandieren des Dampfraums ein möglichst großes Dampfvolumen erzeugt wird, das beim Wiedereintauchen des Kolbens bis zur vollständigen Kondensation des Dampfes als Dämpfungsvolumen zur Verfügung steht, ohne dass eine erneute Volumenverdrängung stattfindet. Bei einer zweiten möglichen Ausgestaltung wird in vorteilhafter Weise der Dampfraum über das Rückschlagventil an ein zumindest beruhigtes und/oder geringeres Niederdruckniveau angeschlossen. In vorteilhafter Weise kann über das Rückschlagventil auch eine Kolbenleckage abgeführt werden und durch das Rückschlagventil wird ein Dampfvolumen erzwungen, das als Dämpfungsvolumen zur Verfügung steht. Diese Möglichkeiten der Dämpfung sind kostengünstig und wartungsfrei, da die Funktionsfähigkeit durch das Fehlen von Permanentdichtstellen zwischen einerseits der Gas- und/oder Dampfphase und andererseits der Flüssigkeit über die gesamte Lebensdauer sichergestellt werden kann.
  • Ferner besteht ein wesentlicher Vorteil gegenüber einem Gasdruckdämpfer oder dergleichen darin, dass ein Arbeitspunkt, insbesondere der erforderliche Mitteldruck, um den die Druckamplituden schwanken, über ein Federelement, das die Federkraft aufbringt, eingestellt werden kann. Hingegen muss bei einem Gasdruckdämpfer dies entweder durch Vorkomprimieren des Gases oder durch hohe Elastizitäten sichergestellt werden, da es nur begrenzt möglich ist, ohne einen Großteil der Dämpfungswirkung zu verlieren. Der Arbeitspunkt ist dabei leicht applizierbar.
  • Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen der im Anspruch 1 angegebenen Pumpe möglich.
  • Die Pumpe kann insbesondere als Hochdruckpumpe ausgestaltet sein, die zum Fördern eines Fluids, insbesondere Brennstoffs, mit hohem Druck dient. Beispielsweise kann die Hochdruckpumpe in eine Brennstoffeinspritzanlage oder ein anderes hydraulisches System integriert sein. Hierbei kann ein Niederdruckkreislauf gebildet sein, der über den Niederdruckraum der Pumpe läuft. Der Niederdruckraum kann hierbei als Triebwerksraum der Pumpe ausgebildet sein, wobei der Antrieb zumindest teilweise in dem als Triebwerksraum ausgebildeten Niederdruckraum angeordnet ist. Somit kann über den Niederdruckkreislauf zugleich eine Schmierung des Antriebs erzielt werden. Druckpulsationen, die von dem Antrieb in dem als Triebwerksraum ausgebildeten Niederdruckraum der Pumpe erzeugt werden, werden dann vorzugsweise bereits innerhalb des Gehäuses der Pumpe durch die zumindest eine Dämpfungsvorrichtung gedämpft. Dadurch werden die Auswirkungen solcher Druckpulsationen auf andere Teile des Niederdruckkreislaufs verringert. Sonstige Dämpfungseinrichtungen, die in dem Niederdruckkreislauf vorgesehen sein können, können hierdurch in ihrer Ausgestaltung vereinfacht werden und gegebenenfalls auch entfallen. Somit vereinfacht sich auch die Ausgestaltung des Niederdruckkreislaufs und somit der Brennstoffeinspritzanlage oder dergleichen.
  • Das Fluid, insbesondere der Brennstoff, kann in vorteilhafter Weise über den Niederdruckraum zumindest mittelbar zu einem Pumpenarbeitsraum einer Pumpenbaugruppe geführt werden. Bei dem Niederdruckraum kann es sich hierbei insbesondere um den Triebwerksraum handeln. Möglich sind hierbei auch Ausgestaltungen, bei denen die Pumpe mehrere Pumpenbaugruppen und entsprechend mehrere Pumpenarbeitsräume aufweist, zu denen das Fluid, insbesondere der Brennstoff, über den Niederdruckraum geführt wird.
