EP2954192B1 - Hochdruckpumpe - Google Patents

Hochdruckpumpe Download PDF

Info

Publication number
EP2954192B1
EP2954192B1 EP13815445.5A EP13815445A EP2954192B1 EP 2954192 B1 EP2954192 B1 EP 2954192B1 EP 13815445 A EP13815445 A EP 13815445A EP 2954192 B1 EP2954192 B1 EP 2954192B1
Authority
EP
European Patent Office
Prior art keywords
valve
pressure pump
recess
fuel
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13815445.5A
Other languages
English (en)
French (fr)
Other versions
EP2954192A1 (de
Inventor
Marcus Kristen
Andreas Dutt
Marco Lamm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2954192A1 publication Critical patent/EP2954192A1/de
Application granted granted Critical
Publication of EP2954192B1 publication Critical patent/EP2954192B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0001Fuel-injection apparatus with specially arranged lubricating system, e.g. by fuel oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0023Valves in the fuel supply and return system
    • F02M37/0029Pressure regulator in the low pressure fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0047Layout or arrangement of systems for feeding fuel
    • F02M37/0052Details on the fuel return circuit; Arrangement of pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves

Definitions

  • the present invention relates to a valve according to the preamble of claim 1, a high-pressure pump according to the preamble of claim 4 and a high-pressure injection system according to the preamble of claim 15.
  • a high-pressure pump continuously ensures the maintenance of the pressure in the high-pressure accumulator of the common-rail injection system.
  • the high-pressure pump can be driven, for example, by a camshaft of the internal combustion engine by means of a drive shaft.
  • Vor detailpumpen, z. B. a gear or rotary vane pump used, which are connected upstream of the high-pressure pump.
  • the prefeed pump delivers the fuel from a fuel tank through a fuel line to the high pressure pump.
  • the WO 2012/136429 A shows a high-pressure pump for conveying a fluid.
  • piston pumps are used as high-pressure pumps.
  • a drive shaft is mounted. Radially to pistons are arranged in a cylinder.
  • a roller with a roller rolling surface On the drive shaft with at least one cam is a roller with a roller rolling surface, which is mounted in a roller shoe.
  • the roller shoe is connected to the piston, so that the piston is forced to oscillate translational motion.
  • a spring applies to the roller shoe a radially directed to the drive shaft force, so that the roller is in constant contact with the drive shaft.
  • the roller stands with the roller rolling surface on a shaft rolling surface as the surface of the drive shaft with the at least one cam in contact with the drive shaft.
  • the roller is mounted by means of a sliding bearing in the roller shoe.
  • the drive shaft with the at least one cam, the roller and the roller shoe are arranged within a lubricant space of the high-pressure pump.
  • fuel delivered by the prefeed pump to the high-pressure pump is passed in order, on the one hand, to lubricate the components within the lubricant space and to cool them with the fuel conducted through the lubricant space.
  • the fuel delivered by the prefeed pump to the high-pressure pump thus comprises in volume flow on the one hand the fuel passed through the lubricant space for lubricating and cooling the components of the high-pressure pump within the lubricant space and the fuel intended for the high-pressure pump for delivery under high pressure to the high-pressure rail.
  • an overflow valve is arranged in a flow channel from the prefeed pump to the lubricating space or from the lubricating space to a fuel tank.
  • the overflow valve is disposed within a recess of a housing of the high-pressure pump.
  • a predetermined pressure z. B. 5.5 bar, opens the spill valve and thereby passes more fuel through the lubricating space and this passed through the lubricating space fuel is returned to the fuel tank.
  • z. B. below 4.5 bar closes the spill valve.
  • Such overflow valves have a valve cylinder and a closing piston on which is movably mounted on a cylinder between a closed position and an open position.
  • fuel can be introduced into the overflow valve and discharged out of the overflow valve through a drain opening.
  • the pressure of the fuel at the inlet opening and also a spring acts on the closing piston.
  • the forces under pressure from the spring and the fuel, which act on the closing piston are oppositely directed so that the closing piston moves within the cylinder at a different pressure of the fuel at the inlet opening.
  • the drain openings opening into a cylinder space enclosed by the cylinder are in the closed position of Locking piston closed. Only when the pressure at the inlet opening is increased by the fuel does the closing piston move into an open position, in which the outlet openings on the cylinder chamber are not closed by the closing piston.
  • the cylinder chamber is divided into a first cylinder part space and a second cylinder part space as a spring chamber of the closing piston.
  • the spring is arranged and opens into the spring chamber through the valve cylinder, a compensation opening.
  • the spring chamber is filled with fuel during normal operation and the compensation opening serves to allow a lifting movement of the closing piston, since during the lifting movement of the closing piston, the volume of the spring chamber is changed.
  • the compensation opening with the spring chamber also causes a damping of the lifting movement of the Sch Strukturkobens, as the displaced by the closing piston in the spring chamber fuel can flow only through the compensation opening at a reduction in the volume of the spring chamber and vice versa.
  • the spring chamber or an air filling of the lubricant chamber may be emptied. As a result, occurs after a restart of the high pressure pump to the closing piston over a longer period or constantly no damping by the fuel within the spring chamber, which can lead to oscillations of the closing piston and a resulting noise and additional mechanical loads or wear of the spill valve.
  • the DE 10 2009 026 596 A1 shows a high-pressure pump for conveying a fluid, in particular fuel, comprising a drive shaft, at least one piston, at least one cylinder for supporting the piston, wherein the at least one piston indirectly or directly on the at least one cam is supported, so that of the at least one piston a translational movement due to a rotational movement of the drive shaft is executable.
  • valve in particular overflow valve, for arrangement in a recess of a housing of a high pressure pump, comprising a valve housing with a valve cylinder, a movable within the valve cylinder between a closed position and open position closing piston, so that closed in the closed position and the valve in the open position an inlet opening for supplying a fluid within a cylinder space enclosed by the valve cylinder, at least one drain opening for discharging the fluid introduced into the cylinder space, an elastic valve element connected to the closing piston, in particular valve spring, with which a pressure force can be applied to the closing piston, which is oriented opposite to a pressure force which can be applied to the closing piston by the fluid within the cylinder space, so that the closing piston is aligned by means of the elastic valve ement and the fluid applied to the closing piston pressure force between the closed position of the open position is movable, wherein the valve housing on the outside has no fixing device, in particular no thread or no bayonet connection, for axial mounting in the recess on the housing of the
  • valve housing on the outside no fixing device, in particular no thread or no external thread is formed, for axial attachment to the housing of the high-pressure pump in the recess.
  • the axial fixation of the valve within the recess of the housing is generally carried out by the support on a first inner end and / or a second outer end of the valve and / or by the support on a sealing ring on a sealing groove on the valve and / or the support on a groove, in particular a sealing groove, on the outside of the valve housing, wherein the support of the valve or valve housing takes place on the housing of the high-pressure pump.
  • Notwithstanding this may be formed on the valve housing on the outside an annular projection for axial support and attachment of the valve to the housing of the high-pressure pump.
  • the cylinder chamber is divided by the closing piston into a first cylinder subspace and a second cylinder subspace, and the inlet port and the at least one drain port open into the first cylinder subspace and the elastic valve element is disposed within the second cylinder subspace as a spring chamber and opens into the second cylinder subspace a compensation opening, in particular radially, through the valve housing.
  • a sealing groove and / or a sealing ring in particular on the outside, is formed and / or arranged on the valve housing in the direction of a longitudinal axis of the valve only between the inlet opening and the at least one drain opening. Outside of the valve between the inlet opening and the at least one drain opening can thus flow around the outside of the fluid from the valve in an arrangement in the recess of the housing.
  • Inventive high-pressure pump for conveying fuel for.
  • As diesel or gasoline comprising a housing, a drive shaft with at least one cam, at least one piston for conveying fuel, at least one cylinder for supporting the at least one piston, wherein the at least one piston indirectly on the drive shaft with the at least one cam is supported, so that from the at least one piston is a translational movement due to a rotational movement of the drive shaft executable, a lubricating space, formed in the housing recess for arranging a spill valve, an arranged within the recess overflow valve with an inlet opening and at least one drain opening, wherein the recess a first inner end and a second outer end and the second outer end of the recess for passing fuel through the lubricating space, and preferably for discharging fuel from the recess serves as a flow channel.
  • the fuel can be passed through the second outer end of the recess, so that advantageously flows through a gap between the valve housing and the housing of the high-pressure pump, starting from the at least one drain opening in the direction of the second outer end of the spill valve of the fuel is and therefore also very easy air in this space by means of passing fuel through the gap can be easily removed at the second outer end by the supply of fuel.
  • a recess inlet channel opens into the recess and the inlet opening of the overflow valve has a smaller distance in the direction of a longitudinal axis of the recess to a mouth of the recess inlet channel into the recess than the at least one drain opening of the overflow valve and / or the recess is as a bore educated.
  • Fuel can be introduced into the recess through the recess inlet channel, and from a section of the recess, starting with the first inner end to the inlet opening of the overflow valve, the fuel can thus be introduced from the recess inlet channel through the recess into the inlet opening of the overflow valve.
  • a sealing ring is formed between the housing of the high-pressure pump and the overflow valve, and preferably the sealing ring is aligned in the direction of the longitudinal axis of the recess between the inlet opening and the at least one drain opening.
  • the sealing ring divides the recess into a first partial recess from the first inner end of the recess to the sealing ring and a second partial recess from the sealing ring to the second outer end of the recess.
  • the first and second part of the recess are separated fluid-tight with the sealing ring and fuel can be passed from the first part of the recess to the second part recess only by opening the spill valve.
  • connection in the region of the second outer end of the recess, a connection, in particular a return connection, is arranged with a connection channel within the recess, and the connection channel serves for the passage of fuel.
  • an outer axial end of the overflow valve rests on the neck, so that the overflow valve is thereby secured in the recess in the axial direction.
