EP2956656A1 - Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine - Google Patents

Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine

Info

Publication number
EP2956656A1
EP2956656A1 EP14705834.1A EP14705834A EP2956656A1 EP 2956656 A1 EP2956656 A1 EP 2956656A1 EP 14705834 A EP14705834 A EP 14705834A EP 2956656 A1 EP2956656 A1 EP 2956656A1
Authority
EP
European Patent Office
Prior art keywords
coolant
temperature
control
heat exchanger
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14705834.1A
Other languages
German (de)
French (fr)
Other versions
EP2956656B1 (en
Inventor
Laurence HOUZE
Manuela Hennequin
Pascal Emery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2956656A1 publication Critical patent/EP2956656A1/en
Application granted granted Critical
Publication of EP2956656B1 publication Critical patent/EP2956656B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/33Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Definitions

  • the present invention generally relates to the field of recirculation of burnt gases from the exhaust to the inlet of an internal combustion engine.
  • It relates more particularly to a control method of a control valve of a flow of coolant circulating in a cooling circuit of a recirculation line of an internal combustion engine.
  • a control valve of a coolant flow rate which is arranged on one of said circulation ducts.
  • Such a cooling circuit then comprises a heat exchanger, said cooler EGR, which is crossed, on the one hand, by the recirculation gas, and, on the other hand, by a cooling liquid.
  • the cooling circuit also comprises a bistable valve, located downstream of the EGR cooler, which is controlled in the open or closed position depending on the measured temperature of the recirculation gases.
  • the opening of the bistable valve generates a large and brutal cooling of the recirculation gases, in particular when the internal combustion engine has not yet reached its optimum operating temperature.
  • the closure of the bistable valve also prevents any circulation of coolant in the EGR cooler, which can lead to a failure of cooling of the recirculation gases and a release into the atmosphere of a large amount of soot particles and dusts. 'hydrocarbon.
  • the coolant blocked in the EGR cooler may reach its boiling point and cause damage to the EGR cooler.
  • the present invention proposes a method for controlling the more reliable control valve. More particularly, there is provided according to the invention a method for controlling a control valve for a flow rate of coolant circulating in a cooling circuit of a recirculation line of an internal combustion engine, which comprises steps of:
  • step b) determining, as a function of the temperature acquired in step a), a control setpoint for said control valve in a stable position chosen from at least three stable positions, and
  • step c) control the control valve according to the control setpoint determined in step b).
  • control valve is controlled between a greater number of positions, which allows a better regulation of the flow of coolant and avoids any problem of boiling or sudden temperature change.
  • This better regulation also considerably reduces the fouling of the cooling circuit, especially when starting the engine or when the ambient temperature is low.
  • control of the control valve as a function of the temperature of the coolant ensures a more precise regulation of the temperature of the recirculation gases.
  • the cooling circuit comprising a heat exchanger positioned on the recirculation line, in step a), the temperature of the cooling liquid is measured in said heat exchanger;
  • the cooling circuit comprising a heat exchanger positioned on the recirculation line, in step a), the temperature of the cooling liquid is measured at a distance from said heat exchanger;
  • step a) the temperature of the coolant is measured downstream of said heat exchanger
  • step b) the ambient temperature is measured, a target temperature of coolant is deduced therefrom and the set point of control as a function of the temperature of the measured coolant and the target temperature;
  • a coolant temperature value is estimated upstream of said heat exchanger as a function of the measured coolant temperature, a flue gas flow rate in said recirculation line and a temperature of burnt gas in said recirculation line, then said control setpoint is determined by means of a map which associates, with each estimated coolant temperature value, a control setpoint;
  • step a) the temperature of the coolant is measured upstream of said heat exchanger
  • step b) said control setpoint is determined by means of a map which associates, at each value of coolant temperature, a control setpoint.
  • the invention also provides a cooling circuit as defined in the introduction which comprises a control unit of said control valve, which is adapted to implement a control method as defined above.
  • the invention further provides an internal combustion engine as defined in the introduction which comprises a cooling circuit as defined above, the heat exchanger of which is positioned on said recirculation line.
  • FIG. 1 is a schematic view of an internal combustion engine according to the invention.
  • FIG. 2 is a schematic view of part of the secondary cooling circuit according to a first embodiment of the internal combustion engine of FIG. 1;
  • FIG. 3 is a timing diagram illustrating the steps for implementing the control method of the control valve of the secondary cooling circuit of FIG. 2;
  • FIG. 4 is a schematic view of part of the secondary cooling circuit according to a second embodiment of the internal combustion engine of FIG. 1;
  • FIG. 5 is a timing diagram illustrating the steps for implementing the control method of the control valve of the secondary cooling circuit of FIG. 4.
  • upstream and downstream will be used in the direction of the flow of gases, from the point of collection of fresh air into the atmosphere to the exit of the flue gases in the atmosphere. atmosphere.
  • FIG. 1 diagrammatically shows an internal combustion engine 1 of a motor vehicle, which comprises an engine block 10 provided with a crankshaft and four pistons (not shown) housed in four cylinders 11.
  • This engine is here compression ignition (Diesel). It could also be spark ignition (gasoline).
  • the internal combustion engine 1 Upstream of the cylinders 11, the internal combustion engine 1 comprises an intake line 20 which takes fresh air into the atmosphere and which opens into an air distributor 25 arranged to distribute the air to each of the four cylinders 1 1 of the engine block 10.
  • This intake line 20 comprises, in the direction of flow of fresh air, an air filter 21 which filters the fresh air taken from the atmosphere, a compressor 22 which compresses the fresh air filtered by the air filter 21, a main air cooler 23 which cools this fresh compressed air, and an inlet valve 24 which regulates the fresh air flow opening into the distributor of the air air 25.
  • the internal combustion engine 1 comprises an exhaust line 80 which extends from an exhaust manifold 81 into which the gases which have been previously burned into the cylinders 1 1, up to an exhaust silencer 87 for relaxing the flue gases before they are discharged into the atmosphere. It involves Furthermore, in the flow direction of the flue gas, a turbine 82, and a catalytic converter 83 for treating flue gas.
  • the turbine 82 is rotated by the flow of burnt gases leaving the exhaust manifold 81, and it drives the compressor 22 in rotation, by means of mechanical coupling means such as a simple drive shaft.
  • the catalytic converter 83 is here a three-way catalyst which contains an oxidation catalyst 84, a particulate filter 85 and a nitrogen oxide trap 86.
  • the internal combustion engine 1 also comprises a high-pressure flue gas recirculation line, from the exhaust line 80 to the intake line 20.
  • This recirculation line is commonly called the EGR-HP line 40, in accordance with FIG. to the English acronym of "Exhaust Gas Recirculation - High Pressureā€. It originates in the exhaust line 80, between the exhaust manifold 81 and the turbine 82, and it opens into the intake line 20, between the inlet valve 24 and the air distributor 25.
  • This line EGR-HP 40 makes it possible to take a part of the flue gases circulating in the exhaust line 80, called recirculation gases or EGR gas, for reinjecting it into the cylinders 11 in order to reduce the pollutant emissions of the engine, and particular emissions of nitrogen oxides, soot and hydrocarbon particles.
  • This EGR-HP line 40 comprises an EGR-HP valve 41 for regulating the flow of EGR gas opening into the air distributor 25.
  • the internal combustion engine 1 also comprises a fuel injection line 60 in the cylinders 11.
  • This injection line 60 comprises an injection pump 62 arranged to collect the fuel in a reservoir 61 in order to bring it under pressure into a distribution rail 63 which opens into the cylinders 11 via four injectors 64.
  • the internal combustion engine 1 further comprises a primary cooling circuit (not shown), which in particular passes through the engine block 10 and the main air cooler 23 and in which circulates a cooling liquid.
  • a primary cooling circuit (not shown), which in particular passes through the engine block 10 and the main air cooler 23 and in which circulates a cooling liquid.
  • the internal combustion engine 1 also comprises a secondary cooling circuit 30, which could possibly be confused with the primary cooling circuit, and which comprises a heat exchanger 31 provided for cooling the EGR gases flowing in the line EGR-HP 40 (or alternatively, in line EGR-LP), so as to best reduce the temperature of the gases in the air distributor 25 to provide the internal combustion engine 1 better performance.