  • Vorteilhaft ist es, dass die Drossel der Entlastungseinrichtung radial in die Kolbenbohrung mündet. Die Kolbenbohrung kann dabei über ein geeignetes Verschlusselement verschlossen sein. Bei dieser Ausgestaltung kann in besonders einfacher Weise ein geringes Niederdruckniveau vorgehalten werden, mit dem der Dampfraum über die Drossel verbunden ist.
  • Bei einer abgewandelten Ausgestaltung ist es von Vorteil, dass in der Kolbenbohrung ein Verschlusselement angeordnet ist, dass der Dampfraum zwischen dem Kolben und dem Verschlusselement in der Kolbenbohrung ausgebildet ist und dass die Drossel der Entlastungseinrichtung in das Verschlusselement integriert ist. Auf diese Weise kann der für die Kolbenbohrung benötigte Zugang zugleich genutzt werden, um das Niederdruckniveau vorzuhalten.
  • Bei einer weiteren möglichen Ausgestaltung ist es vorteilhaft, dass.die Kolbenbohrung in einem Gehäuse angeordnet ist, dass ein Niederdruckkanal in dem Gehäuse ausgebildet ist, der in den Dampfraum der Kolbenbohrung mündet, und dass das Rückschlagventil in dem Niederdruckkanal angeordnet ist. Hierdurch ist eine Integration des Rückschlagventils in das Gehäuse der Pumpe möglich. Somit kann eine kompakte Ausgestaltung realisiert werden.
  • Vorteilhaft ist es allerdings auch, dass in der Kolbenbohrung ein Verschlusselement angeordnet ist, dass der Dampfraum zwischen dem Kolben und dem Verschlusselement in der Kolbenbohrung ausgebildet ist und dass das Rückschlagventil in das Verschlusselement integriert ist. Somit können die wesentlichen Funktionen im Bereich der Kolbenbohrung realisiert werden. Der Platzbedarf innerhalb des Gehäuses, der für diese Realisierung benötigt wird, ist hierbei minimiert.
  • In vorteilhafter Weise ist in dem Dampfraum ein Federelement angeordnet, das den Kolben mit der Federkraft beaufschlagt. Der Dampfraum kann somit zugleich als Federraum dienen. Das Federelement kann hierbei von dem Kolben auf Druck beaufschlagt werden. Allerdings kann der Kolben auch auf geeignete Weise mit dem Federelement verbunden sein, um den Kolben sowohl auf Druck als auch auf Zug zu beaufschlagen.
  • Ferner ist es vorteilhaft, dass der Kolben so in der Kolbenbohrung geführt ist, dass zwischen dem Kolben und der Kolbenbohrung ein Leckagefluss aus dem Niederdruckraum in den Dampfraum ermöglicht ist. Hierdurch ist zum einen eine Schmierung der Kolbenführung in der Kolbenbohrung realisiert. Zugleich wird hierdurch ein Nachfluss von Fluid, insbesondere Brennstoff, in den Dampfraum realisiert. Dadurch kann stets das benötigte Dampfvolumen erzeugt und zugleich ein vorteilhaftes Dämpfungsverhalten erzielt werden. Die Leckage wird dann über die Drossel beziehungsweise das Rückschlagventil zu dem Niederdruckniveau abgeführt. Somit ist ein wartungsfreier Betrieb möglich.
  • Kurze Beschreibung der Zeichnungen
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in der nachfolgenden Beschreibung anhand der beigefügten Zeichnungen, in denen sich entsprechende Elemente mit übereinstimmenden Bezugszeichen versehen sind, näher erläutert. Es zeigen:
    • Fig. 1 eine Hochdruckpumpe einer Brennstoffeinspritzanlage in einer schematischen Darstellung entsprechend einem ersten Ausführungsbeispiel der Erfindung;
    • Fig. 2 eine auszugsweise, schematische Schnittdarstellung der in Fig. 1 dargestellten Hochdruckpumpe entsprechend einem zweiten Ausführungsbeispiel der Erfindung;
