EP2981458B1 - Helm machine - Google Patents

Helm machine Download PDF

Info

Publication number
EP2981458B1
EP2981458B1 EP14712692.4A EP14712692A EP2981458B1 EP 2981458 B1 EP2981458 B1 EP 2981458B1 EP 14712692 A EP14712692 A EP 14712692A EP 2981458 B1 EP2981458 B1 EP 2981458B1
Authority
EP
European Patent Office
Prior art keywords
hydraulic
pump
rudder system
rudder
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14712692.4A
Other languages
German (de)
French (fr)
Other versions
EP2981458A1 (en
Inventor
Roland Körner
Ulrich Stäuble
Swen Jörissen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Marine Systems GmbH
Original Assignee
ThyssenKrupp Marine Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Marine Systems GmbH filed Critical ThyssenKrupp Marine Systems GmbH
Publication of EP2981458A1 publication Critical patent/EP2981458A1/en
Application granted granted Critical
Publication of EP2981458B1 publication Critical patent/EP2981458B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/12Steering gear with fluid transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H20/00Outboard propulsion units, e.g. outboard motors or Z-drives; Arrangements thereof on vessels
    • B63H20/08Means enabling movement of the position of the propulsion element, e.g. for trim, tilt or steering; Control of trim or tilt
    • B63H20/12Means enabling steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/18Transmitting of movement of initiating means to steering engine
    • B63H25/22Transmitting of movement of initiating means to steering engine by fluid means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/06Steering by rudders
    • B63H25/08Steering gear
    • B63H25/14Steering gear power assisted; power driven, i.e. using steering engine
    • B63H25/26Steering engines
    • B63H25/28Steering engines of fluid type
    • B63H25/30Steering engines of fluid type hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/025Installations or systems with accumulators used for thermal compensation, e.g. to collect expanded fluid and to return it to the system as the system fluid cools down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/045Compensating for variations in viscosity or temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50518Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves
    • F15B2211/50527Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using pressure relief valves using cross-pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • F15B2211/7054Having equal piston areas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7055Linear output members having more than two chambers
    • F15B2211/7056Tandem cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input