  • a secondary cooling circuit 30 which could possibly be confused with the primary cooling circuit, and which comprises a heat exchanger 31 provided for cooling the EGR gases flowing in the line EGR-HP 40 (or alternatively, in line EGR-LP), so as to best reduce the temperature of the gases in the air distributor 25 to provide the internal combustion engine 1 better performance.
  • the heat exchanger 31, here called EGR cooler 31, is positioned on the line EGR-HP 40 to cool the EGR gas.
  • the EGR cooler 31 more specifically comprises a main pipe 31A through which the EGR gas flows, and a secondary pipe 31 B through which circulates a cooling liquid.
  • the main line 31 A is connected, on one side, to the exhaust line 80 via an upstream line 42 of the EGR-HP line 40, and, on the other hand, to the EGR-HP valve 41 via a conduit downstream 43 of the line EGR-HP 40.
  • the secondary pipe 31 B is connected to the remainder of the secondary cooling circuit 30, on one side, by an upstream pipe 33, and on the other by a downstream pipe 34.
  • the secondary cooling circuit 30 further comprises a control valve 35 of the coolant flow.
  • This control valve 35 is here arranged on the upstream duct 33 of the secondary cooling circuit 30. In a variant, it could of course be arranged elsewhere, for example on the downstream duct.
  • the control valve 35 is adapted to be driven in one or the other of at least three stable positions, of which:
  • the flow rate of the cooling liquid circulating in the secondary cooling circuit 30 is non-zero and is strictly less than the maximum flow rate.
  • the control valve 35 is here a butterfly flap, but it could of course be otherwise.
  • the circulation of the coolant in this secondary cooling circuit 30 is provided by a pressurizing pump (not shown).
  • the coolant used here is a mixture of water and glycol.
  • a computer 100 comprising a processor (CPU), a random access memory (RAM), a read only memory (ROM), analog converters digital (AD) and input and output interfaces.
  • CPU central processing unit
  • RAM random access memory
  • ROM read only memory
  • AD analog converters digital
  • the computer 100 is adapted to receive different sensors input signals relating to engine operation and climatic conditions.
  • a first temperature probe 101 which makes it possible to measure the instantaneous temperature T 0 of coolant circulating in the secondary cooling circuit 30.
  • this first temperature probe 101 is located in the downstream duct 34.
  • a second temperature probe 102 is also provided for measure the ambient temperature Ta, that is to say the temperature outside the vehicle equipped with the internal combustion engine 1.
  • the first temperature probe 101 is located in the upstream duct 33.
  • the first temperature probe will therefore be positioned at a distance from the EGR cooler 31, preferably at 10 cm from the latter, so that the measurements are not disturbed by the EGR cooler 31.
  • the first temperature sensor is located inside the EGR cooler itself.
  • the computer 100 thus stores continuously in its random access memory:
  • the load C (also called ā€œengine loadā€) corresponds to the ratio of the work supplied by the engine to the maximum work that could develop this engine at a given speed. It is usually approximated using a variable called effective average pressure SME.
  • the R speed corresponds to the speed of rotation of the crankshaft, expressed in revolutions per minute. Thanks to a predetermined mapping on test bench and stored in its read-only memory (ROM), the computer 100 is adapted to generate, for each operating condition of the engine, output signals.
  • ROM read-only memory
  • the computer 100 is adapted to transmit these output signals to the various components of the engine, in particular to the control valve 35.
  • the computer 100 is initialized then controls the starter and the fuel injectors 64 for them to start the internal combustion engine 1.
  • the fresh air taken from the atmosphere through the intake line 20 is filtered by the air filter 21, compressed by the compressor 22, cooled by the main air cooler 23, and then burned in the cylinders 1 1.
  • the flue gases are expanded in the turbine 82, treated and filtered in the catalytic converter 83, then relaxed again in the exhaust silencer 84 before being released into the atmosphere.
  • the computer 100 for this purpose controls the control valve 35 of the coolant flow circulating in the secondary cooling circuit 30, so that these EGR gases are cooled to the desired temperature.
  • this control valve 35 is controlled in extreme closed position (the time that the temperature of the EGR gas increases) before being gradually opened.
  • the computer 100 is adapted to implement a control method of the control valve 35 which comprises the following three steps: a) acquiring the temperature To of the coolant,
  • step b) determining, as a function of the temperature To, acquired in step a), a control setpoint C1 of the control valve 35 in one of its stable positions, and
  • the coolant flow circulating in the secondary cooling circuit 30 is regulated as a function of the temperature T 0 of the coolant (and not as a function of the temperature of the EGR gases), which in particular avoids any risk of boiling or sudden change of coolant temperature, in favor of the longevity of the EGR cooler 31.
  • control valve 35 may have at least five stable positions. It can of course be expected that it can have more than 10 stable positions.
  • control valve 35 can take an infinity of stable positions.
  • Control of the control valve 35 will not be implemented in exactly the same way, depending on whether the internal combustion engine is of the type described with reference to FIG. 2 or that described with reference to FIG.
  • the control method of the control valve 35 will be implemented as shown in the flowchart of FIG. 3. More specifically, after the start of the internal combustion engine (operation 71), the initialization of the computer 100 and the start of the circulation of the coolant in the secondary cooling circuit 30 (operation 72), the computer 100 implements the following algorithm.
  • the computer 100 first checks whether a stopping of the internal combustion engine 1 is required (operation 73).
  • the computer 100 controls the stopping of the coolant pressurizing pump (operation 74) and the stopping of the injection of fuel into the cylinders 1 1 (operation 75).
  • the computer 100 acquires the temperature To of the coolant downstream of the cooler EGR 31 (operation 76) as well as the ambient temperature Ta (operation 77).
  • the calculator 100 then calculates a target temperature Tc of coolant as a function of at least ambient temperature Ta measured (operation 78).
  • This target temperature Te corresponds to the optimum temperature of the coolant, ensuring a reduced fouling of the EGR-HP line 40.
  • this target temperature Te is carried out using a mathematical formula or a map stored in the read-only memory (ROM) of the computer 100 (this map corresponding, at each ambient temperature Ta, a target temperature Te ).
  • this target temperature Te for example the instantaneous load C of the internal combustion engine 1 and / or the instantaneous R speed of the internal combustion engine 1, and / or the injected fuel flow rate. in the cylinders 1 1.
  • the computer 100 then compares the measured coolant temperature To with the calculated target temperature Te (operation 79).
  • control valve 35 is controlled at the opening (operation 84), so as to increase the flow of coolant circulating in the EGR cooler 31.
  • the control set point C1 being here formed by the opening angle that the control valve 35 must take (C1 being equal to zero in the extreme closed position), this control setpoint C1 is calculated in the following manner (operation 83). ):
  • k is a predetermined constant stored in the read-only memory (ROM) of the computer 100,
  • At is a time difference (in this case the time step between two successive calculations of the control setpoint C1), and
  • the regulation valve 35 is controlled on closing (operation 82), so as to reduce the flow rate of coolant circulating in the EGR cooler 31.
  • control setpoint C1 is then calculated in the following manner (operation 81):
  • This control setpoint C1 is then transmitted to the control valve 35, which opens or closes accordingly (operations 82 or 84).
  • the computer 100 returns to the beginning of the loop (operation 73).
  • the control method of the control valve 35 is implemented as shown in the flowchart of FIG. 5.
  • the computer 100 first checks whether a stopping of the internal combustion engine 1 is required (operation 73).
  • the computer 100 controls the stopping of the pressurizing pump of the cooling liquid (operation 74) and stopping the injection of fuel into the cylinders 11 (operation 75).
  • the computer 100 acquires the temperature To of the coolant upstream of the cooler EGR 31 (operation 76). It should be noted here that it is not intended to acquire the ambient temperature.
  • the computer 100 then directly determines the control setpoint C1, reading its value in a map stored in the read-only memory (ROM) of the computer 100 (operations 85 and 86).
  • this mapping corresponds, at each temperature To, to a control setpoint C1.
  • control setpoint C1 is transmitted to the control valve 35, which opens or closes accordingly (operation 87).
  • valve for regulating the coolant flow otherwise, especially when the temperature probe is located in the EGR cooler or downstream of the EGR cooler.
  • the flow rate and the temperature of the EGR gases can be measured or calculated as a function of engine speed and torque.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

