EP2854480B1 - Mikrowellenofen mit schwankungsgesteuerter Heizleistung - Google Patents

Mikrowellenofen mit schwankungsgesteuerter Heizleistung Download PDF

Info

Publication number
EP2854480B1
EP2854480B1 EP14001470.5A EP14001470A EP2854480B1 EP 2854480 B1 EP2854480 B1 EP 2854480B1 EP 14001470 A EP14001470 A EP 14001470A EP 2854480 B1 EP2854480 B1 EP 2854480B1
Authority
EP
European Patent Office
Prior art keywords
current
fluctuations
heating
microwave oven
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14001470.5A
Other languages
English (en)
French (fr)
Other versions
EP2854480A1 (de
Inventor
Alfred Betschart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V-Zug AG
Original Assignee
V-Zug AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V-Zug AG filed Critical V-Zug AG
Priority to EP14001470.5A priority Critical patent/EP2854480B1/de
Priority to DK14001470.5T priority patent/DK2854480T3/en
Priority to SI201430065A priority patent/SI2854480T1/sl
Priority to PL14001470.5T priority patent/PL2854480T3/pl
Publication of EP2854480A1 publication Critical patent/EP2854480A1/de
Application granted granted Critical
Publication of EP2854480B1 publication Critical patent/EP2854480B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/681Circuits comprising an inverter, a boost transformer and a magnetron
    • H05B6/682Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit
    • H05B6/683Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit the measurements being made at the high voltage side of the circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/043Methods or circuits intended to extend the life of the magnetron

Definitions

  • the invention relates to a microwave oven with a magnetron comprising an anode, a cathode and a cathode heater and with a drive circuit for the magnetron.
  • the invention also relates to a method for operating such a microwave oven.
  • a microwave oven has a transformer with two secondary windings.
  • the one secondary winding is used to drive the cathode heater of the magnetron, while the other secondary winding is used to generate the high voltage between the cathode and anode. In such devices, separate control of the anode current and the heating current is not possible.
  • the lifetime of a magnetron is directly dependent on the temperature of the filament of the cathode heater.
  • the service life is extended if the heating power during operation is as low as possible.
  • the cathode temperature must be so high that there are enough free electrons for the generation of the microwaves.
  • WO 98/11591 therefore proposes to choose the heating current of the magnetron depending on its dynamic impedance or its noise level.
  • the drive circuit of the magnetron in a conventional manner has a high voltage generator for generating the high voltage between the anode and the cathode, and a Schustromgenerator for generating the heating current for the cathode heater.
  • a controller is provided which controls these components.
  • a measuring circuit which is designed to determine fluctuations in a parameter dependent on the anode current of the magnetron, and the controller is designed to control the Heating current generator depending on these fluctuations to control such that the heating current is increased with increasing fluctuations.
  • the invention is based on the finding that fluctuations in the anode current are an early indicator that the cathode is too cold.
  • the characteristics required make it possible to take this circumstance into account.
  • the heating power can thus be increased until the fluctuations decline.
  • the cathode can always be heated with the power just required for stable operation. This prolongs the life of the magnetron.
  • the heating current is increased automatically and as needed. Tolerances of the device and in particular the parameters of the magnetron are automatically compensated, as well as fluctuations in the mains voltage.
  • the invention also makes it possible to operate the magnetron in most cases at lower heat output than in a conventional operation, so that the efficiency of the device is increased.
  • a power regulator which is designed so that the power absorbed by the cathode heater power can be controlled to a desired value.
  • the control is designed in this case to specify the desired value for the heating power depending on the fluctuations.
  • the high voltage generator has an inverter and a high voltage transformer.
  • the inverter feeds current pulses into the primary winding of the high voltage transformer.
  • the secondary winding of the high-voltage transformer generates the voltage between the anode and the cathode of the magnetron via a rectifier.
  • the mentioned measuring circuit is designed to measure fluctuations in the current pulses through the primary winding. The heights of the current pulses as well as their slew rates are directly related to the anode current and, since they can be easily measured on the primary side, form a very suitable measurement parameter for the purpose described here.
  • the measuring circuit is preferably designed to measure rising rates of the current pulses and to determine fluctuations in the rising rates. This is based on the finding that for a practical operation, the current pulses compared to inductance of the high voltage transformer are so short that the current does not reach its maximum value, but that the rate of increase of the current at the beginning of the pulse is a measure of this maximum value and thus also for the anode current is.
  • high voltage is understood to mean a voltage which is required as anode-cathode voltage for operation of the magnetron. In practice, this voltage is in most cases at least 1 kV, usually several kilovolts.
