EP2976297A1 - Procédé servant à déposer du silicium polycristallin - Google Patents

Procédé servant à déposer du silicium polycristallin

Info

Publication number
EP2976297A1
EP2976297A1 EP14706635.1A EP14706635A EP2976297A1 EP 2976297 A1 EP2976297 A1 EP 2976297A1 EP 14706635 A EP14706635 A EP 14706635A EP 2976297 A1 EP2976297 A1 EP 2976297A1
Authority
EP
European Patent Office
Prior art keywords
reactor
reactor wall
wall
inlet openings
gas inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14706635.1A
Other languages
German (de)
English (en)
Inventor
Göran Klose
Heinz Kraus
Tobias Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP2976297A1 publication Critical patent/EP2976297A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Definitions

  • High-purity polycrystalline silicon serves as a starting material for the production of single-crystal silicon for semiconductors according to the Czochralski (C) - or zone melting (FZ) - method, as well as for the production of on or
  • Multicrystalline silicon according to various drawing and casting processes for the production of solar cells for photovoltaics.
  • Polysilicon is usually produced by means of the Siemens process.
  • a reaction gas comprising one or more silicon-containing components and optionally hydrogen in a reactor comprising by direct
  • Silicon-containing components are preferably silane (SiH4), monochlorosilane (SiH3Cl), dichlorosilane (SiH2C12), trichlorosilane (SiHC13), tetrachlorosilane (SiCl4) or mixtures of the substances mentioned.
  • the Siemens procedure is usually in one
  • the reactor comprises a metallic baseplate and a coolable bell placed on the baseplate so that a reaction space within the reaction chamber is provided
  • the baseplate is provided with one or more gas inlet openings and one or more
  • Each carrier body usually consists of two thin ones
  • Filament rods and a bridge which is usually adjacent Joining rods at their free ends.
  • the filament rods are made of single or polycrystalline silicon
  • the filament rods are mounted vertically in electrodes located at the bottom of the reactor, via which the connection to the power supply takes place. High-purity precipitates on the heated filament rods and the horizontal bridge
  • JP 2002241120 A2 discloses a separation reactor in which reaction gas is introduced at the top. The reaction gas mixes above the silicon rod with ascending
  • Reactor center injected. By natural convection on the hot rod surface ascending reaction gas should mix with cold sloping fresh gas. The sloping
  • Fresh gas causes a countercurrent to the doughy
  • DD 64047 A describes a process for the preparation of
  • AT 220591 B discloses a vessel for producing high-purity silicon, in which the feed passes along various
  • CN 201313954 Y discloses a separation reactor in which reaction gas is injected centrally from above and laterally from below. Due to the generated gas flow, the thickness of the
  • Gas boundary layer can be reduced on the silicon rod.
  • the method is that the opposing gas flows from below and above cancel their gas pulses. This leads to thicker boundary layers on the silicon rods, the one
  • Separating reactors are used, in which the reaction gas is injected via nozzles in the lower part, the so-called bottom plate.
  • Rods with cracks and spalling can cause electrical
  • the energy consumption at separation plants is u.a. caused by the convective release of heat via the reaction gas to the cooled reactor wall.
  • the reaction gas is to be introduced into the reactor so that the largest possible feed mass flow causes a lower thermal stress on the rods.
  • Filament rods are attached, which are heated, wherein by means of gas inlet openings on the reactor wall and in the
  • the gas inlet openings are bores.
  • the geometry of the hole can be chosen arbitrarily. The invention will be explained below with reference to FIGS. 1-8.
  • a bore may have two different angles to the side wall of the reactor. Such an embodiment is shown in FIG. 3. Both the minimum bore angle and the maximum bore angle may vary only in the 0-45 ° angle range to ensure that the reaction gas mixture is introduced at an angle of 0-45 ° to the side wall of the reactor.
  • reaction gas mixture is introduced at an angle of 0-45 ° to the lateral reactor wall, a wall film is simultaneously produced, which significantly reduces the convective heat exchange with the reactor wall.
