WO2011092276A1 - Électrode pour réacteur de fabrication de silicium polycristallin - Google Patents

Électrode pour réacteur de fabrication de silicium polycristallin Download PDF

Info

Publication number
WO2011092276A1
WO2011092276A1 PCT/EP2011/051191 EP2011051191W WO2011092276A1 WO 2011092276 A1 WO2011092276 A1 WO 2011092276A1 EP 2011051191 W EP2011051191 W EP 2011051191W WO 2011092276 A1 WO2011092276 A1 WO 2011092276A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
electrode
electrode body
elastic elements
sealing element
Prior art date
Application number
PCT/EP2011/051191
Other languages
German (de)
English (en)
Inventor
Robert Stöcklinger
Original Assignee
G+R Technology Group Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G+R Technology Group Ag filed Critical G+R Technology Group Ag
Publication of WO2011092276A1 publication Critical patent/WO2011092276A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process

Definitions

  • the present invention relates to an electrode for a reactor for producing polycrystalline silicon.
  • a plurality of electrodes is distributed on a bottom of the reactor.
  • filament rods made of high-purity silicon are attached, wherein the filament rods, the required power supply is supplied via an electrode body, so that the filament rods obtain a temperature required for the deposition of polycrystalline silicon temperature.
  • the polycrystalline silicon is deposited in reactors on the filament rods.
  • the processes differ essentially by the reaction partners, from which the polycrystalline silicon is deposited on the filament rods.
  • trichlorosilane SiHCl 3
  • SiHCl 3 trichlorosilane
  • U.S. Patent Application 2009/0081380 A1 discloses a reactor for producing polycrystalline silicon.
  • Polycrystalline silicon deposits on a filament rod made of ultra-pure silicon.
  • the ultra-pure silicon rods are attached in an electrode, which are also arranged distributed at the bottom of the reactor.
  • a plurality of inlet nozzles for the reaction gas is provided at the bottom of the reactor.
  • the outlet opening of the inlet nozzles is higher than the mounting plane of the filament rods in the electrode.
  • the electrodes are designed according to the embodiment shown in European Patent Application EP 2 108 619 and fastened to the reactor bottom.
  • the invention has for its object to design an electrode for holding the filament rods for the deposition of polycrystalline silicon such that during the ongoing production process and regardless of the prevailing production conditions a tightness of the electrode from the reactor interior is ensured to the environment.
  • a plurality of electrodes are mounted in a bottom of the reactor.
  • the electrodes carry filament rods, which sit in an electrode body and via which the power is supplied to the electrodes or filament rods.
  • the electrode body itself is with several elastic elements in the direction of Top side of the bottom of the reactor mechanically biased.
  • a radially encircling sealing element is used between the top of the bottom of the reactor and a parallel to the top of the bottom ring of the electrode body.
  • the sealing element itself is shielded in the region between the top of the bottom of the reactor and the parallel ring of the electrode body of a ceramic ring.
  • the bottom of the reactor can be designed as a bottom with a gap or with two spaces. In the event that only a gap is formed in the reactor bottom, cooling water is conducted in this intermediate space. Likewise, the conversion of the reactor is designed as a double wall, so as to achieve a cooling of the reactor interior. In the event that the reactor bottom consists of two spaces, gas is fed to the inlet nozzles in one of the intermediate spaces. In the other intermediate space, as already mentioned above, the cooling water required for the cooling of the interior of the reactor is conducted.
  • the electrode body extends along a longitudinal axis at least to beyond an underside of the bottom.
  • the radially encircling sealing element is designed in such a way that it also surrounds the electrode body at least likewise beyond the underside of the bottom.
  • the bottom of the reactor has multiple apertures extending from the top of the reactor bottom to the bottom of the reactor bottom. In these openings, the electrode body sits together with the sealing element.
  • the openings of course have a wall to the interstices of the reactor floor. Thus, it is ensured that the cooling water or the reaction gas does not come into contact with the electrodes.