  • the second outer end of the overflow valve, in particular of the valve housing, rests on the connecting piece, so that thereby the overflow valve in the axial direction in the recess is attached.
  • the overflow valve in the axial direction in addition to the sealing ring on the housing of the high-pressure pump, so that thereby the valve is fixed in both axial directions on the housing of the high-pressure pump.
  • a supplementary embodiment of the nozzle is connected by means of a press connection with the housing of the high-pressure pump within the recess.
  • the press assembly of the nozzle is particularly simple and reliable mechanically fastened to the housing of the high-pressure pump within the recess, and in addition thereby the second outer end of the recess is fluid-tight manner, so that emerge only through the nozzle channel fuel from the recess at the second outer end of the recess can.
  • the overflow valve of the high pressure pump is designed as an overflow valve described in this patent application.
  • a particular annular space is formed for passing the fuel from the drain opening to the outer axial end of the spill valve and preferably to the second end of the recess.
  • the fuel can flow into the first cylinder subspace through the inlet opening of the valve and flow out of it through at least one discharge opening into the intermediate space.
  • the fuel emerging from the at least one drain opening flows around the overflow valve between the valve housing and the housing of the high-pressure pump in the axial direction, that is to say in the direction of a longitudinal axis of the valve from the first inner end of the overflow valve to a second outer end of the overflow valve.
  • the stroke volume of the valve piston is greater than the volume of the gap.
  • the stroke volume of the valve piston is the volume in the first and / or second cylinder subspace, which displaces the closing piston between the open position and the closed position.
  • the intermediate space is divided into an axial part intermediate space between a compensation opening in the second Zylinderteilraumes as a spring chamber and the outer axial end of the spill valve and the stroke volume of the valve piston is greater than the volume of the sub-gap.
  • the compensation opening on the valve housing opens from the second cylinder chamber or spring chamber to the intermediate space between the valve housing and the housing of the high-pressure pump. With air in the sub-gap can thus be filled by a movement or lifting movement of the closing piston between the open position and the closed position of the entire partial gap with fuel.
  • the partial gap is at least partially, in particular completely, filled with air.
  • the partial interspace in particular also the intermediate space, can be refilled with fuel in a particularly simple manner, so that no oscillations of the closing piston occur as a result of the second cylinder subspace or the spring chamber being particularly easily and reliably re-fueled through the equalization opening can be filled.
  • the inlet opening of the overflow valve is formed at an inner axial end of the overflow valve.
  • Inventive high-pressure injection system for an internal combustion engine in particular for a motor vehicle, comprising a high pressure pump with a lubrication chamber and a spill valve, a prefeed pump, a high pressure rail, wherein the spill valve is designed as a described in this patent application spill valve and / or the high pressure pump as one in this Patent application described high-pressure pump is formed.
  • a spring holder is disposed within the valve cylinder and the spring holder is connected to the elastic valve element.
  • the elastic valve element is disposed within the cylinder space.
  • the at least one drain opening in the closed position of the closing piston is closed by the closing piston and / or the at least one drain opening opens into the opening of the closing piston in the first cylinder part space.
  • a compensation opening for introducing and discharging the fluid into and out of the second cylinder subspace opens into the second cylinder subspace.
  • the compensation opening serves to introduce fuel into the second Zylinderteilraum and divert.
  • the volume of the second cylinder part space changes.
  • the fluid In order for any movement of the closing piston to be possible with an incompressible fuel, it is necessary for the fluid to be able to flow in and out of the second cylinder space through the compensation opening with a very small flow cross-sectional area.
  • At the inlet opening can also pressure fluctuations occur. Such, in particular short-term, pressure fluctuations would lead to a vibration or vibration movement of the closing piston.
  • the at least one drain opening opens into the second cylinder part space, in particular in all positions of the closing piston.
  • the valve is at least partially, in particular completely, made of metal, for. As steel or aluminum, and / or plastic.
  • Metal is a particularly durable and durable material for the manufacture of the valve.
  • Plastic advantageously has a low weight, so that thereby the valve has a low weight.
  • a plastic is a glass fiber reinforced plastic.
  • the valve cylinder or the valve housing and / or the closing piston and / or the spring holder at least partially, in particular completely, made of plastic.
  • the volume flow of the fuel delivered by the prefeed pump to the high-pressure pump is controlled and / or regulated during operation of the internal combustion engine by controlling and / or regulating the delivery rate of the prefeed pump or by means of a metering unit to the flow cross-sectional area of a flow channel from the prefeed pump the high-pressure pump is controlled and / or regulated. If the prefeed pump can be controlled or regulated in the delivery rate, no metering unit is required and the volume flow of the fuel supplied to the high-pressure pump is controlled and / or regulated by the prefeed pump. If the prefeed pump can not be controlled and / or regulated in the delivery rate, this is done with the metering unit.
  • the prefeed pump comprises an electric motor.
  • the electric motor of the prefeed pump is integrated in the prefeed pump, z. B. by permanent magnets are installed in a gear.
  • the producible by the high-pressure pump pressure in the high-pressure rail is, for example, in the range of 1000 to 3000 bar z. B. for diesel engines or between 40 bar and 400 bar z. B. for gasoline engines.
  • Fig. 1 is a cross section of a high-pressure pump 1 for conveying fuel shown.
  • the high-pressure pump 1 serves to fuel, z.
  • the pressure which can be generated by the high-pressure pump 1 is, for example, in a range between 1000 and 3000 bar.
  • the high-pressure pump 1 has a drive shaft 2 with two cams 3, which performs a rotational movement about a rotation axis 26.
  • the axis of rotation 26 lies in the plane of Fig. 1 and is perpendicular to the Drawing plane of Fig. 2 ,
  • a piston 5 is mounted in a cylinder 6, which is formed by a housing 8.
  • a working chamber 29 is bounded by the cylinder 6, the housing 8 and the piston 5.
  • Into the working space 29 opens an inlet channel 22 with an inlet valve 19 and an outlet channel 24 with an outlet valve 20.
  • a check valve is designed to the effect that only fuel can flow into the working space 29 and the exhaust valve 20, z.
  • a check valve is designed to the effect that only fuel can flow out of the working space 29.
  • the volume of the working chamber 29 is changed due to an oscillating stroke movement of the piston 5.
  • the piston 5 is indirectly supported on the drive shaft 2 from.
  • a roller shoe 9 is attached to a roller 10.
  • the roller 10 can perform a rotational movement, the axis of rotation 25 in the plane according to Fig. 1 lies and perpendicular to the plane of Fig. 2 stands.
  • the drive shaft 2 with the at least one cam 3 has a shaft rolling surface 4 and the roller 10 has a roller rolling surface 11.
  • the roller-running surface 11 of the roller 10 rolls on a contact surface 12 on the shaft rolling surface 4 of the drive shaft 2 with the two cams 3 from.
  • the roller shoe 9 is mounted in a roller shoe bearing formed by the housing 8 as a sliding bearing.
  • Rolling surface 4 of the drive shaft 2 is.
  • the roller shoe 9 and the piston 5 thus carry out together an oscillating stroke movement.
  • the roller 10 is mounted with a sliding bearing 13 in the roller shoe 9.
  • FIG. 3 is a highly schematic representation of a high-pressure injection system 36 for a motor vehicle not shown mapped with a high-pressure rail 30 or a fuel rail 31.
  • a high-pressure rail 30 From the high-pressure rail 30 and a fuel rail 31, the fuel by means of valves (not shown) in the combustion chambers (not shown) of the internal combustion engine 39 injected.
  • An electric prefeed pump 35 delivers fuel from a fuel tank 32 through a fuel line 33 to the high pressure pump 1.
  • the high pressure pump 1 is driven by the drive shaft 2 and the drive shaft 2 is a shaft, for.
  • a metering unit 37 controls and / or regulates the per unit time to the high-pressure pump 1 passed volume of fuel.
  • the high-pressure rail 30 serves to inject the fuel into the combustion chamber of the internal combustion engine 39.
  • the fuel not required by the high-pressure pump 1 is returned to the fuel tank 32 through an optional fuel return line 34.
  • Fig. 4 shows a part of the high pressure injection system 36.
  • a lubricating space 40 is formed.
  • the drive shaft 2 the roller 10
  • the roller shoe 9 (not in Fig. 4 )
  • partially the piston 5 is arranged.
  • a flow channel 43 is provided for this purpose, and the fuel is introduced into the lubricating space 40 through the flow channel 43 and then discharged again and returned to the fuel tank 32 after being discharged from the lubricating space 40 through the fuel return line 34 ( Fig. 4 ).
  • Fig. 4 is that in Fig.
  • the prefeed pump 35 is in the in Fig. 4 illustrated embodiment in the flow rate controllable and / or regulated and is driven by an electric motor 17.
  • the prefeed pump 35 is a gear pump 14, z. B. an internal gear pump 15 or an external gear pump 16, formed and shown greatly simplified. The sucked by the prefeed pump 35 from the fuel tank 32 fuel is supplied from the prefeed pump 35 with a prefeed, z. B.
  • the overflow valve 41 is designed such that in the fuel line 43 in front of the overflow valve 41 and in the fuel line 43 in the lubricating chamber 40, a constant pressure, ie the prefeed pressure of 4, 5 bar prevails.
  • the prefeed pump 35 thereby promotes not only the flow rate for the high-pressure pump 1 to fuel but also an additional amount of fuel for lubrication of the high-pressure pump 1, ie the fuel flowing through the lubricating space 40.
  • the fuel in front of the spill valve 41 the spill valve 41 in addition, ie provides a larger flow cross-sectional area of the fuel through the spill valve 41 as long until again a pressure of 4.5 bar in front of the spill 41st prevails.
  • the spill valve 41 closes.
  • a known from the prior art valve 42 is shown as overflow valve 41 of the high-pressure injection system 36.
  • the overflow valve 41 has a valve housing 45, which limits a valve cylinder 44.
  • a thread 60 is formed as an external thread 60, which forms a fixing device 38 for axial attachment within a recess 61 on the housing 8 of the high-pressure pump 1.
  • a closing piston 46 is mounted within the valve cylinder 44. The closing piston 46 can due to the Slide bearing on the valve cylinder 44 an axial movement, ie as shown in FIG Fig. 6 from left to right and vice versa.
  • the valve cylinder 44 and the valve housing 45 include a cylinder chamber 56 a.
  • the cylinder chamber 56 is subdivided by the closing piston 46 into a first cylinder subspace 57 and a second cylinder subspace 58.
  • the first cylinder part space 57 opens an inlet opening 47 for fluid, in particular fuel, since in the valve housing 45 an inlet channel 48 is incorporated.
  • the inlet channel 48 is formed in the axial direction in the valve housing 45.
  • two drainage openings 49 open into the first cylinder part space 57, because two radial discharge passages 50 are incorporated into the valve housing 45.