  • this wall film is a closed gas film, which is formed from the externally injected reaction gas and along the
  • Reactor inner wall flows from top to bottom.
  • the reactor has a bell-shaped geometry (cylinder +
  • the uppermost inlet openings are in a range between 40% and 100% of the height above the base plate relative to the height of the vertical reactor wall, preferably between 70% and 100%.
  • Aj.ni. corresponds to a surface of an inlet opening on the reactor wall
  • a Reac corresponds to a cross-sectional area of the
  • Reactor formed with the reactor inner diameter D, so
  • the inlet openings are distributed uniformly over the circumference, but they can also be arranged unevenly.
  • the bore shape is usually circular but may have other shapes (e.g., elliptical or the like) and combinations thereof.
  • the direct distance a of the bores (outer edge to outer edge, see FIGS. 4 to 6) relative to one another is at least 3 mm, preferably at least 10 mm, particularly preferably at
  • the rows of holes can be single or multiple, possibly
  • FIGS. 5 and 7 are identical to FIGS. 5 and 7.
  • the combination of 2 to 4 rows of holes to a hole block more preferably 2 - 3 rows of holes (see Fig. 7).
  • the vertical distance "b" of adjacent rows of holes is preferably at most 5 reference bore diameters (see FIG. 5).
  • Diameter of all individual bores on the vertical reactor wall with D H hydraulic reference bore diameter
  • Ai cross-sectional area of the single bore i on the vertical reactor wall
  • Particularly preferred are 2-4 bore blocks.
  • the distance 1 of the blocks satisfies 0.2 ⁇ 1 / D ⁇ 0.8;
  • a partial amount of the reaction gas is introduced via nozzles on the bottom plate of the reactor.
  • the reaction gas which is introduced via the bottom plate, flows through at least one nozzle in the center and possibly
  • Floor plate can be dispensed with.
  • reaction gas is introduced, is preferably between 30 and 100 Percent by mass, more preferably 50-90% by mass, in each case based on the total addition of reaction gas.
  • An optimized injection is achieved by a variable to be designed during the process quantity distribution between base plate and wall.
  • the wall film produced is ideally adapted to the changing flow conditions in the reactor.
  • This selective introduction of the fresh gas directed down the inside of the reactor influences the wall film (i.e., the downward flow of gas near the wall) such that the total energy demand of the reactor drops significantly.
  • An essential advantage of the invention is that the circulation flow in the reactor is maintained.
  • the reactor according to JP2002241120 A2 for example, the
  • Circulation flow of the reaction gas is not promoted, but obstructed.
  • the reactor internal diameter was in each case 1.7 ⁇ m in each case.
  • the deposition temperature was in the batch process between 1000 ° C and 1100 ° C.
  • the wall film is perpendicular to the bottom, tangential to the cylindrical portion of the bell wall
  • the injection was made possible by a recessed step with 240 cylindrical injections distributed around the circumference.
  • the mass fraction of the mass flow at the wall was made possible by a recessed step with 240 cylindrical injections distributed around the circumference.
  • CVD reactor equipped with variant A of FIG. 2. Positioning of the bores according to FIG. 4.
  • the wall film is introduced via a row with 180 holes distributed at the circumference at an angle of 25 °.
  • the distance between the inlet holes and the base plate was 2.0m.
  • Total mass flow was between 50% and 90% depending on the deposition time (starting at 50%, ending at 90%).
  • the wall film is placed over two blocks of offset rows of holes of 360 holes at an angle of 20 ° on the bell wall in the reactor.
  • Each block consists of 3 rows of holes, each with 120 holes.
  • the rows of holes each had a vertical distance of 3 hole diameters from each other.
  • the ratio 1 / D was 0.5.
  • Bore block was 2.2 m.
  • Bore block to the bottom plate was 1.35 m.
  • the mass flow rate applied to the wall ranged from 50% to 90% depending on the deposition time (starting at 50%, ending at 90%).
  • Power consumption measured on average 11% compared to the injection of the total amount of feed through the bottom plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Compounds (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