Definitions

  • the invention relates to a steering machine with a hydraulic circuit.
  • both rowing machines are known, which are electrically driven and rowing machines, which are hydraulically driven.
  • Purely electrically operated rowing machines have an advantage in terms of energy efficiency compared to hydraulically operated rowing machines. However, they need a gear with high reduction or a drive with high torque.
  • hydraulic drives For larger actuating forces almost exclusively hydraulic drives are used.
  • an actuator for example, plunger cylinder, double-acting hydraulic cylinder or rotary cylinder are used, which are operated in an open hydraulic circuit.
  • a hydraulic pump provides the required hydraulic pressure.
  • the actuation of the actuators is usually via continuous valves.
  • the hydraulic pumps are either operated continuously, or, to save energy, temporarily turned off, in which case the required hydraulic energy is taken from previously charged storage.
  • a variable displacement pump for operation in an open hydraulic circuit of a steering gear is for example in DE 1 036 088 described.
  • the WO 2010 / 052777A1 shows a hydraulically operated steering gear, in which a hydraulic pump is driven by an electric motor.
  • the GB 365939 shows a hydraulically operated rudder system in which two hydraulic pumps are driven differently by an electric motor, and a pneumatic motor and work together.
  • the invention has the object to increase the energy efficiency in a hydraulic circuit of a rowing machine.
  • a steering machine in particular for an underwater vehicle, is provided with a hydraulic circuit in which a pump is arranged, wherein the pump is a motor-driven reversible hydraulic pump and the hydraulic circuit is a closed circuit.
  • a hydraulic pump driven by a compressed air-driven motor or a compressed-air motor as an auxiliary drive for a hydraulic pump are provided in the hydraulic circuit.
  • the steering machine according to the invention combines the advantages of the two types of drive described above, d. H. the advantages of energy efficiency that could previously be achieved with electric drives and the advantages of the high actuating forces that can be achieved with hydraulic drives.
  • a combination of electrically driven hydraulic pump in a closed hydraulic circuit is provided, which achieves an increased energy efficiency in a simple manner.
  • the energy efficiency is essentially based on the fact that a closed hydraulic circuit is used, so that hydraulic energy must be supplied only if the rudder is to be moved.
  • a compressed air motor As an auxiliary drive to use a compressed air motor is particularly advantageous because submarine side compressed air is available anyway and this is also available when other energy sources fail.
  • compressed air drives are inexpensive and easy to install, since no closed circuits and no return lines are required.
  • the basic idea of the solution according to the invention is thus, on the one hand to provide a closed hydraulic circuit to keep the energy to be minimized, on the other hand to provide a reversible pump to drive avoiding complex valve controls in two directions, that is, using the same hydraulic circuit and To be able to move the rudder in one direction and optionally also in the other direction without elaborate valve arrangements via a double-acting or two single-acting actuating cylinder.
  • the hydraulic pump acts directly on a hydraulic cylinder arrangement, in particular to a double-acting cylinder of the same piston area and with double-sided piston rod.
  • the hydraulic pump is driven by a servomotor, in particular a servomotor operable in four-quadrant operation.
  • a servomotor operable in four-quadrant operation.
  • a delivered volume of the hydraulic pump is directly proportional to the cylinder stroke of the hydraulic cylinder assembly.
  • Such a design is then the number of drive motor revolutions, which is in fixed proportion to the pivoting movement of the rudder and thus a very simple control is possible.
  • a rudder is connected via a coupling device, in particular via a connecting rod, with the hydraulic cylinder arrangement.
  • the movement of the rudder is controllable via the rotational movement of the servomotor, in particular the position of the rudder over the number of rotations of the servomotor adjustable.
  • valves for hydraulic locking of the rudder at pump standstill in the hydraulic circuit can also be provided valves for hydraulic locking of the rudder at pump standstill in the hydraulic circuit.
  • a hydraulic locking of the rotor is advantageous because then no provision must be made on the drive side in order to apply this counterforce, that is, no electrical or other energy is required at pump standstill.
  • a supply line of the hydraulic pump cooler may be arranged to dissipate heat loss.
  • Such a cooling of the hydraulic fluid in the supply line of the hydraulic pump is especially effective to prevent cavitation.
  • a second pump is provided in the hydraulic circuit, which in a second power range, in particular in a high-power range, is switchable.
  • Fig. 1 is a schematic representation of a closed hydraulic circuit 1, in which a operated by a servo motor 5 reversible hydraulic pump 4 acts directly on a double-acting cylinder 2 with double-sided piston rod 6.
  • the two-sided piston rod diameter are the same size.
  • a connecting rod, not shown here, also not shown here rudder is hinged to the piston rod 6 (see Fig. 2 ) and the rudder movement is controlled exclusively by the movement of the servomotor 5. To reverse the direction of the servo motor 5 and the hydraulic pump 4 are stopped and started again in the opposite direction.
  • the hydraulic circuit 1 of this closed system is designed for a specific system pressure. If the hydraulic fluid in the hydraulic circuit 1 expands due to temperature, the system pressure may increase and exceed permissible pressures. On the other hand, if the system pressure decreases due to temperature and / or leakage, cavitation phenomena can occur on pumps and valves and the function of the system can no longer be fulfilled.
  • a hydraulic accumulator 3 is connected to both sides of a hydraulic working cylinder 2, which is biased by the system pressure.
  • the gas volume must not be too small, otherwise there will be large system pressure fluctuations as a result of temperature fluctuations.
  • the embodiment shown here is a "soft" system. At an external load, the piston of the working cylinder 2 gives way.
  • Fig. 2 is a hydraulic circuit diagram of a rowing machine 17. As can be seen here, it is a closed hydraulic circuit 1, in which a hydraulic pump 4 acts directly on a double-acting cylinder 2 with double-sided piston rod 6, wherein the piston rod diameter are the same size. Via a coupling device 18, which is designed here as a connecting rod, a rudder 19 is coupled for movement with the working cylinder 2.
  • the hydraulic pump 4 is reversible and is driven by the servo motor 5. To reverse the direction of the servo motor 5 and the hydraulic pump 4 are stopped and started again in the opposite direction.
  • the hydraulic pump 4 is designed here as a screw pump, since it has the advantage of Pulsationsarmut.
  • the pump 4 is designed to reach the nominal torque under nominal load for starting already. In addition, small numbers of revolutions should be realized for acoustic reasons. This can be achieved by so-called torque motors, designed as permanently excited synchronous motors. These have a starting torque in the amount of the rated torque.
  • a motor controller 20 is provided, which is designed for the four-quadrant operation.
  • the rudder movement is thus controlled exclusively by the rotational movement of the servomotor 5. If no rudder adjustment required, the rudder 19 is locked in its position by holding valves 21, 21 '(check valves) hydraulically. As a result, no engine torque is applied at standstill and energy is saved. In addition to the pipe losses cause the holding valves 21, 21 'a loss. For low-loss operation, these are low-resistance in the open state.
  • pressure limiting valves 22, 22 ' are arranged in the hydraulic circuit 1 to protect the engine 5 and pump 4, which limit the oil pressure and thus the engine torque.
  • a cooler 23 is provided close to the pump 4.
  • the diving pressure In underwater vehicles, it is customary to guide the piston rod 6 of the working cylinder 2 through a pressure body 24. Thus, the diving pressure additionally acts on the piston rod 6. In order to act on the working cylinder 2 regardless of the depth no other forces than the rudder torque, the diving pressure is also performed on the opposite side 25 of the piston rod 6, whereby lower actuating forces and pump pressures and thus lower Loss of the pump 4 due to internal leakage can be realized.
  • the maximum required pump power also on two units of different capacity to be divided.
  • small rudder deflections are sufficient at low adjustment speeds.
  • a pump with higher capacity is connected in parallel. Since a smaller pump unit less leakage losses, less friction and the power controller of a smaller motor has lower electrical losses compared to a large electric motor, the steering machine 17 can be operated even more efficient. In addition, there is redundancy.
  • a pneumatic motor 26 which drives the pump 4 in the event of failure of the servomotor 5 or the control.
  • compressed air is readily and instantaneously available to an underwater vehicle from compressed air tanks 27.
  • the pneumatic motor 26 is, however, usefully only then connected to the pump 4, which is indicated by the dashed line 28 when the compressed air motor 26 is acted upon by compressed air.
  • This circuit is known from compressed air starters for diesel engines.
  • the rudder 19 is then set either manually or electrically via a 3/4-way valve 29.
  • the control of the steering machine 19 is performed as follows.
  • the desired rudder angle or the travel s of the working cylinder 2 is predetermined.
  • a controller 30 for the path specification 31 determines the deviation from the actual value and specifies the direction of rotation and rotational speed of the motor 5.
  • the controller 30 has the task of avoiding a swing around the setpoint.
  • the working cylinder 2 is equipped with a displacement sensor 32 for measuring distance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

Die Erfindung betrifft eine Rudermaschine mit einem Hydraulikkreislauf.The invention relates to a steering machine with a hydraulic circuit.

Im Stand der Technik sind sowohl Rudermaschinen bekannt, die elektrisch angetrieben werden als auch Rudermaschinen, die hydraulisch angetrieben werden.In the prior art, both rowing machines are known, which are electrically driven and rowing machines, which are hydraulically driven.

Rein elektrisch betriebene Rudermaschinen haben im Hinblick auf die Energieeffizienz gegenüber hydraulisch betriebenen Rudermaschinen einen Vorteil. Allerdings benötigen sie ein Getriebe mit hoher Untersetzung oder einen Antrieb mit hohem Drehmoment.Purely electrically operated rowing machines have an advantage in terms of energy efficiency compared to hydraulically operated rowing machines. However, they need a gear with high reduction or a drive with high torque.

Bei größeren Stellkräften werden fast ausschließlich hydraulische Antriebe eingesetzt. Als Stellantrieb werden dabei beispielsweise Plungerzylinder, doppeltwirkende Hydraulikzylinder oder Drehkolbenzylinder verwendet, die in einem offenen hydraulischen Kreislauf betrieben werden. Dabei stellt eine Hydraulikpumpe den benötigten Hydraulikdruck zur Verfügung. Die Ansteuerung der Stellantriebe erfolgt meist über Stetigventile. Die Hydraulikpumpen werden entweder dauernd betrieben, oder aber, um Energie einzusparen, zeitweise abgestellt, wobei dann die erforderliche Hydraulikenergie zuvor aufgeladenen Speichern entnommen wird.For larger actuating forces almost exclusively hydraulic drives are used. As an actuator, for example, plunger cylinder, double-acting hydraulic cylinder or rotary cylinder are used, which are operated in an open hydraulic circuit. A hydraulic pump provides the required hydraulic pressure. The actuation of the actuators is usually via continuous valves. The hydraulic pumps are either operated continuously, or, to save energy, temporarily turned off, in which case the required hydraulic energy is taken from previously charged storage.