  • the closing piston 46 or the cap 46 is mounted on the valve cylinder 44 at an axial section with a larger diameter or radius by means of a plain bearing. At a second portion of the closing piston 46 has a smaller diameter and in the right end portion of this section with the smaller diameter, the closing piston 46 has a sealing seat 54.
  • a valve spring 52 is arranged as an elastic valve element 51.
  • the elastic valve element 51 is attached at one end to a fixed spring holder 53 and at another end to the closing piston 46.
  • the spring holder 53 closes the valve cylinder 44 and is formed as a separate component in addition to the valve housing 45. Notwithstanding this, the spring holder 53 may also be formed integrally with the valve housing 45 (not shown).
  • 45 two sealing grooves 62 are formed on the valve housing, in each of which a sealing ring 63, z. B. an elastic rubber seal is arranged.
  • the housing 8 of the high-pressure pump 1 has a correspondingly complementary hole 64 or opening as a recess 61, on which the sealing rings 63 rest and thereby the flow channel 43 through the inlet channel 48 and the two drain channels 50 can be performed.
  • a partial opening position of the closing piston 46 is shown.
  • the two drain openings 49 are partially closed by the portion of the closing piston 46 with the larger diameter and partly, the fluid can flow out of the first cylinder subspace 57 through the two drainage openings 49.
  • the fluid in particular the fuel, flows through the inlet channel 48 into the first cylinder subspace 57.
  • Increases the pressure of the fuel in the first cylinder part space 57 on, z. B. to a value of more than 5 bar moves due to the greater pressure of the fuel in the first cylinder part space 57 of the closing piston 46 against the force applied by the valve spring 52 compressive force further to the left, so that thereby the two flow channels 50 are opened further.
  • the closing piston 46 moves to the right until the sealing seat 54 completely closes the inlet channel 48 or the inlet opening 47 opening into the first cylinder-part space 57.
  • the volume of the second cylinder part space 58 also changes. There is little play between the closing piston 46 with the section with the larger diameter and the valve cylinder 44, so that fuel also flows from the first cylinder part space 57 to a very small extent in the second cylinder part space 58 passes.
  • the second cylinder subspace 58 is thus, provided that the second cylinder subspace 58 or spring chamber 58 is not filled with air due to a low pressure in the fuel return line 34, filled with the substantially incompressible fuel.
  • the compensation opening 59 has a very small diameter or a small flow cross-sectional area, for. B. a diameter in the range between 0.5 mm and 1 mm.
  • Pressure fluctuations of the fuel in the region of the inlet opening 47 do not cause a vibration of the closing piston 46, since only slowly fuel is introduced and discharged through the compensation opening 59 into the second cylinder subspace 58 and thereby damped only in the long term pressure changes of the fuel in the region of the inlet opening 47 Movement of the closing piston 46 is effected.
  • the sealing seat 54 advantageously allows a complete sealing of the overflow valve 41 in the closed position of the closing piston 46.
  • Fig. 6 is a longitudinal section of a spill valve 41 according to the invention shown.
  • the valve housing 45 has on the outside no thread 60 as a fixing device 38 for the axial attachment of the valve housing 45 to a housing 8 of the high-pressure pump 1.
  • the overflow valve 41 according to the invention can thus not in the axial direction, that is in the direction of a longitudinal axis 77 of the valve 42 and a longitudinal axis 77 formed as a bore 64 recess 61 on the housing 8 of the high-pressure pump ( Fig. 7 ) are fixed in the axial direction.
  • the sealing ring 63 is located on the sealing groove 62 of the valve housing 45 on a shoulder 78 on the housing 8 of the high-pressure pump 1 (FIG. Fig. 7 ) on.
  • the valve 42 has a first inner end 72 and a second outer end 73.
  • On the second outer end 73 of the spill valve 41 is formed as a return pipe 69 nozzle 68.
  • the nozzle 68 is connected by means of a press bond 71 fluid-tight and non-positively connected to the housing 8 of the high-pressure pump 1.
  • the bore 64 has a first inner end 65 and a second outer end 66. Due to the resting of the second outer end 73 of the spill valve 41 on the end of the nozzle 68 and the rest of the sealing ring 63 on the shoulder 78 of the housing 8, the valve 42 is fixed in the axial direction within the bore 64.
  • the overflow valve 41 has only between the two drain openings 49 and the inlet opening 47 at the first inner end 72 of the spill valve 41, the sealing ring 63, thereby characterized a gap 74 in the direction of the longitudinal axis 77, starting from the two drain openings 49 and the sealing ring 63 can be flowed through to the second outer end 73 of the overflow valve 41 from the two outflow openings 49 flowing fuel at an open closing piston 46.
  • a plurality of Radialstutzennuten 76 are formed so that the fuel flowing through the gap 74 fuel in the region of the second outer end 73 of the spill valve 41 through these Radialstutzennuten 76 in the radial direction to a nozzle channel 70 can. Due to the sectional formation in Fig. 7 only one of the plurality of Radialstutzennutzen 76 is visible.
  • the annular Gap 74 is additionally subdivided into a fictitious partial gap 75 and the partial gap 75 begins in the axial direction at the compensation opening 49 and ends at the second outer end 73 of the spill valve 41st
  • the fuel is discharged from the lubricating chamber 40 and through the nozzle channel 70, the fuel is supplied through the nozzle channel 70 as a flow channel 43 of the fuel return line 34.
  • the fuel return line 34 (not in Fig. 7 shown) is attached to the outer end of the nozzle 68.
  • the fuel flows through an opening 79 of the recess inlet channel 67 into the recess 61 and from the recess 61 through the inlet channel 48 in the spill valve 41 at an open closing piston 46.
  • the fuel flows through the two drain openings 49 in the intermediate space 74 and from the intermediate space 74 in the nozzle channel 70 as a flow channel 43, so that the second outer end of the recess 61 serves as a flow channel 43.
  • the fuel return line 34 has no constriction or no dynamic pressure, so that when the high-pressure pump 1 and a pre-feed pump 35 are switched off, the fuel return line 34 and therefore also the nozzle channel 70 and the intermediate space 74 of fuel runs empty, ie is filled with air.
  • the prefeed pump 35 is designed in terms of delivery that in normal operation, the closing piston 46 is slightly opened to ensure cooling of the components within the lubricating space 40.
  • the opened closing piston 46 with the commissioning of the prefeed pump 35 constantly flows through the gap 74 of fuel and thus the nozzle channel 70 so that a possible existing air volume in the gap 74 and the nozzle channel 70 is immediately filled with fuel and thereby the air is removed from the intermediate space 74 in a very short time after starting the prefeed pump 35 and the high-pressure pump 1.
  • the spring chamber 58 or the second cylinder subspace 58 is in fluid-conducting connection with the compensation opening 49 with the intermediate space 74 or the partial interspace 75.
  • the fuel return line has no restriction and thus no back pressure to reduce energy consumption.
  • air can thus enter the intermediate space 74 and also the spring chamber 51.
  • the gap 74 immediately filled with fuel in a short time and due to the fluid-conducting connection of the gap 74 in the spring chamber 58 through the equalization port 59 and the spring chamber 58 in Be filled with fuel for a short time, so that no vibration movements occur on the closing piston 46 over a longer period of time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Ventil gemäß dem Oberbegriff des Anspruches 1, eine Hochdruckpumpe gemäß dem Oberbegriff des Anspruches 4 und ein Hochdruckeinspritzsystem gemäß dem Oberbegriff des Anspruches 15.
  • Stand der Technik
  • In Hochdruckeinspritzsystemen für Verbrennungsmotoren, insbesondere in Common-Rail-Einspritzsystemen von Diesel- oder Benzinmotoren, sorgt eine Hochdruckpumpe dauernd für die Aufrechterhaltung des Druckes in dem Hochdruckspeicher des Common-Rail-Einspritzsystems. Die Hochdruckpumpe kann beispielsweise durch eine Nockenwelle des Verbrennungsmotors mittels einer Antriebswelle angetrieben werden. Für die Förderung des Kraftstoffs zur Hochdruckpumpe werden Vorförderpumpen, z. B. eine Zahnrad- oder Drehschieberpumpe, verwendet, die der Hochdruckpumpe vorgeschaltet sind. Die Vorförderpumpe fördert den Kraftstoff von einem Kraftstofftank durch eine Kraftstoffleitung zu der Hochdruckpumpe. Die WO 2012/136429 A zeigt eine Hochdruckpumpe zum Fördern eines Fluides. Als Hochdruckpumpen werden unter anderem Kolbenpumpen eingesetzt. In einem Gehäuse ist eine Antriebswelle gelagert. Radial dazu sind Kolben in einem Zylinder angeordnet. Auf der Antriebswelle mit wenigstens einem Nocken liegt eine Laufrolle mit einer Rollen-Rollfläche auf, die in einem Rollenschuh gelagert ist. Der Rollenschuh ist mit dem Kolben verbunden, so dass der Kolben zu einer oszillierenden Translationsbewegung gezwungen ist. Eine Feder bringt auf den Rollenschuh eine radial zu der Antriebswelle gerichtet Kraft auf, so dass die Laufrolle in ständigen Kontakt zu der Antriebswelle steht. Die Laufrolle steht mit der Rollen-Rollfläche an einer Wellen-Rollfläche als Oberfläche der Antriebswelle mit dem wenigstens einen Nocken in Kontakt mit der Antriebswelle. Die Laufrolle ist mittels eines Gleitlagers in dem Rollenschuh gelagert.
  • Die Antriebswelle mit dem wenigstens einen Nocken, die Laufrolle und der Rollenschuh sind dabei innerhalb eines Schmierraumes der Hochdruckpumpe angeordnet. Durch diesen Schmierraum wird von der Vorförderpumpe zu der Hochdruckpumpe geförderter Kraftstoff geleitet, um einerseits die Komponenten innerhalb des Schmierraumes zu schmieren und diese mit dem durch den Schmierraum geleiteten Kraftstoff zu kühlen. Der von der Vorförderpumpe zu der Hochdruckpumpe geförderte Kraftstoff umfasst somit im Volumenstrom einerseits den durch den Schmierraum geleiteten Kraftstoff zum Schmieren und Kühlen der Komponenten der Hochdruckpumpe innerhalb des Schmierraumes sowie den für die Hochdruckpumpe bestimmten Kraftstoff zur Förderung unter Hochdruck zu dem Hochdruck-Rail. Dabei soll an einer Kraftstoffleitung von der Vorförderpumpe zu der Hochdruckpumpe ein im Wesentlichen konstanter Druck vorliegen. Aus diesem Grund ist in einem Strömungskanal von der Vorförderpumpe zu dem Schmierraum oder von dem Schmierraum zu einem Kraftstofftank ein Überströmventil angeordnet. Das Überströmventil ist innerhalb einer Aussparung eines Gehäuses der Hochdruckpumpe angeordnet. Oberhalb eines vorgegebenen Druckes, z. B. 5,5 bar, öffnet das Überströmventil und leitet dadurch mehr Kraftstoff durch den Schmierraum und dieser durch den Schmierraum geleitete Kraftstoff wird wieder dem Kraftstofftank zugeführt. Bei einem Absinken des Druckes vor dem Überströmventil, z. B. unter 4,5 bar, schließt das Überströmventil.
  • Derartige Überströmventile weisen einen Ventilzylinder und einen Schließkolben auf der zwischen einer Schließstellung und einer Öffnungsstellung beweglich an einem Zylinder gelagert ist. Durch eine Zulauföffnung kann Kraftstoff in das Überströmventil ein- und durch eine Ablauföffnung aus dem Überströmventil abgeleitet werden. Auf den Schließkolben wirkt einerseits der Druck des Kraftstoffes an der Zulauföffnung und außerdem eine Feder. Die von der Feder und dem Kraftstoff unter Druck stehenden Kräfte, welche auf den Schließkolben einwirken, sind dabei entgegengesetzt gerichtet, so dass sich bei einem unterschiedlichen Druck des Kraftstoffes an der Zulauföffnung der Schließkolben innerhalb des Zylinders bewegt. Die in einen von dem Zylinder eingeschlossenen Zylinderraum mündenden Ablauföffnungen sind dabei in der Schließstellung des Schließkolbens verschlossen. Erst bei einer Erhöhung des Druckes an der Zulauföffnung durch den Kraftstoff bewegt sich der Schließkolben in eine Öffnungsstellung, in welcher die Ablauföffnungen an dem Zylinderraum nicht von dem Schließkolben verschlossen sind.