  • the plurality of elastic elements are held by means of a threaded pin on the electrode body.
  • the elastic elements are supported at the top of the bottom of the soil.
  • two elastic elements are mounted offset by 180 ° C to each other on the electrode body.
  • the elastic elements, which bias the electrodes relative to the reactor bottom, are designed as helical springs.
  • the radially encircling sealing element consists of a material with a low thermal expansion.
  • the material of the radially encircling sealing element preferably consists of PTFE.
  • the electrode body has in the direction of a longitudinal axis a cavity into which cooling water can be supplied via a feed line.
  • a pipe is guided, via which, in conjunction with a discharge, the heated cooling water is discharged.
  • the cooling is necessary since, depending on the process used for the production of polycrystalline silicon in the interior of the reactor, a temperature of 800 to 1200 ° C is present.
  • the electrodes are cooled with the supplied cooling water to a temperature of 150 ° C.
  • the cooling should be regulated to +/- 20 ° C.
  • the reactor is cooled to a corresponding temperature by the double-walled design of the reactor.
  • Figure 1 shows a perspective and partially sectional view of a
  • FIG. 2 shows a sectional view of the electrode according to the invention, in which the
  • Reinst silicon rods are attached for the deposition of polycrystalline silicon.
  • FIG. 3 shows a side view of the electrode according to the invention, which in the
  • FIG. 4 shows a perspective view of the electrode according to the invention, which is used in the process for producing polycrystalline silicon.
  • FIG. 5 shows an enlarged view of that marked A in FIG.
  • FIG. 6 shows an enlarged view of that marked B in FIG.
  • FIG. 1 shows a perspective and partially sectioned view of a reactor 10, which is used for the production of polycrystalline silicon.
  • the reactor 10 is known from the prior art and is used for the production of polycrystalline silicon after the monosilane process.
  • the reactor 10 has a bottom 12 carrying a plurality of nozzles 40. Fresh reaction gas, to which hydrogen has been added, is introduced into the interior 50 of the reactor 10 through the nozzles 40.
  • a plurality of filament rods 60 are mounted in dedicated electrodes 6. At the filament rods 60, the polycrystalline silicon is deposited during the process.
  • a gas discharge 51 is formed via an inner tube 52.
  • the inner tube 52 has a gas inlet opening 53 into which the partially consumed reaction gas enters. This exhaust gas or partially consumed reaction gas is present at a certain operating pressure. The pressure depends on the manufacturing process used.
  • the reactor, the supply lines and the discharge lines for the reaction gas are double-walled, thereby achieving a corresponding cooling.
  • the gas inlet opening 53 for the inner tube 52 is clearly spaced from the top 13 of the bottom 12 of the reactor 10. This spacing is therefore necessary to ensure that fresh reaction gas entering the reactor interior 50 does not immediately exit through the gas inlet opening 53 of the inner tube 52 again.
  • the reactor wall 58 and the inner tube 52 are double-walled and can be cooled with water.
  • the inner tube 52 is passed through the bottom 12 of the reactor. From the discharge line 51, the spent reaction gas is passed to a recycling system (not shown here). Likewise, a feed line 54 for fresh reaction gas is provided on the bottom 12 of the reactor 10.
  • the bottom 12 of the reactor 10 is constructed of two spaces.
  • fresh reaction gas is supplied, which distributes uniformly to the nozzles 40 at the bottom 12 of the reactor 10, so that the reaction gas enters the interior 50 of the reactor 10 via the upper side 13 of the bottom 12 of the reactor 10.
  • cooling water is guided, so that the bottom 12 of the reactor 10 can be cooled to a certain temperature or maintained at this temperature.
  • FIG. 2 shows a sectional view of the electrode 6, which is arranged in the bottom 12 of the reactor 10.
  • the electrode 6 has an elongated shape and extends over the top 13 and the bottom 14 of the bottom 12 of the reactor 10.
  • the electrode 6 consists of an electrode body 14 in which the filament rods 16 are supported.
  • the bottom 12 of the reactor 10 has a plurality of holders for one of the plurality of electrodes 6.