Um Energie zu sparen, ist der Einsatz von verstellbaren Hydraulikpumpen (Schrägachsenmaschinen) und die Drehzahlregelung der Pumpenantriebe bekannt. Allerdings muss auch bei kleinen Drehzahlen ein ausreichendes Moment vorhanden sein.To save energy, the use of adjustable hydraulic pumps (inclined axis machines) and the speed control of the pump drives is known. However, even at low speeds sufficient moment must be present.

Wegen der Ansteuerung mittels Hydraulikventilen und den damit verbundenen Strömungsverlusten ist eine derartige Ruderanlage wenig energieeffizient.Because of the control by means of hydraulic valves and the associated flow losses such a rudder system is not very energy efficient.

Eine regelbare Verstellpumpe zum Betrieb in einem offenen Hydraulikkreislauf einer Ruderanlage ist beispielsweise in DE 1 036 088 beschrieben. Die WO 2010/052777A1 zeigt eine hydraulisch betätigte Ruderanlage, bei der eine Hydraulikpumpe über einen elektrischen Motor angetrieben wird. Die GB 365939 zeigt eine hydraulisch betätigte Ruderanlage , bei der zwei Hydraulikpumpen unterschiedlich durch einen elektrischen Motor, und einen druckluftbetriebenen Motor angetrieben werden und zusammen arbeiten.A variable displacement pump for operation in an open hydraulic circuit of a steering gear is for example in DE 1 036 088 described. The WO 2010 / 052777A1 shows a hydraulically operated steering gear, in which a hydraulic pump is driven by an electric motor. The GB 365939 shows a hydraulically operated rudder system in which two hydraulic pumps are driven differently by an electric motor, and a pneumatic motor and work together.

Vor diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, die Energieeffizienz in einem hydraulischen Kreislauf einer Rudermaschine zu erhöhen.Before this prior art, the invention has the object to increase the energy efficiency in a hydraulic circuit of a rowing machine.

Diese Aufgabe wird gemäß der Erfindung durch eine Rudermaschine mit den in Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den jeweiligen abhängigen Ansprüchen definiert. Hierbei können gemäß der Erfindung die in den Unteransprüchen und der Beschreibung angegebenen Merkmale jeweils für sich aber auch in geeigneter Kombination die erfindungsgemäße Lösung gemäß Anspruch 1 weiterbilden.This object is achieved according to the invention by a rowing machine having the features specified in claim 1. Advantageous developments of the invention are defined in the respective dependent claims. In this case, according to the invention, the features specified in the dependent claims and the description in each case but also in a suitable combination, the inventive solution according to claim 1 on.

Erfindungsgemäß wird eine Rudermaschine, insbesondere für ein Unterwasserfahrzeug, mit einem Hydraulikkreislauf bereitgestellt, in welchem eine Pumpe angeordnet ist, wobei die Pumpe eine motorbetriebene reversierbare Hydraulikpumpe ist und der Hydraulikkreislauf ein geschlossener Kreislauf ist. In dem Hydraulikkreislauf ist zusätzlich eine von einem druckluftbetriebenen Motor angetriebene Hydraulikpumpe oder ein Druckluftmotor als Hilfsantrieb für eine Hydraulikpumpe vorgesehen. Die erfindungsgemäße Rudermaschine vereint die Vorteile der beiden oben beschriebenen Antriebsarten, d. h. die Vorteile der Energieeffizienz, die bisher mit elektrischen Antrieben erzielt werden konnten und die Vorteile der hohen Stellkräfte, die mit hydraulischen Antrieben erzielbar sind. Es wird eine Kombination von elektrisch angetriebener Hydraulikpumpe in einem geschlossenen Hydraulikkreislauf vorgesehen, welche eine erhöhte Energieeffizienz auf ein- fache Weise erzielt. Die Energieeffizienz beruht im Wesentlichen darauf, dass ein geschlossener hydraulischer Kreislauf Verwendung findet, so dass hydraulische Energie nur dann zugeführt werden muss, wenn das Ruder bewegt werden soll. Als Hilfsantrieb einen Druckluftmotor einzusetzen, ist besonders vorteilhaft, da unterseebootseitig Druckluft ohnehin zur Verfügung steht und diese auch verfügbar ist, wenn andere Energiequellen ausfallen. Darüber hinaus sind Druckluftantriebe kostengünstig und einfach zu installieren, da keine geschlossenen Kreisläufe und keine Rückführleitungen erforderlich sind.According to the invention, a steering machine, in particular for an underwater vehicle, is provided with a hydraulic circuit in which a pump is arranged, wherein the pump is a motor-driven reversible hydraulic pump and the hydraulic circuit is a closed circuit. In addition, a hydraulic pump driven by a compressed air-driven motor or a compressed-air motor as an auxiliary drive for a hydraulic pump are provided in the hydraulic circuit. The steering machine according to the invention combines the advantages of the two types of drive described above, d. H. the advantages of energy efficiency that could previously be achieved with electric drives and the advantages of the high actuating forces that can be achieved with hydraulic drives. A combination of electrically driven hydraulic pump in a closed hydraulic circuit is provided, which achieves an increased energy efficiency in a simple manner. The energy efficiency is essentially based on the fact that a closed hydraulic circuit is used, so that hydraulic energy must be supplied only if the rudder is to be moved. As an auxiliary drive to use a compressed air motor is particularly advantageous because submarine side compressed air is available anyway and this is also available when other energy sources fail. In addition, compressed air drives are inexpensive and easy to install, since no closed circuits and no return lines are required.