    • Fig. 3 eine auszugsweise, schematische Schnittdarstellung der in Fig. 1 dargestellten Hochdruckpumpe entsprechend einem dritten Ausführungsbeispiel der Erfindung;
    • Fig. 4 eine auszugsweise, schematische Schnittdarstellung der in Fig. 1 dargestellten Hochdruckpumpe entsprechend einem vierten Ausführungsbeispiel der Erfindung;
    • Fig. 5 eine auszugsweise, schematische Schnittdarstellung der in Fig. 1 dargestellten Hochdruckpumpe entsprechend einem fünften Ausführungsbeispiel und
    • Fig. 6 ein Diagramm zur Erläuterung der Funktionsweise einer Hochdruckpumpe entsprechend einer möglichen Ausgestaltung der Erfindung.
    Ausführungsformen der Erfindung
  • Fig. 1 zeigt eine Hochdruckpumpe 1 einer Brennstoffeinspritzanlage 2 mit einem Niederdruckkreislauf 3 in einer schematischen Darstellung entsprechend einem ersten Ausführungsbeispiel. Die Hochdruckpumpe 1 kann insbesondere für luftverdichtende, selbstzündende Brennkraftmaschinen oder gemischverdichtende, fremdgezündete Brennkraftmaschinen dienen. Ferner kann die Hochdruckpumpe 1 auch als Hydraulikpumpe für andere hydraulische Anwendungen ausgestaltet sein.
  • Die Hochdruckpumpe 1 weist einen Niederdruckraum 4 und einen Antrieb 5 auf. Hierbei werden im Betrieb durch den Antrieb 5 Druckpulsationen im Niederdruckraum 4 erzeugt. In diesem Ausführungsbeispiel ist der Niederdruckraum 4 durch einen Triebwerksraum gebildet, in dem eine Achse 6 mit einem Mehrfachnocken 7 zumindest teilweise angeordnet ist. Der Mehrfachnocken 7 der Achse 6 dient zum Antreiben eines Pumpenkolbens 8 einer Pumpenbaugruppe 9 der Hochdruckpumpe 1. Hierbei ist schematisch ein Teil eines Zylinderkopfs 10 dargestellt, in dem eine Zylinderbohrung 11 ausgestaltet ist. Der Pumpenkolben 8 ist in der Zylinderbohrung 11 geführt. Die Betätigung des Pumpenkolbens 8 durch den Mehrfachnocken 7 ist durch einen Doppelpfeil 12 veranschaulicht.
  • Ferner ist eine Zumesseinheit 13 vorgesehen, über die im Betrieb unter niedrigen Druck stehender Brennstoff in einen Pumpenarbeitsraum 14 geführt wird. Der Pumpenarbeitsraum 14 ist hierbei von dem Pumpenkolben 8 in der Zylinderbohrung 11 begrenzt. Über ein Auslassventil 15 wird im Betrieb der unter hohem Druck stehende Brennstoff beispielsweise zu einem Common-Rail geführt.
  • Durch den Antrieb 5, insbesondere die Hin- und Herbewegung des Pumpenkolbens 8, werden in dem Niederdruckraum 4 Druckpulsationen erzeugt. Hierbei ist anzumerken, dass zur Vereinfachung der Darstellung der Triebwerksraum (Niederdruckraum) 4 separat von dem Antrieb 5, insbesondere der Achse 6, dargestellt ist, der zumindest teilweise in dem Triebwerksraum 4 angeordnet ist.
  • Der Niederdruckkreislauf 3 umfasst einen Tank 20 und eine Vorförderpumpe 21, die beispielsweise als Elektrokraftstoffpumpe 21 ausgestaltet sein kann. Durch die Vorförderpumpe 21 wird der Brennstoff aus dem Tank 20 über eine Filtereinrichtung 22 in den Niederdruckraum 4 gefördert. Die Filtereinrichtung 22 umfasst einen Filter und gegebenenfalls auch einen Wasserabscheider.
  • Aus dem Niederdruckraum 4 wird ein Teil des Brennstoffs über ein Gehäuselager 23 und ein Flanschlager 24 zu einem Niederdruckniveau 25 geführt. An dem Gehäuselager 23 und dem Flanschlager 24 ist die Achse 6 mit dem Mehrfachnocken 7 gelagert. Das Gehäuselager 23 und das Flanschlager 24 sind hierbei durch Drosseln 23, 24 veranschaulicht, da diese als Drosseln wirken.