  • Der Zylinderraum ist in einen ersten Zylinderteilraum und einen zweiten Zylinderteilraum als Federraum von dem Schließkolben unterteilt. In dem zweiten Zylinderteilraum bzw. Federraum ist die Feder angeordnet und in den Federraum mündet durch den Ventilzylinder eine Ausgleichsöffnung. Der Federraum ist im normalen Betrieb mit Kraftstoff gefüllt und die Ausgleichsöffnung dient dazu, eine Hubbewegung des Schließkolbens zu ermöglichen, da bei der Hubbewegung des Schließkolbens das Volumen des Federraumes verändert wird. Dabei bewirkt die Ausgleichsöffnung mit dem Federraum auch eine Dämpfung der Hubbewegung des Schließkobens, da der von dem Schließkolben in dem Federraum verdrängte Kraftstoff nur durch die Ausgleichsöffnung ausströmen kann bei einer Verkleinerung des Volumens des Federraumes und umgekehrt. Bei einer Kraftstoffrücklaufleitung von der Hochdruckpumpe bzw. dem Schmierraum zu einem Kraftstofftank mit keinem oder einem geringen Rücklaufdruck in der Kraftstoffrücklaufleitung kann es zu einer Entleerung des Federraumes bzw. einer Luftbefüllung des Schmierraumes kommen. Dadurch tritt nach einer Wiederinbetriebnahme der Hochdruckpumpe an dem Schließkolben über einen längeren Zeitraum oder ständig keine Dämpfung durch den Kraftstoff innerhalb des Federraume auf, was zu Schwingungen des Schließkolbens führen kann und einer daraus resultierenden Geräuschentwicklung sowie zusätzlichen mechanischen Belastungen bzw. Verschleiß des Überströmventils.
  • Die DE 10 2009 026 596 A1 zeigt eine Hochdruckpumpe zum Fördern eines Fluides, insbesondere Kraftstoff, umfassend eine Antriebswelle, wenigstens einen Kolben, wenigstens einen Zylinder zur Lagerung des Kolbens, wobei sich der wenigstens eine Kolben mittelbar oder unmittelbar auf dem wenigstens einen Nocken abstützt, so dass von dem wenigstens einen Kolben eine Translationsbewegung aufgrund einer Rotationsbewegung der Antriebswelle ausführbar ist.
  • Offenbarung der Erfindung Vorteile der Erfindung
  • Nicht erfindungsgemäßes Ventil, insbesondere Überströmventil, zur Anordnung in einer Aussparung eines Gehäuses einer Hochdruckpumpe, umfassend ein Ventilgehäuse mit einem Ventilzylinder, einen innerhalb des Ventilzylinders zwischen einer Schließstellung und Öffnungsstellung beweglichen Schließkolben, so dass in der Schließstellung das Ventil geschlossen und in der Öffnungsstellung das Ventil geöffnet ist, eine Zulauföffnung zur Zuführung eines Fluides innerhalb eines von dem Ventilzylinder eingeschlossenen Zylinderraumes, wenigstens eine Ablauföffnung zur Abführung des in den Zylinderraum eingeleiteten Fluides, ein mit dem Schließkolben verbundenes elastisches Ventilelement, insbesondere Ventilfeder, mit welcher auf den Schließkolben eine Druckkraft aufbringbar ist, die entgegengesetzt zu einer von dem Fluid innerhalb des Zylinderraumes auf den Schließkolben aufbringbaren Druckkraft ausgerichtet ist, so dass der Schließkolben mittels der von dem elastischen Ventilelement und dem Fluid auf den Schließkolben aufgebrachten Druckkraft zwischen der Schließstellung der Öffnungsstellung bewegbar ist, wobei das Ventilgehäuse außenseitig keine Fixierungseinrichtung, insbesondere kein Gewinde oder keine Bajonettverbindung, zur axialen Befestigung in der Aussparung an dem Gehäuse der Hochdruckpumpe aufweist. An dem Ventilgehäuse ist außenseitig keine Fixierungseinrichtung, insbesondere kein Gewinde bzw. kein Außengewinde ausgebildet, zur axialen Befestigung an dem Gehäuse der Hochdruckpumpe in der Aussparung. Dadurch kann ein Zwischenraum zwischen dem Ventilgehäuse und dem Gehäuse der Hochdruckpumpe axial von dem Fluid durchströmt werden. Die axiale Fixierung des Ventils innerhalb der Aussparung des Gehäuses erfolgt dabei im Allgemeinen durch die Auflage auf einem ersten inneren Ende und/oder einem zweiten äußeren Ende des Ventils und/oder durch die Auflage auf einem Dichtring an einer Dichtnut an dem Ventil und/oder durch die Auflage an einer Nut, insbesondere einer Dichtnut, außenseitig an dem Ventilgehäuse, wobei die Auflage des Ventils bzw. Ventilgehäuses auf dem Gehäuse der Hochdruckpumpe erfolgt. Abweichend hiervon kann an dem Ventilgehäuse auch außenseitig ein ringförmiger Vorsprung ausgebildet sein zur axialen Auflage und Befestigung des Ventils an dem Gehäuse der Hochdruckpumpe.
  • In einer zusätzlichen Beispiel ist der Zylinderraum von dem Schließkolben in einen ersten Zylinderteilraum und einen zweiten Zylinderteilraum unterteilt und in den ersten Zylinderteilraum mündet die Zulauföffnung und die wenigstens eine Ablauföffnung und das elastische Ventilelement ist innerhalb des zweiten Zylinderteilraumes als Federraum angeordnet und in den zweiten Zylinderteilraum mündet eine Ausgleichsöffnung, insbesondere radial, durch das Ventilgehäuse.
  • In einer ergänzenden Beispiel ist in Richtung einer Längsachse des Ventils nur zwischen der Zulauföffnung und der wenigstens einen Ablauföffnung eine Dichtnut und/oder ein Dichtring, insbesondere außenseitig, an dem Ventilgehäuse ausgebildet und/oder angeordnet. Außerhalb an dem Ventil zwischen der Zulauföffnung und der wenigstens einen Ablauföffnung kann damit das Ventil außenseitig von dem Fluid umströmt werden bei einer Anordnung in der Aussparung des Gehäuses.
  • Erfindungsgemäße Hochdruckpumpe zum Fördern von Kraftstoff, z. B. Diesel oder Benzin, umfassend ein Gehäuse, eine Antriebswelle mit wenigstens einem Nocken, wenigstens einen Kolben zum Fördern von Kraftstoff, wenigstens einen Zylinder zur Lagerung des wenigstens einen Kolbens, wobei sich der wenigstens eine Kolben mittelbar auf der Antriebswelle mit dem wenigstens einen Nocken abstützt, so dass von dem wenigstens einen Kolben eine Translationsbewegung aufgrund einer Rotationsbewegung der Antriebswelle ausführbar ist, einen Schmierraum, eine in dem Gehäuse ausgebildete Aussparung zur Anordnung eines Überströmventils, ein innerhalb der Aussparung angeordnetes Überströmventil mit einer Zulauföffnung und wenigstens einer Ablauföffnung, wobei die Aussparung ein erstes inneres Ende und ein zweites äußeres Ende aufweist und das zweite äußere Ende der Aussparung zum Durchleiten von Kraftstoff durch den Schmierraum und vorzugsweise zum Ausleiten von Kraftstoff aus der Aussparung dient als Strömungskanal. Durch das zweite äußere Ende der Aussparung kann somit der Kraftstoff geleitet werden, sodass dadurch in vorteilhafter Weise auch ein Zwischenraum zwischen dem Ventilgehäuse und dem Gehäuse der Hochdruckpumpe, beginnend von der wenigstens einen Ablauföffnung in Richtung zu dem zweiten äußeren Ende des Überströmventils von dem Kraftstoff durchströmt ist und dadurch auch besonders einfach Luft in diesen Zwischenraum mittels des Leitens von Kraftstoff durch den Zwischenraum an dem zweiten äußeren Ende leicht entfernt werden kann durch die Zuleitung von Kraftstoff.
  • In einer ergänzenden Ausführungsform mündet in die Aussparung ein Aussparungszulaufkanal und die Zulauföffnung des Überströmventils weist einen kleineren Abstand in Richtung einer Längsachse der Aussparung zu einer Mündung des Aussparungszulaufkanales in die Aussparung auf als die wenigstens eine Ablauföffnung des Überströmventils und/oder die Aussparung ist als eine Bohrung ausgebildet. Durch den Aussparungszulaufkanal kann Kraftstoff in die Aussparung eingeleitet werden und von einem Abschnitt der Aussparung, beginnend mit dem ersten inneren Ende bis zu der Zulauföffnung des Überströmventils kann somit der Kraftstoff von dem Aussparungszulaufkanal durch die Aussparung in die Zulauföffnung des Überströmventils eingeleitet werden.
  • Zweckmäßig ist zwischen dem Gehäuse der Hochdruckpumpe und dem Überströmventil ein Dichtring ausgebildet und vorzugsweise ist der Dichtring in Richtung der Längsachse der Aussparung zwischen der Zulauföffnung und der wenigstens einen Ablauföffnung ausgerichtet. Der Dichtring unterteilt die Aussparung in eine erste Teilaussparung von dem ersten inneren Ende der Aussparung bis zu dem Dichtring und eine zweite Teilaussparung von dem Dichtring bis zu dem zweiten äußeren Ende der Aussparung. Die erste und zweite Teilaussparung sind dabei mit dem Dichtring fluiddicht abgetrennt und lediglich durch ein Öffnen des Überströmventils kann Kraftstoff von der ersten Teilaussparung zu der zweiten Teilaussparung geleitet werden.
  • In einer zusätzlichen Variante ist im Bereich des zweiten äußeren Endes der Aussparung ein Stutzen, insbesondere ein Rücklaufstutzen, mit einem Stutzenkanal innerhalb der Aussparung angeordnet und der Stutzenkanal dient zum Durchleiten von Kraftstoff.
  • In einer ergänzenden Ausgestaltung liegt ein äußeres axiales Ende des Überströmventils auf dem Stutzen auf, so dass dadurch das Überströmventil in axialer Richtung in der Aussparung befestigt ist. Das zweite äußere Ende des Überströmventils, insbesondere des Ventilgehäuses, liegt auf dem Stutzen auf, sodass dadurch das Überströmventil in axialer Richtung in der Aussparung befestigt ist. Zweckmäßig liegt dabei das Überströmventil in axialer Richtung zusätzlich mit dem Dichtring auf dem Gehäuse der Hochdruckpumpe auf, sodass dadurch das Ventil in beiden axialen Richtungen an dem Gehäuse der Hochdruckpumpe befestigt ist.
  • In einer ergänzenden Ausgestaltung ist der Stutzen mittels eines Pressverbundes mit dem Gehäuse der Hochdruckpumpe verbunden innerhalb der Aussparung. Mittels des Pressverbundes ist der Stutzen besonders einfach und zuverlässig an dem Gehäuse der Hochdruckpumpe innerhalb der Aussparung mechanisch befestigbar, und zusätzlich ist dadurch das zweite äußere Ende der Aussparung fluiddicht abgeschlossen, sodass nur durch den Stutzenkanal Kraftstoff aus der Aussparung am zweiten äußeren Ende der Aussparung austreten kann.
  • In einer ergänzenden Variante ist das Überströmventil der Hochdruckpumpe als ein in dieser Schutzrechtsanmeldung beschriebenes Überströmventil ausgebildet.
  • Zweckmäßig ist in axialer Richtung des Überströmventils zwischen der Ablauföffnung des Überströmventils und dem äußeren axialen Ende des Überströmventils zwischen dem Ventilgehäuse und dem Gehäuse der Hochdruckpumpe ein, insbesondere ringförmiger, Zwischenraum ausgebildet zum Durchleiten des Kraftstoffe von der Ablauföffnung zu dem äußeren axialen Ende des Überströmventils und vorzugsweise zu dem zweiten Ende der Aussparung. Bei einem geöffneten Schließkolben kann der Kraftstoff durch die Zulauföffnung des Ventils in den ersten Zylinderteilraum einströmen und aus diesem durch wenigstens eine Ablauföffnung in den Zwischenraum einströmen. Anschließend umströmt der aus der wenigstens einen Ablauföffnung austretende Kraftstoff außenseitig das Überströmventil zwischen dem Ventilgehäuse und dem Gehäuse der Hochdruckpumpe in axialer Richtung, das heißt in Richtung einer Längsachse des Ventils von dem ersten inneren Ende des Überströmventils zu einem zweiten äußeren Ende des Überströmventils.
  • In einer zusätzlichen Ausführungsform ist das Hubvolumen des Ventilkolbens größer ist als das Volumen des Zwischenraumes. Das Hubvolumen des Ventilkolbens ist das Volumen in dem ersten und/oder zweiten Zylinderteilraum, welcher der Schließkolben zwischen der Öffnungsstellung und der Schließstellung verdrängt.
  • In einer ergänzenden Variante ist der Zwischenraum in einen axialen Teilzwischenraum zwischen einer Ausgleichsöffnung in den zweiten Zylinderteilraumes als Federraum und dem äußeren axialen Ende des Überströmventils aufgeteilt und das Hubvolumen des Ventilkolbens ist größer als das Volumen des Teilzwischenraumes. Die Ausgleichsöffnung an dem Ventilgehäuse mündet von dem zweiten Zylinderteilraum bzw. Federraum zu dem Zwischenraum zwischen dem Ventilgehäuse und dem Gehäuse der Hochdruckpumpe. Bei Luft in dem Teilzwischenraum kann somit durch eine Bewegung bzw. Hubbewegung des Schließkolbens zwischen der Öffnungsstellung und der Schließstellung der gesamte Teilzwischenraum mit Kraftstoff befüllt werden. Dadurch ist eine besonders sichere und zuverlässige Befüllung des Teilzwischenraums mit Kraftstoff möglich, sofern bei einer abgeschalteten Hochdruckpumpe der Teilzwischenraum wenigstens teilweise, insbesondere vollständig, mit Luft befüllt ist. Bei der Wiederinbetriebnahme der Hochdruckpumpe kann somit der Teilzwischenraum, insbesondere auch der Zwischenraum, besonders einfach mit Kraftstoff wieder befüllt werden, sodass dadurch keine Schwingungen des Schließkolbens auftreten, da der zweite Zylinderteilraum bzw. der Federraum dadurch besonders einfach und zuverlässig durch die Ausgleichsöffnung wieder mit Kraftstoff befüllt werden kann.
  • In einer ergänzenden Variante ist die Zulauföffnung des Überströmventils an einem inneren axialen Ende des Überströmventils ausgebildet.