  • a push-pull output stage is a series connection of two electronic components, which can be alternately switched continuously, so that at the center tap of the two components, a time-varying voltage.
  • a half-bridge circuit is a circuit with exactly one push-pull final stage.
  • a full-bridge circuit (H-circuit, H-bridge) is a circuit with two push-pull output stages connected in parallel, with the load between the center taps of the two push-pull final stages.
  • the invention relates to a microwave oven, as exemplified in Fig. 1 is shown.
  • the microwave oven has a cooking chamber 1 for receiving the food to be heated, which can be closed to the user by a user door 2.
  • a magnetron 3 is also arranged, which is connected via a Holleiter 4 with the cooking chamber 1 in combination.
  • a controller 5 controls the function of the device.
  • Fig. 2 shows the most important components of the controller 5 in the present context.
  • the mains voltage of e.g. 230 volts at 50 Hz is rectified in a rectifier 10.
  • the first intermediate voltage Uz thus produced is then slightly filtered via a first capacitor C1, the capacitor C1, however, being dimensioned so that, under load, the value of the first intermediate voltage Uz varies by at least 50% with twice the mains frequency.
  • the intermediate voltage Uz is also tapped via a diode D1 and further filtered via a second capacitor C2 to form a second intermediate voltage Uz '.
  • the first intermediate voltage Uz is supplied to a high voltage generator 11, with which, as described below, the high voltage for driving the magnetron 3 is generated.
  • the second intermediate voltage Uz ' is supplied to a heating current generator 12, with which, as described below, the heating current for the cathode heating of the magnetron 3 is generated.
  • control unit 13 for example in the form of a microprocessor.
  • An analog-to-digital converter of the control unit 13 is supplied via a voltage divider R5, R6 a proportional to the intermediate voltage Uz value so that it can determine the intermediate voltage Uz.
  • the high voltage generator 11 comprises a full bridge circuit with four electronic switching elements T3 - T6, in particular in the form of IGBT transistors, each with a freewheeling diode.
  • the switching elements T3 - T6 are arranged in a known manner in two branches T3 and T4 or T5 and T6, wherein the switching elements of each branch are respectively arranged in series between the first intermediate voltage Uz and ground. Between the switching elements of each branch, a center tap is provided in each case, wherein the two center taps are connected to the two terminals of the primary winding of a high-voltage transformer 14.
  • the switching elements T3 - T6 form an inverter, which feeds an alternating voltage into the primary winding of the high-voltage transformer.
  • the high voltage transformer 14 has a secondary winding with a much higher number of turns than the primary winding for generating the high voltage.
  • the high voltage is rectified via two diodes D2 and D3, doubled and filtered by means of two capacitors C3 and C4.
  • the high voltage Uh thus generated is applied between the cathode K and the anode A of the magnetron 3.
  • a drive circuit 16 For driving the switching elements T3 - T6, a drive circuit 16 is provided, which is controlled by the control unit 13.
  • the drive circuit 16 generates the control voltages (gate or base voltages) UG3 - UG6 for the switching elements T3 - T6.
  • the control unit 13 is designed to switch the two branches of the full bridge circuit T3 - T6 alternately. The control is done so that during a switching cycle, the primary winding of high voltage transformer 14 is not permanently between the first intermediate voltage Uz and ground, but that the primary winding is decoupled during a time to be selected by the control unit 13 from the intermediate voltage Uz, ie the circuit is with Pulse width modulation clocked so that the value of the high voltage Uh can be controlled.
  • this can be divided by a voltage divider R10 - R13 and R14 and fed to an optocoupler 17 whose output signal is forwarded to the control unit 13. For example, a lack or non-ignition of the magnetron can be detected in this way.
  • a resistor R20 is provided between the two branches T3, T4 or T5, T6 and a fixed reference potential, in particular ground.
  • the initial increase in the voltage drop Ur across this resistor at the beginning of a current pulse is a measure of the anode current of the magnetron 3 and is supplied to the control unit 13 via an amplifier 18 for measurement purposes. This will be described in detail below.
  • the Walkerstromgenerator 12 is formed in the present embodiment of a half-bridge with two operated as push-pull final stage switching elements T1 and T2.
  • the switching elements T1 and T2 which in turn are e.g. can be configured as IGBT transistors and which are each equipped with a freewheeling diode, are arranged in series between the second intermediate voltage Uz 'and ground.
  • the center tap between the two switching elements T1, T2 is connected to one terminal of the primary winding of a heating transformer 15.