  • Im Niederdruckraum 4 herrscht beispielsweise ein Druck p1. Das Niederdruckniveau 25 hat einen Druck p2, der kleiner als der Druck p1 ist. Um einen gewissen, niedrigen Druck p2 auf dem Niederdruckniveau 25 zu halten, kann gegebenenfalls eine Einrichtung 26 vorgesehen sein. Hierdurch kann der Druck p2 beispielsweise etwas über den gegebenenfalls druckentlasteten Tank 20 gehalten werden. Die Einrichtung 26 kann beispielsweise eine Drossel oder eine andere geringe Druckbegrenzung aufweisen. Je nach Ausgestaltung des Niederdruckkreislaufes 3 kann die Einrichtung 26 auch entfallen. Speziell kann bereits durch die Länge einer Rücklaufleitung 27, die von dem Niederdruckniveau 25 zu dem Tank 20 führt, der gewünschte geringe Druck p2 im Niederdruckniveau 25 erzielt werden.
  • Die Hochdruckpumpe 1 weist eine Dämpfungsvorrichtung 30 auf. Je nach Ausgestaltung der Hochdruckpumpe 1 können auch mehrere solcher Dämpfungseinrichtungen 30 vorgesehen sein. Die Dämpfungsvorrichtung 30 ist einerseits mittels einer Leitung 31 mit dem Niederdruckraum 4 verbunden und andererseits an das Niederdruckniveau 25 angeschlossen. Im Betrieb liegt das Niederdruckniveau 25 mit seinem Druck p2 unter dem Druck p1 im Niederdruckraum 4. Somit besteht über die Dämpfungsvorrichtung 30 ein Druckgefälle von dem Niederdruckraum 4 zu dem Niederdruckniveau 25.
  • Beim Auftreten von Druckpulsationen kommt es zu Druckschwingungen im Niederdruckraum 4, was eine Dämpfung durch die Dämpfungsvorrichtung 30 auslöst. Hierfür weist die Dämpfungsvorrichtung 30 in diesem Ausführungsbeispiel einen Kolben 32 auf, der als Ausgleichskolben 32 dient. Der Kolben 32 ist in einer Kolbenbohrung 33 verschiebbar geführt. In diesem Ausführungsbeispiel teilt der Kolben 32 die Kolbenbohrung 33 in einen Dampfraum 34 und einen Raum 35. Der Dampfraum 34 dient hierbei zugleich als Federraum 34, in dem ein Federelement 36 angeordnet ist, das beispielsweise als Spiralfeder 36 ausgestaltet ist.
  • Von dem Raum 35 her wird der Kolben 32 von dem Druck p1 im Niederdruckraum 4 gegen die Federkraft des Federelements 36 beaufschlagt. Andererseits begrenzt der Kolben 32 den Dampfraum 34 in der Kolbenbohrung 33.
  • Die Dämpfungsvorrichtung 30 weist außerdem eine Entlastungseinrichtung 37 auf, die den Dampfraum 34 mit dem Niederdruckniveau 25 verbindet. In diesem Ausführungsbeispiel umfasst die Entlastungseinrichtung 37 ein Rückschlagventil 38. Das Rückschlagventil 38 öffnet hierbei zu dem Niederdruckniveau 25 hin.
  • Der Brennstofffluss im Niederdruckkreislauf 3 ist durch Pfeile veranschaulicht. Hierbei ist zwischen dem Niederdruckraum 4 und dem Raum 35 der Dämpfungsvorrichtung 30 ein Brennstoffaustausch und somit ein Fluidstrom in beiden Richtungen 39, 40 möglich. Dieser Fluidaustausch tritt beim Auftreten von Druckpulsationen auf.
  • Wenn es aufgrund der Druckpulsationen zu einer Absenkung des Drucks p1 im Niederdruckraum 4 kommt, dann fließt Brennstoff aus dem Raum 35 in den Niederdruckraum 4. Hierdurch wird der Kolben 32 aufgrund der Federkraft des Federelements 36 so verstellt, dass das Volumen des Dampfraums 34 zunimmt. Da das Rückschlagventil 38 einen Zufluss von Brennstoff in den Dampfraum 34 sperrt, entsteht entsprechend der Verstellung des Kolbens 32 in dem Dampfraum 34 ein gewisses Dampfvolumen. Die Druckpulsation erzeugt entsprechend ihrem zeitlichen Verlauf dann einen Druckanstieg des Drucks p1 im Niederdruckraum 4. Hierbei kommt es zu einer Rückstellung des Kolbens 32 entgegen der Federkraft des Federelements 36. Das vorher entstandene Dampfvolumen verschwindet somit entsprechend der Rückstellbewegung des Kolbens 32.