The invention relates to a method for controlling a valve (35) for controlling the flow rate of coolant circulating in a cooling circuit (30) of a recirculation line (20) of an internal combustion engine (100). According to the invention, the control method includes steps that involve: a) acquiring the temperature of said coolant; b) determining, on the basis of the temperature acquired in step a), an instruction for Controlling said control valve such that it is in a stable position selected from among at least three stable positions; and c) controlling the control valve in accordance with the control instruction determined in step b).

Description

PROCEDE DE PILOTAGE D'UNE VANNE DE REGULATION D'UN DEBIT DE LIQUIDE DE REFROIDISSEMENT DES GAZ DE RECIRCULATION D'UN Ā METHOD FOR CONTROLLING A VALVE FOR CONTROLLING A RECIRCULATION GAS FLOW RATE OF A RECIRCULATION GAS
MOTEUR A COMBUSTION INTERNE DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTIONĀ INTERNAL COMBUSTION ENGINE TECHNICAL FIELD TO WHICH THE INVENTION RELATES
La prĆ©sente invention concerne de maniĆØre gĆ©nĆ©rale le domaine de la recirculation des gaz brĆ»lĆ©s depuis l'Ć©chappement vers l'admission d'un moteur Ć  combustion interne. The present invention generally relates to the field of recirculation of burnt gases from the exhaust to the inlet of an internal combustion engine.
Elle concerne plus particuliĆØrement un procĆ©dĆ© de pilotage d'une vanne de rĆ©gulation d'un dĆ©bit de liquide de refroidissement circulant dans un circuit de refroidissement d'une ligne de recirculation d'un moteur Ć  combustion interne. Ā It relates more particularly to a control method of a control valve of a flow of coolant circulating in a cooling circuit of a recirculation line of an internal combustion engine.
Elle concerne Ć©galement un circuit de refroidissement des gaz brĆ»lĆ©s circulant dans une ligne de recirculation d'un moteur Ć  combustion interne comprenant : Ā It also relates to a flue gas cooling circuit circulating in a recirculation line of an internal combustion engine comprising:
- un Ć©changeur thermique, Ā a heat exchanger,
- deux conduits de circulation de liquide de refroidissement raccordĆ©s respectivement en entrĆ©e et en sortie dudit Ć©changeur thermique, et Ā two cooling fluid circulation ducts connected respectively at the inlet and at the outlet of said heat exchanger, and
- une vanne de rĆ©gulation d'un dĆ©bit de liquide de refroidissement, qui est agencĆ©e sur l'un desdits conduits de circulation. Ā - A control valve of a coolant flow rate, which is arranged on one of said circulation ducts.
Elle concerne en outre un moteur Ć  combustion interne comprenant :Ā It further relates to an internal combustion engine comprising:
- un bloc-moteur qui dƩfinit intƩrieurement des cylindres, - an engine block which internally defines cylinders,
- une ligne d'admission de gaz d'admission dans lesdits cylindres,Ā an inlet gas intake line in said cylinders,
- une ligne d'Ʃchappement des gaz brƻlƩs hors desdits cylindres, - une ligne de recirculation des gaz brƻlƩs, qui prend naissance dans ladite ligne d'Ʃchappement et qui dƩbouche dans ladite ligne d'admission. an exhaust line for the gases burned out of said cylinders; a recirculation line for the flue gases, which originates in said exhaust line and which opens into said intake line.
ARRIERE-PLAN TECHNOLOGIQUE Ā BACKGROUND
Les moteurs Ć  combustion interne du type prĆ©citĆ© utilisent comme gaz d'admission un mĆ©lange d'air frais et de gaz brĆ»lĆ©s. Ces gaz brĆ»lĆ©s sont prĆ©levĆ©s dans la ligne d'Ć©chappement, directement en aval du collecteur d'Ć©chappement du moteur Ć  combustion interne, et sont introduits dans la ligne d'admission d'air frais, directement en amont du rĆ©partiteur d'air du moteur Ć  combustion interne. Ils sont communĆ©ment appelĆ©s gaz de recirculation ou gaz EGR (acronyme anglais de Ā« Exaust Gaz Recirculation Ā»). Internal combustion engines of the aforementioned type use as an intake gas a mixture of fresh air and flue gas. These burnt gases are taken from the exhaust line directly downstream of the exhaust manifold of the internal combustion engine and are introduced into the fresh air intake line directly upstream of the engine air distributor. at internal combustion. They are commonly referred to as recirculating gases or EGR gas (acronym for "Exaust Gas Recirculation").
Ces gaz de recirculation sont chargĆ©s de particules de suie et d'hydrocarbure en suspension lorsque ces gaz sont chauds. Ā These recirculating gases are charged with soot particles and hydrocarbon suspended when these gases are hot.
II est connu de refroidir ces gaz de recirculation par un circuit de refroidissement avant leur introduction dans la ligne d'admission d'air, de maniĆØre Ć  assurer au moteur Ć  combustion interne de meilleures performances. Ā It is known to cool these recirculation gases by a cooling circuit before their introduction into the air intake line, so as to provide the internal combustion engine better performance.
Un tel circuit de refroidissement comprend alors un Ć©changeur thermique, dit refroidisseur EGR, qui est traversĆ©, d'une part, par les gaz de recirculation, et, d'autre part, par un liquide de refroidissement. Le circuit de refroidissement comporte Ć©galement une vanne bistable, situĆ©e en aval du refroidisseur EGR, qui est pilotĆ©e en position ouverte ou fermĆ©e en fonction de la tempĆ©rature mesurĆ©e des gaz de recirculation. Ā Such a cooling circuit then comprises a heat exchanger, said cooler EGR, which is crossed, on the one hand, by the recirculation gas, and, on the other hand, by a cooling liquid. The cooling circuit also comprises a bistable valve, located downstream of the EGR cooler, which is controlled in the open or closed position depending on the measured temperature of the recirculation gases.
L'ouverture de la vanne bistable gĆ©nĆØre un refroidissement important et brutal des gaz de recirculation, en particulier lorsque le moteur Ć  combustion interne n'a pas encore atteint sa tempĆ©rature optimale de fonctionnement. Ā The opening of the bistable valve generates a large and brutal cooling of the recirculation gases, in particular when the internal combustion engine has not yet reached its optimum operating temperature.
Ce refroidissement brutal des gaz de recirculation expose le refroidisseur EGR Ć  un dĆ©pĆ“t important de particules de suie et d'hydrocarbure, ce qui provoque un encrassement rapide de ce refroidisseur EGR et rĆ©duit ses performances. Ā This sudden cooling of the recirculation gases exposes the EGR cooler to a large deposit of soot and hydrocarbon particles, which causes rapid fouling of this EGR cooler and reduces its performance.
La fermeture de la vanne bistable interdit par ailleurs toute circulation de liquide de refroidissement dans le refroidisseur EGR, ce qui peut entraĆ®ner un dĆ©faut de refroidissement des gaz de recirculation et un rejet dans l'atmosphĆØre d'une quantitĆ© importante de particules de suie et d'hydrocarbure. Ā The closure of the bistable valve also prevents any circulation of coolant in the EGR cooler, which can lead to a failure of cooling of the recirculation gases and a release into the atmosphere of a large amount of soot particles and dusts. 'hydrocarbon.
En outre, dans cette configuration, le liquide de refroidissement bloquĆ© dans le refroidisseur EGR risque d'atteindre sa tempĆ©rature d'Ć©bullition et d'occasionner une dĆ©tĆ©rioration du refroidisseur EGR. Ā In addition, in this configuration, the coolant blocked in the EGR cooler may reach its boiling point and cause damage to the EGR cooler.
OBJET DE L'INVENTION Ā OBJECT OF THE INVENTION
Afin de remĆ©dier Ć  l'inconvĆ©nient prĆ©citĆ© de l'Ć©tat de la technique, la prĆ©sente invention propose un procĆ©dĆ© de pilotage de la vanne de rĆ©gulation plus fiable. Plus particuliĆØrement, on propose selon l'invention un procĆ©dĆ© de pilotage d'une vanne de rĆ©gulation d'un dĆ©bit de liquide de refroidissement circulant dans un circuit de refroidissement d'une ligne de recirculation d'un moteur Ć  combustion interne, qui comprend des Ć©tapes consistant Ć  : In order to overcome the aforementioned drawback of the state of the art, the present invention proposes a method for controlling the more reliable control valve. More particularly, there is provided according to the invention a method for controlling a control valve for a flow rate of coolant circulating in a cooling circuit of a recirculation line of an internal combustion engine, which comprises steps of:
a) acquĆ©rir la tempĆ©rature dudit liquide de refroidissement, Ā a) acquiring the temperature of said coolant,
b) dĆ©terminer, en fonction de la tempĆ©rature acquise Ć  l'Ć©tape a), une consigne de pilotage de ladite vanne de rĆ©gulation dans une position stable choisie parmi au moins trois positions stables, et Ā b) determining, as a function of the temperature acquired in step a), a control setpoint for said control valve in a stable position chosen from at least three stable positions, and
c) piloter la vanne de rĆ©gulation selon la consigne de pilotage dĆ©terminĆ©e Ć  l'Ć©tape b). Ā c) control the control valve according to the control setpoint determined in step b).
Ainsi, grĆ¢ce Ć  l'invention, la vanne de rĆ©gulation est pilotĆ©e entre un plus grand nombre de positions, ce qui permet une meilleure rĆ©gulation du dĆ©bit de liquide de refroidissement et Ć©vite tout problĆØme d'Ć©bullition ou de changement de tempĆ©rature brusque. Ā Thus, thanks to the invention, the control valve is controlled between a greater number of positions, which allows a better regulation of the flow of coolant and avoids any problem of boiling or sudden temperature change.
Cette meilleure rĆ©gulation rĆ©duit par ailleurs considĆ©rablement l'encrassement du circuit de refroidissement, notamment au dĆ©marrage du moteur ou lorsque la tempĆ©rature ambiante est faible. Ā This better regulation also considerably reduces the fouling of the cooling circuit, especially when starting the engine or when the ambient temperature is low.
Enfin, le pilotage de la vanne de rĆ©gulation en fonction de la tempĆ©rature du liquide de refroidissement assure une rĆ©gulation plus prĆ©cise de la tempĆ©rature des gaz de recirculation. Ā Finally, the control of the control valve as a function of the temperature of the coolant ensures a more precise regulation of the temperature of the recirculation gases.
D'autres caractĆ©ristiques non limitatives et avantageuses du procĆ©dĆ© de pilotage conforme Ć  l'invention sont les suivantes : Ā Other non-limiting and advantageous features of the control method according to the invention are the following:
- le circuit de refroidissement comportant un Ć©changeur thermique positionnĆ© sur la ligne de recirculation, Ć  l'Ć©tape a), on mesure la tempĆ©rature du liquide de refroidissement dans ledit Ć©changeur thermique ; Ā the cooling circuit comprising a heat exchanger positioned on the recirculation line, in step a), the temperature of the cooling liquid is measured in said heat exchanger;
- le circuit de refroidissement comportant un Ć©changeur thermique positionnĆ© sur la ligne de recirculation, Ć  l'Ć©tape a), on mesure la tempĆ©rature du liquide de refroidissement Ć  distance dudit Ć©changeur thermique ; Ā the cooling circuit comprising a heat exchanger positioned on the recirculation line, in step a), the temperature of the cooling liquid is measured at a distance from said heat exchanger;
- Ć  l'Ć©tape a), on mesure la tempĆ©rature du liquide de refroidissement en aval dudit Ć©changeur thermique ; Ā in step a), the temperature of the coolant is measured downstream of said heat exchanger;
- Ơ l'Ʃtape b), on mesure la tempƩrature ambiante, on en dƩduit une tempƩrature cible de liquide de refroidissement et on Ʃlabore la consigne de pilotage en fonction de la tempƩrature du liquide de refroidissement mesurƩe et de la tempƩrature cible ; in step b), the ambient temperature is measured, a target temperature of coolant is deduced therefrom and the set point of control as a function of the temperature of the measured coolant and the target temperature;
- Ć  l'Ć©tape b), on estime une valeur de tempĆ©rature du liquide de refroidissement en amont dudit Ć©changeur thermique en fonction de la tempĆ©rature mesurĆ©e de liquide de refroidissement, d'un dĆ©bit de gaz brĆ»lĆ©s dans ladite ligne de recirculation et d'une tempĆ©rature de gaz brĆ»lĆ©s dans ladite ligne de recirculation, puis on dĆ©termine ladite consigne de pilotage au moyen d'une cartographie qui associe, Ć  chaque valeur de tempĆ©rature de liquide de refroidissement estimĆ©e, une consigne de pilotage ; Ā in step b), a coolant temperature value is estimated upstream of said heat exchanger as a function of the measured coolant temperature, a flue gas flow rate in said recirculation line and a temperature of burnt gas in said recirculation line, then said control setpoint is determined by means of a map which associates, with each estimated coolant temperature value, a control setpoint;
- Ć  l'Ć©tape a), on mesure la tempĆ©rature du liquide de refroidissement en amont dudit Ć©changeur thermique ; et Ā in step a), the temperature of the coolant is measured upstream of said heat exchanger; and
- Ć  l'Ć©tape b), on dĆ©termine ladite consigne de pilotage au moyen d'une cartographie qui associe, Ć  chaque valeur de tempĆ©rature de liquide de refroidissement, une consigne de pilotage. Ā in step b), said control setpoint is determined by means of a map which associates, at each value of coolant temperature, a control setpoint.
L'invention propose Ć©galement un circuit de refroidissement tel que dĆ©fini dans l'introduction qui comprend une unitĆ© de pilotage de ladite vanne de rĆ©gulation, qui est adaptĆ©e Ć  mettre en œuvre un procĆ©dĆ© de pilotage tel que dĆ©finit prĆ©cĆ©demment. Ā The invention also provides a cooling circuit as defined in the introduction which comprises a control unit of said control valve, which is adapted to implement a control method as defined above.
L'invention propose en outre un moteur Ć  combustion interne tel que dĆ©fini dans l'introduction qui comprend un circuit de refroidissement tel que dĆ©fini prĆ©cĆ©demment, dont l'Ć©changeur thermique est positionnĆ© sur ladite ligne de recirculation. Ā The invention further provides an internal combustion engine as defined in the introduction which comprises a cooling circuit as defined above, the heat exchanger of which is positioned on said recirculation line.
DESCRIPTION DƉTAILLƉE D'UN EXEMPLE DE RƉALISATION La description qui va suivre en regard des dessins annexĆ©s, donnĆ©s Ć  titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut ĆŖtre rĆ©alisĆ©e. Ā DETAILED DESCRIPTION OF AN EXEMPLARY EMBODIMENT The following description with reference to the accompanying drawings, given by way of non-limiting examples, will make it clear what the invention consists of and how it can be implemented.
Sur les dessins annexĆ©s : Ā In the accompanying drawings:
- la figure 1 est une vue schĆ©matique d'un moteur Ć  combustion interne selon l'invention ; Ā - Figure 1 is a schematic view of an internal combustion engine according to the invention;
- la figure 2 est une vue schĆ©matique d'une partie du circuit de refroidissement secondaire selon un premier mode de rĆ©alisation du moteur Ć  combustion interne de la figure 1 ; - la figure 3 est un chronogramme illustrant les Ć©tapes de mise en œuvre du procĆ©dĆ© de pilotage de la vanne de rĆ©gulation du circuit de refroidissement secondaire de la figure 2 ; FIG. 2 is a schematic view of part of the secondary cooling circuit according to a first embodiment of the internal combustion engine of FIG. 1; FIG. 3 is a timing diagram illustrating the steps for implementing the control method of the control valve of the secondary cooling circuit of FIG. 2;
- la figure 4 est une vue schĆ©matique d'une partie du circuit de refroidissement secondaire selon un second mode de rĆ©alisation du moteur Ć  combustion interne de la figure 1 ; et Ā FIG. 4 is a schematic view of part of the secondary cooling circuit according to a second embodiment of the internal combustion engine of FIG. 1; and
- la figure 5 est un chronogramme illustrant les Ć©tapes de mise en œuvre du procĆ©dĆ© de pilotage de la vanne de rĆ©gulation du circuit de refroidissement secondaire de la figure 4. Ā FIG. 5 is a timing diagram illustrating the steps for implementing the control method of the control valve of the secondary cooling circuit of FIG. 4.
Dans la description, les termes Ā« amont Ā» et Ā« aval Ā» seront utilisĆ©s suivant le sens de l'Ć©coulement des gaz, depuis le point de prĆ©lĆØvement de l'air frais dans l'atmosphĆØre jusqu'Ć  la sortie des gaz brĆ»lĆ©s dans l'atmosphĆØre. Ā In the description, the terms "upstream" and "downstream" will be used in the direction of the flow of gases, from the point of collection of fresh air into the atmosphere to the exit of the flue gases in the atmosphere. atmosphere.
Sur la figure 1 , on a reprĆ©sentĆ© schĆ©matiquement un moteur Ć  combustion interne 1 de vĆ©hicule automobile, qui comprend un bloc-moteur 10 pourvu d'un vilebrequin et de quatre pistons (non reprĆ©sentĆ©s) logĆ©s dans quatre cylindres 1 1 . Ce moteur est ici Ć  allumage par compression (Diesel). Il pourrait Ć©galement ĆŖtre Ć  allumage commandĆ© (Essence). Ā FIG. 1 diagrammatically shows an internal combustion engine 1 of a motor vehicle, which comprises an engine block 10 provided with a crankshaft and four pistons (not shown) housed in four cylinders 11. This engine is here compression ignition (Diesel). It could also be spark ignition (gasoline).
En amont des cylindres 1 1 , le moteur Ć  combustion interne 1 comporte une ligne d'admission 20 qui prĆ©lĆØve l'air frais dans l'atmosphĆØre et qui dĆ©bouche dans un rĆ©partiteur d'air 25 agencĆ© pour rĆ©partir l'air vers chacun des quatre cylindres 1 1 du bloc-moteur 10. Cette ligne d'admission 20 comporte, dans le sens d'Ć©coulement de l'air frais, un filtre Ć  air 21 qui filtre l'air frais prĆ©levĆ© dans l'atmosphĆØre, un compresseur 22 qui comprime l'air frais filtrĆ© par le filtre Ć  air 21 , un refroidisseur d'air principal 23 qui refroidit cet air frais comprimĆ©, et une vanne d'admission 24 qui permet de rĆ©guler le dĆ©bit d'air frais dĆ©bouchant dans le rĆ©partiteur d'air 25. Ā Upstream of the cylinders 11, the internal combustion engine 1 comprises an intake line 20 which takes fresh air into the atmosphere and which opens into an air distributor 25 arranged to distribute the air to each of the four cylinders 1 1 of the engine block 10. This intake line 20 comprises, in the direction of flow of fresh air, an air filter 21 which filters the fresh air taken from the atmosphere, a compressor 22 which compresses the fresh air filtered by the air filter 21, a main air cooler 23 which cools this fresh compressed air, and an inlet valve 24 which regulates the fresh air flow opening into the distributor of the air air 25.
En sortie des cylindres 1 1 , le moteur Ć  combustion interne 1 comporte une ligne d'Ć©chappement 80 qui s'Ć©tend depuis un collecteur d'Ć©chappement 81 dans lequel dĆ©bouchent les gaz qui ont Ć©tĆ© prĆ©alablement brĆ»lĆ©s dans les cylindres 1 1 , jusqu'Ć  un silencieux d'Ć©chappement 87 permettant de dĆ©tendre les gaz brĆ»lĆ©s avant qu'ils ne soient Ć©vacuĆ©s dans l'atmosphĆØre. Elle comporte par ailleurs, dans le sens d'Ć©coulement des gaz brĆ»lĆ©s, une turbine 82, et un pot catalytique 83 de traitement des gaz brĆ»lĆ©s. At the outlet of the rolls 1 1, the internal combustion engine 1 comprises an exhaust line 80 which extends from an exhaust manifold 81 into which the gases which have been previously burned into the cylinders 1 1, up to an exhaust silencer 87 for relaxing the flue gases before they are discharged into the atmosphere. It involves Furthermore, in the flow direction of the flue gas, a turbine 82, and a catalytic converter 83 for treating flue gas.
La turbine 82 est entraĆ®nĆ©e en rotation par le flux de gaz brĆ»lĆ©s sortant du collecteur d'Ć©chappement 81 , et elle permet d'entraĆ®ner le compresseur 22 en rotation, grĆ¢ce Ć  des moyens de couplage mĆ©canique tels qu'un simple arbre de transmission. Ā The turbine 82 is rotated by the flow of burnt gases leaving the exhaust manifold 81, and it drives the compressor 22 in rotation, by means of mechanical coupling means such as a simple drive shaft.
Le pot catalytique 83 est quant Ć  lui ici un catalyseur trois voies qui renferme un catalyseur d'oxydation 84, un filtre Ć  particules 85 et un piĆØge Ć  oxydes d'azote 86. Ā The catalytic converter 83 is here a three-way catalyst which contains an oxidation catalyst 84, a particulate filter 85 and a nitrogen oxide trap 86.
Ici, le moteur Ć  combustion interne 1 comporte Ć©galement une ligne de recirculation des gaz brĆ»lĆ©s Ć  haute pression, depuis la ligne d'Ć©chappement 80 vers la ligne d'admission 20. Cette ligne de recirculation est communĆ©ment appelĆ©e ligne EGR-HP 40, conformĆ©ment Ć  l'acronyme anglo-saxon de Ā« Exhaust Gaz Recirculation - High Pressure Ā». Elle prend naissance dans la ligne d'Ć©chappement 80, entre le collecteur d'Ć©chappement 81 et la turbine 82, et elle dĆ©bouche dans la ligne d'admission 20, entre la vanne d'admission 24 et le rĆ©partiteur d'air 25. Ā Here, the internal combustion engine 1 also comprises a high-pressure flue gas recirculation line, from the exhaust line 80 to the intake line 20. This recirculation line is commonly called the EGR-HP line 40, in accordance with FIG. to the English acronym of "Exhaust Gas Recirculation - High Pressure". It originates in the exhaust line 80, between the exhaust manifold 81 and the turbine 82, and it opens into the intake line 20, between the inlet valve 24 and the air distributor 25.