  • the second connection of the primary winding of the heating transformer 15 is connected to the center tap of a capacitive voltage divider of two capacitors C5 and C6.
  • the two capacitors C5 and C6 are connected in series between the second intermediate voltage Uz 'and ground.
  • the diode D1 prevents current from being discharged from the capacitors C5, C6 when the high voltage generator 11 connected to the intermediate voltage Uz draws current.
  • the secondary winding of the heating transformer 15 is connected to the cathode heater, i. connected to the filament, the magnetron 3 and supplies them with electricity.
  • a drive circuit 20 For driving the switching elements T1 and T2, a drive circuit 20 is provided, which is controlled by the control unit 13.
  • the drive circuit 20 generates the control voltages (gate or base voltages) UG1, UG2 for the switching elements T1 and T2. The type of control will be described in detail below.
  • a resistor R21 is arranged, through which the current from the push-pull output stage T1, T2 through the heating transformer to ground (or. the reference potential).
  • the voltage drop across this resistor is a measure of the current flowing from the second intermediate voltage Uz 'through the primary coil of the high voltage transformer 15 to ground (or reference potential). It is tapped by an amplifier 21 and fed to an analog-to-digital converter of the control unit 13.
  • Fig. 3 describes how the control unit 13 controls the switching elements of the heating current generator 12.
  • the figure shows the course of the voltages UG1 and UG2, which are applied to the control inputs of the switching elements T1 and T2, as well as the course of the voltage Uih, which drops across the resistor R21.
  • the control unit 13 is designed to switch the two switching elements T1 and T2 cyclically alternately.
  • a typical cycle period Tz is advantageously in the range of 10 - 50 ⁇ s.
  • heating phases H1 and H2 The periods in which one of the switching elements T1 or T2 is turned on are referred to below as heating phases H1 and H2, respectively, and are shown in FIG Fig. 3 drawn, wherein in the heating phase H1, the first switching element T1 and H2 in the heating phase, the second switching element T2 is turned on. Between the heating phases H1 and H2 or H2 and H1 both switching elements T1, T2 are turned off.
  • the phases in which both switching elements T1 and T2 are turned off are referred to as resting phases R1 and R2 and are in Fig. 3 also marked.
  • the heating phases have a duration th, the rest periods a duration tr.
  • the time th can be selected identically for both switching elements T1 and T2 in a simple embodiment, as well tr.
  • an alternating current is generated in the primary winding of the heating transformer 15, which is supplied (except for losses in the components, in particular in the heating transformer 15) as heating power of the cathode heater of the magnetron 3.
  • the average magnitude of the heating power is a function of the duty cycle, i. of the quotient th / Tz.
  • the voltage drop Uih forms a parameter that depends on the resistance of the cathode heater of the magnetron 3. Assuming that no losses in the Heating transformer 15 occur, Uih is opposite to the end of the heating pulse inversely proportional to the resistance of the cathode heater.
  • resistor R21 together with amplifier 21 form a measuring circuit which is designed to determine a parameter dependent on the resistance of the cathode heating.
  • Fig. 3 is a time tm plotted, to which the controller 13 measures the voltage drop Uih.
  • This time tm is preferably just before the end tx of the respective heating phase H1 or H2, for example at most 1 ⁇ s before the end tx of the heating phase.
  • a measurement takes place in each heating phase.
  • the product P is at least approximately proportional to the power supplied to the cathode heater.
  • the value of the intermediate voltage Uz ' approximately the value of the intermediate voltage Uz can be used, as it is determined by the control unit via the voltage divider R5, R6.
  • Uz ' corresponds to the value of Uz except for the voltage drop across D1.
  • Uz ' is sometimes somewhat larger than Uz, the difference remains small if the components are dimensioned appropriately. If Uz 'is to be determined exactly, in addition or as an alternative to R5, R6, a second voltage divider may be provided, which supplies the second intermediate voltage Uz' to the measurement of the control unit 13.
  • P is averaged over a filter time which is at least half a clock period of the mains voltage, ie at least 10 ms.
  • An adaptation of the pulse width th occurs only after the filter time has expired.
  • the control unit 13 forms a power regulator, with which the power absorbed by the cathode heater power can be controlled to a desired value.
  • Fig. 4 describes how the control unit 13 controls the switching elements T3 - T6 of the high voltage generator 11.
  • the figure shows the course of the voltages UG3 - UG6, which are applied to the control inputs of the switching elements T3 - T6, and the course of the current Ip in the primary winding of the high voltage transformer and the voltage Ur, which drops across the resistor R20.
  • the control unit 13 is configured to cyclically operate the four switching elements T3-T6.