Grundgedanke der erfindungsgemäßen Lösung ist es somit, einerseits einen geschlossenen hydraulischen Kreislauf vorzusehen, um die aufzuwendende Energie möglichst gering zu halten, andererseits eine reversierbare Pumpe vorzusehen, um unter Vermeidung aufwendiger Ventilsteuerungen in zwei Richtungen fahren zu können, das heißt unter Verwendung desselben hydraulischen Kreislaufes und ohne aufwändige Ventilanordnungen über einen doppeltwirkenden oder zwei einfach wirkende Stellzylinder das Ruder in die eine Richtung und wahlweise auch in die andere Richtung bewegen zu können.The basic idea of the solution according to the invention is thus, on the one hand to provide a closed hydraulic circuit to keep the energy to be minimized, on the other hand to provide a reversible pump to drive avoiding complex valve controls in two directions, that is, using the same hydraulic circuit and To be able to move the rudder in one direction and optionally also in the other direction without elaborate valve arrangements via a double-acting or two single-acting actuating cylinder.

Gemäß einer bevorzugten Ausführungsform wirkt die Hydraulikpumpe direkt auf eine Hydraulikzylinderanordnung, insbesondere auf einen doppeltwirkenden Arbeitszylinder gleicher Kolbenfläche und mit beidseitiger Kolbenstange.According to a preferred embodiment, the hydraulic pump acts directly on a hydraulic cylinder arrangement, in particular to a double-acting cylinder of the same piston area and with double-sided piston rod.

Gemäß noch einer bevorzugten Ausführungsform ist die Hydraulikpumpe durch einen Servomotor, insbesondere einen im Vierquadrantenbetrieb betreibbarer Servomotor, angetrieben. Ein solcher Antrieb hat den Vorteil, dass die Ruderstellung direkt durch den Elektromotor steuerbar ist und keine Wegaufnehmer oder dergleichen erforderlich sind.According to another preferred embodiment, the hydraulic pump is driven by a servomotor, in particular a servomotor operable in four-quadrant operation. Such a drive has the advantage that the rudder position can be controlled directly by the electric motor and no displacement transducer or the like is required.

Vorzugsweise ist ein gefördertes Volumen der Hydraulikpumpe direkt proportional zu dem Zylinderhub der Hydraulikzylinderanordnung. Eine solche Ausbildung ist dann die Anzahl der Antriebsmotorumdrehungen, die im festen Verhältnis zur Schwenkbewegung des Ruders steht und somit eine sehr einfache Steuerung möglich ist.Preferably, a delivered volume of the hydraulic pump is directly proportional to the cylinder stroke of the hydraulic cylinder assembly. Such a design is then the number of drive motor revolutions, which is in fixed proportion to the pivoting movement of the rudder and thus a very simple control is possible.

Darüber hinaus ist es bevorzugt, wenn ein Ruder über eine Koppeleinrichtung, insbesondere über eine Pleuelstange, mit der Hydraulikzylinderanordnung verbunden ist.Moreover, it is preferred if a rudder is connected via a coupling device, in particular via a connecting rod, with the hydraulic cylinder arrangement.

Gemäß noch einer weiteren bevorzugten Ausführungsform ist die Bewegung des Ruders über die Drehbewegung des Servomotors steuerbar, insbesondere die Stellung des Ruders über die Anzahl der Drehungen des Servomotors einstellbar.According to yet another preferred embodiment, the movement of the rudder is controllable via the rotational movement of the servomotor, in particular the position of the rudder over the number of rotations of the servomotor adjustable.

Es können weiterhin Ventile zum hydraulischen Verriegeln des Ruders bei Pumpenstillstand im Hydraulikkreislauf vorgesehen sein. Eine hydraulische Verriegelung des Rotors ist vorteilhaft, da dann antriebsseitig keine Vorkehrungen getroffen werden müssen, um diese Gegenkraft aufbringen zu müssen, das heißt bei Pumpenstillstand auch keine elektrische oder sonstige Energie erforderlich ist.It can also be provided valves for hydraulic locking of the rudder at pump standstill in the hydraulic circuit. A hydraulic locking of the rotor is advantageous because then no provision must be made on the drive side in order to apply this counterforce, that is, no electrical or other energy is required at pump standstill.

Auch ist es vorteilhaft, wenn Druckbegrenzungsventile im hydraulischen Kreislauf vorgesehen sind.It is also advantageous if pressure relief valves are provided in the hydraulic circuit.

Bei einseitiger Beaufschlagung einer Kolbenstange der Hydraulikzylinderanordnung mit Tiefendruck ist es von Vorteil, wenn ein abgewandt gegenüberliegendes Ende der Kolbenstange ebenfalls mit Tiefendruck beaufschlagbar ist. Eine solche Ausgestaltung hat den Vorteil, dass die Kolbenstange hinsichtlich des Tiefendrucks stets druckausgeglichen ist, das heißt unabhängig von der Tauchtiefe stets die gleichen Kräfte zur Bewegung des Ruders erforderlich sind.When unilaterally loading a piston rod of the hydraulic cylinder assembly with depression pressure, it is advantageous if an opposing opposite end of the piston rod can also be acted upon by depression pressure. Such a configuration has the advantage that the piston rod is always pressure balanced with respect to the low pressure, that is, regardless of the depth always the same forces to move the rudder are required.

In einer Zuleitung der Hydraulikpumpe können Kühler zum Abführen von Verlustwärme angeordnet sein. Eine solche Kühlung der Hydraulikflüssigkeit in der Zuleitung der Hydraulikpumpe ist besonders wirksam um Kavitation zu vermeiden.In a supply line of the hydraulic pump cooler may be arranged to dissipate heat loss. Such a cooling of the hydraulic fluid in the supply line of the hydraulic pump is especially effective to prevent cavitation.

Gemäß noch einer weiteren bevorzugten Ausführungsform ist in dem Hydraulikkreislauf eine zweite Pumpe vorgesehen, welche in einem zweiten Leistungsbereich, insbesondere in einem Hochleistungsbereich, zuschaltbar ist.According to yet another preferred embodiment, a second pump is provided in the hydraulic circuit, which in a second power range, in particular in a high-power range, is switchable.