  • the holders are formed as apertures 16 in the bottom 12 of the reactor 10 and through the apertures 16 extend the electrodes 6.
  • the electrode body 4 has an upper side 13 of the Bottom 12 of the reactor 10 parallel ring 7. Between the parallel ring 7 and the top 13 of the bottom 12 of the reactor 10, a radially encircling sealing element 3 is inserted.
  • the radial sealing element 3 also extends along the longitudinal axis of the electrode body and Also protrudes beyond the bottom 14 of the bottom 12 of the reactor 10.
  • a plurality of elastic elements 2 are attached to the electrode body 4. These elastic elements 2 are configured in such a way that they bias the electrode body 4 in the direction of the upper side 13 of the bottom 12 of the reactor 10.
  • the radially encircling sealing element 3 is preferably made of PTFE.
  • a ceramic ring 15 is provided on the upper side 13 of the bottom 12 of the reactor 10. The ceramic ring 15 thus surrounds the radially encircling sealing element 3, which would protrude into the reactor interior 50.
  • the electrode body 4 has a cavity 22 along the longitudinal axis L of the electrode body 4.
  • the cavity 22 can be supplied via a supply line 20 cooling water.
  • a tube 23 is guided, via which, in conjunction with a discharge line 21, the heated cooling water can be removed from the electrode 4.
  • FIG. 3 shows a side view of the electrode 6 according to the invention and its installation in the bottom 12 of the reactor 10.
  • the electrode 6 has a height H along its longitudinal axis L and a width B in the interior 50 of the reactor 10.
  • the ceramic sleeve 15 On the upper side 13 of the bottom 12 of FIG Reactor 10 sits the ceramic sleeve 15, with which the radially encircling sealing element (not shown here) is substantially protected from temperature influences from the interior of the reactor.
  • the opening 16 extends through which the electrode 6 from the top 13 of the bottom 12 of the reactor 10 to the bottom 14 of the bottom 12 of the reactor 10 is guided.
  • an adjustment 25 is provided for fixing and clamping the electrode 6, an adjustment 25 is provided.
  • cooling water is supplied via a supply line 20 and discharged via a discharge line 21.
  • the bottom 12 of the reactor 10 is formed with a gap. In this space, the cooling water for the cooling of the bottom 12 of the reactor 10 is guided.
  • FIG. 4 shows a perspective view of the electrode 6 according to the invention, which is used in a reactor 10 for the production of polycrystalline silicon.
  • the holder 27 of the electrode 6 for the filament rods 60 is provided above the radially encircling ring 7 of the electrode 6, the holder 27 of the electrode 6 for the filament rods 60 is provided.
  • the electrode 6 is supported relative to the underside 14 of the bottom 12 of the reactor 10.
  • the supply line 20 is provided for the cooling water and the discharge 21 for the heated in the interior of the electrode 6 cooling water.
  • FIG. 5 shows an enlarged view of the area marked A in FIG.
  • the elastic elements 2 are arranged in 180 ° C opposite.
  • the elastic elements 2 are designed as helical springs.
  • the elastic elements 2 are held on the electrode body 4 via threaded pins 29.
  • a support 28 is provided between the top 30 of the elastic elements 2 and the bottom 14 of the bottom 12 of the reactor 10.
  • the elastic body 2 are thus supported with the top 30 against the bottom 14 of the bottom 12 of the reactor 10 from.
  • the underside 32 of the elastic elements 2 is supported relative to the electrode body 4.
  • the adjusting element 25 is provided for the support of the elastic elements 2 with their underside 32 on the electrode body 4.
  • the elastic element 2 is designed as a helical spring and held on the electrode body 4 by means of a threaded pin 29. Characterized in that the adjusting element is provided on the electrode body 4, one reaches a tension or a bias voltage of the elastic elements 2, so that the radially encircling light element 3 between the top 13 of the bottom 12 of the reactor 10 and the parallel thereto ring 7 of the electrode body 4th is clamped and thus causes a seal.
  • This tension is always ensured that regardless of the different expansion coefficients of the different materials of the electrode 6 is always a tightness is ensured, so that no reaction gas from the interior 50 of the reactor 10 passes to the outside.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