  • a typical cycle period tc is advantageously in the range of 10 - 50 ⁇ s.
  • phases A and C are preferably the same length, i. the corresponding time periods tA and tC are identical.
  • phases B and D are preferably the same length, i. the corresponding time periods tB and tD are identical.
  • the phases A and C are, however, usually shorter or at most the same length as the phases B and D.
  • the controller 13 When the user activates the microwave oven, ie has given the command to supply energy to the food in the oven, the controller 13 first starts a preheating phase. In this preheating phase, the switching elements T3 - T6 all remain switched off, so that no high voltage is applied to the magnetron 3. The preheating phase is then followed by an operating phase in which the switching elements T3-T6 are also put into operation alternately in order to apply the high voltage to the magnetron and to supply the desired microwave radiation produce. The operating phase is described in more detail below.
  • the power of the cathode heater is kept as low as possible in the operating phase, and so deep that just a stable operation of the magnetron 3 is possible.
  • this parameter is the rate of rise of the current pulses through the primary coil of the high voltage transformer 14. For this, the increase of the voltage drop Ur across R20 is measured.
  • Fig. 5 shows the course of the voltage drop Ur in detail.
  • Fig. 5 shows two corresponding measurements ⁇ i and ⁇ i + 1 , where i and i + 1 represent the indices of two successive current pulses.
  • control unit 13 increases the setpoint for the heating power of the cathode heater.
  • Uz i denotes the intermediate voltage Uz at the time of the pulse i.
  • the sum preferably extends over at least half a network period, ie 10 ms. If the value S is above an upper threshold value S1, then the control unit 13 increases the setpoint value for the heating power. If the value S is above a lower, lower threshold value S2, the control unit 13 reduces the setpoint value for the heating power.
  • the non-scaled current slew rates can be filtered at a high pass, and then their statistical variance calculated.
  • the high pass has a cutoff frequency which is higher than twice the line frequency but lower than the switching frequency of the inverter.
  • the voltage drop Ur across R20 is used as a parameter for the fluctuations of the anode current of the magnetron 3.
  • a measuring winding can be integrated in the high-voltage transformer 14, the voltage of which is monitored.
  • the anode current can also be measured directly and transmitted to the control unit 13 via an optocoupler, for example.
  • sequence control of the described method steps can be implemented as hardware and / or software in the control unit 13.
  • a control circuit for a microwave oven has a push-pull output stage T1, T2 for driving a heating transformer 15, with which the cathode heater of the magnetron 3 is operated.
  • a separate high-voltage transformer 14 is provided, which is fed by a bridge circuit T3 - T6.
  • the control unit 13 of the device is designed to determine fluctuations in a parameter dependent on the anode current of the magnetron 3. If these fluctuations are high, the heating power of the cathode heating is increased. In this way, the magnetron 3 can be operated with an optimal, low heating power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft einen Mikrowellenofen mit einem Magnetron umfassend eine Anode, eine Kathode und eine Kathodenheizung und mit einer Ansteuerschaltung für das Magnetron. Die Erfindung betrifft auch ein Verfahren zum Betrieb eines derartigen Mikrowellenofens.
  • Hintergrund
  • Normalerweise besitzt ein Mikrowellenofen einen Transformator mit zwei Sekundärwicklungen. Die eine Sekundärwicklung dient zur Ansteuerung der Kathodenheizung des Magnetrons, während die andere Sekundärwicklung zur Erzeugung der Hochspannung zwischen Kathode und Anode verwendet wird. In solchen Geräten ist eine getrennte Steuerung des Anodenstroms und des Heizstroms nicht möglich.
  • In US 4 742 442 wird ein Gerät beschrieben, bei welchem die Ansteuerschaltung einen getrennt vom Hochspannungsgenerator steuerbaren Heizstromgenerator besitzt. Insbesondere sind zwei getrennte Transformatoren für den Heizstrom und die Hochspannung vorgesehen. Nach dem Aktivieren des Geräts wird zunächst eine Wechselspannung an den Heizstrom-Transformator angelegt, um die Kathode zu heizen. Nach bestimmter Zeit, z.B. fünf Sekunden, wird sodann auch eine Wechselspannung für den Hochspannungs-Transformator erzeugt, so dass die Hochspannung erst nach Vorheizen der Kathode an das Magnetron angelegt wird.
  • Die Lebensdauer eines Magnetrons ist direkt abhängig von der Temperatur des Filaments der Kathodenheizung. Die Lebensdauer wird verlängert, wenn die Heizleistung im Betrieb möglichst tief ist. Die Kathodentemperatur muss aber so hoch sein, dass genügend freie Elektronen für die Erzeugung der Mikrowellen vorhanden sind.