Die Erfindung ist nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen

  • Fig. 1 eine schematische Darstellung eines geschlossenes hydraulisches System gemäß einer Ausführungsform der Erfindung,
  • Fig. 2 ein Hydraulikschaltplan einer Rudermaschine gemäß einer weiteren Ausführungsform der Erfindung.
The invention is explained in more detail with reference to an embodiment shown in the drawing. Show it
  • Fig. 1 a schematic representation of a closed hydraulic system according to an embodiment of the invention,
  • Fig. 2 a hydraulic circuit diagram of a rowing machine according to another embodiment of the invention.

Fig. 1 ist eine schematische Darstellung eines geschlossenen Hydraulikkreislaufs 1, in welchem eine durch einen Servomotor 5 betriebene reversierbare Hydraulikpumpe 4 direkt auf einen doppeltwirkenden Arbeitszylinder 2 mit beidseitiger Kolbenstange 6 wirkt. Die beidseitigen Kolbenstangendurchmesser sind dabei gleich groß. Über eine hier nicht dargestellte Pleuelstange ist ein ebenfalls hier nicht dargestelltes Ruder an die Kolbenstange 6 angelenkt (siehe Fig. 2) und die Ruderbewegung wird ausschließlich durch die Bewegung des Servomotors 5 gesteuert. Zur Richtungsumkehr werden der Servomotor 5 und die Hydraulikpumpe 4 gestoppt und in entgegengesetzter Richtung wieder angefahren. Fig. 1 is a schematic representation of a closed hydraulic circuit 1, in which a operated by a servo motor 5 reversible hydraulic pump 4 acts directly on a double-acting cylinder 2 with double-sided piston rod 6. The two-sided piston rod diameter are the same size. About a connecting rod, not shown here, also not shown here rudder is hinged to the piston rod 6 (see Fig. 2 ) and the rudder movement is controlled exclusively by the movement of the servomotor 5. To reverse the direction of the servo motor 5 and the hydraulic pump 4 are stopped and started again in the opposite direction.

Der Hydraulikkreislauf 1 dieses geschlossenen Systems ist für einen bestimmten Systemdruck ausgelegt. Dehnt sich temperaturbedingt die Hydraulikflüssigkeit in dem Hydraulikkreislauf 1 aus, kann sich der Systemdruck erhöhen und zulässige Drücke überschreiten. Verringert sich der Systemdruck dagegen temperaturbedingt und/oder in Folge von Leckagen, kann es zu Kavitationserscheinungen an Pumpen und Ventilen kommen und die Funktion des Systems nicht mehr erfüllt werden. Um den Druck in diesem System daher möglichst konstant zu halten, ist an beide Seiten eines hydraulischen Arbeitszylinders 2 jeweils ein Hydrospeicher 3 angeschlossen, der mit dem Systemdruck vorgespannt ist. Hierbei darf das Gasvolumen nicht zu klein bemessen sein, da es ansonsten in Folge von Temperaturschwankungen zu großen Systemdruckschwankungen kommt. Bei der hier dargestellten Ausführungsform handelt es sich um ein "weiches" System. Bei einer äußeren Belastung gibt der Kolben des Arbeitszylinders 2 nach. Druckseitig fließt Hydraulikflüssigkeit in den Hydrospeicher 3, während der saugseitige Hydrospeicher 3 sich entspannt. Eine neue Gleichgewichtslage wird erreicht. Wird der Kolben des Arbeitszylinders 2 von der Hydraulikpumpe 4 angetrieben, so ist ein zusätzliches Volumen zu fördern und zusätzliche Kompressionsarbeit zu leisten, was durch eine Regelung des Kolbenhubs einzustellen ist.The hydraulic circuit 1 of this closed system is designed for a specific system pressure. If the hydraulic fluid in the hydraulic circuit 1 expands due to temperature, the system pressure may increase and exceed permissible pressures. On the other hand, if the system pressure decreases due to temperature and / or leakage, cavitation phenomena can occur on pumps and valves and the function of the system can no longer be fulfilled. In order to keep the pressure in this system as constant as possible, a hydraulic accumulator 3 is connected to both sides of a hydraulic working cylinder 2, which is biased by the system pressure. Here, the gas volume must not be too small, otherwise there will be large system pressure fluctuations as a result of temperature fluctuations. The embodiment shown here is a "soft" system. At an external load, the piston of the working cylinder 2 gives way. On the pressure side, hydraulic fluid flows into the hydraulic accumulator 3, while the suction-side hydraulic accumulator 3 relaxes. A new equilibrium position is reached. If the piston of the working cylinder 2 is driven by the hydraulic pump 4, then an additional volume is added promote additional compression work, which is to be adjusted by a control of the piston stroke.

Fig. 2 ist ein Hydraulikschaltplan einer Rudermaschine 17. Wie hier erkennbar ist, handelt es sich um einen geschlossenen Hydraulikkreislauf 1, in welchem eine Hydraulikpumpe 4 direkt auf einen doppeltwirkenden Arbeitszylinder 2 mit beidseitiger Kolbenstange 6 wirkt, wobei die Kolbenstangendurchmesser gleich groß sind. Über eine Koppeleinrichtung 18, welche hier als Pleuelstange ausgebildet ist, ist ein Ruder 19 mit dem Arbeitszylinder 2 bewegungsgekoppelt. Die Hydraulikpumpe 4 ist reversierbar und wird durch den Servomotor 5 angetrieben. Zur Richtungsumkehr werden der Servomotor 5 und die Hydraulikpumpe 4 gestoppt und in entgegengesetzter Drehrichtung wieder angefahren. Die Hydraulikpumpe 4 ist hier als Schraubenspindelpumpe ausgeführt, da sie den Vorteil der Pulsationsarmut aufweist. Weiterhin ist die Pumpe 4 ausgelegt, um unter Nennlast zum Anlauf bereits das Nennmoment zu erreichen. Außerdem sollten aus akustischen Gründen kleine Drehzahlen realisiert werden. Dies kann durch so genannte Torque-Motoren, ausgeführt als permanent erregte Synchronmotoren, erreicht werden. Diese haben ein Anfahrmoment in der Höhe des Nennmomentes. Fig. 2 is a hydraulic circuit diagram of a rowing machine 17. As can be seen here, it is a closed hydraulic circuit 1, in which a hydraulic pump 4 acts directly on a double-acting cylinder 2 with double-sided piston rod 6, wherein the piston rod diameter are the same size. Via a coupling device 18, which is designed here as a connecting rod, a rudder 19 is coupled for movement with the working cylinder 2. The hydraulic pump 4 is reversible and is driven by the servo motor 5. To reverse the direction of the servo motor 5 and the hydraulic pump 4 are stopped and started again in the opposite direction. The hydraulic pump 4 is designed here as a screw pump, since it has the advantage of Pulsationsarmut. Furthermore, the pump 4 is designed to reach the nominal torque under nominal load for starting already. In addition, small numbers of revolutions should be realized for acoustic reasons. This can be achieved by so-called torque motors, designed as permanently excited synchronous motors. These have a starting torque in the amount of the rated torque.