Cette ligne EGR-HP 40 permet de prĆ©lever une partie des gaz brĆ»lĆ©s circulant dans la ligne d'Ć©chappement 80, appelĆ©s gaz de recirculation ou gaz EGR, pour la rĆ©injecter dans les cylindres 1 1 afin de rĆ©duire les Ć©missions polluantes du moteur, et en particulier les Ć©missions d'oxydes d'azote, de suie et de particules d'hydrocarbure. Ā This line EGR-HP 40 makes it possible to take a part of the flue gases circulating in the exhaust line 80, called recirculation gases or EGR gas, for reinjecting it into the cylinders 11 in order to reduce the pollutant emissions of the engine, and particular emissions of nitrogen oxides, soot and hydrocarbon particles.
Cette ligne EGR-HP 40 comporte une vanne EGR-HP 41 pour rĆ©guler le dĆ©bit de gaz EGR dĆ©bouchant dans le rĆ©partiteur d'air 25. Ā This EGR-HP line 40 comprises an EGR-HP valve 41 for regulating the flow of EGR gas opening into the air distributor 25.
En complĆ©ment ou en variante, cette ligne EGR-HP pourrait ĆŖtre complĆ©tĆ©e ou remplacĆ©e par une ligne de recirculation des gaz brĆ»lĆ©s Ć  basse pression, communĆ©ment appelĆ©e ligne EGR-LP conformĆ©ment Ć  l'acronyme anglo-saxon de Ā« Exhaust Gaz Recirculation - Low Pressure Ā». Cette ligne EGR-LP prendrait alors naissance dans la ligne d'Ć©chappement, Ć  la sortie du pot catalytique, et dĆ©boucherait dans la ligne d'admission, entre le filtre Ć  air et le compresseur. Le moteur Ć  combustion interne 1 comporte par ailleurs une ligne d'injection 60 de carburant dans les cylindres 1 1 . Cette ligne d'injection 60 comporte une pompe d'injection 62 agencĆ©e pour prĆ©lever le carburant dans un rĆ©servoir 61 afin de l'amener sous pression dans un rail de distribution 63 qui dĆ©bouche dans les cylindres 1 1 via quatre injecteurs 64. In addition or alternatively, this EGR-HP line could be supplemented or replaced by a low-pressure flue gas recirculation line, commonly known as EGR-LP line according to the English acronym of "Exhaust Gas Recirculation - Low Pressure"". This line EGR-LP would then be born in the exhaust line, at the exit of the catalytic converter, and lead into the intake line, between the air filter and the compressor. The internal combustion engine 1 also comprises a fuel injection line 60 in the cylinders 11. This injection line 60 comprises an injection pump 62 arranged to collect the fuel in a reservoir 61 in order to bring it under pressure into a distribution rail 63 which opens into the cylinders 11 via four injectors 64.
Le moteur Ć  combustion interne 1 comporte en outre un circuit de refroidissement primaire (non reprĆ©sentĆ©), qui traverse notamment le bloc- moteur 10 et le refroidisseur d'air principal 23 et dans lequel circule un liquide de refroidissement. Ā The internal combustion engine 1 further comprises a primary cooling circuit (not shown), which in particular passes through the engine block 10 and the main air cooler 23 and in which circulates a cooling liquid.
Le moteur Ć  combustion interne 1 comporte Ć©galement un circuit de refroidissement secondaire 30, qui pourrait Ć©ventuellement ĆŖtre confondu avec le circuit de refroidissement primaire, et qui comporte un Ć©changeur thermique 31 prĆ©vu pour refroidir les gaz EGR circulant dans la ligne EGR-HP 40 (ou, en variante, dans la ligne EGR-LP), de maniĆØre Ć  rĆ©duire au mieux la tempĆ©rature des gaz dans le rĆ©partiteur d'air 25 afin d'assurer au moteur Ć  combustion interne 1 de meilleures performances. Ā The internal combustion engine 1 also comprises a secondary cooling circuit 30, which could possibly be confused with the primary cooling circuit, and which comprises a heat exchanger 31 provided for cooling the EGR gases flowing in the line EGR-HP 40 (or alternatively, in line EGR-LP), so as to best reduce the temperature of the gases in the air distributor 25 to provide the internal combustion engine 1 better performance.
Comme le montrent les figures 2 et 4, l'Ć©changeur thermique 31 , ici appelĆ© refroidisseur EGR 31 , est positionnĆ© sur la ligne EGR-HP 40 pour refroidir les gaz EGR. Ā As shown in Figures 2 and 4, the heat exchanger 31, here called EGR cooler 31, is positioned on the line EGR-HP 40 to cool the EGR gas.
Le refroidisseur EGR 31 comprend plus prĆ©cisĆ©ment une canalisation principale 31A au travers de laquelle circulent les gaz EGR, et une canalisation secondaire 31 B au travers de laquelle circule un liquide de refroidissement. Ā The EGR cooler 31 more specifically comprises a main pipe 31A through which the EGR gas flows, and a secondary pipe 31 B through which circulates a cooling liquid.
La canalisation principale 31 A est connectĆ©e, d'un cĆ“tĆ©, Ć  la ligne d'Ć©chappement 80 via un conduit amont 42 de la ligne EGR-HP 40, et, de l'autre, Ć  la vanne EGR-HP 41 via un conduit aval 43 de la ligne EGR-HP 40. Ā The main line 31 A is connected, on one side, to the exhaust line 80 via an upstream line 42 of the EGR-HP line 40, and, on the other hand, to the EGR-HP valve 41 via a conduit downstream 43 of the line EGR-HP 40.
La canalisation secondaire 31 B est quant Ć  elle connectĆ©e au reste du circuit de refroidissement secondaire 30, d'un cĆ“tĆ©, par un conduit amont 33, et, de l'autre, par un conduit aval 34. Ā The secondary pipe 31 B is connected to the remainder of the secondary cooling circuit 30, on one side, by an upstream pipe 33, and on the other by a downstream pipe 34.
Le circuit de refroidissement secondaire 30 comprend par ailleurs une vanne de rĆ©gulation 35 du dĆ©bit de liquide de refroidissement. Cette vanne de rĆ©gulation 35 est ici agencĆ©e sur le conduit amont 33 du circuit de refroidissement secondaire 30. En variante, elle pourrait bien entendu ĆŖtre agencĆ©e ailleurs, par exemple sur le conduit aval. The secondary cooling circuit 30 further comprises a control valve 35 of the coolant flow. This control valve 35 is here arranged on the upstream duct 33 of the secondary cooling circuit 30. In a variant, it could of course be arranged elsewhere, for example on the downstream duct.
La vanne de rĆ©gulation 35 est adaptĆ©e Ć  ĆŖtre pilotĆ©e dans l'une ou l'autre d'au moins trois positions stables, dont : Ā The control valve 35 is adapted to be driven in one or the other of at least three stable positions, of which:
- une position extrĆŖme de fermeture dans laquelle elle obture totalement le conduit amont 33, de sorte que le dĆ©bit du liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30 est nul, Ā an extreme closing position in which it completely closes the upstream duct 33, so that the flow rate of the cooling liquid circulating in the secondary cooling circuit 30 is zero,
- une position extrĆŖme d'ouverture dans laquelle elle libĆØre totalement le conduit amont 33, de sorte que le dĆ©bit du liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30 est maximal, et Ā an extreme opening position in which it completely releases the upstream duct 33, so that the flow rate of the coolant circulating in the secondary cooling circuit 30 is maximum, and
- au moins une position intermĆ©diaire dans laquelle elle obture partiellement le conduit amont 33, de sorte que le dĆ©bit du liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30 est non nul et est strictement infĆ©rieur au dĆ©bit maximal. Ā at least one intermediate position in which it partially closes the upstream duct 33, so that the flow rate of the cooling liquid circulating in the secondary cooling circuit 30 is non-zero and is strictly less than the maximum flow rate.
La vanne de rĆ©gulation 35 est ici un volet papillon, mais il pourrait bien entendu en ĆŖtre autrement. Ā The control valve 35 is here a butterfly flap, but it could of course be otherwise.
Classiquement, la circulation du liquide de refroidissement dans ce circuit de refroidissement secondaire 30 est assurĆ©e par une pompe de mise en pression (non reprĆ©sentĆ©e). Le liquide de refroidissement utilisĆ© ici est un mĆ©lange d'eau et de glycol. Ā Conventionally, the circulation of the coolant in this secondary cooling circuit 30 is provided by a pressurizing pump (not shown). The coolant used here is a mixture of water and glycol.
Comme le montre la figure 1 , pour piloter les diffĆ©rents organes du moteur Ć  combustion interne 1 , il est prĆ©vu un calculateur 100 comportant un processeur (CPU), une mĆ©moire vive (RAM), une mĆ©moire morte (ROM), des convertisseurs analogiques-numĆ©riques (A D) et des interfaces d'entrĆ©e et de sortie. Ā As shown in FIG. 1, to control the various members of the internal combustion engine 1, there is provided a computer 100 comprising a processor (CPU), a random access memory (RAM), a read only memory (ROM), analog converters digital (AD) and input and output interfaces.
GrĆ¢ce Ć  ses interfaces d'entrĆ©e, le calculateur 100 est adaptĆ© Ć  recevoir de diffĆ©rents capteurs des signaux d'entrĆ©e relatifs au fonctionnement du moteur et aux conditions climatiques. Ā Thanks to its input interfaces, the computer 100 is adapted to receive different sensors input signals relating to engine operation and climatic conditions.
Parmi ces capteurs, il est notamment prĆ©vu une premiĆØre sonde de tempĆ©rature 101 qui permet de mesurer la tempĆ©rature To instantanĆ©e du liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30. Among these sensors, there is in particular a first temperature probe 101 which makes it possible to measure the instantaneous temperature T 0 of coolant circulating in the secondary cooling circuit 30.
Dans le premier mode de rĆ©alisation du moteur Ć  combustion interne 1 reprĆ©sentĆ© sur la figure 2, cette premiĆØre sonde de tempĆ©rature 101 est situĆ©e dans le conduit aval 34. Dans ce mode de rĆ©alisation, il est par ailleurs prĆ©vu une seconde sonde de tempĆ©rature 102 pour mesurer la tempĆ©rature ambiante Ta, c'est-Ć -dire la tempĆ©rature Ć  l'extĆ©rieur du vĆ©hicule Ć©quipĆ© du moteur Ć  combustion interne 1 . Ā In the first embodiment of the internal combustion engine 1 shown in FIG. 2, this first temperature probe 101 is located in the downstream duct 34. In this embodiment, a second temperature probe 102 is also provided for measure the ambient temperature Ta, that is to say the temperature outside the vehicle equipped with the internal combustion engine 1.
Dans le second mode de rĆ©alisation du moteur Ć  combustion interne 1 reprĆ©sentĆ© sur la figure 4, la premiĆØre sonde de tempĆ©rature 101 est situĆ©e dans le conduit amont 33. Ā In the second embodiment of the internal combustion engine 1 shown in FIG. 4, the first temperature probe 101 is located in the upstream duct 33.