  • Im Laufe der Alterung des Magnetrons benötigt dieses eine zunehmend grössere Heizleistung für einen stabilen Betrieb. In konventionellen Lösungen wird deshalb die Heizleistung so gross gewählt, dass auch ein bereits gealtertes Magnetron noch sicher betrieben werden kann. Dabei nimmt man in Kauf, dass diese Heizleistung an sich zu hoch für ein neuwertiges Magnetron ist und dass es deshalb zu einer schnelleren Alterung des Magnetrons kommt. WO 98/11591 schlägt deshalb vor, den Heizstrom des Magnetrons abhängig von dessen dynamischer Impedanz oder von dessen Rauschpegel zu wählen.
  • Darstellung der Erfindung
  • Es stellt sich deshalb die Aufgabe, einen alternativen Mikrowellenofen und ein alternatives Verfahren der eingangs genannten Art bereitzustellen, bei welchen das Magnetron eine hohe Lebensdauer hat. Diese Aufgabe wird vom Gerät bzw. Verfahren gemäss den unabhängigen Patentansprüchen gelöst.
  • Demgemäss besitzt die Ansteuerschaltung des Magnetrons in an sich bekannter Weise einen Hochspannungsgenerator zum Erzeugen der Hochspannung zwischen der Anode und der Kathode sowie einen Heizstromgenerator zum Erzeugen des Heizstroms für die Kathodenheizung. Zudem ist eine Steuerung vorgesehen, welche diese Komponenten steuert.
  • Weiter ist eine Messschaltung vorgesehen, welche dazu ausgestaltet ist, Schwankungen in einem vom Anodenstrom des Magnetrons abhängigen Parameter zu bestimmen, und die Steuerung ist dazu ausgestaltet, den Heizstromgenerator abhängig von diesen Schwankungen derart zu steuern, dass der Heizstrom bei zunehmenden Schwankungen erhöht wird.
  • Entsprechend betrifft die Erfindung auch ein Verfahren zum Betrieb eines Mikrowellenofens, wobei der Mikrowellenofen ein Magnetron aufweist, das eine Kathode, eine Anode und eine Kathodenheizung besitzt. Im Rahmen dieses Verfahrens werden zumindest die folgenden Schritte ausgeführt:
    1. (A) Messen von Schwankungen in einem vom Anodenstrom des Magnetrons abhängigen Parameter. Bei diesem Parameter kann es sich z.B. um den Anodenstrom selbst oder um einem anderen vom Anodenstrom abhängigen Parameter handeln.
    2. (B) Steuern des Heizstromgenerators abhängig von den Schwankungen derart, dass der Heizstrom bei zunehmenden Schwankungen erhöht wird. Mit anderen Worten wird bei einem Anstieg der Schwankungen, z.B. über einen Schwankungs-Schwellwert, der Heizstrom erhöht.
  • Der Erfindung liegt die Erkenntnis zu Grunde, dass Schwankungen im Anodenstrom ein früher Indikator dafür sind, dass die Kathode zu kalt ist. Durch die anspruchsgemässen Merkmale wird es möglich, diesem Umstand Rechnung zu tragen. Insbesondere kann die Heizleistung also so lange erhöht werden, bis die Schwankungen zurückgehen. Dadurch kann die Kathode stets mit der gerade erforderlichen Leistung für einen stabilen Betrieb geheizt werden. Damit wird die Lebensdauer des Magnetrons verlängert. Bei einer Alterung des Magnetrons wird der Heizstrom automatisch und bedarfsgerecht erhöht. Toleranzen des Geräts und insbesondere der Parameter des Magnetrons werden automatisch ausgeglichen, ebenso Schwankungen in der Netzspannung.
  • Die Erfindung erlaubt es auch, das Magnetron in den meisten Fällen bei geringerer Heizleistung zu betreiben als bei einem konventionellen Betrieb, so dass der Wirkungsgrad des Geräts erhöht wird.
  • Vorteilhaft ist ein Leistungsregler vorgesehen, welcher so ausgestaltet ist, dass die von der Kathodenheizung aufgenommene Leistung auf einen Sollwert geregelt werden kann. Die Steuerung ist in diesem Fall dazu ausgestaltet, den Sollwert für die Heizleistung abhängig von den Schwankungen vorzugeben.