Da die Ruderbewegung über die Hydraulikpumpe 4 gesteuert wird, ist ein Motorsteller 20 vorgesehen, welcher für den Vier-Quadranten- Betrieb ausgelegt ist. Die Ruderbewegung wird damit ausschließlich über die Drehbewegung des Servomotors 5 gesteuert. Wird keine Ruderverstellung gefordert, wird das Ruder 19 in seiner Stellung durch Halteventile 21, 21' (Rückschlagventile) hydraulisch verriegelt. Dadurch ist kein Motormoment im Stillstand aufzubringen und es wird Energie gespart. Neben den Rohrleitungsverlusten bewirken die Halteventile 21, 21' einen Verlust. Für einen verlustarmen Betrieb sind diese im geöffneten Zustand widerstandsarm ausgeführt.Since the rudder movement is controlled by the hydraulic pump 4, a motor controller 20 is provided, which is designed for the four-quadrant operation. The rudder movement is thus controlled exclusively by the rotational movement of the servomotor 5. If no rudder adjustment required, the rudder 19 is locked in its position by holding valves 21, 21 '(check valves) hydraulically. As a result, no engine torque is applied at standstill and energy is saved. In addition to the pipe losses cause the holding valves 21, 21 'a loss. For low-loss operation, these are low-resistance in the open state.

Fährt der Arbeitszylinder 2 in eine Endlage und der Motor 5 schaltet sich aus, sind zum Schutz von Motor 5 und Pumpe 4 Druckbegrenzungsventile 22, 22' in dem Hydraulikkreislauf 1 angeordnet, die den Öldruck und damit das Motormoment begrenzen. Um Verlustwärme abzuführen die überwiegend durch Reibungsverluste in der Pumpe 4 entsteht ist nahe an der Pumpe 4 ein Kühler 23 vorgesehen.If the working cylinder 2 moves into an end position and the engine 5 switches off, pressure limiting valves 22, 22 'are arranged in the hydraulic circuit 1 to protect the engine 5 and pump 4, which limit the oil pressure and thus the engine torque. In order to dissipate heat loss which is predominantly caused by friction losses in the pump 4, a cooler 23 is provided close to the pump 4.

Bei Unterwasserfahrzeugen ist es üblich, die Kolbenstange 6 des Arbeitszylinders 2 durch einen Druckkörper 24 zu führen. Dadurch wirkt der Tauchdruck zusätzlich auf die Kolbenstange 6. Damit auf den Arbeitszylinder 2 unabhängig von der Tiefe keine weiteren Kräfte als das Rudermoment wirken, wird der Tauchdruck auch auf die entgegengesetzte Seite 25 der Kolbenstange 6 geführt, wodurch geringere Stellkräfte und Pumpendrücke und damit auch geringere Verluste der Pumpe 4 infolge innerer Leckage realisiert werden können.In underwater vehicles, it is customary to guide the piston rod 6 of the working cylinder 2 through a pressure body 24. Thus, the diving pressure additionally acts on the piston rod 6. In order to act on the working cylinder 2 regardless of the depth no other forces than the rudder torque, the diving pressure is also performed on the opposite side 25 of the piston rod 6, whereby lower actuating forces and pump pressures and thus lower Loss of the pump 4 due to internal leakage can be realized.

Gemäß einer weiteren Ausführungsform kann die maximal benötigte Pumpenleistung auch auf zwei Aggregate unterschiedlicher Förderkapazität aufgeteilt werden. Für die überwiegende Betriebszeit reichen kleine Ruderausschläge bei geringen Verstellgeschwindigkeiten aus. Werden z. B. für Hafenmanöver große Verstellgeschwindigkeiten gefordert, wird eine Pumpe mit höherer Förderkapazität parallel dazu geschaltet. Da ein kleineres Pumpenaggregat weniger Leckageverluste, weniger Reibung und auch der Stromsteller eines kleineren Motors geringere elektrische Verluste gegenüber einem großen Elektromotor hat, kann die Rudermaschine 17 noch effizienter betrieben werden. Zusätzlich ist eine Redundanz vorhanden.According to a further embodiment, the maximum required pump power also on two units of different capacity to be divided. For the predominant operating time, small rudder deflections are sufficient at low adjustment speeds. Are z. B. for port maneuvers large adjustment speeds required, a pump with higher capacity is connected in parallel. Since a smaller pump unit less leakage losses, less friction and the power controller of a smaller motor has lower electrical losses compared to a large electric motor, the steering machine 17 can be operated even more efficient. In addition, there is redundancy.

Weiterhin ist ein Druckluftmotor 26 vorgesehen, der bei Ausfall des Servomotors 5 oder der Regelung die Pumpe 4 antreibt. Druckluft steht beispielsweise einem Unterwasserfahrzeug aus Drucklufttanks 27 ausreichend und instantan zur Verfügung. Der Druckluftmotor 26 wird allerdings sinnvollerweise erst dann mit der Pumpe 4 verbunden, was durch die gestrichelte Linie 28 angedeutet ist, wenn der Druckluftmotor 26 mit Druckluft beaufschlagt wird. Diese Schaltung ist von Druckluftanlassern für Dieselmotoren bekannt. Das Ruder 19 wird dann entweder manuell oder elektrisch über ein 3/4-Wegeventil 29 gestellt.Furthermore, a pneumatic motor 26 is provided which drives the pump 4 in the event of failure of the servomotor 5 or the control. For example, compressed air is readily and instantaneously available to an underwater vehicle from compressed air tanks 27. The pneumatic motor 26 is, however, usefully only then connected to the pump 4, which is indicated by the dashed line 28 when the compressed air motor 26 is acted upon by compressed air. This circuit is known from compressed air starters for diesel engines. The rudder 19 is then set either manually or electrically via a 3/4-way valve 29.