Dans ces deux modes de rĆ©alisation, la premiĆØre sonde de tempĆ©rature sera donc positionnĆ©e Ć  distance du refroidisseur EGR 31 , de prĆ©fĆ©rence Ć  10cm de celui-ci, de maniĆØre Ć  ce que les mesures ne soient pas perturbĆ©es par le refroidisseur EGR 31 . Ā In these two embodiments, the first temperature probe will therefore be positioned at a distance from the EGR cooler 31, preferably at 10 cm from the latter, so that the measurements are not disturbed by the EGR cooler 31.
Selon une variante non reprĆ©sentĆ©e, on pourrait toutefois prĆ©voir que la premiĆØre sonde de tempĆ©rature soit situĆ©e Ć  l'intĆ©rieur du refroidisseur EGR lui-mĆŖme. Ā According to a variant not shown, it could however be provided that the first temperature sensor is located inside the EGR cooler itself.
GrĆ¢ce Ć  ces sondes de tempĆ©rature et Ć  diffĆ©rents autres capteurs, le calculateur 100 mĆ©morise ainsi en continu dans sa mĆ©moire vive : Ā Thanks to these temperature probes and to various other sensors, the computer 100 thus stores continuously in its random access memory:
- la charge C instantanĆ©e du moteur Ć  combustion interne 1 ,Ā the instantaneous charge C of the internal combustion engine 1,
- le rƩgime R instantanƩ du moteur Ơ combustion interne 1 , the instantaneous R speed of the internal combustion engine 1,
- la tempĆ©rature To du liquide de refroidissement, Ā the temperature To of the coolant,
- la tempĆ©rature ambiante Ta (dans le premier mode de rĆ©alisation), et - le dĆ©bit de carburant injectĆ© dans les cylindres 1 1 . Ā the ambient temperature Ta (in the first embodiment), and the fuel flow injected into the cylinders 11.
La charge C (Ć©galement appelĆ©e Ā« charge-moteur Ā») correspond au rapport du travail fourni par le moteur sur le travail maximal que pourrait dĆ©velopper ce moteur Ć  un rĆ©gime donnĆ©. Elle est gĆ©nĆ©ralement approximĆ©e Ć  l'aide d'une variable appelĆ©e pression moyenne effective PME. Ā The load C (also called "engine load") corresponds to the ratio of the work supplied by the engine to the maximum work that could develop this engine at a given speed. It is usually approximated using a variable called effective average pressure SME.
Le rĆ©gime R correspond Ć  la vitesse de rotation du vilebrequin, exprimĆ©e en tours par minute. GrĆ¢ce Ć  une cartographie prĆ©dĆ©terminĆ©e sur banc d'essais et mĆ©morisĆ©e dans sa mĆ©moire morte (ROM), le calculateur 100 est adaptĆ© Ć  gĆ©nĆ©rer, pour chaque condition de fonctionnement du moteur, des signaux de sortie. The R speed corresponds to the speed of rotation of the crankshaft, expressed in revolutions per minute. Thanks to a predetermined mapping on test bench and stored in its read-only memory (ROM), the computer 100 is adapted to generate, for each operating condition of the engine, output signals.
Enfin, grĆ¢ce Ć  ses interfaces de sortie, le calculateur 100 est adaptĆ© Ć  transmettre ces signaux de sortie aux diffĆ©rents organes du moteur, notamment Ć  la vanne de rĆ©gulation 35. Ā Finally, thanks to its output interfaces, the computer 100 is adapted to transmit these output signals to the various components of the engine, in particular to the control valve 35.
Classiquement, lorsque le conducteur du vĆ©hicule automobile met le contact, le calculateur 100 s'initialise puis commande le dĆ©marreur et les injecteurs de carburant 64 pour que ceux-ci dĆ©marrent le moteur Ć  combustion interne 1 . Ā Conventionally, when the driver of the motor vehicle puts the ignition, the computer 100 is initialized then controls the starter and the fuel injectors 64 for them to start the internal combustion engine 1.
Lorsque le moteur est dĆ©marrĆ©, l'air frais prĆ©levĆ© dans l'atmosphĆØre par la ligne d'admission 20 est filtrĆ© par le filtre Ć  air 21 , comprimĆ© par le compresseur 22, refroidi par le refroidisseur d'air principal 23, puis brĆ»lĆ© dans les cylindres 1 1 . Ā When the engine is started, the fresh air taken from the atmosphere through the intake line 20 is filtered by the air filter 21, compressed by the compressor 22, cooled by the main air cooler 23, and then burned in the cylinders 1 1.
A leur sortie des cylindres 1 1 , les gaz brĆ»lĆ©s sont dĆ©tendus dans la turbine 82, traitĆ©s et filtrĆ©s dans le pot catalytique 83, puis dĆ©tendus Ć  nouveau dans le silencieux d'Ć©chappement 84 avant d'ĆŖtre rejetĆ©s dans l'atmosphĆØre. Ā On leaving the rolls 1 1, the flue gases are expanded in the turbine 82, treated and filtered in the catalytic converter 83, then relaxed again in the exhaust silencer 84 before being released into the atmosphere.
Une partie de ces gaz brĆ»lĆ©s est toutefois prĆ©levĆ©e par la ligne EGR- HP 40 pour ĆŖtre rĆ©injectĆ©e dans la ligne d'admission 20. Ces gaz EGR sont alors prĆ©alablement refroidis dans le refroidisseur EGR 31 . Ā Part of these burnt gases is, however, taken by line EGR-HP 40 to be reinjected into the inlet line 20. These EGR gases are then previously cooled in the EGR cooler 31.
Le calculateur 100 pilote Ć  cet effet la vanne de rĆ©gulation 35 du dĆ©bit de liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30, de maniĆØre que ces gaz EGR soient refroidis Ć  la tempĆ©rature souhaitĆ©e. Ā The computer 100 for this purpose controls the control valve 35 of the coolant flow circulating in the secondary cooling circuit 30, so that these EGR gases are cooled to the desired temperature.
Ainsi, par exemple, au dĆ©marrage du moteur, lorsque la tempĆ©rature ambiante Ta est faible, cette vanne de rĆ©gulation 35 est pilotĆ©e en position extrĆŖme de fermeture (le temps que la tempĆ©rature des gaz EGR augmente) avant d'ĆŖtre progressivement ouverte. Ā Thus, for example, when the engine starts, when the ambient temperature Ta is low, this control valve 35 is controlled in extreme closed position (the time that the temperature of the EGR gas increases) before being gradually opened.
Selon une caractĆ©ristique particuliĆØrement avantageuse de l'invention, le calculateur 100 est adaptĆ© Ć  mettre en œuvre un procĆ©dĆ© de pilotage de la vanne de rĆ©gulation 35 qui comprend les trois Ć©tapes suivantes : a) acquĆ©rir la tempĆ©rature To du liquide de refroidissement, According to a particularly advantageous characteristic of the invention, the computer 100 is adapted to implement a control method of the control valve 35 which comprises the following three steps: a) acquiring the temperature To of the coolant,
b) dĆ©terminer, en fonction de la tempĆ©rature To acquise Ć  l'Ć©tape a), une consigne de pilotage C1 de la vanne de rĆ©gulation 35 dans l'une de ses positions stables, et Ā b) determining, as a function of the temperature To, acquired in step a), a control setpoint C1 of the control valve 35 in one of its stable positions, and
c) piloter la vanne de rĆ©gulation 35 selon cette consigne de pilotageĀ c) control the regulation valve 35 according to this piloting instruction
C1 . C1.
GrĆ¢ce Ć  l'invention, le dĆ©bit de liquide de refroidissement circulant dans le circuit de refroidissement secondaire 30 est rĆ©gulĆ© en fonction de la tempĆ©rature To du liquide de refroidissement (et non en fonction de la tempĆ©rature des gaz EGR), ce qui Ć©vite notamment tout risque d'Ć©bullition ou de changement de tempĆ©rature brusque du liquide de refroidissement, au bĆ©nĆ©fice de la longĆ©vitĆ© du refroidisseur EGR 31 . Ā Thanks to the invention, the coolant flow circulating in the secondary cooling circuit 30 is regulated as a function of the temperature T 0 of the coolant (and not as a function of the temperature of the EGR gases), which in particular avoids any risk of boiling or sudden change of coolant temperature, in favor of the longevity of the EGR cooler 31.
On notera ici que plus le nombre de positions stables (dans lesquelles la vanne de rĆ©gulation 35 pourra ĆŖtre pilotĆ©) sera grand, plus la rĆ©gulation de la tempĆ©rature des gaz EGR pourra ĆŖtre affinĆ©e, ce qui rĆ©duira en consĆ©quence l'encrassement de la ligne EGR-HP 40, notamment lorsque la tempĆ©rature ambiante Ta est faible. Ā It will be noted here that the greater the number of stable positions (in which the regulation valve 35 can be controlled) will be greater, the more the regulation of the temperature of the EGR gases can be refined, which will consequently reduce the fouling of the EGR line. -HP 40, especially when the ambient temperature Ta is low.
Ainsi, si le nombre minimal de positions stables est de trois, on prĆ©voira de prĆ©fĆ©rence que la vanne de rĆ©gulation 35 puisse prĆ©senter au moins cinq positions stables. On pourra bien entendu prĆ©voir qu'elle puisse prĆ©senter plus de 10 positions stables. Ā Thus, if the minimum number of stable positions is three, it will preferably be provided that the control valve 35 may have at least five stable positions. It can of course be expected that it can have more than 10 stable positions.
Dans l'exemple qui sera exposĆ© dans la suite de cet exposĆ©, la vanne de rĆ©gulation 35 pourra prendre une infinitĆ© de positions stables. Ā In the example which will be explained in the rest of this discussion, the control valve 35 can take an infinity of stable positions.
Le pilotage de la vanne de rĆ©gulation 35 ne sera pas mis en œuvre exactement de la mĆŖme maniĆØre selon que le moteur Ć  combustion interne est du type de celui dĆ©crit en rĆ©fĆ©rence Ć  la figure 2 ou de celui dĆ©crit en rĆ©fĆ©rence Ć  la figure 3. Ā Control of the control valve 35 will not be implemented in exactly the same way, depending on whether the internal combustion engine is of the type described with reference to FIG. 2 or that described with reference to FIG.
Ainsi, lorsque le moteur Ć  combustion interne 1 sera du type de celui reprĆ©sentĆ© sur la figure 2, le procĆ©dĆ© de pilotage de la vanne de rĆ©gulation 35 sera mis en œuvre de la maniĆØre reprĆ©sentĆ©e sur l'ordinogramme de la figure 3. Plus prĆ©cisĆ©ment, aprĆØs le dĆ©marrage du moteur Ć  combustion interne (opĆ©ration 71 ), l'initialisation du calculateur 100 et le dĆ©but de la circulation du liquide de refroidissement dans le circuit de refroidissement secondaire 30 (opĆ©ration 72), le calculateur 100 met en œuvre l'algorithme suivant. Thus, when the internal combustion engine 1 is of the type shown in FIG. 2, the control method of the control valve 35 will be implemented as shown in the flowchart of FIG. 3. More specifically, after the start of the internal combustion engine (operation 71), the initialization of the computer 100 and the start of the circulation of the coolant in the secondary cooling circuit 30 (operation 72), the computer 100 implements the following algorithm.
Le calculateur 100 vĆ©rifie tout d'abord si un arrĆŖt du moteur Ć  combustion interne 1 est requis (opĆ©ration 73). Ā The computer 100 first checks whether a stopping of the internal combustion engine 1 is required (operation 73).