L'invention concerne une électrode (6) destinée à un réacteur (10) pour la fabrication de silicium polycristallin. Plusieurs électrodes (6) sont fixées dans le fond (12) du réacteur (10). Les électrodes (6) portent des barres de type filaments (60) en silicium extra-pur. Le corps (4) de l'électrode est précontraint mécaniquement en direction (5) du côté supérieur (13) du fond (12) du réacteur (10) au moyen de plusieurs éléments élastiques (2). Un élément d'étanchéité (3) périphérique radial est placé entre le côté supérieur (13) du fond (12) du réacteur (10) et une bague (7) du corps (4) de l'électrode, cette bague (7) étant parallèle au côté supérieur (13) du fond (12).
PCT/EP2011/051191 2010-02-01 2011-01-28 Électrode pour réacteur de fabrication de silicium polycristallin WO2011092276A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010000270A DE102010000270A1 (de) 2010-02-01 2010-02-01 Elektrode für einen Reaktor zur Herstellung von polykristallinem Silizium
DE102010000270.4 2010-02-01

Publications (1)

Publication Number Publication Date
WO2011092276A1 true WO2011092276A1 (fr) 2011-08-04

Family

ID=44315814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/051191 WO2011092276A1 (fr) 2010-02-01 2011-01-28 Électrode pour réacteur de fabrication de silicium polycristallin

Country Status (2)

Country Link
DE (1) DE102010000270A1 (fr)
WO (1) WO2011092276A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130011581A1 (en) * 2011-07-06 2013-01-10 Wacker Chemie Ag Protective device for electrode holders in cvd reactors
DE102013204926A1 (de) 2013-03-20 2014-09-25 Wacker Chemie Ag Vorrichtung zum Schutz einer Elektrodendichtung in einem Reaktor zur Abscheidung von polykristallinem Silicium
DE102013214800A1 (de) 2013-07-29 2015-01-29 Wacker Chemie Ag Vorrichtung zur Isolierung und Abdichtung von Elektrodenhalterungen in CVD Reaktoren
DE102014223415A1 (de) 2014-11-17 2016-05-19 Wacker Chemie Ag Vorrichtung zur Isolierung und Abdichtung von Elektrodenhalterungen in CVD Reaktoren
WO2017064011A1 (fr) 2015-10-15 2017-04-20 Wacker Chemie Ag Dispositif d'isolement et d'étanchéité de supports d'électrode dans des réacteurs cvd

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2432383A1 (de) * 1973-11-22 1976-01-22 Siemens Ag Reaktionsgefaess zum abscheiden von halbleitermaterial auf erhitzte traegerkoerper
US20040074609A1 (en) * 2002-05-23 2004-04-22 Andreas Fischer Multi-part electrode for a semiconductor processing plasma reactor and method of replacing a portion of a multi-part electrode
US20090081380A1 (en) 2007-09-20 2009-03-26 Mitsubishi Materials Corporation Reactor for polycrystalline silicon and polycrystalline silicon production method
EP2108619A2 (fr) 2008-03-21 2009-10-14 Mitsubishi Materials Corporation Réacteur en silicone polycristalline
EP2138459A1 (fr) * 2008-06-24 2009-12-30 Mitsubishi Materials Corporation Appareil de production de silicium polycristallin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481886B2 (ja) * 2008-03-27 2014-04-23 三菱マテリアル株式会社 多結晶シリコン製造装置
JP5338574B2 (ja) * 2008-09-09 2013-11-13 三菱マテリアル株式会社 多結晶シリコン製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2432383A1 (de) * 1973-11-22 1976-01-22 Siemens Ag Reaktionsgefaess zum abscheiden von halbleitermaterial auf erhitzte traegerkoerper
US20040074609A1 (en) * 2002-05-23 2004-04-22 Andreas Fischer Multi-part electrode for a semiconductor processing plasma reactor and method of replacing a portion of a multi-part electrode
US20090081380A1 (en) 2007-09-20 2009-03-26 Mitsubishi Materials Corporation Reactor for polycrystalline silicon and polycrystalline silicon production method
EP2108619A2 (fr) 2008-03-21 2009-10-14 Mitsubishi Materials Corporation Réacteur en silicone polycristalline
EP2138459A1 (fr) * 2008-06-24 2009-12-30 Mitsubishi Materials Corporation Appareil de production de silicium polycristallin