  • Erfindungsgemäßes Hochdruckeinspritzsystem für einen Verbrennungsmotor, insbesondere für ein Kraftfahrzeug, umfassend eine Hochdruckpumpe mit einem Schmierraum und einem Überströmventil, eine Vorförderpumpe, ein Hochdruck-Rail, wobei das Überströmventil als ein in dieser Schutzrechtsanmeldung beschriebenes Überströmventil ausgebildet ist und/oder die Hochdruckpumpe als eine in dieser Schutzrechtsanmeldung beschriebene Hochdruckpumpe ausgebildet ist.
  • In einer ergänzenden Ausführungsform ist innerhalb des Ventilzylinders ein Federhalter angeordnet und der Federhalter ist mit dem elastischen Ventilelement verbunden.
  • Vorzugsweise ist das elastische Ventilelement innerhalb des Zylinderraumes angeordnet.
  • Zweckmäßig ist die wenigstens eine Ablauföffnung in der Schließstellung des Schließkolbens von dem Schließkolben verschlossen und/oder die wenigstens eine Ablauföffnung mündet in der Öffnungsstellung des Schließkolbens in den ersten Zylinderteilraum.
  • In einer weiteren Ausführungsform mündet in den zweiten Zylinderteilraum eine Ausgleichsöffnung zum Ein- und Ausleiten des Fluides in und aus dem zweiten Zylinderteilraum. Die Ausgleichsöffnung dient dazu Kraftstoff, in den zweiten Zylinderteilraum einzuleiten und auszuleiten. Bei einer Bewegung des Schließkolbens verändert sich das Volumen des zweiten Zylinderteilraumes. Damit überhaupt eine Bewegung des Schließkolbens möglich ist bei einem inkompressiblen Kraftstoff ist es erforderlich, dass durch die Ausgleichsöffnung mit einer sehr kleinen Strömungsquerschnittsfläche das Fluid in den zweiten Zylinderraum ein- und ausströmen kann. An der Zulauföffnung können dabei auch Druckschwankungen auftreten. Derartige, insbesondere kurzzeitige, Druckschwankungen würden zu einer Vibrations- bzw. Schwingungsbewegung des Schließkolbens führen. Bei einer klein dimensionierten Ausgleichsöffnung und einer, insbesondere vollständigen, Befüllung des zweiten Zylinderteilraumes mit Flüssigkeit, insbesondere Kraftstoff, können dadurch derartige Vibrationen bzw. schnelle Hin- und Herbewegungen des Schließkolbens aufgrund von Druckschwankungen entgegen gewirkt werden und die Bewegung des Schließkolbens erfolgt gedämpft langsam nur aufgrund einer dauerhaften Druckänderung der Flüssigkeit an der Zulauföffnung, so dass bei der Befüllung des zweiten Zylinderteilraumes mit der Flüssigkeit, insbesondere Kraftstoff, keine Vibrationen des Schließkolbens und daraus resultierende Geräuschentwicklungen und mechanischer Verschleiß auftritt.
  • In einer ergänzenden Variante mündet die wenigstens eine Ablauföffnung in den zweiten Zylinderteilraum, insbesondere in sämtlichen Stellungen des Schließkolbens.
  • In einer weiteren Ausgestaltung besteht das Ventil wenigstens teilweise, insbesondere vollständig, aus Metall, z. B. Stahl oder Aluminium, und/oder aus Kunststoff. Metall ist ein besonders beständiges und dauerhaftes Material für die Herstellung des Ventils. Kunststoff weist in vorteilhafter Weise ein geringes Gewicht auf, so dass dadurch das Ventil über ein geringes Gewicht verfügt. Vorzugsweise handelt es sich dabei bei einem Kunststoff um einen glasfaserverstärkten Kunststoff. Vorzugsweise bestehen der Ventilzylinder bzw. das Ventilgehäuse und/oder der Schließkolben und/oder der Federhalter wenigstens teilweise, insbesondere vollständig, aus Kunststoff.
  • In einer ergänzenden Variante wird der Volumenstrom des von der Vorförderpumpe zu der Hochdruckpumpe geförderten Kraftstoffes während des Betriebes des Verbrennungsmotors gesteuert und/oder geregelt, indem die Förderleistung der Vorförderpumpe gesteuert und/oder geregelt wird oder mit einer Zumesseinheit die Strömungsquerschnittsfläche eines Strömungskanales von der Vorförderpumpe zu der Hochdruckpumpe gesteuert und/oder geregelt wird. Ist die Vorförderpumpe in der Förderleistung steuerbar oder regelbar, wird keine Zumesseinheit benötigt und der Volumenstrom des zu der Hochdruckpumpe geleiteten Kraftstoffes wird mit der Vorfördepumpe gesteuert und/oder geregelt. Ist die Vorförderpumpe in der Förderleistung nicht steuerbar und/oder regelbar, wird dies mit der Zumesseinheit ausgeführt.
  • In einer weiteren Ausgestaltung umfasst die Vorförderpumpe einen Elektromotor.
  • Insbesondere ist der Elektromotor der Vorförderpumpe in die Vorförderpumpe integriert, z. B. indem Permanentmagnete in ein Zahnrad eingebaut sind.
  • Der von der Hochdruckpumpe erzeugbare Druck in dem Hochdruck-Rail liegt beispielsweise im Bereich von 1000 bis 3000 bar z. B. für Dieselmotoren oder zwischen 40 bar und 400 bar z. B. für Benzinmotoren.
  • Kurze Beschreibung der Zeichnungen
  • Im Nachfolgenden werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigt:
  • Fig. 1
    einen Querschnitt einer Hochdruckpumpe zum Fördern eines Fluides,
    Fig. 2
    einen Schnitt A-A gemäß Fig. 1 einer Laufrolle mit Rollenschuh und einer Antriebswelle,
    Fig. 3
    eine stark schematisierte Ansicht eines Hochdruckeinspritzsystems,
    Fig. 4
    einen stark vereinfachten Querschnitt der Hochdruckpumpe mit einer Vorförderpumpe,
    Fig. 5
    einen Längsschnitt eines aus dem Stand der Technik bekannten Überströmventiles,
    Fig. 6
    einen Längsschnitt eines erfindungsgemäßen Überströmventiles,
    Fig. 7
    einen Längsschnitt eines Gehäuses der Hochdruckpumpe mit dem erfindungsgemäßen Überströmventil in einer Aussparung des Gehäuses.
    Ausführungsformen der Erfindung
  • In Fig. 1 ist ein Querschnitt einer Hochdruckpumpe 1 zum Fördern von Kraftstoff dargestellt. Die Hochdruckpumpe 1 dient dazu, Kraftstoff, z. B. Benzin oder Diesel, zu einem Verbrennungsmotor 39 unter Hochdruck zu fördern. Der von der Hochdruckpumpe 1 erzeugbare Druck liegt beispielsweise in einem Bereich zwischen 1000 und 3000 bar.
  • Die Hochdruckpumpe 1 weist eine Antriebswelle 2 mit zwei Nocken 3 auf, die um eine Rotationsachse 26 eine Rotationsbewegung ausführt. Die Rotationsachse 26 liegt in der Zeichenebene von Fig. 1 und steht senkrecht auf der Zeichenebene von Fig. 2. Ein Kolben 5 ist in einem Zylinder 6 gelagert, der von einem Gehäuse 8 gebildet ist. Ein Arbeitsraum 29 wird von dem Zylinder 6, dem Gehäuse 8 und dem Kolben 5 begrenzt. In den Arbeitsraum 29 mündet ein Einlasskanal 22 mit einem Einlassventil 19 und ein Auslasskanal 24 mit einem Auslassventil 20. Durch eine Einlassöffnung an dem Einlasskanal 22 strömt der Kraftstoff in den Arbeitsraum 29 ein und durch eine Auslassöffnung 23 an dem Auslasskanal 24 strömt der Kraftstoff unter Hochdruck aus den Arbeitsraum 29 wieder aus. Das Einlassventil 19, z. B. ein Rückschlagventil, ist dahingehend ausgebildet, dass nur Kraftstoff in den Arbeitsraum 29 einströmen kann und das Auslassventil 20, z. B. ein Rückschlagventil, ist dahingehend ausgebildet, dass nur Kraftstoff aus dem Arbeitsraum 29 ausströmen kann. Das Volumen des Arbeitsraumes 29 wird aufgrund einer oszillierenden Hubbewegung des Kolbens 5 verändert. Der Kolben 5 stützt sich mittelbar auf der Antriebswelle 2 ab. Am Ende des Kolbens 5 bzw. Pumpenkolbens 5 ist ein Rollenschuh 9 mit einer Laufrolle 10 befestigt. Die Laufrolle 10 kann dabei eine Rotationsbewegung ausführen, deren Rotationsachse 25 in der Zeichenebene gemäß Fig. 1 liegt und senkrecht auf der Zeichenebene von Fig. 2 steht. Die Antriebswelle 2 mit dem wenigstens einen Nocken 3 weist eine Wellen-Rollfläche 4 und die Laufrolle 10 eine Rollen-Rollfläche 11 auf.
  • Die Rollen-Lauffläche 11 der Laufrolle 10 rollt sich an einer Kontaktfläche 12 auf der Wellen-Rollfläche 4 der Antriebswelle 2 mit den beiden Nocken 3 ab. Der Rollenschuh 9 ist in einer von dem Gehäuse 8 gebildeten Rollenschuhlagerung als Gleitlager gelagert. Eine Feder 27 bzw. Spiralfeder 27 als elastisches Element 28, die zwischen dem Gehäuse 8 und dem Rollenschuh 9 eingespannt ist, bringt auf den Rollenschuh 9 eine Druckkraft auf, so dass die Rollen-Rollfläche 11 der Laufrolle 10 in ständigen Kontakt mit der Wellen-Rollfläche 4 der Antriebswelle 2 steht. Der Rollenschuh 9 und der Kolben 5 führen damit gemeinsam eine oszillierende Hubbewegung aus. Die Laufrolle 10 ist mit einer Gleitlagerung 13 in dem Rollenschuh 9 gelagert.
  • In Fig. 3 ist in stark schematisierter Darstellung ein Hochdruckeinspritzsystem 36 für ein nicht dargestelltes Kraftfahrzeug abgebildet mit einem Hochdruck-Rail 30 oder einem Kraftstoffverteilerrohr 31. Von dem Hochdruck-Rail 30 bzw. einem Kraftstoffverteilerrohr 31 wird der Kraftstoff mittels Ventilen (nicht dargestellt) in die Verbrennungsräume (nicht dargestellt) des Verbrennungsmotors 39 eingespritzt. Eine elektrische Vorförderpumpe 35 fördert Kraftstoff von einem Kraftstofftank 32 durch eine Kraftstoffleitung 33 zu der Hochdruckpumpe 1. Die Hochdruckpumpe 1 wird dabei von der Antriebswelle 2 angetrieben und die Antriebswelle 2 ist eine Welle, z. B. eine Kurbel- oder Nockenwelle, des Verbrennungsmotors 39. Eine Zumesseinheit 37 steuert und/oder regelt das pro Zeiteinheit zu der Hochdruckpumpe 1 geleitete Volumen an Kraftstoff. Das Hochdruck-Rail 30 dient dazu, den Kraftstoff in den Verbrennungsraum des Verbrennungsmotors 39 einzuspritzen. Der von der Hochdruckpumpe 1 nicht benötigte Kraftstoff wird dabei durch eine optionale Kraftstoffrücklaufleitung 34 wieder in den Kraftstofftank 32 zurückgeleitet.
  • Fig. 4 zeigt einen Teil des Hochdruckeinspritzsystems 36. Innerhalb des Gehäuses 8 der Hochdruckpumpe 1 ist ein Schmierraum 40 ausgebildet. In dem Schmierraum 40 sind die Antriebswelle 2, die Laufrolle 10, der Rollenschuh 9 (nicht in Fig. 4) dargestellt und teilweise der Kolben 5 angeordnet. Durch den durch den Schmierraum 40 geleiteten Kraftstoff werden diese Komponenten 2, 5, 9 und 10 von dem Kraftstoff geschmiert. Innerhalb des Gehäuses 8 ist hierzu ein Strömungskanal 43 vorhanden und durch den Strömungskanal 43 wird der Kraftstoff in den Schmierraum 40 ein- und anschließend wieder ausgeleitet und nach dem Ausleiten aus dem Schmierraum 40 durch die Kraftstoffrücklaufleitung 34 wieder dem Kraftstofftank 32 zugeführt (Fig. 4). In Fig. 4 ist das in Fig. 3 dargestellte Hochdruckeinspritzsystem 36 detaillierter ohne dem Hochdruck-Rail 30 und ohne dem Verbrennungsmotor 39 dargestellt. Dabei weist das Hochdruckeinspritzsystem 36 in dem in Fig. 4 dargestellten detaillierten Ausführungsbeispiel im Gegensatz zu dem in Fig. 3 dargestellten Ausführungsbeispiel keine Zumesseinheit 37 auf. Die Vorförderpumpe 35 ist in dem in Fig. 4 dargestellten Ausführungsbeispiel in der Förderleistung steuerbar und/oder regelbar und ist durch einen Elektromotor 17 angetrieben. Die Vorförderpumpe 35 ist als eine Zahnradpumpe 14, z. B. eine Innenzahnradpumpe 15 oder eine Außenzahnradpumpe 16, ausgebildet und stark vereinfacht dargestellt. Der von der Vorförderpumpe 35 aus dem Kraftstofftank 32 angesaugte Kraftstoff wird von der Vorförderpumpe 35 mit einem Vorförderdruck, z. B. von 4 bar, durch die Kraftstoffleitung 33 der Hochdruckpumpe 1 zugeführt, d. h. dem Einlasskanal 22 der Hochdruckpumpe 1 zugeführt. Ferner wird der von der Vorförderpumpe 35 geförderte Kraftstoff während eines Betriebes des Verbrennungsmotors 39 nach dem Durchleiten durch den Schmierraum 40 durch ein Überströmventil 41 und einem dem Überströmventil 41 nachgeschalteten Strömungskanal 43 aus dem Schmierraum 40 abgeleitet zur Schmierung, z. B. der Antriebswelle 2, der Laufrolle 10 und des Kolbens 5. Nach dem Durchströmen des Kraftstoffes durch den Schmierraum 40 wird der Kraftstoff wieder durch den Strömungskanal 43 und die Kraftstoffrücklaufleitung 34 dem Kraftstofftank 32 zugeführt. Dadurch können diese Komponenten 2, 5, 9 und 10 geschmiert sowie auch gekühlt werden. Das Überströmventil 41 ist dabei dahingehend ausgebildet, dass in der Kraftstoffleitung 43 vor dem Überströmventil 41 und in der Kraftstoffleitung 43 in den Schmierraum 40 ein konstanter Druck, d. h. der Vorförderdruck von 4, 5 bar herrscht. Die Vorförderpumpe 35 fördert dabei neben der Fördermenge für die Hochdruckpumpe 1 an Kraftstoff auch eine zusätzliche Kraftstoffmenge zur Schmierung der Hochdruckpumpe 1, d. h. des Kraftstoffes der durch den Schmierraum 40 strömt. Um ein Ansteigen des Druckes bei einer erhöhten Förderleistung der Vorförderpumpe 35 an der Kraftstoffleitung 33 vor dem Überströmventil 41 zu vermeiden, öffnet bei einem Druckanstieg, z. B. ab einem Druck von 5,5 bar, des Kraftstoffes vor dem Überströmventil 41 das Überströmventil 41 zusätzlich, d. h. stellt eine größere Strömungsquerschnittsfläche des Kraftstoffes durch das Überströmventil 41 solange zur Verfügung, bis wieder ein Druck von 4,5 bar vor dem Überströmventil 41 herrscht. Bei einem Druck von weniger als 4,5 bar in der Kraftstoffleitung 33 vor dem Überströmventil 41 schließt das Überströmventil 41. Dadurch kann in der Kraftstoffleitung 33 vor dem Überströmventil 41 während des Betriebes des Verbrennungsmotors 39 ein im Wesentlichen konstanter Vorförderdruck zwischen 4,5 bar und 5,5 bar zur Verfügung gestellt werden, auch bei geringfügigen Schwankungen der Förderleistung der Vorförderpumpe 35 bezüglich des von der Hochdruckpumpe 1 benötigten Volumenstromes.