  • Der Kolben 32 ist so in der Kolbenbohrung 32 geführt, dass zwischen dem Kolben 32 und der Kolbenbohrung 33 ein Leckagefluss aus dem mit dem Niederdruckraum 4 verbundenen Raum 35 in den Dampfraum 34 ermöglicht ist. Die Leckage wird hierbei im Betrieb über das Rückschlagventil 38 zum Niederdruckniveau 25 abgeführt.
  • Fig. 2 zeigt eine auszugsweise, schematische Schnittdarstellung der in Fig. 1 dargestellten Hochdruckpumpe 1 entsprechend einem zweiten Ausführungsbeispiel. Hierbei ist ein Gehäuseteil 45 dargestellt, das Teil eines Gehäuses 46 der Hochdruckpumpe 1 ist, in dem der Niederdruckraum 4 ausgestaltet ist. Bei dem Gehäuseteil 45 kann es sich auch um den Zylinderkopf 10 handeln.
  • In diesem Ausführungsbeispiel ist in das Gehäuseteil 45 eine rohrförmige Hülse 47 eingesetzt, in der die Kolbenbohrung 33 ausgestaltet ist. Hierbei ist in die Hülse 47 ein Verschlusselement 48 eingesetzt, das die Kolbenbohrung 33 zu einer Außenseite 49 des Gehäuseteils 45 hin verschließt. Der Dampfraum 34 ist zwischen dem Kolben 32 und dem Verschlusselement 48 in der Kolbenbohrung 33 ausgebildet.
  • Ferner ist in dem Gehäuseteil 45 ein Kanal 50 ausgebildet, der sich zu der Hülse 47 erstreckt. Das Niederdruckniveau 25 mit dem Druck p2 ist hierbei in dem Kanal 50 realisiert.
  • In diesem Ausführungsbeispiel weist die Entlastungseinrichtung 37 eine Drossel 51 auf, die radial in die Kolbenbohrung 33 mündet. Die Drossel 51 ist in diesem Ausführungsbeispiel in der Hülse 47 ausgestaltet. Hierbei verbindet die Drossel 51 den Dampfraum 34 mit dem Kanal 50.
  • Die Drosselwirkung der Drossel 51 ist so stark vorgegeben, dass bei einer Druckverringerung im Niederdruckraum 4, die durch eine Druckpulsation verursacht ist und eine Verstellung des Kolbens 32 mit der Federkraft des Federelements 36 ermöglicht, bis zu einer Rückstellung des Kolbens 32, die durch die von der Druckpulsation verursachte folgende Druckerhöhung im Niederdruckraum 4 erfolgt, zeitweise ein Dampfvolumen in den Dampfraum 34 erzeugt wird.
  • Die Dämpfungsvorrichtung 30 kann insbesondere durch das Federelement 36 und die Drossel 51 abgestimmt werden. Hierbei kann die Drosselwirkung der Drossel 51 in Abhängigkeit von einer Pulsationsfrequenz und einer Pulsationsamplitude sowie dem Niederdruckniveau 25 mit dem Druck p2 nach der Drossel 51 so abgestimmt werden, dass beim Expandieren des Federelements 36 ein möglichst großes Dampfvolumen in dem Dampfraum 34 erzeugt wird, das beim Wiedereintauchen des Kolbens 32 bis zur vollständigen Kondensation des Dampfes als Dämpfungsvolumen zur Verfügung steht, ohne dass eine erneute Volumenverdrängung stattfindet.
  • Fig. 3 zeigt eine auszugsweise, schematische Schnittdarstellung der in Fig. 1 dargestellten Hochdruckpumpe 1 entsprechend einem dritten Ausführungsbeispiel. In diesem Ausführungsbeispiel weist das Verschlusselement 48 eine Durchgangsbohrung 52 auf. Die Durchgangsbohrung 52 kann zumindest abschnittsweise mit einem ausreichend kleinen Durchmesser ausgebildet sein, um die Drossel 51 zu bilden. Auf diese Weise kann die Drossel 51 in das Verschlusselement 48 integriert werden. An einer Seite 53 des Verschlusselements 48, die von dem Dampfraum 34 abgewandt ist, ist auf geeignete Weise ein Rücklauf in die Rücklaufleitung 27 ausgestaltet. Somit kann an der Seite 53 des Verschlusselements 48 das Niederdruckniveau 25 mit dem Druck p2 gewährleistet werden.