  • In einer weiteren vorteilhaften Ausführung weist der Hochspannungsgenerator einen Wechselrichter und einen Hochspannungstransformator auf. Der Wechselrichter speist Strompulse in die Primärwicklung des Hochspannungstransformators ein. Die Sekundärwicklung des Hochspannungstransformators erzeugt über einen Gleichrichter die Spannung zwischen Anode und Kathode des Magnetrons. Die erwähnte Messschaltung ist zur Messung von Schwankungen in den Strompulsen durch die Primärwicklung ausgestaltet. Die Höhen der Strompulse sowie auch deren Anstiegsgeschwindigkeiten hängen direkt mit dem Anodenstrom zusammen und bilden, da sie primärseitig einfach gemessen werden können, einen sehr geeigneten Messparameter für den hier beschriebenen Zweck.
  • In diesem Fall ist die Messschaltung vorzugsweise dazu ausgestaltet, Anstiegsgeschwindigkeiten der Strompulse zu messen und Schwankungen in den Anstiegsgeschwindigkeiten zu ermitteln. Dem steht die Erkenntnis zugrunde, dass für einen praktischen Betrieb die Strompulse im Vergleich zu Induktivität des Hochspannungstransformators so kurz sind, dass der Strom nicht seinen Höchstwert erreicht, dass aber die Anstiegsgeschwindigkeit des Stroms zu Beginn des Pulses ein Mass für diesen Höchstwert und somit auch für den Anodenstrom ist.
  • Kurze Beschreibung der Zeichnungen
  • Weitere Ausgestaltungen, Vorteile und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen und aus der nun folgenden Beschreibung anhand der Figuren. Dabei zeigen:
    • Fig. 1 einen Schnitt durch die im vorliegenden Zusammenhang wichtigsten Teile eines Mikrowellenofens,
    • Fig. 2 ein vereinfachtes Schaltungsdiagramm des Mikrowellenofens,
    • Fig. 3 ein Diagramm einiger Signale der Ansteuerschaltung für die Kathodenheizung,
    • Fig. 4 ein Diagramm einiger Signale der Ansteuerschaltung für den Hochspannungsgenerator,
    • Fig. 5 eine Detailansicht des Verlaufs des Spannungsabfalls Ur und
    • Fig. 6 die Anstiegsgeschwindigkeit der Strompulse im stabilen Betrieb (a) und im instabilen Betrieb (b).
    Wege zur Ausführung der Erfindung Definitionen:
  • Als Hochspannung wird im vorliegenden Kontext eine Spannung verstanden, welche als Anoden-KathodenSpannung zum Betrieb des Magnetrons erforderlich ist. In der Praxis beträgt diese Spannung in den meisten Fällen mindestens 1 kV, in der Regel mehrere Kilovolt.
  • Eine Gegentakt-Endstufe ist eine Serieschaltung zweier elektronischer Bauelemente, welche abwechslungsweise durchgängig geschaltet werden können, so dass am Mittelabgriff der beiden Bauelemente eine zeitlich variierende Spannung entsteht.
  • Eine Halbbrückenschaltung ist eine Schaltung mit genau einer Gegentakt-Endstufe.
  • Eine Vollbrückenschaltung (H-Schaltung, H-Brücke) ist eine Schaltung mit zwei parallel geschalteten Gegentakt-Endstufen, wobei die Last zwischen den Mittelabgriffen der beiden Gegentakt-Endstufen liegt.
  • Grundaufbau:
  • Die Erfindung betrifft einen Mikrowellenofen, wie er beispielhaft in Fig. 1 dargestellt ist. Der Mikrowellenofen besitzt einen Garraum 1 zur Aufnahme der zu erwärmenden Speisen, der zum Benutzer hin von einer Benutzertüre 2 verschlossen werden kann. Im Gerät ist zudem ein Magnetron 3 angeordnet, welches über einen Holleiter 4 mit dem Garraum 1 in Verbindung steht. Eine Steuerung 5 steuert die Funktion des Geräts.
  • Fig. 2 zeigt die im vorliegenden Zusammenhang wichtigsten Komponenten der Steuerung 5.
  • Die Netzspannung von z.B. 230 Volt bei 50 Hz wird in einem Gleichrichter 10 gleichgerichtet. Die so erzeugte erste Zwischenspannung Uz wird sodann über einem ersten Kondensator C1 leicht gefiltert, wobei der Kondensator C1 allerdings so dimensioniert ist, dass bei Last der Wert der ersten Zwischenspannung Uz mit der doppelten Netzfrequenz um mindestens 50% schwankt. Die Zwischenspannung Uz wird zudem über eine Diode D1 abgegriffen und über einen zweiten Kondensator C2 weiter gefiltert, um eine zweite Zwischenspannung Uz' zu bilden.