  • In Fig. 5 ist ein aus dem Stand der Technik bekanntes Ventil 42 als Überströmventil 41 des Hochdruckeinspritzsystems 36 dargestellt. Das Überströmventil 41 verfügt über ein Ventilgehäuse 45, welches einen Ventilzylinder 44 begrenzt. Außenseitig an dem Ventilgehäuse 45 ist ein Gewinde 60 als Außengewinde 60 ausgebildet, welches eine Fixierungseinrichtung 38 zur axialen Befestigung innerhalb einer Aussparung 61 an dem Gehäuse 8 der Hochdruckpumpe 1 bildet. Innerhalb des Ventilzylinders 44 ist ein Schließkolben 46 gelagert. Der Schließkolben 46 kann aufgrund der Gleitlagerung an dem Ventilzylinder 44 eine axiale Bewegung, d. h. gemäß der Darstellung in Fig. 6 von links nach rechts und umgekehrt, ausführen. Der Ventilzylinder 44 bzw. das Ventilgehäuse 45 schließen einen Zylinderraum 56 ein. Dabei ist der Zylinderraum 56 von dem Schließkolben 46 in einen ersten Zylinderteilraum 57 und einen zweiten Zylinderteilraum 58 unterteilt. In den ersten Zylinderteilraum 57 mündet eine Zulauföffnung 47 für Fluid, insbesondere Kraftstoff, da in das Ventilgehäuse 45 ein Zulaufkanal 48 eingearbeitet ist. Der Zulaufkanal 48 ist dabei in axialer Richtung in dem Ventilgehäuse 45 ausgebildet. Ferner münden in den ersten Zylinderteilraum 57 zwei Ablauföffnungen 49, weil in das Ventilgehäuse 45 zwei radiale Ablaufkanäle 50 eingearbeitet sind. Der Schließkolben 46 bzw. die Kalotte 46 ist an einem axialen Abschnitt mit einem größeren Durchmesser bzw. Radius mittels einer Gleitlagerung an dem Ventilzylinder 44 gelagert. An einem zweiten Abschnitt weist der Schließkolben 46 einen kleineren Durchmesser auf und im rechten Endbereich dieses Abschnitts mit dem kleineren Durchmesser weist der Schließkolben 46 einen Dichtsitz 54 auf.
  • Im zweiten Zylinderteilraum 58 ist eine Ventilfeder 52 als elastisches Ventilelement 51 angeordnet. Das elastische Ventilelement 51 ist dabei an einem Ende an einem festen Federhalter 53 befestigt und an einem anderen Ende an dem Schließkolben 46. Der Federhalter 53 verschließt den Ventilzylinder 44 und ist als gesondertes Bauteil in Ergänzung zu dem Ventilgehäuse 45 ausgebildet. Abweichend hiervon kann der Federhalter 53 auch einteilig mit dem Ventilgehäuse 45 ausgebildet sein (nicht dargestellt). Außenseitig sind an dem Ventilgehäuse 45 zwei Dichtnuten 62 ausgebildet, in denen jeweils ein Dichtring 63, z. B. eine elastische Gummidichtung, angeordnet ist. Mittels der Dichtringe 63 kann dadurch das Ventilgehäuse 45 in das Gehäuse 8 der Hochdruckpumpe integriert oder eingebaut werden. Hierzu weist das Gehäuse 8 der Hochdruckpumpe 1 eine entsprechend komplementär ausgebildete Bohrung 64 oder Öffnung als Aussparung 61 auf, an welcher die Dichtringe 63 aufliegen und dadurch der Strömungskanal 43 durch den Zulaufkanal 48 und die beiden Ablaufkanäle 50 geführt werden kann.
  • In Fig. 5 ist eine Teilöffnungsstellung des Schließkolbens 46 dargestellt. In dieser Teilöffnungsstellung sind die beiden Ablauföffnungen 49 teilweise von dem Abschnitt des Schließkolbens 46 mit dem größeren Durchmesser verschlossen und teilweise kann durch die beiden Ablauföffnungen 49 das Fluid aus dem ersten Zylinderteilraum 57 ausströmen. Das Fluid, insbesondere der Kraftstoff, strömt dabei durch den Zulaufkanal 48 in den ersten Zylinderteilraum 57 ein. Erhöht sich der Druck des Kraftstoffes in dem ersten Zylinderteilraum 57 weiter, z. B. auf einen Wert von über 5 bar, bewegt sich aufgrund des größeren Druckes des Kraftstoffes in dem ersten Zylinderteilraum 57 der Schließkolben 46 entgegen der von der Ventilfeder 52 aufgebrachten Druckkraft weiter nach links, so dass dadurch die beiden Ablaufkanäle 50 weiter geöffnet werden. Bei einem Absinken des Druckes bewegt sich der Schließkolben 46 soweit nach rechts, bis der Dichtsitz 54 den Zulaufkanal 48 bzw. die in den ersten Zylinderteilraum 57 mündende Zulauföffnung 47 vollständig verschließt. Während der Bewegung des Schließkolbens 46 verändert sich auch das Volumen des zweiten Zylinderteilraumes 58. Zwischen dem Schließkolben 46 mit dem Abschnitt mit dem größeren Durchmesser und dem Ventilzylinder 44 besteht ein geringes Spiel, so dass in einem sehr geringen Umfang auch Kraftstoff von dem ersten Zylinderteilraum 57 in den zweiten Zylinderteilraum 58 gelangt. Der zweite Zylinderteilraum 58 ist damit, sofern der zweite Zylinderteilraum 58 bzw. Federraum 58 nicht mit Luft befüllt ist aufgrund eines geringen Druckes in der Kraftstoffrücklaufleitung 34, mit dem im Wesentlichen nicht kompressiblen Kraftstoff befüllt. Um eine Bewegung des Schließkolbens 46 überhaupt zu ermöglichen, ist es erforderlich, dass der in dem zweiten Zylinderteilraum 58 befindliche Kraftstoff durch eine Ausgleichsöffnung 59 von dem zweiten Zylinderteilraum 58 nach außen und wieder nach innen geleitet werden kann. Dabei weist die Ausgleichsöffnung 59 einen sehr kleinen Durchmesser bzw. eine kleine Strömungsquerschnittsfläche auf, z. B. einen Durchmesser im Bereich zwischen 0,5 mm und 1 mm. Druckschwankungen des Kraftstoffes im Bereich der Zulauföffnung 47 bewirken dadurch nicht eine Vibration des Schließkolbens 46, da durch die Ausgleichsöffnung 59 nur langsam Kraftstoff in den zweiten Zylinderteilraum 58 ein- und ausgeleitet wird und dadurch nur bei längerfristigen Druckänderungen des Kraftstoffes im Bereich der Zulauföffnung 47 eine gedämpfte Bewegung des Schließkolbens 46 bewirkt wird. Der Dichtsitz 54 ermöglicht in vorteilhafter Weise in der Schließstellung des Schließkolbens 46 eine vollständige Abdichtung des Überströmventils 41.
  • In Fig. 6 ist ein Längsschnitt eines erfindungsgemäßen Überströmventils 41 dargestellt. Im Nachfolgenden werden im Wesentlichen nur die Unterschiede zu dem in Fig. 5 dargestellten Überströmventil 41 aus dem Stand der Technik beschrieben. Das Ventilgehäuse 45 weist außenseitig kein Gewinde 60 als Fixierungseinrichtung 38 zur axialen Befestigung des Ventilgehäuses 45 an einem Gehäuse 8 der Hochdruckpumpe 1 auf. Das erfindungsgemäße Überströmventil 41 kann somit nicht in axialer Richtung, das heißt in Richtung einer Längsachse 77 des Ventils 42 bzw. einer Längsachse 77 der als Bohrung 64 ausgebildeten Aussparung 61 an dem Gehäuse 8 der Hochdruckpumpe (Fig. 7) in axialer Richtung befestigt werden. Zur axialen Befestigung des Überströmventils 41 liegt der Dichtring 63 an der Dichtnut 62 des Ventilgehäuses 45 auf einem Absatz 78 an dem Gehäuse 8 der Hochdruckpumpe 1 (Fig. 7) auf. Das Ventil 42 weist ein erstes inneres Ende 72 und ein zweites äußeres Ende 73 auf. Auf dem zweiten äußeren Ende 73 des Überströmventils 41 liegt ein als Rücklaufstutzen 69 ausgebildeter Stutzen 68 auf. Der Stutzen 68 ist mittels eines Pressverbundes 71 fluiddicht und kraftschlüssig mit dem Gehäuse 8 der Hochdruckpumpe 1 verbunden.
  • In das Gehäuse 8 der Hochdruckpumpe 1 ist - wie bereits erwähnt - eine als Bohrung 64 ausgebildete Aussparung 61 mit einer Längsachse 77 eingearbeitet. Die Bohrung 64 weist ein erstes inneres Ende 65 und ein zweites äußeres Ende 66 auf. Aufgrund des Aufliegens des zweiten äußeren Endes 73 des Überströmventils 41 auf dem Ende des Stutzens 68 und dem Aufliegen des Dichtringes 63 auf dem Absatz 78 des Gehäuses 8 ist das Ventil 42 in axialer Richtung innerhalb der Bohrung 64 befestigt. Das erfindungsgemäße Überströmventil 41 weist nur zwischen den beiden Ablauföffnungen 49 und der Zulauföffnung 47 an dem ersten inneren Ende 72 des Überströmventils 41 den Dichtring 63 auf, sodass dadurch ein Zwischenraum 74 in Richtung der Längsachse 77, beginnend von den beiden Ablauföffnungen 49 bzw. dem Dichtring 63 bis zu dem zweiten äußeren Ende 73 des Überströmventils 41 von aus den beiden Ablauföffnungen 49 ausströmenden Kraftstoff bei einem geöffneten Schließkolben 46 durchströmbar ist. Am Ende des Stutzens 68, welcher innerhalb der Bohrung 64 angeordnet ist, sind mehrere Radialstutzennuten 76 ausgebildet, sodass der durch den Zwischenraum 74 strömende Kraftstoff im Bereich des zweiten äußeren Endes 73 des Überströmventils 41 durch diese Radialstutzennuten 76 in radialer Richtung zu einem Stutzenkanal 70 strömen kann. Aufgrund der Schnittbildung in Fig. 7 ist nur einer der Vielzahl von Radialstutzennutzen 76 sichtbar. Der ringförmige Zwischenraum 74 ist zusätzlich in einen fiktiven Teilzwischenraum 75 unterteilt und der Teilzwischenraum 75 beginnt in axialer Richtung an der Ausgleichsöffnung 49 und endet an dem zweiten äußeren Ende 73 des Überströmventils 41.
  • Durch den Aussparungszulaufkanal 67 als Strömungskanal 43 wird der Kraftstoff aus dem Schmierraum 40 ausgeleitet und durch den Stutzenkanal 70 wird der Kraftstoff durch den Stutzenkanal 70 als Strömungskanal 43 der Kraftstoffrücklaufleitung 34 zugeführt. Die Kraftstoffrücklaufleitung 34 (nicht in Fig. 7 dargestellt) ist am äußeren Ende des Stutzens 68 befestigt. Der Kraftstoff strömt durch eine Mündung 79 des Aussparungszulaufkanales 67 in die Aussparung 61 ein und von der Aussparung 61 durch den Zulaufkanal 48 in das Überströmventil 41 bei einem geöffnetem Schließkolben 46. Von dem ersten Zylinderteilraum 57 strömt der Kraftstoff durch die beiden Ablauföffnungen 49 in den Zwischenraum 74 und von dem Zwischenraum 74 in den Stutzenkanal 70 als Strömungskanal 43, so dass auch das zweite äußere Ende der Aussparung 61 als Strömungskanal 43 dient.
  • Die Kraftstoffrücklaufleitung 34 weist keine Verengung bzw. keinen Staudruck auf, sodass bei einer abgeschalteten Hochdruckpumpe 1 und einer abgeschalteten Vorförderpumpe 35 die Kraftstoffrücklaufleitung 34 und damit auch der Stutzenkanal 70 sowie der Zwischenraum 74 von Kraftstoff leer läuft, das heißt mit Luft befüllt ist. Bei einer Inbetriebnahme der Hochdruckpumpe 1 und der Vorförderpumpe 35 ist die Vorförderpumpe 35 in der Förderleistung dahingehend ausgelegt, dass im normalen Betrieb der Schließkolben 46 geringfügig geöffnet ist, um eine Kühlung der Komponenten innerhalb des Schmierraumes 40 zu gewährleisten. Dadurch wird aufgrund des geöffneten Schließkolbens 46 mit der Inbetriebnahme der Vorförderpumpe 35 ständig der Zwischenraum 74 von Kraftstoff durchströmt und dadurch auch der Stutzenkanal 70, sodass ein unter Umständen vorhandenes Luftvolumen in dem Zwischenraum 74 und dem Stutzenkanal 70 unverzüglich mit Kraftstoff befüllt wird und dadurch die Luft aus dem Zwischenraum 74 in sehr kurzer Zeit nach dem Starten der Vorförderpumpe 35 und der Hochdruckpumpe 1 entfernt wird. Der Federraum 58 bzw. der zweite Zylinderteilraum 58 steht in fluidleitender Verbindung mit der Ausgleichsöffnung 49 mit dem Zwischenraum 74 bzw. dem Teilzwischenraum 75. Dadurch kann nach dem Starten der Vorförderpumpe 35 und der Hochdruckpumpe 1 ein in dem Federraum 58 vorhandenes Volumen an Luft durch die Ausgleichsöffnung 59 unverzüglich und schnell entfernt und mit Kraftstoff befüllt werden, da aufgrund der Hubbewegung des Schließkolbens 46 und der vorhandenen Füllung des Zwischenraumes 74 mit Kraftstoff sofort Kraftstoff in den Federraum 58 einströmen kann und dadurch der Federraum 58 nach dem Starten der Hochdruckpumpe 1 und der Vorförderpumpe 35 in kurzer Zeit mit Kraftstoff befüllt werden kann. Aufgrund dieser schnellen Befüllung nach dem Starten der Vorförderpumpe 35 und der Hochdruckpumpe 1 des Federraumes 58 mit Kraftstoff, ist eine Dämpfung des Schließkolbens 46 schnell gewährleistet, sodass dadurch keine Schwingungsbewegungen des Schließkolbens 46 auftreten.
  • Insgesamt betrachtet sind mit der erfindungsgemäßen Hochdruckpumpe 1 wesentliche Vorteile verbunden. Die Kraftstoffrücklaufleitung weist zur Verringerung des Energieverbrauchs keine Verengung und damit keinen Staudruck auf. Bei einer abgeschalteten Hochdruckpumpe 1 und einer abgeschalteten Vorförderpumpe 35 kann dadurch Luft in den Zwischenraum 74 und auch in den Federraum 51 eintreten. Nach dem Starten der Hochdruckpumpe 1 und der Vorförderpumpe 35 wird aufgrund der Dimensionierung des Überströmventils 41 der Zwischenraum 74 unverzüglich mit Kraftstoff in kurzer Zeit befüllt und aufgrund der fluidleitenden Verbindung von dem Zwischenraum 74 in dem Federraum 58 durch die Ausgleichsöffnung 59 kann auch der Federraum 58 in kurzer Zeit mit Kraftstoff befüllt werden, sodass dadurch keine Schwingungsbewegungen an dem Schließkolben 46 über einen längeren Zeitraum auftreten.