L'invention concerne un procédé servant à déposer un silicium polycristallin dans un réacteur, qui est délimité sur les côtés et sur le haut par une paroi de réacteur et vers le bas par une plaque de fond. Sont installées sur la plaque de fond, des barres de type filaments, qui sont chauffées. Un mélange réactionnel contenant du silicium est introduit dans la chambre de réacteur au moyen d'ouvertures d'admission de gaz au niveau de la paroi de réacteur et dans la plaque de fond, le silicium se déposant sur les barres de type filaments. Ledit procédé est caractérisé en ce que le mélange réactionnel contenant du silicium est introduit, par des ouvertures d'admission de gaz, dans la paroi de réacteur, selon un angle allant de 0 à 45° par rapport à la paroi latérale de réacteur.
EP14706635.1A 2013-03-18 2014-02-26 Procédé servant à déposer du silicium polycristallin Withdrawn EP2976297A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013204730.4A DE102013204730A1 (de) 2013-03-18 2013-03-18 Verfahren zur Abscheidung von polykristallinem Silicium
PCT/EP2014/053734 WO2014146876A1 (fr) 2013-03-18 2014-02-26 Procédé servant à déposer du silicium polycristallin

Publications (1)

Publication Number Publication Date
EP2976297A1 true EP2976297A1 (fr) 2016-01-27

Family

ID=50179643

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14706635.1A Withdrawn EP2976297A1 (fr) 2013-03-18 2014-02-26 Procédé servant à déposer du silicium polycristallin

Country Status (11)

Country Link
US (1) US9738530B2 (fr)
EP (1) EP2976297A1 (fr)
JP (1) JP6147872B2 (fr)
KR (1) KR101792373B1 (fr)
CN (1) CN104981428B (fr)
CA (1) CA2898159C (fr)
DE (1) DE102013204730A1 (fr)
MY (1) MY171867A (fr)
SA (1) SA515361107B1 (fr)
TW (1) TWI527757B (fr)
WO (1) WO2014146876A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104724705B (zh) * 2015-03-27 2016-10-12 中国恩菲工程技术有限公司 用于多晶硅还原炉的底盘组件
CN105645415B (zh) * 2016-03-16 2018-02-23 黄河水电光伏产业技术有限公司 一种多晶硅还原炉气流控制器
CN106915746B (zh) * 2017-04-05 2017-11-28 亚洲硅业(青海)有限公司 一种48对棒还原炉底盘

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT220591B (fr) 1959-09-23 1962-04-10 Siemens & Halske Aktiengesellschaft
NL256017A (fr) * 1959-09-23 1900-01-01
DD64047A1 (de) 1967-09-25 1968-10-05 Erich Dr Wolf Verfahren zur herstellung von hochreinem, insbesondere phosphorarmem silicium
JPS53106626A (en) * 1977-03-02 1978-09-16 Komatsu Mfg Co Ltd Method of making high purity rod silicon and appratus therefor
JPS53108029A (en) * 1977-03-03 1978-09-20 Komatsu Mfg Co Ltd Method of making high purity silicon having uniform shape
JP3345929B2 (ja) * 1992-12-10 2002-11-18 三菱マテリアルポリシリコン株式会社 半導体級多結晶シリコン製造反応炉
JP2002241120A (ja) 2001-02-15 2002-08-28 Sumitomo Titanium Corp 多結晶シリコン製造用反応炉及び多結晶シリコン製造方法
CA2489718C (fr) 2002-06-18 2011-07-19 Tokuyama Corporation Reacteur de production de silicium
US7270713B2 (en) 2003-01-07 2007-09-18 Applied Materials, Inc. Tunable gas distribution plate assembly
EP1893529A2 (fr) * 2005-04-10 2008-03-05 Rec Silicon, Inc. Production de silicium polycristallin
JP5509578B2 (ja) * 2007-11-28 2014-06-04 三菱マテリアル株式会社 多結晶シリコン製造装置及び製造方法
CN201313954Y (zh) 2008-11-03 2009-09-23 江苏中能硅业科技发展有限公司 用于制备多晶硅的还原炉
WO2010067603A1 (fr) 2008-12-10 2010-06-17 パナソニック株式会社 Procédé de formation de film fin
CN101537328A (zh) * 2009-04-23 2009-09-23 江苏宏达新材料股份有限公司 一种流化床中的原料气体的进气方式
KR20130049184A (ko) 2010-03-19 2013-05-13 지티에이티 코포레이션 다결정 실리콘 증착 시스템 및 방법
US20120148728A1 (en) 2010-12-09 2012-06-14 Siliken Sa Methods and apparatus for the production of high purity silicon
MY163182A (en) * 2011-01-21 2017-08-15 Shinetsu Chemical Co Apparatus for producing polycrystalline silicon and method for producing polycrystalline silicon
JP5699060B2 (ja) 2011-09-20 2015-04-08 信越化学工業株式会社 多結晶シリコンの製造方法
JP5829547B2 (ja) 2012-02-24 2015-12-09 信越化学工業株式会社 多結晶シリコン棒および多結晶シリコン製造装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014146876A1 *