  • Die erste Zwischenspannung Uz wird einem Hochspannungsgenerator 11 zugeführt, mit welchem wie unten beschrieben die Hochspannung zur Ansteuerung des Magnetrons 3 erzeugt wird. Die zweite Zwischenspannung Uz' wird einem Heizstromgenerator 12 zugeführt, mit welchem wie unten beschrieben der Heizstrom für die Kathodenheizung des Magnetrons 3 erzeugt wird.
  • Der Betrieb des Hochspannungsgenerators 11 und des Heizstromgenerators 12 wird von einer Steuereinheit 13, z.B. in Form eines Mikroprozessors, gesteuert.
  • Einem Analog-Digital-Konverter der Steuereinheit 13 wird über einen Spannungsteiler R5, R6 ein zur Zwischenspannung Uz proportionaler Wert zugeführt, so dass diese die Zwischenspannung Uz bestimmen kann.
  • Hochspannungsgenerator:
  • Der Hochspannungsgenerator 11 umfasst eine Vollbrückenschaltung mit vier elektronischen Schaltelementen T3 - T6, insbesondere in Form von IGBT-Transistoren, jeweils mit einer Freilaufdiode. Die Schaltelemente T3 - T6 sind in bekannter Weise in zwei Zweigen T3 und T4 bzw. T5 und T6 angeordnet, wobei die Schaltelemente jedes Zweigs jeweils in Serie zwischen der ersten Zwischenspannung Uz und Masse angeordnet sind. Zwischen den Schaltelementen jedes Zweigs ist jeweils ein Mittelabgriff vorgesehen, wobei die beiden Mittelabgriffe mit den beiden Anschlüssen der Primärwicklung eines Hochspannungstransformators 14 verbunden sind. Somit bilden die Schaltelemente T3 - T6 einen Wechselrichter, welcher eine Wechselspannung in die Primärwicklung des Hochspannungstransformators einspeist.
  • Der Hochspannungstransformator 14 besitzt eine Sekundärwicklung mit wesentlich höherer Wicklungszahl als die Primärwicklung zur Erzeugung der Hochspannung. Die Hochspannung wird über zwei Dioden D2 und D3 gleichgerichtet, verdoppelt und mittels zwei Kondensatoren C3 und C4 gefiltert. Die so erzeugte Hochspannung Uh wird zwischen der Kathode K und der Anode A des Magnetrons 3 angelegt.
  • Zum Ansteuern der Schaltelemente T3 - T6 ist eine Ansteuerschaltung 16 vorgesehen, welche von der Steuereinheit 13 gesteuert wird. Die Ansteuerschaltung 16 erzeugt die Steuerspannungen (Gate- oder Basisspannungen) UG3 - UG6 für die Schaltelemente T3 - T6. Die Steuereinheit 13 ist dazu ausgestaltet, die beiden Zweige der Vollbrückenschaltung T3 - T6 alternierend zu schalten. Die Ansteuerung geschieht so, dass während eines Schaltzyklus die Primärwicklung von Hochspannungstransformator 14 nicht dauernd zwischen der ersten Zwischenspannung Uz und Masse liegt, sondern dass die Primärwicklung während einer von der Steuereinheit 13 zu wählenden Zeitspanne von der Zwischenspannung Uz abgekoppelt wird, d.h. die Schaltung wird mit Pulsbreitenmodulation getaktet, so dass der Wert der Hochspannung Uh gesteuert werden kann.
  • Zur Überwachung der Hochspannung Uh kann diese über einen Spannungsteiler R10 - R13 und R14 geteilt und einem Optokoppler 17 zugeführt, dessen Ausgangssignal an die Steuereinheit 13 weitergeleitet wird. Beispielsweise kann auf diese Weise ein Fehlen oder Nichtzünden des Magnetrons detektiert werden.
  • Weiter ist zwischen den beiden Zweigen T3, T4 bzw. T5, T6 und einem fixen Referenzpotenzial, insbesondere Masse, ein Widerstand R20 vorgesehen. Der Anfangsanstieg des Spannungsabfalls Ur über diesem Widerstand zu Beginn eines Strompulses ist ein Mass für den Anodenstrom des Magnetrons 3 und wird über einen Verstärker 18 zu Messzwecken der Steuereinheit 13 zugeführt. Dies wird weiter unten im Detail beschrieben.