Die Regelung der Rudermaschine 19 wird wie folgt durchgeführt. Vorgegeben ist der Soll-Ruderwinkel bzw. der Weg s des Arbeitszylinders 2. Ein Regler 30 für die Wegvorgabe 31 ermittelt die Abweichung zum Istwert und gibt die Drehrichtung und Drehgeschwindigkeit des Motors 5 vor. Der Regler 30 hat die Aufgabe, ein Schwingen um den Sollwert zu vermeiden. Der Arbeitszylinder 2 ist dazu mit einem Wegsensor 32 zur Wegmessung ausgestattet.The control of the steering machine 19 is performed as follows. The desired rudder angle or the travel s of the working cylinder 2 is predetermined. A controller 30 for the path specification 31 determines the deviation from the actual value and specifies the direction of rotation and rotational speed of the motor 5. The controller 30 has the task of avoiding a swing around the setpoint. The working cylinder 2 is equipped with a displacement sensor 32 for measuring distance.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
HydraulikkreislaufHydraulic circuit
22
Arbeitszylinderworking cylinder
33
Hydrospeicher PumpeHydraulic accumulator pump
44
Motorengine
55
Kolbenstange des ArbeitszylindersPiston rod of the working cylinder
66
Tandemzylindertandem cylinder
77
Kolbenstange des TandemzylindersPiston rod of the tandem cylinder
88th
erster Zylinder des Tandemzylindersfirst cylinder of the tandem cylinder
99
erste und zweite Kammer des ersten Zylindersfirst and second chambers of the first cylinder
10, 10'10, 10 '
zweiter Zylinder des Tandemzylinderssecond cylinder of the tandem cylinder
1111
erste und zweite Kammer des zweiten Zylindersfirst and second chambers of the second cylinder
12, 12'12, 12 '
erste und zweite Kammer des Arbeitszylindersfirst and second chamber of the working cylinder
13, 13'13, 13 '
Kolbenfläche des ersten Zylinders Kolbenfläche des zweiten ZylindersPiston surface of the first cylinder Piston surface of the second cylinder
1414
Kolbenfläche des ArbeitszylindersPiston surface of the working cylinder
1515
Rudermaschinerowing machine
1616
Koppeleinrichtungcoupling device
1717
Ruderrudder
1818
Motorstellermotor plate
1919
HalteventileRelief valves
2020
DruckbegrenzungsventilePressure relief valves
21,21'21.21 '
Kühlercooler
22, 22'22, 22 '
Druckkörperpressure vessels
2323
entgegengesetzte Seite der Kolbenstange 6opposite side of the piston rod 6
2424
DruckluftmotorAir Motor
2525
DrucklufttankCompressed air tank
2626
gestrichelte Liniedashed line
2727
3/4-Wege-Ventil3/4 way valve
2828
Reglerregulator
2929
WegvorgabePath definition
3030
Wegsensordisplacement sensor

Claims (11)

  1. Mechanical rudder system (17), in particular for an underwater vehicle, having a hydraulic circuit (1), in which a pump (4) is arranged, the pump (4) being a reversible hydraulic pump (4) which is operated by motor, the hydraulic circuit (1) being a closed circuit, characterized in that a compressed air motor (26) is additionally provided in the hydraulic circuit (1) as an auxiliary drive for the hydraulic pump (4).
  2. Mechanical rudder system (17) according to Claim 1, characterized in that the hydraulic pump (4) acts directly on a hydraulic cylinder arrangement, in particular on a double-acting working cylinder (2) with an identical piston area (16) and with a two-sided piston rod (6).
  3. Mechanical rudder system (17) according to Claim 1 or 2, characterized in that the hydraulic pump (4) is driven by way of a servomotor (5), in particular a servomotor (5) which can be operated in four-quadrant operation.
  4. Mechanical rudder system (17) according to Claim 2 or 3, characterized in that a delivered volume of the hydraulic pump (4) is directly proportional to the cylinder stroke of the hydraulic cylinder arrangement.
  5. Mechanical rudder system (17) according to one of Claims 2 to 4, characterized in that a rudder (19) is connected to the hydraulic cylinder arrangement via a coupling device (18), in particular via a connecting rod.
  6. Mechanical rudder system (17) according to Claim 5, characterized in that the movement of the rudder (19) can be controlled via the rotational movement of the servomotor (5), in particular the position of the rudder (19) can be set via the number of revolutions of the servomotor (5).
  7. Mechanical rudder system (17) according to either of Claims 5 and 6, characterized in that valves (21, 21') are provided for hydraulically locking the rudder (19) in the case of a pump standstill in the hydraulic circuit (1) .
  8. Mechanical rudder system (17) according to one of Claims 1 to 7, characterized in that pressure limiting valves (22, 22') are provided in the hydraulic circuit (1) .
  9. Mechanical rudder system (17) according to one of Claims 2 to 8, characterized in that, in the case of single-sided loading of a piston rod (6) of the hydraulic cylinder arrangement with low pressure, an end of the piston rod (6) which lies opposite so as to face away can likewise be loaded with low pressure.
  10. Mechanical rudder system (17) according to one of Claims 1 to 9, characterized in that at least one cooler (23) for dissipating lost heat is arranged in a feed line of the hydraulic pump (4).
  11. Mechanical rudder system (17) according to one of Claims 1 to 10, characterized in that a second pump is provided in the hydraulic circuit (1), which second pump can be switched on in a second performance range, in particular in a high performance range.
EP14712692.4A 2013-04-02 2014-03-27 Helm machine Active EP2981458B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013205807.1A DE102013205807A1 (en) 2013-04-02 2013-04-02 rowing machine
PCT/EP2014/056189 WO2014161769A1 (en) 2013-04-02 2014-03-27 Steering engine

Publications (2)

Publication Number Publication Date
EP2981458A1 EP2981458A1 (en) 2016-02-10
EP2981458B1 true EP2981458B1 (en) 2019-11-06

Family

ID=50382464

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14712692.4A Active EP2981458B1 (en) 2013-04-02 2014-03-27 Helm machine

Country Status (4)