Si une commande d'arrĆŖt du moteur Ć  combustion interne 1 est dĆ©tectĆ©e, le calculateur 100 pilote l'arrĆŖt de la pompe de mise en pression du liquide de refroidissement (opĆ©ration 74) puis l'arrĆŖt de l'injection de carburant dans les cylindres 1 1 (opĆ©ration 75). Ā If a stop command of the internal combustion engine 1 is detected, the computer 100 controls the stopping of the coolant pressurizing pump (operation 74) and the stopping of the injection of fuel into the cylinders 1 1 (operation 75).
Dans le cas contraire, le calculateur 100 acquiert la tempĆ©rature To du liquide de refroidissement en aval du refroidisseur EGR 31 (opĆ©ration 76) ainsi que la tempĆ©rature ambiante Ta (opĆ©ration 77). Ā In the opposite case, the computer 100 acquires the temperature To of the coolant downstream of the cooler EGR 31 (operation 76) as well as the ambient temperature Ta (operation 77).
Le calculateur 100 calcule alors une tempĆ©rature cible Te de liquide de refroidissement en fonction au moins de la tempĆ©rature ambiante Ta mesurĆ©e (opĆ©ration 78). Cette tempĆ©rature cible Te correspond Ć  la tempĆ©rature optimale du liquide de refroidissement, assurant un encrassement rĆ©duit de la ligne EGR-HP 40. Ā The calculator 100 then calculates a target temperature Tc of coolant as a function of at least ambient temperature Ta measured (operation 78). This target temperature Te corresponds to the optimum temperature of the coolant, ensuring a reduced fouling of the EGR-HP line 40.
Le calcul de cette tempĆ©rature cible Te est rĆ©alisĆ© Ć  l'aide d'une formule mathĆ©matique ou d'une cartographie mĆ©morisĆ©e dans la mĆ©moire morte (ROM) du calculateur 100 (cette cartographie faisant correspondre, Ć  chaque tempĆ©rature ambiante Ta, une tempĆ©rature cible Te). Ā The calculation of this target temperature Te is carried out using a mathematical formula or a map stored in the read-only memory (ROM) of the computer 100 (this map corresponding, at each ambient temperature Ta, a target temperature Te ).
En variante, on pourrait utiliser des paramĆØtres supplĆ©mentaires pour calculer cette tempĆ©rature cible Te, par exemple la charge C instantanĆ©e du moteur Ć  combustion interne 1 et/ou le rĆ©gime R instantanĆ© du moteur Ć  combustion interne 1 , et/ou le dĆ©bit de carburant injectĆ© dans les cylindres 1 1 . Ā As a variant, it would be possible to use additional parameters for calculating this target temperature Te, for example the instantaneous load C of the internal combustion engine 1 and / or the instantaneous R speed of the internal combustion engine 1, and / or the injected fuel flow rate. in the cylinders 1 1.
Le calculateur 100 compare ensuite la tempĆ©rature To du liquide de refroidissement mesurĆ©e avec la tempĆ©rature cible Te calculĆ©e (opĆ©ration 79). Ā The computer 100 then compares the measured coolant temperature To with the calculated target temperature Te (operation 79).
Si la tempĆ©rature To du liquide de refroidissement est infĆ©rieure Ć  la tempĆ©rature cible Te, alors la vanne de rĆ©gulation 35 est pilotĆ©e Ć  l'ouverture (opĆ©ration 84), de maniĆØre Ć  augmenter le dĆ©bit de liquide de refroidissement circulant dans le refroidisseur EGR 31 . La consigne de pilotage C1 Ć©tant ici formĆ©e par l'angle d'ouverture que la vanne de rĆ©gulation 35 doit prendre (C1 Ć©tant Ć©gal Ć  zĆ©ro en position extrĆŖme de fermeture), cette consigne de pilotage C1 est calculĆ©e de la maniĆØre suivante (opĆ©ration 83) : If the temperature To of the coolant is lower than the target temperature Te, then the control valve 35 is controlled at the opening (operation 84), so as to increase the flow of coolant circulating in the EGR cooler 31. The control set point C1 being here formed by the opening angle that the control valve 35 must take (C1 being equal to zero in the extreme closed position), this control setpoint C1 is calculated in the following manner (operation 83). ):
C1 (t + At) = C1 (t) + k*AC1 , dans laquelle : C1 (t + At) = C1 (t) + k * AC1, in which:
- 1 est le temps, Ā - 1 is the time,
- k est une constante prĆ©dĆ©terminĆ©e enregistrĆ©e dans la mĆ©moire morte (ROM) du calculateur 100, Ā k is a predetermined constant stored in the read-only memory (ROM) of the computer 100,
- At est une diffĆ©rence de temps (en l'occurrence le pas de temps entre deux calculs successifs de la consigne de pilotage C1 ), et Ā At is a time difference (in this case the time step between two successive calculations of the control setpoint C1), and
- AC1 = C1 (t) - C1 (t - At). Ā - AC1 = C1 (t) - C1 (t - At).
Au contraire, si la tempĆ©rature To du liquide de refroidissement est supĆ©rieure ou Ć©gale Ć  la tempĆ©rature cible Te, alors la vanne de rĆ©gulation 35 est pilotĆ©e Ć  la fermeture (opĆ©ration 82), de maniĆØre Ć  rĆ©duire le dĆ©bit de liquide de refroidissement circulant dans le refroidisseur EGR 31 . Ā On the other hand, if the temperature T 0 of the coolant is greater than or equal to the target temperature Te, then the regulation valve 35 is controlled on closing (operation 82), so as to reduce the flow rate of coolant circulating in the EGR cooler 31.
La consigne de pilotage C1 est alors calculĆ©e de la maniĆØre suivante (opĆ©ration 81 ) : Ā The control setpoint C1 is then calculated in the following manner (operation 81):
C1 (t + At) = C1 (t) - k*AC1 . C1 (t + At) = C1 (t) - k * AC1.
Cette consigne de pilotage C1 est ensuite transmise Ć  la vanne de rĆ©gulation 35, qui s'ouvre ou se ferme en consĆ©quence (opĆ©rations 82 ou 84). Ā This control setpoint C1 is then transmitted to the control valve 35, which opens or closes accordingly (operations 82 or 84).
Puis, le calculateur 100 revient au dĆ©but de la boucle (opĆ©ration 73). Lorsque le moteur Ć  combustion interne 1 est du type de celui reprĆ©sentĆ© sur la figure 4, le procĆ©dĆ© de pilotage de la vanne de rĆ©gulation 35 est mis en œuvre de la maniĆØre reprĆ©sentĆ©e sur l'organigramme de la figure 5. Ā Then, the computer 100 returns to the beginning of the loop (operation 73). When the internal combustion engine 1 is of the type shown in FIG. 4, the control method of the control valve 35 is implemented as shown in the flowchart of FIG. 5.
Plus prĆ©cisĆ©ment, aprĆØs le dĆ©marrage du moteur Ć  combustion interneĀ Specifically, after starting the internal combustion engine
(opĆ©ration 71 ), l'initialisation du calculateur 100 et le dĆ©but de la circulation du liquide de refroidissement dans le circuit de refroidissement secondaire 30 (opĆ©ration 72), le calculateur 100 met en œuvre l'algorithme suivant. (Operation 71), the initialization of the computer 100 and the beginning of the circulation of the coolant in the secondary cooling circuit 30 (operation 72), the computer 100 implements the following algorithm.
Le calculateur 100 vĆ©rifie tout d'abord si un arrĆŖt du moteur Ć  combustion interne 1 est requis (opĆ©ration 73). Ā The computer 100 first checks whether a stopping of the internal combustion engine 1 is required (operation 73).
Si une commande d'arrĆŖt du moteur Ć  combustion interne 1 est dĆ©tectĆ©e, le calculateur 100 pilote l'arrĆŖt de la pompe de mise en pression du liquide de refroidissement (opĆ©ration 74) puis l'arrĆŖt de l'injection de carburant dans les cylindres 1 1 (opĆ©ration 75). If a stop command of the internal combustion engine 1 is detected, the computer 100 controls the stopping of the pressurizing pump of the cooling liquid (operation 74) and stopping the injection of fuel into the cylinders 11 (operation 75).
Dans le cas contraire, le calculateur 100 acquiert la tempĆ©rature To du liquide de refroidissement en amont du refroidisseur EGR 31 (opĆ©ration 76). On notera ici, qu'il n'est pas prĆ©vu d'acquĆ©rir la tempĆ©rature ambiante. Ā In the opposite case, the computer 100 acquires the temperature To of the coolant upstream of the cooler EGR 31 (operation 76). It should be noted here that it is not intended to acquire the ambient temperature.
Le calculateur 100 dĆ©termine alors directement la consigne de pilotage C1 , en lisant sa valeur dans une cartographie mĆ©morisĆ©e dans la mĆ©moire morte (ROM) du calculateur 100 (opĆ©rations 85 et 86). Ā The computer 100 then directly determines the control setpoint C1, reading its value in a map stored in the read-only memory (ROM) of the computer 100 (operations 85 and 86).
Cette cartographie fait Ć  cet effet correspondre, Ć  chaque tempĆ©rature To, une consigne de pilotage C1 . Ā For this purpose, this mapping corresponds, at each temperature To, to a control setpoint C1.
Enfin, cette consigne de pilotage C1 est transmise Ć  la vanne de rĆ©gulation 35, qui s'ouvre ou se ferme en consĆ©quence (opĆ©ration 87). Ā Finally, this control setpoint C1 is transmitted to the control valve 35, which opens or closes accordingly (operation 87).
Puis, le calculateur 100 revient au dĆ©but de la boucle (opĆ©ration 73).Ā Then, the computer 100 returns to the beginning of the loop (operation 73).
La prƩsente invention n'est nullement limitƩe aux modes de rƩalisation dƩcrits et reprƩsentƩs, mais l'homme du mƩtier saura y apporter toute variante conforme Ơ son esprit. The present invention is not limited to the embodiments described and shown, but the skilled person will be able to make any variant within his mind.
On pourra par exemple prĆ©voir de piloter la vanne de rĆ©gulation du dĆ©bit de liquide de refroidissement autrement, notamment lorsque la sonde de tempĆ©rature sera situĆ©e dans le refroidisseur EGR ou en aval du refroidisseur EGR. Ā For example, it will be possible to control the valve for regulating the coolant flow otherwise, especially when the temperature probe is located in the EGR cooler or downstream of the EGR cooler.
Dans cette variante, on pourra prĆ©voir d'Ć©valuer, en fonction de la tempĆ©rature mesurĆ©e et Ć©ventuellement d'autres paramĆØtres (par exemple le dĆ©bit et la tempĆ©rature des gaz EGR), une tempĆ©rature estimĆ©e du liquide de refroidissement en amont du refroidisseur EGR. On pourra alors dĆ©duire de cette tempĆ©rature estimĆ©e une consigne de pilotage de la vanne de rĆ©gulation, comme cela a Ć©tĆ© exposĆ© en rĆ©fĆ©rence aux figures 4 et 5. Ā In this variant, it will be possible to evaluate, as a function of the measured temperature and possibly other parameters (for example the flow rate and the temperature of the EGR gases), an estimated temperature of the coolant upstream of the EGR cooler. It will then be possible to deduce from this estimated temperature a control setpoint for the control valve, as has been explained with reference to FIGS. 4 and 5.
Dans cette variante, le dĆ©bit et la tempĆ©rature des gaz EGR pourront ĆŖtre mesurĆ©s ou calculĆ©s en fonction du rĆ©gime et du couple moteur. Ā In this variant, the flow rate and the temperature of the EGR gases can be measured or calculated as a function of engine speed and torque.