  • Fig. 4 zeigt eine auszugsweise, schematische Schnittdarstellung der in Fig. 1 dargestellten Hochdruckpumpe 1 entsprechend einem vierten Ausführungsbeispiel. In diesem Ausführungsbeispiel weist die Dämpfungsvorrichtung 30 ein Teil 54 auf, das als Schraub- oder Steckteil 54 ausgestaltet ist und in das Gehäuseteil 45 eingeschraubt beziehungsweise eingesteckt ist. Das Teil 54 weist einen rohrförmigen Abschnitt 55 auf, in dem die Kolbenbohrung 33 ausgebildet ist. Der rohrförmige Abschnitt 55 des Teils 54 ist gegenüber dem Gehäuseteil 55 mit einem Dichtring 56 abgedichtet.
  • In der Kolbenbohrung 33 des rohrförmigen Abschnitts 55 ist das Verschlusselement 48 angeordnet. Ferner ist ein weiteres Verschlusselement 57 vorgesehen, das die Kolbenbohrung 33 gegenüber der Umgebung verschließt. Zwischen dem weiteren Verschlusselement 57 und dem Verschlusselement 48 ist das Niederdruckniveau 25 in einem Zwischenraum 58 vorgegeben. Der Zwischenraum 58 ist auf geeignete Weise mit der Rücklaufleitung 27 verbunden.
  • In diesem Ausführungsbeispiel ist das Rückschlagventil 38 in das Verschlusselement 48 integriert. Hierbei ermöglicht das Rückschlagventil 38 einen Brennstofffluss von dem Dampfraum 34 in den Zwischenraum 58. Durch diesen Brennstofffluss kann die Leckage, die aufgrund des Leckageflusses zwischen dem Kolben 32 und der Kolbenbohrung 33 in den Dampfraum 34 gelangt, zu der Rücklaufleitung 37 geführt werden.
  • Fig. 5 zeigt eine auszugsweise, schematische Schnittdarstellung der in Fig. 1 dargestellten Hochdruckpumpe 1 entsprechend einem fünften Ausführungsbeispiel. In diesem Ausführungsbeispiel ist die Kolbenbohrung 33 des Teils 54 durch das Verschlusselement 48 gegenüber der Umgebung verschlossen. Ferner weist der rohrförmige Abschnitt 55 zumindest eine radiale Verbindungsbohrung 59, 60 auf, wobei in diesem Ausführungsbeispiel mehrere radiale Verbindungsbohrungen 59, 60 vorgesehen sind.
  • Ferner ist in diesem Ausführungsbeispiel in dem Gehäuseteil 45 der Kanal 50 ausgestaltet. Der Kanal 50 kann beispielsweise durch eine Gehäusebohrung 50 in dem Gehäuseteil 45 ausgestaltet werden. In dem Kanal 50 ist das Rückschlagventil 38 angeordnet. Somit ist der Dampfraum 34 über die radialen Verbindungsbohrungen 59, 60 und das Rückschlagventil 38 an das Niederdruckniveau 25 angeschlossen.
  • Fig. 6 zeigt ein Diagramm zur Erläuterung der Funktionsweise der Hochdruckpumpe 1 entsprechend einer möglichen Ausgestaltung der Erfindung. Hierbei ist an der Abszisse die Zeit t angetragen, während an der Ordinate der Druck p angetragen ist. Der Druck p ergibt sich hierbei aus dem Druck p1 im Niederdruckraum 4 zuzüglich der Druckschwankungen, die durch Druckpulsationen verursacht sind. Die Druckpulsationen werden hierbei durch den Antrieb 5 hervorgerufen. Eine mögliche Druckpulsation ist durch die Kurve 61 veranschaulicht. Somit kommt es zu einer Druckschwankung um den als mittleren Druck betrachteten Druck p1 im Niederdruckraum 4. Die durch die Kurve 61 dargestellten Druckschwankungen werden allerdings durch die Dämpfungsvorrichtung 30 wirkungsvoll bedämpft. Dadurch wirken sich solche Druckschwankungen nicht auf den übrigen Niederdruckkreislauf 3 aus. Insbesondere wird die Funktionsfähigkeit der Zumesseinheit 13 gewährleistet.
  • Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt.