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130011581A1 (en) * 2011-07-06 2013-01-10 Wacker Chemie Ag Protective device for electrode holders in cvd reactors
EP2544215A3 (fr) * 2011-07-06 2013-02-20 Wacker Chemie AG Dispositif de protection de supports d'électrodes dans des réacteurs CVD
DE102013204926A1 (de) 2013-03-20 2014-09-25 Wacker Chemie Ag Vorrichtung zum Schutz einer Elektrodendichtung in einem Reaktor zur Abscheidung von polykristallinem Silicium
DE102013214800A1 (de) 2013-07-29 2015-01-29 Wacker Chemie Ag Vorrichtung zur Isolierung und Abdichtung von Elektrodenhalterungen in CVD Reaktoren
WO2015014589A1 (fr) * 2013-07-29 2015-02-05 Wacker Chemie Ag Dispositif pour isoler et étanchéifier des porte-électrodes dans des réacteurs cvd
DE102014223415A1 (de) 2014-11-17 2016-05-19 Wacker Chemie Ag Vorrichtung zur Isolierung und Abdichtung von Elektrodenhalterungen in CVD Reaktoren
WO2016078938A1 (fr) 2014-11-17 2016-05-26 Wacker Chemie Ag Dispositif d'isolement et d'étanchéité de supports d'électrode dans des réacteurs cvd
US10550466B2 (en) 2014-11-17 2020-02-04 Wacker Chemie Ag Device for insulating and sealing electrode holders in CVD reactors
WO2017064011A1 (fr) 2015-10-15 2017-04-20 Wacker Chemie Ag Dispositif d'isolement et d'étanchéité de supports d'électrode dans des réacteurs cvd
DE102015220127A1 (de) 2015-10-15 2017-04-20 Wacker Chemie Ag Vorrichtung zur Isolierung und Abdichtung von Elektrodenhalterungen in CVD Reaktoren
US10562778B2 (en) 2015-10-15 2020-02-18 Wacker Chemie Ag Device for insulating and sealing electrode holders in CVD reactors

Also Published As

Publication number Publication date
DE102010000270A1 (de) 2011-08-04

Similar Documents

Publication Publication Date Title
EP2389340B1 (fr) Réacteur pour produire du silicium polycristallin selon la technologie monosilane
EP1855993B1 (fr) Reacteur et procede de production de silicium
WO2011092276A1 (fr) Électrode pour réacteur de fabrication de silicium polycristallin
EP2544215B1 (fr) Dispositif de protection de supports d'électrodes dans des réacteurs CVD
EP1223146A1 (fr) Appareillage et procédé pour la production des barreaux de silicium polycristallin
DE102008059408A1 (de) Verfahren und Vorrichtungen zur Herstellung von Reinstsilizium
EP3362586B1 (fr) Dispositif d'isolement et d'étanchéité de supports d'électrode dans des réacteurs cvd
WO2011026670A2 (fr) Installation et procédé de commande de l'installation pour la production de silicium polycristallin
EP2665682B1 (fr) Procédé et dispositif pour la conversion de tétrachlorure de silicium en trichlorosilane
DE102004038718A1 (de) Reaktor sowie Verfahren zur Herstellung von Silizium
DE102009043950B4 (de) Reaktor zur Herstellung von polykristallinem Silizium
EP2794087B1 (fr) Réacteur et procédé de fabrication de silicium ultrapur
EP3362408B1 (fr) Réacteur pour déposer du silicium polycristallin
EP2976297A1 (fr) Procédé servant à déposer du silicium polycristallin
EP3218097B1 (fr) Procédé de montage d'un réacteur à lit fluidisé pour la fabrication de granulat de silicium polycristallin
EP2984035A1 (fr) Répartiteur de gaz pour réacteur siemens
EP2676926A1 (fr) Réacteur et procédé de fabrication d'hydrogène sulfuré
WO2010046347A1 (fr) Procédé de production d'un gaz de produit et de vapeur, et réacteur modulaire gaz de produit-vapeur pour la mise en oeuvre de ce procédé
DE102006010391A1 (de) Reaktor und Verfahren zur Herstellung von Silizium
DE102020118634A1 (de) Vorrichtung zur herstellung von polykristallinem silizium
EP3221263A1 (fr) Dispositif d'isolement et d'étanchéité de supports d'électrode dans des réacteurs cvd
WO2015070952A1 (fr) Dispositif pour un acheminement d'agent de gazéification dans un gazéificateur à basse température
WO2015014589A1 (fr) Dispositif pour isoler et étanchéifier des porte-électrodes dans des réacteurs cvd
AT508883B1 (de) Heizvorrichtung für polysilizium-reaktoren
DE102015102532A1 (de) Verfahren und Vorrichtung zum Herstellen von Silizium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11701270

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11701270

Country of ref document: EP

Kind code of ref document: A1