Claims (15)

  1. Hochdruckpumpe (1) zum Fördern von Kraftstoff, z. B. Diesel oder Benzin, umfassend
    - ein Gehäuse (8),
    - wenigstens einen Kolben (5) zum Fördern von Kraftstoff,
    - wenigstens einen Zylinder (6) zur Lagerung des wenigstens einen Kolbens (5),
    - eine in dem Gehäuse (8) ausgebildete Aussparung (61) zur Anordnung eines Überströmventils (41),
    - ein innerhalb der Aussparung (61) angeordnetes Überströmventil (41) mit einer Zulauföffnung (47) und wenigstens einer Ablauföffnung (49), wobei die Aussparung (61) ein erstes inneres Ende (65) und ein zweites äußeres Ende (66) aufweist,
    das Überströmventil (41)) umfassend
    - ein Ventilgehäuse (45) mit einem Ventilzylinder (44),
    - einen innerhalb des Ventilzylinders (44) zwischen einer Schließstellung und Öffnungsstellung beweglichen Schließkolben (46), so dass in der Schließstellung das Ventil (42) geschlossen und in der Öffnungsstellung das Ventil (42) geöffnet ist,
    - eine Zulauföffnung (47) zur Zuführung eines Fluides innerhalb eines von dem Ventilzylinder (44) eingeschlossenen Zylinderraumes (56),
    - wenigstens eine Ablauföffnung (49) zur Abführung des in den Zylinderraum (56) eingeleiteten Fluides,
    - ein mit dem Schließkolben (46) verbundenes elastisches Ventilelement (51), insbesondere Ventilfeder (52), mit welcher auf den Schließkolben (46) eine Druckkraft aufbringbar ist, die entgegengesetzt zu einer von dem Fluid innerhalb des Zylinderraumes (56) auf den Schließkolben (46) aufbringbaren Druckkraft ausgerichtet ist, so dass der Schließkolben (46) mittels der von dem elastischen Ventilelement (51) und dem Fluid auf den Schließkolben (46) aufgebrachten Druckkraft zwischen der Schließstellung der Öffnungsstellung bewegbar ist, wobei
    - das Ventilgehäuse (45) außenseitig keine Fixierungseinrichtung (38) zur axialen Befestigung in der Aussparung (61) an dem Gehäuse (8) der Hochdruckpumpe (1) aufweist,
    dadurch gekennzeichnet, dass
    die Hochdruckpumpe eine Antriebswelle (2) mit wenigstens einem Nocken (3) und einen Schmierraum (40) umfasst, wobei sich der wenigstens eine Kolben (5) mittelbar auf der Antriebswelle (2) mit dem wenigstens einen Nocken (3) abstützt, so dass von dem wenigstens einen Kolben (5) eine Translationsbewegung aufgrund einer Rotationsbewegung der Antriebswelle (2) ausführbar ist,
    und das zweite äußere Ende (66) der Aussparung (61) zum Durchleiten von Kraftstoff durch den Schmierraum (40) dient und
    der Zylinderraum (56) von dem Schließkolben (46) in einen ersten Zylinderteilraum (57) und einen zweiten Zylinderteilraum (58) unterteilt ist und in den ersten Zylinderteilraum (57) die Zulauföffnung (47) und die wenigstens eine Ablauföffnung (49) mündet und das elastische Ventilelement (51) innerhalb des zweiten Zylinderteilraumes (58) als Federraum (58) angeordnet ist und in den zweiten Zylinderteilraum (58) eine Ausgleichsöffnung (59) durch das Ventilgehäuse (45) mündet.
  2. Hochdruckpumpe nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das zweite äußere Ende (66) der Aussparung (61) zum Ausleiten von Kraftstoff aus der Aussparung (61) dient als einen Strömungskanal (43).
  3. Hochdruckpumpe nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    das Ventilgehäuse (45) außenseitig kein Gewinde (60) zur axialen Befestigung in der Aussparung (61) an dem Gehäuse (8) der Hochdruckpumpe (1) aufweist,
  4. Hochdruckpumpe nach einem oder mehreren der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Ausgleichsöffnung (59) radial durch das Ventilgehäuse (45) mündet.
  5. Hochdruckpumpe nach einem oder mehreren der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    in Richtung einer Längsachse (77) des Ventils (42) nur zwischen der Zulauföffnung (47) und der wenigstens einen Ablauföffnung (49) eine Dichtnut (62) und/oder ein Dichtring (63), insbesondere außenseitig, an dem Ventilgehäuse (45) ausgebildet und/oder angeordnet ist.
  6. Hochdruckpumpe nach einem oder mehreren der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    in die Aussparung (61) ein Aussparungszulaufkanal (67) mündet und die Zulauföffnung (47) des Überströmventils (41) einen kleineren Abstand in Richtung einer Längsachse (77) der Aussparung (61) zu einer Mündung (79) des Aussparungszulaufkanales (67) in die Aussparung (61) aufweist als die wenigstens eine Ablauföffnung (49) des Überströmventils (41) und/oder
    die Aussparung (61) als eine Bohrung (64) ausgebildet ist.
  7. Hochdruckpumpe nach einem oder mehreren der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    zwischen dem Gehäuse (8) der Hochdruckpumpe (1) und dem Überströmventil (41) ein Dichtring (63) ausgebildet ist und vorzugsweise der Dichtring (63) in Richtung der Längsachse (77) der Aussparung (61) zwischen der Zulauföffnung (47) und der wenigstens einen Ablauföffnung (49) ausgerichtet ist.
  8. Hochdruckpumpe nach einem oder mehreren der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    im Bereich des zweiten äußeren Endes (66) der Aussparung (61) ein Stutzen (68), insbesondere ein Rücklaufstutzen (69), mit einem Stutzenkanal (70) innerhalb der Aussparung (61) angeordnet ist und der Stutzenkanal (70) zum Durchleiten von Kraftstoff dient.
  9. Hochdruckpumpe nach Anspruch 8,
    dadurch gekennzeichnet, dass
    ein äußeres axiales Ende (73) des Überströmventils (41) auf dem Stutzen (68) aufliegt, so dass dadurch das Überströmventil (41) in axiale Richtung in der Aussparung (61) befestigt ist.
  10. Hochdruckpumpe nach Anspruch 8 oder 9,
    dadurch gekennzeichnet, dass
    der Stutzen (68) mittels eines Pressverbundes mit dem Gehäuse (8) der Hochdruckpumpe (1) verbunden ist innerhalb der Aussparung (61).
  11. Hochdruckpumpe nach einem oder mehreren der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    in axialer Richtung des Überströmventils (41) zwischen der Ablauföffnung (49) des Überströmventils (41) und dem äußeren axialen Ende (73) des Überströmventils (41) zwischen dem Ventilgehäuse (45) und dem Gehäuse (8) der Hochdruckpumpe (1) ein, insbesondere ringförmiger, Zwischenraum (74) ausgebildet ist zum Durchleiten des Kraftstoffe von der Ablauföffnung (49) zu dem äußeren axialen Ende (73) des Überströmventils (41) und vorzugsweise zu dem zweiten Ende (66) der Aussparung (61).
  12. Hochdruckpumpe nach Anspruch 11,
    dadurch gekennzeichnet, dass
    das Hubvolumen des Ventilkolbens (46) größer ist als das Volumen des Zwischenraumes (74).
  13. Hochdruckpumpe nach Anspruch 11 oder 12,
    dadurch gekennzeichnet, dass
    der Zwischenraum (74) in einen axialen Teilzwischenraum (75) zwischen einer Ausgleichsöffnung (59) in den zweiten Zylinderteilraumes (58) als Federraum (58) und dem äußeren axialen Ende (73) des Überströmventils (41) aufgeteilt ist und das Hubvolumen des Ventilkolbens (46) größer ist als das Volumen des Teilzwischenraumes (75).
  14. Hochdruckpumpe nach einem oder mehreren der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Zulauföffnung (47) des Überströmventils (41) an einem inneren axialen Ende (72) des Überströmventils (41) ausgebildet ist.
  15. Hochdruckeinspritzsystem (36) für einen Verbrennungsmotor (39), insbesondere für ein Kraftfahrzeug, umfassend
    - eine Hochdruckpumpe (1) mit einem Schmierraum (40) und einem Überströmventil (41),
    - eine Vorförderpumpe (35),
    - ein Hochdruck-Rail (30),
    dadurch gekennzeichnet, dass
    die Hochdruckpumpe (1) gemäß einem oder mehreren der vorhergehenden Ansprüche ausgebildet ist.
EP13815445.5A 2013-02-06 2013-12-16 Hochdruckpumpe Active EP2954192B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310201892 DE102013201892A1 (de) 2013-02-06 2013-02-06 Ventil
PCT/EP2013/076667 WO2014121870A1 (de) 2013-02-06 2013-12-16 Ventil