Country Link
EP (1) EP2981458B1 (en)
DE (1) DE102013205807A1 (en)
ES (1) ES2766929T3 (en)
WO (1) WO2014161769A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3067252A1 (en) * 2015-03-13 2016-09-14 BAE Systems PLC Hydraulic system
CA2978045A1 (en) * 2015-03-13 2016-09-22 Bae Systems Plc Hydraulic system
CN114868005B (en) * 2021-06-01 2023-05-23 中国矿业大学(北京) Pseudo-triaxial pressure maintaining loading device and method for performing pseudo-triaxial pressure maintaining loading experiment by using same
CN113341766B (en) * 2021-06-10 2024-04-12 哈尔滨理工大学 Electro-hydraulic load simulator with adjustable loading and disturbance eliminating arm length

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB365939A (en) * 1931-05-22 1932-01-28 John Hastie & Company Ltd Improvements in or relating to hydraulic ships' steering gear
DE1036088B (en) * 1956-04-16 1958-08-07 Licentia Gmbh Wegabhaengig remote-controlled hydraulic steering system for ships, aircraft or the like.

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7511765U (en) * 1975-09-04 Wedekind K Manual drive for the steering gear of sails and motor vehicles
US2892310A (en) * 1954-02-17 1959-06-30 Mercier Jean Automatic follow-up system for successive application of power sources
US3986475A (en) * 1974-06-17 1976-10-19 Heiser Kenneth R Control arrangement
DE2923130A1 (en) * 1979-06-07 1980-12-11 Hermes Hans Steuerungstech Hydraulic steering gear for inland waterway craft - has paired operating line flexible hoses connected via changeover valves to steering system
JPS58133999A (en) * 1982-02-01 1983-08-09 Mitsubishi Heavy Ind Ltd Single ram type hydraulic steering device
US5427045A (en) * 1993-09-30 1995-06-27 Teleflex (Canada) Ltd. Steering cylinder with integral servo and valve
US5509369A (en) * 1994-10-11 1996-04-23 Nautamatic Marine Systems Small watercraft automatic steering apparatus and method
US5481871A (en) * 1995-03-02 1996-01-09 Teleflex (Canada) Ltd. Hydraulic steering system with spool pressure equalization
FR2831226B1 (en) * 2001-10-24 2005-09-23 Snecma Moteurs AUTONOMOUS ELECTROHYDRAULIC ACTUATOR
US7254945B1 (en) * 2006-02-27 2007-08-14 Kayaba Industry Co., Ltd. Operate check valve and hydraulic driving unit
US8046122B1 (en) * 2008-08-04 2011-10-25 Brunswick Corporation Control system for a marine vessel hydraulic steering cylinder
WO2010052777A1 (en) * 2008-11-06 2010-05-14 三菱重工業株式会社 Ship steering device
US8589027B2 (en) * 2010-12-02 2013-11-19 Furuno Electric Company Limited Steering assist system and method using autopilot device
JP2012136148A (en) * 2010-12-27 2012-07-19 Kawasaki Heavy Ind Ltd Ship steering gear and ship steering method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB365939A (en) * 1931-05-22 1932-01-28 John Hastie & Company Ltd Improvements in or relating to hydraulic ships' steering gear
DE1036088B (en) * 1956-04-16 1958-08-07 Licentia Gmbh Wegabhaengig remote-controlled hydraulic steering system for ships, aircraft or the like.

Also Published As

Publication number Publication date
WO2014161769A1 (en) 2014-10-09
DE102013205807A1 (en) 2014-10-02
ES2766929T3 (en) 2020-06-15
EP2981458A1 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
EP2732959B1 (en) Pressure-accumulator-free hydraulic drive assembly for and with a consumer, especially for hydraulic presses, and method for the hydraulic drive of a consumer without a pressure accumulator
EP2181221B1 (en) Rotation system of an excavator with a hydraulic drive.
EP2267317B1 (en) Hydraulic system
DE102011078241B3 (en) Hydraulic unit, has valve connecting flow-reversible pump with connection line of another flow-reversible pump before switching another valve in load drive state, where hydraulic fluid is not conveyed to piston chamber in load drive state
EP2693054B1 (en) Control device for hydrostatic drives
DE2538078A1 (en) CONTROL DEVICE IN INTEGRATED OR CONCENTRATED DESIGN
EP2981458B1 (en) Helm machine
EP2872776B1 (en) Wind turbine comprising a pitch adjustment system
DE102010014071B4 (en) Hydraulic system
EP3504435B1 (en) Hydrostatic system and pumping station for an oil or gas pipeline
EP3101281B1 (en) Hydraulic circuit for supplying pressure to a hydraulic consumer in a closed hydraulic circuit
EP3601806B1 (en) Apparatus for controlling a hydraulic machine
EP2621746B1 (en) Hydrostatic drive
EP2582507B1 (en) Method and device for operating a driven spindle in a machine tool
DE102014226672B3 (en) Actuator for a control valve, in particular steam turbine control valve and method for operating the same
EP2808109A1 (en) Clamping system
DE102015222672A1 (en) Method for operating an electro-hydraulic axis and electro-hydraulic axis
DE102014226666B3 (en) Actuator for a control valve, in particular steam turbine control valve and method for operating the same
DE102018115301B4 (en) Hydraulic system for a molding machine and method of operating same
EP2549123A2 (en) Système d'entraînement hydropneumatique avec un ou plusieurs cylindres de travail à double milieu
DE3311042A1 (en) CONTROL SYSTEM FOR A HYDRAULIC MOTOR DRIVE UNIT
EP3263954B1 (en) Hydrostatic drive with closed circuit and method for operating the drive
DE102022203979A1 (en) Hydraulic linear drive
DE202014105923U1 (en) Hydraulic engine compartment actuator with hydraulic motor drive
EP4141265A1 (en) Electrohydraulic unit for supplying pressure medium and method for controlling an electrohydraulic unit

Legal Events

Date Code Title Description
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150821

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160706

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190702

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502014012998

Country of ref document: DE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1198407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014012998

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200207

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2766929

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014012998

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1198407

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230529

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 11

Ref country code: GB

Payment date: 20240320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240315

Year of fee payment: 11

Ref country code: SE

Payment date: 20240320

Year of fee payment: 11

Ref country code: IT

Payment date: 20240329

Year of fee payment: 11

Ref country code: FR

Payment date: 20240328

Year of fee payment: 11