Claims

REVENDICATIONS
1 . ProcƩdƩ de pilotage d'une vanne de rƩgulation (35) d'un dƩbit de liquide de refroidissement circulant dans un circuit de refroidissement (30) d'une ligne de recirculation (20) d'un moteur Ơ combustion interne (100 ; 200), caractƩrisƩ en ce qu'il comprend des Ʃtapes consistant Ơ : 1. Method for controlling a control valve (35) of a coolant flow circulating in a cooling circuit (30) of a recirculation line (20) of an internal combustion engine (100; 200) characterized by comprising steps of:
a) acquĆ©rir la tempĆ©rature (To) dudit liquide de refroidissement, b) dĆ©terminer, en fonction de la tempĆ©rature (To) acquise Ć  l'Ć©tape a), une consigne de pilotage (C1 ) de ladite vanne de rĆ©gulation (35) dans une position stable choisie parmi au moins trois positions stables, et Ā a) acquiring the temperature (To) of said coolant, b) determining, as a function of the temperature (To) acquired in step a), a control setpoint (C1) of said control valve (35) in a stable position selected from at least three stable positions, and
c) piloter la vanne de rĆ©gulation (35) selon la consigne de pilotage (C1 ) dĆ©terminĆ©e Ć  l'Ć©tape b). Ā c) control the control valve (35) according to the control setpoint (C1) determined in step b).
2. ProcĆ©dĆ© de pilotage selon la revendication 1 , dans lequel, le circuit de refroidissement comportant un Ć©changeur thermique positionnĆ© sur la ligne de recirculation, Ć  l'Ć©tape a), on mesure la tempĆ©rature du liquide de refroidissement dans ledit Ć©changeur thermique. Ā 2. The driving method according to claim 1, wherein, the cooling circuit comprising a heat exchanger positioned on the recirculation line, in step a), the temperature of the coolant is measured in said heat exchanger.
3. ProcĆ©dĆ© de pilotage selon la revendication 1 , dans lequel, le circuit de refroidissement (30) comportant un Ć©changeur thermique (31 ) positionnĆ© sur la ligne de recirculation (20), Ć  l'Ć©tape a), on mesure la tempĆ©rature (To) du liquide de refroidissement Ć  distance dudit Ć©changeur thermique (31 ). Ā 3. Control method according to claim 1, wherein, the cooling circuit (30) comprising a heat exchanger (31) positioned on the recirculation line (20), in step a), the temperature is measured (To ) coolant remote from said heat exchanger (31).
4. ProcĆ©dĆ© de pilotage selon la revendication 3, dans lequel Ć  l'Ć©tape a), on mesure la tempĆ©rature (To) du liquide de refroidissement en aval dudit Ć©changeur thermique (31 ). Ā 4. Control method according to claim 3, wherein in step a), the temperature (To) of the coolant downstream of said heat exchanger (31) is measured.
5. ProcĆ©dĆ© de pilotage selon la revendication 4, dans lequel, Ć  l'Ć©tape b), on mesure la tempĆ©rature ambiante (Ta), on en dĆ©duit une tempĆ©rature cibleĀ 5. Control method according to claim 4, wherein, in step b), the ambient temperature (Ta) is measured, a target temperature is deduced therefrom.
(Te) de liquide de refroidissement et on Ʃlabore la consigne de pilotage (C1 ) en fonction de la tempƩrature (To) du liquide de refroidissement mesurƩe et de la tempƩrature cible (Te). (Te) coolant and the control setpoint (C1) is developed as a function of the temperature (To) of the measured coolant and the target temperature (Te).
6. ProcĆ©dĆ© de pilotage selon l'une des revendications 2 ou 4, dans lequel, Ć  l'Ć©tape b) : Ā 6. Driving method according to one of claims 2 or 4, wherein, in step b):
- on estime une valeur de tempƩrature du liquide de refroidissement en amont dudit Ʃchangeur thermique en fonction de la tempƩrature mesurƩe de liquide de refroidissement, d'un dƩbit de gaz brƻlƩs dans ladite ligne de recirculation et d'une tempƩrature de gaz brƻlƩs dans ladite ligne de recirculation, puis a coolant temperature value is estimated upstream of said heat exchanger as a function of the measured coolant temperature, a burned gas flow rate in said cooling line; recirculation and a temperature of burnt gas in said recirculation line, then
- on dĆ©termine ladite consigne de pilotage au moyen d'une cartographie qui associe, Ć  chaque valeur de tempĆ©rature de liquide de refroidissement estimĆ©e, une consigne de pilotage. Ā said control setpoint is determined by means of a map which associates, with each estimated coolant temperature value, a control setpoint.
7. ProcĆ©dĆ© de pilotage selon la revendication 3, dans lequel, Ć  l'Ć©tape a), on mesure la tempĆ©rature du liquide de refroidissement en amont dudit Ć©changeur thermique (31 ). Ā 7. Control method according to claim 3, wherein in step a), the temperature of the coolant is measured upstream of said heat exchanger (31).
8. ProcĆ©dĆ© de pilotage selon la revendication 7, dans lequel, Ć  l'Ć©tape b), on dĆ©termine ladite consigne de pilotage (C1 ) au moyen d'une cartographie qui associe, Ć  chaque valeur de tempĆ©rature (To) de liquide de refroidissement mesurĆ©e, une consigne de pilotage (C1 ). Ā 8. Control method according to claim 7, wherein, in step b), said control setpoint (C1) is determined by means of a map which associates, at each temperature value (To) coolant measured, a control setpoint (C1).
9. Circuit de refroidissement (30) des gaz brĆ»lĆ©s circulant dans une ligne de recirculation (20) d'un moteur Ć  combustion interne (100 ; 200), comprenant : Ā 9. A cooling circuit (30) for the flue gases circulating in a recirculation line (20) of an internal combustion engine (100; 200), comprising:
- un Ć©changeur thermique (31 ) positionnĆ© sur ladite ligne de recirculation (20), Ā a heat exchanger (31) positioned on said recirculation line (20),
- deux conduits de circulation (33, 34) de liquide de refroidissement raccordĆ©s respectivement en entrĆ©e et en sortie dudit Ć©changeur thermique (31 ), et Ā - two circulation ducts (33, 34) of coolant respectively connected at the inlet and at the outlet of said heat exchanger (31), and
- une vanne de rĆ©gulation (35) d'un dĆ©bit de liquide de refroidissement, qui est agencĆ©e sur l'un desdits conduits de circulation (33, 34), Ā a control valve (35) for a coolant flow, which is arranged on one of said circulation ducts (33, 34),
caractĆ©risĆ© en ce qu'il comprend une unitĆ© de pilotage (40) de ladite vanne de rĆ©gulation (35), qui est adaptĆ©e Ć  mettre en œuvre un procĆ©dĆ© de pilotage selon l'une des revendications 1 Ć  8. Ā characterized in that it comprises a control unit (40) of said control valve (35), which is adapted to implement a control method according to one of claims 1 to 8.
10. Moteur Ć  combustion interne (100 ; 200) comprenant : Ā An internal combustion engine (100; 200) comprising:
- un bloc-moteur qui dĆ©finit intĆ©rieurement des cylindres, Ā - an engine block which internally defines cylinders,
- une ligne d'admission de gaz d'admission dans lesdits cylindres, - une ligne d'Ć©chappement des gaz brĆ»lĆ©s hors desdits cylindres,Ā an inlet gas intake line in said cylinders; an exhaust line for the flue gases outside said cylinders;
- une ligne de recirculation (20) des gaz brƻlƩs, qui prend naissance dans ladite ligne d'Ʃchappement et qui dƩbouche dans ladite ligne d'admission, caractƩrisƩ en ce qu'il comprend un circuit de refroidissement (30) selon la revendication 9. a recirculation line (20) for the flue gases, which originates in said exhaust line and which opens into said intake line, characterized in that it comprises a cooling circuit (30) according to claim 9.
EP14705834.1A 2013-02-15 2014-01-22 Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine Active EP2956656B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1351334A FR3002276B1 (en) 2013-02-15 2013-02-15 METHOD FOR CONTROLLING A RECIRCULATING GAS FLOW CONTROL VALVE OF AN INTERNAL COMBUSTION ENGINE
PCT/FR2014/050117 WO2014125181A1 (en) 2013-02-15 2014-01-22 Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2956656A1 true EP2956656A1 (en) 2015-12-23
EP2956656B1 EP2956656B1 (en) 2017-03-22

Family

ID=48521192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14705834.1A Active EP2956656B1 (en) 2013-02-15 2014-01-22 Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine

Country Status (3)

Country Link
EP (1) EP2956656B1 (en)
FR (1) FR3002276B1 (en)
WO (1) WO2014125181A1 (en)

Family Cites Families (3)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55131557A (en) * 1979-04-02 1980-10-13 Toyota Motor Corp Egr gas temperature controller
US8056544B2 (en) * 2008-08-27 2011-11-15 Ford Global Technologies, Llc Exhaust gas recirculation (EGR) system
KR101251526B1 (en) * 2011-06-13 2013-04-05 źø°ģ•„ģžė™ģ°Øģ£¼ģ‹ķšŒģ‚¬ Low pressure egr system and examining method for efficeincy of low egr cooler

Non-Patent Citations (1)

* Cited by examiner, ā€  Cited by third party
Title
See references of WO2014125181A1 *

Also Published As

Publication number Publication date
FR3002276B1 (en) 2016-05-27
WO2014125181A1 (en) 2014-08-21
FR3002276A1 (en) 2014-08-22
EP2956656B1 (en) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2007148007A1 (en) Exhaust gas recirculation system for a combustion engine of the supercharged diesel type and method for controlling such an engine
FR3042819A1 (en) METHOD OF ESTIMATING RECIRCULATED EXHAUST GAS FLOW THROUGH A VALVE
FR2903735A1 (en) Internal combustion engine i.e. supercharged diesel engine, controlling system for motor vehicle, has tilting unit tilting control between high and low pressure loops, and ensuring transitions between controls according to operating point
FR2921432A1 (en) Assembly i.e. exhaust gas recirculation device, function diagnosing method, involves comparing calculated difference with predetermined threshold value, diagnosing function of assembly based on comparison result
EP2956656B1 (en) Method for controlling a control valve for controlling the flow rate of a coolant for cooling the recirculated gases of an internal combustion engine
FR2880069A1 (en) Exhaust gas recycling circuit cleaning system for e.g. diesel engine, of motor vehicle, has block allowing automatic passage from one cartography to another and vice versa, as per control signals sent by carbon deposit evaluating test units
WO2010026340A1 (en) Method for determining the soot load of a particle filter
FR2923544A1 (en) Supercharged diesel internal combustion engine for motor vehicle, has control unit with calculating unit that calculates setpoint position values of valve and flaps from setpoint values of air flow and gas rates in engine
EP1650420B1 (en) System and method for regulation of the particulate filter regeneration of an internal combustion engine
EP2844858B1 (en) Method of exhaust gas aftertreatment of a supercharged combustion engine with exhaust gas recirculation
EP2262997A1 (en) System and method for diagnosing the operational condition of an exhaust gas inlet device for automobile internal combustion engine
FR2923538A3 (en) Turbine upstream pressure estimating system for supercharged oil engine of motor vehicle, has calculation units calculating expansion ratio of turbine from magnitude representing temperature variation to deduce upstream pressure of turbine
EP3353405B1 (en) Device for cooling an exhaust gas recirculation loop of a motor vehicle engine
FR2923537A1 (en) Pressure estimation system for diesel engine of motor vehicle, has calculation unit calculating pressure drop ratio of turbine from magnitude representing variation relative to temperature between inlet and outlet of turbine
FR3059719B1 (en) METHOD FOR CONTROLLING A SUPERIOR THERMAL MOTOR COMPRISING AN EXHAUST GAS RECIRCULATION CIRCUIT
EP2299094A1 (en) Method for controlling a supercharged diesel engine with low-pressure exhaust gas recirculation
FR2921122A3 (en) Intake gas temperature regulating system, has detecting unit detecting parameters representing operating state of gas treating device, and electronic control unit controlling increasing unit based on detected parameters at level of device
FR2928182A3 (en) Air flow controlling method for supercharged diesel engine of car, involves selectively activating high and low pressure recycling loops based on value of operating parameter of engine, for recycling part of exhaust gas
FR2975134A1 (en) ESTIMATING THE EGR GAS RATE IN A VEHICLE HEAT ENGINE
FR3028565A1 (en) METHOD FOR DIAGNOSING THE INHIBITION OF AN AIR FILTER EQUIPPED WITH A SUPERIOR INTERNAL COMBUSTION ENGINE
FR2858020A1 (en) Internal combustion engine controlling process for vehicle, involves regulating airflow in exchanger and bypass, such that temperature of air in collector approaches predetermined value
EP2553230A1 (en) Method of regenerating a particle filter
FR2674574A1 (en) Method and device for controlling the operation of an exhaust gas recirculation valve recycling exhaust gases into the gas intake of a motor vehicle engine
FR2955153A1 (en) METHOD FOR CONTROLLING A SHORT CIRCUIT TURBINE VALVE OF AN INTERNAL COMBUSTION ENGINE
FR3048455A1 (en) METHOD FOR DIAGNOSING AN EGR VALVE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160610

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014007833

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02M0025070000

Ipc: F02M0026280000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F01P 3/12 20060101ALI20161010BHEP

Ipc: F02M 26/28 20160101AFI20161010BHEP

INTG Intention to grant announced

Effective date: 20161110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 878049

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014007833

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170623

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 878049

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170724

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170722

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014007833

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

26N No opposition filed

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180122

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170322

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230608

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20231228 AND 20240103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 11

Ref country code: GB

Payment date: 20240123

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602014007833

Country of ref document: DE

Owner name: NEW H POWERTRAIN HOLDING, S.L.U., ES

Free format text: FORMER OWNER: RENAULT S.A.S., BOULOGNE-BILLANCOURT, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240124

Year of fee payment: 11