Publications (2)

Publication Number Publication Date
EP2954192A1 EP2954192A1 (de) 2015-12-16
EP2954192B1 true EP2954192B1 (de) 2017-10-25

Family

ID=49911493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13815445.5A Active EP2954192B1 (de) 2013-02-06 2013-12-16 Hochdruckpumpe

Country Status (4)

Country Link
EP (1) EP2954192B1 (de)
CN (1) CN104981605B (de)
DE (1) DE102013201892A1 (de)
WO (1) WO2014121870A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105464863A (zh) * 2015-12-09 2016-04-06 中国船舶重工集团公司第七一一研究所 电控单体泵***及喷油控制方法
GB201602013D0 (en) * 2016-02-04 2016-03-23 Delphi Internat Operations Luxembourg S À R L High pressure diesel fuel pump
CN107762691A (zh) * 2017-09-19 2018-03-06 北汽福田汽车股份有限公司 管件连接件和车辆
GB2570648B (en) * 2018-01-26 2020-10-14 Delphi Tech Ip Ltd Fuel Pump
US10865900B2 (en) * 2018-03-27 2020-12-15 Keihin Corporation Valve unit fixing structure and fluid pump using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007052665A1 (de) * 2007-11-05 2009-05-07 Robert Bosch Gmbh Kraftstoffüberströmventil für eine Kraftstoffeinspritzeinrichtung und Kraftstoffeinspritzeinrichtung mit Kraftstoffüberströmventil
ITMI20072219A1 (it) * 2007-11-23 2009-05-24 Bosch Gmbh Robert Valvola di sovrappressione e pompa di alta pressione comprendente tale valvola di sovrappressione
JP4518140B2 (ja) * 2007-12-05 2010-08-04 株式会社デンソー 燃料供給装置
JP4968037B2 (ja) * 2007-12-13 2012-07-04 株式会社デンソー 背圧制御弁およびそれを用いた低圧燃料システム
DE102009026596A1 (de) 2009-05-29 2010-12-02 Robert Bosch Gmbh Hochdruckpumpe
DE102009027146A1 (de) * 2009-06-24 2010-12-30 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe
ITMI20110582A1 (it) * 2011-04-08 2012-10-09 Bosch Gmbh Robert Gruppo di pompaggio per alimentare combustibile, preferibilmente gasolio, da un serbatoio di contenimento ad un motore a combustione interna
DE102012200894A1 (de) * 2012-01-23 2013-07-25 Robert Bosch Gmbh Kraftstoffhochdruckpumpe eines Einspritzsystems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN104981605B (zh) 2018-06-08
WO2014121870A1 (de) 2014-08-14
EP2954192A1 (de) 2015-12-16
CN104981605A (zh) 2015-10-14
DE102013201892A1 (de) 2014-08-07

Similar Documents

Publication Publication Date Title
DE602004008128T2 (de) Kraftstoffpumpe, die vom Kraftstoff geschmiert wird
DE102011055964B4 (de) Brennstoffzuführpumpe
EP2954192B1 (de) Hochdruckpumpe
WO2013124103A1 (de) Hochdruckpumpe
WO2020120064A1 (de) Regelbare schraubenspindelpumpe
EP2935857B1 (de) Hochdruckeinspritzsystem
DE102011086692A1 (de) Ventil
WO2017071867A1 (de) Hochdruckpumpe
EP2809943B1 (de) Hochdruckpumpe
DE102011076023A1 (de) Ventil
EP1394403B1 (de) Kraftstoffsystem für eine Brennkraftmaschine
EP2872771B1 (de) Hochdruckpumpe
DE102012212154A1 (de) Hochdruckpumpe
EP2673495A1 (de) Hochdruckpumpe
DE102006000832B4 (de) Radialkolbenpumpe mit Fördermengenregelung
EP2850318B1 (de) Hochdruckpumpe
DE102017218730A1 (de) Kraftstoffhochdruckpumpe
DE102012211976B3 (de) Hochdruckpumpe
DE102012202718A1 (de) Ventil
DE102012202717A1 (de) Hochdruckpumpe
DE102012201308A1 (de) Hochdruckpumpe
DE102009026717A1 (de) Kraftstoffhochdruckpumpe
DE102011086690A1 (de) System für ein Hochdruckeinspritzsystem mit einem Überströmventil und einer Zumesseinheit
DE102011076057A1 (de) Hochdruckeinspritzsystem
DE102012218380A1 (de) Pumpe, insbesondere Kraftstoffhochdruckpumpe für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170504

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 940202

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013008679

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171025

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013008679

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171216

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

26N No opposition filed

Effective date: 20180726

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180125

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131216

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 940202

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240227

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231229

Year of fee payment: 11