Claims (8)

  1. Pumpe (1), insbesondere Hochdruckpumpe (1) für Brennstoffeinspritzanlagen, mit einem Niederdruckraum (4) und einem Antrieb (5), durch den im Betrieb Druckpulsationen im Niederdruckraum (4) erzeugt werden, wobei zumindest eine Dämpfungsvorrichtung (30) vorgesehen ist, die einerseits zumindest mittelbar mit dem Niederdruckraum (4) verbunden und andererseits an ein Niederdruckniveau (25) angeschlossen ist, das im Betrieb unter einem Druck (p1) im Niederdruckraum (4) liegt, dass die Dämpfungsvorrichtung (30) einen in einer Kolbenbohrung (33) verschiebbaren Kolben (32), der einerseits von dem Druck (p1) im Niederdruckraum (4) gegen eine Federkraft beaufschlagt ist und der andererseits einen Dampfraum (34) in der Kolbenbohrung (33) begrenzt, und eine Entlastungseinrichtung (37) aufweist, die den Dampfraum (34) zumindest teilweise mit dem Niederdruckniveau (25) verbindet,
    dadurch gekennzeichnet,
    dass die Entlastungseinrichtung (37) eine Drossel (51), die den Dampfraum (34) zumindest mittelbar mit dem Niederdruckniveau (25) verbindet, und/oder ein zum Niederdruckniveau (25) hin öffnendes Rückschlagventil (38), das einerseits zumindest mittelbar mit dem Dampfraum (34) und andererseits zumindest mittelbar mit dem Niederdruckniveau (25) verbunden ist, aufweist, und dass eine Drosselwirkung der Drossel (51) so stark vorgegeben ist oder dass das Rückschlagventil (38) einen Zufluss von Brennstoff in den Dampfraum (34) sperrt, so dass bei einer Druckverringerung im Niederdruckraum (4), die durch eine Druckpulsation verursacht ist und eine Verstellung des Kolbens (32) mit der Federkraft ermöglicht, bis zu einer Rückstellung des Kolbens (32), die durch die von der Druckpulsation verursachte folgende Druckerhöhung im Niederdruckraum (4) erfolgt, zeitweise ein Dampfvolumen in dem Dampfraum (34) erzeugbar ist.
  2. Pumpe nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Drossel (51) der Entlastungseinrichtung (37) radial in die Kolbenbohrung (33) mündet.
  3. Pumpe nach Anspruch 1,
    dadurch gekennzeichnet,
    dass in der Kolbenbohrung (33) ein Verschlusselement (48) angeordnet ist, dass der Dampfraum (34) zwischen dem Kolben (32) und dem Verschlusselement (48) in der Kolbenbohrung (33) ausgebildet ist und dass die Drossel (51) der Entlastungseinrichtung (37) in das Verschlusselement (48) integriert ist.
  4. Pumpe nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Kolbenbohrung (33) in einem Gehäuse (46) angeordnet ist, dass ein Kanal (50) in dem Gehäuse (46) ausgebildet ist, der in den Dampfraum (34) der Kolbenbohrung (33) mündet, und dass das Rückschlagventil (38) in dem Kanal (50) angeordnet ist.
  5. Pumpe nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass in der Kolbenbohrung (33) ein Verschlusselement (48) angeordnet ist, dass der Dampfraum (34) zwischen dem Kolben (32) und dem Verschlusselement (48) in der Kolbenbohrung (33) ausgebildet ist und dass das Rückschlagventil (38) in das Verschlusselement (48) integriert ist.
  6. Pumpe nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass in dem Dampfraum (34) ein Federelement (36) angeordnet ist, das den Kolben (32) mit der Federkraft beaufschlagt.
  7. Pumpe nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass der Niederdruckraum (4) als Triebwerksraum (4) ausgebildet ist und dass der Antrieb (5) zumindest teilweise in dem als Triebwerksraum (4) ausgebildeten Niederdruckraum (4) angeordnet ist und/oder dass ein Fluid über den Niederdruckraum (4) zumindest mittelbar zu einem Pumpenarbeitsraum (14) führbar ist.
  8. Pumpe nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass der Kolben (32) so in der Kolbenbohrung (33) geführt ist, dass zwischen dem Kolben (32) und der Kolbenbohrung (33) ein Leckagefluss aus dem Niederdruckraum (4) in den Dampfraum (34) ermöglicht ist.
EP14720619.7A 2013-06-25 2014-04-30 Pumpe Not-in-force EP3014119B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013212145.8A DE102013212145A1 (de) 2013-06-25 2013-06-25 Pumpe
PCT/EP2014/058921 WO2014206607A1 (de) 2013-06-25 2014-04-30 Pumpe