Also Published As

Publication number Publication date
TWI527757B (zh) 2016-04-01
US20160297684A1 (en) 2016-10-13
JP6147872B2 (ja) 2017-06-14
SA515361107B1 (ar) 2016-11-27
TW201437144A (zh) 2014-10-01
KR101792373B1 (ko) 2017-10-31
MY171867A (en) 2019-11-05
US9738530B2 (en) 2017-08-22
CN104981428A (zh) 2015-10-14
CA2898159A1 (fr) 2014-09-25
WO2014146876A1 (fr) 2014-09-25
CA2898159C (fr) 2017-09-19
JP2016510305A (ja) 2016-04-07
KR20150110809A (ko) 2015-10-02
CN104981428B (zh) 2018-02-09
DE102013204730A1 (de) 2014-09-18

Similar Documents

Publication Publication Date Title
DE2808461C2 (de) Verfahren zur Herstellung von hochreinen Siliziumstäben mit gleichförmiger Querschnittsgestalt
EP1855993B1 (fr) Reacteur et procede de production de silicium
DE2808462A1 (de) Verfahren und vorrichtung zur herstellung von hochreinen siliziumstaeben
EP3027302B1 (fr) Procédé pour éviter la formation de dépôts sur un hublot d'observation dans la fabrication de silicium polycristallin
DE102013203113B4 (de) GIEßVORRICHTUNG UND GIEßVERFAHREN
WO2014146876A1 (fr) Procédé servant à déposer du silicium polycristallin
EP2551239A1 (fr) Procédé de production de polysilicium
EP2976296A2 (fr) Réacteur à lit fluidisé et procédé de production de polysilicium granulaire
WO2011092276A1 (fr) Électrode pour réacteur de fabrication de silicium polycristallin
EP3362408B1 (fr) Réacteur pour déposer du silicium polycristallin
EP3119511B1 (fr) Réacteur et procédé de production de polysilicium granulaire
EP2794087B1 (fr) Réacteur et procédé de fabrication de silicium ultrapur
DE102009043950B4 (de) Reaktor zur Herstellung von polykristallinem Silizium
EP2578724B1 (fr) Dispositif et procédé destinés à la séparation du silicium polycristallin
EP2984033B1 (fr) Dispositif et procédé pour retirer des barreaux de silicium polycristallin dans un réacteur
EP3218097B1 (fr) Procédé de montage d'un réacteur à lit fluidisé pour la fabrication de granulat de silicium polycristallin
EP3261738B1 (fr) Colonne et procédé pour la dismutation de chlorosilanes en monosilane et en tétrachlorosilane ainsi qu'installation pour l'obtention de monosilane
DE102019209898A1 (de) Vorrichtung und Verfahren zur Bildung von flüssigem Silizium
EP4208584A2 (fr) Organe d'admission de gaz d'un réacteur cvd à deux points d'alimentation
WO2017092970A1 (fr) Réacteur à lit fluidisé et procédé de production de silicium polycristallin granulaire
DE102013215093A1 (de) Trägerkörper für die Abscheidung von polykristallinem Silicium
DE102006010391A1 (de) Reaktor und Verfahren zur Herstellung von Silizium
WO2017032713A1 (fr) Filtre fritté en silicium polycristallin
WO2012017053A1 (fr) Installation de production de monosilane
DD206137C2 (de) Verteiler- und speiserkanaele zur herstellung von faeden aus glas oder aehnlichem material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161027

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170215

INTG Intention to grant announced

Effective date: 20170224

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170707