Publications (2)

Publication Number Publication Date
EP3014119A1 EP3014119A1 (de) 2016-05-04
EP3014119B1 true EP3014119B1 (de) 2017-04-12

Family

ID=50628831

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14720619.7A Not-in-force EP3014119B1 (de) 2013-06-25 2014-04-30 Pumpe

Country Status (6)

Country Link
EP (1) EP3014119B1 (de)
JP (1) JP6356230B2 (de)
KR (1) KR102139713B1 (de)
CN (1) CN105339659B (de)
DE (1) DE102013212145A1 (de)
WO (1) WO2014206607A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017221980A1 (ja) * 2016-06-22 2019-04-11 日本電産トーソク株式会社 クラッチ制御装置
DE102017212003A1 (de) * 2016-09-16 2018-03-22 Robert Bosch Gmbh Überströmventil, insbesondere zur Verwendung in einem Kraftstoffeinspritzsystem, Hochdruckpumpe sowie Kraftstoffeinspritzsystem
DE102016219486A1 (de) * 2016-10-07 2018-04-12 Robert Bosch Gmbh Drosselelement, insbesondere für eine Hochdruckpumpe, insbesondere eines Niederdruckkreis eines Kraftstoffeinspritzsystems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3212384B2 (ja) * 1992-11-11 2001-09-25 株式会社ニチリン アキュムレータ
DE10260750A1 (de) * 2002-12-23 2004-07-08 Robert Bosch Gmbh Kraftstoffpumpvorrichtung
JP4148861B2 (ja) * 2003-09-19 2008-09-10 臼井国際産業株式会社 フューエルデリバリパイプ
DE102005037537A1 (de) * 2005-08-09 2007-02-15 Robert Bosch Gmbh Kolbenpumpe mit wenigstens einem Kolbenelement
DE102009003054A1 (de) 2009-05-13 2010-11-18 Robert Bosch Gmbh Hochdruckpumpe
DE102009027335A1 (de) * 2009-06-30 2011-01-05 Robert Bosch Gmbh Kraftstoffsystem für eine Brennkraftmaschine
DE102010043439A1 (de) * 2010-11-05 2012-05-10 Robert Bosch Gmbh Kraftstoffeinspritzsystem einer Brennkraftmaschine
DE102010064185A1 (de) * 2010-12-27 2012-06-28 Robert Bosch Gmbh Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE102011006092A1 (de) * 2011-03-25 2012-09-27 Robert Bosch Gmbh Hochdruckpumpe zur Förderung von Kraftstoff sowie Kraftstoffeinspritzsystem
DE102011007352A1 (de) * 2011-04-14 2012-10-18 Robert Bosch Gmbh Kraftstoffhochdruckpumpe für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine
CN102536780A (zh) * 2012-02-28 2012-07-04 浙江大学 基于rc滤波器原理的脉动衰减柱塞泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6356230B2 (ja) 2018-07-11
KR20160022831A (ko) 2016-03-02
KR102139713B1 (ko) 2020-07-30
WO2014206607A1 (de) 2014-12-31
CN105339659A (zh) 2016-02-17
CN105339659B (zh) 2018-02-23
JP2016524675A (ja) 2016-08-18
EP3014119A1 (de) 2016-05-04
DE102013212145A1 (de) 2015-01-08

Similar Documents

Publication Publication Date Title
EP2273115B1 (de) Fluidpumpe, insbesondere Kraftstoffhochdruckpumpe, mit Druckdämpfer
DE102013200050A1 (de) Überströmventil für eine Kraftstoffpumpe
DE102012204264A1 (de) Hochdruckpumpe
DE102012202720A1 (de) Hochdruckpumpe
DE102010003192A1 (de) Ventil einer Kraftstoffversorgungsanlage einer Brennkraftmaschine
DE112009001971T5 (de) Rückschlagventil mit separater kugelförmiger Federführung
EP3014119B1 (de) Pumpe
DE102009000857A1 (de) Pumpenanordnung
DE10245084A1 (de) Druckbegrenzungseinrichtung sowie Kraftstoffsystem mit einer solchen Druckbegrenzungseinrichtung
DE102008041594A1 (de) Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine
DE102009029582A1 (de) Hochdruckpumpe zur Förderung von Kraftstoff
DE102010042488A1 (de) Hochdruckpumpe eines Kraftstoffeinspritzsystems
WO2015022094A1 (de) Hochdruckpumpe
EP3430261B1 (de) Hochdruckpumpe mit einem fluiddämpfer
DE102013211147B4 (de) Niederdruckkreis einer Kraftstofffördereinrichtung eines Kraftstoffeinspritzsystems
DE102013207771A1 (de) Pumpe, insbesondere Kraftstoffpumpe
DE102013209760A1 (de) Pumpe
AT512277A4 (de) Injektor eines modularen Common-Rail-Kraftstoffeinspritzsystems mit Durchflussbegrenzer
EP3047136B1 (de) Fluidfördersystem für ein fluid
DE102007030224A1 (de) Kraftstoffpumpe, insbesondere für ein Kraftstoffsystem einer Brennkraftmaschine
DE102008041393A1 (de) Kraftstoffsystem für eine Brennkraftmaschine
WO2014170157A1 (de) Hochdruckpumpe
DE102013212146A1 (de) Pumpe
DE102014226074A1 (de) Überströmventil für eine Kraftstoffpumpe
DE102013204347A1 (de) Pumpe, insbesondere Kraftstoffpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160125

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 884187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003411

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170412

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170712

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170812

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014003411

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

26N No opposition filed

Effective date: 20180115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 884187

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210624

Year of fee payment: 8

Ref country code: FR

Payment date: 20210422

Year of fee payment: 8

Ref country code: IT

Payment date: 20210430

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502014003411

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430