  • Heizstromgenerator:
  • Der Heizstromgenerator 12 wird in der vorliegenden Ausführung von einer Halbbrücke mit zwei als Gegentakt-Endstufe betriebenen Schaltelementen T1 und T2 gebildet. Die Schaltelemente T1 und T2, welche wiederum z.B. als IGBT-Transistoren ausgestaltet sein können und die jeweils mit einer Freilaufdiode ausgestattet sind, sind in Serie zwischen der zweiten Zwischenspannung Uz' und Masse angeordnet.
  • Der Mittelabgriff zwischen den beiden Schaltelementen T1, T2 ist mit dem einen Anschluss der Primärwicklung eines Heiztransformators 15 verbunden. Der zweite Anschluss der Primärwicklung des Heiztransformators 15 ist mit dem Mittelabgriff eines kapazitiven Spannungsteilers aus zwei Kondensatoren C5 und C6 verbunden. Die beiden Kondensatoren C5 und C6 liegen in Serie zwischen der zweiten Zwischenspannung Uz' und Masse.
  • Die Diode D1 verhindert, dass Strom aus den Kondensatoren C5, C6 abgeleitet wird, wenn der an der Zwischenspannung Uz angeschlossene Hochspannungsgenerator 11 Strom zieht.
  • Die Sekundärwicklung des Heiztransformators 15 ist mit der Kathodenheizung, d.h. dem Filament, des Magnetrons 3 verbunden und versorgt diese mit Strom.
  • Zum Ansteuern der Schaltelemente T1 und T2 ist eine Ansteuerschaltung 20 vorgesehen, welche von der Steuereinheit 13 gesteuert wird. Die Ansteuerschaltung 20 erzeugt die Steuerspannungen (Gate- oder Basisspannungen) UG1, UG2 für die Schaltelemente T1 bzw. T2. Die Art der Ansteuerung wird weiter unten im Detail beschrieben.
  • Zwischen der Gegentakt-Endstufe, gebildet von den Schaltelementen T1, T2, und der Masse (oder einem anderen festen Referenzpotenzial) ist ein Widerstand R21 angeordnet, durch welchen der Strom von der Gegentakt-Endstufe T1, T2 durch den Heiztransformator gegen Masse (bzw. das Referenzpotenzial) abfliesst. Der Spannungsabfall über diesem Widerstand ist ein Mass für den Strom, der von der zweiten Zwischenspannung Uz' durch die Primärspule des Hochspannungstransformators 15 gegen Masse (bzw. Referenzpotenzial) fliesst. Er wird von einem Verstärker 21 abgegriffen und der einem Analog-Digital-Konverter der Steuereinheit 13 zugeführt.
  • Ansteuerung des Heizstromgenerators:
  • Im Folgenden wird anhand von Fig. 3 beschrieben, wie die Steuereinheit 13 die Schaltelemente des Heizstromgenerators 12 ansteuert. Die Figur zeigt den Verlauf der Spannungen UG1 und UG2, welche an den Steuereingängen der Schaltelemente T1 und T2 anliegen, sowie den Verlauf der Spannung Uih, welche über dem Widerstand R21 abfällt.
  • Die Steuereinheit 13 ist dazu ausgestaltet, die beiden Schaltelemente T1 und T2 zyklisch alternierend einzuschalten. Eine typische Zyklusperiode Tz liegt vorteilhaft im Bereich von 10 - 50 µs.
  • Die Zeitspannen, in denen eines der Schaltelemente T1 oder T2 eingeschaltet ist, werden im Folgenden als Heizphasen H1 bzw. H2 bezeichnet und sind in Fig. 3 eingezeichnet, wobei in Heizphase H1 das erste Schaltelement T1 und in Heizphase H2 das zweite Schaltelement T2 eingeschaltet ist. Zwischen den Heizphasen H1 und H2 bzw. H2 und H1 sind beide Schaltelemente T1, T2 abgeschaltet. Die Phasen, in denen beide Schaltelemente T1 und T2 abgeschaltet sind, werden als Ruhephasen R1 und R2 bezeichnet und sind in Fig. 3 ebenfalls eingezeichnet. Die Heizphasen besitzen eine Dauer th, die Ruhephasen eine Dauer tr.
  • Die Zeit th kann in einer einfachen Ausführung für beide Schaltelemente T1 und T2 identisch gewählt werden, ebenso tr.
  • Auf diese Weise wird in der Primärwicklung des Heiztransformators 15 ein Wechselstrom erzeugt, der (bis auf Verluste in den Komponenten, insbesondere im Heiztransformator 15) als Heizleistung der Kathodenheizung des Magnetrons 3 zugeführt wird. Die gemittelte Grösse der Heizleistung ist eine Funktion des Tastverhältnisses, d.h. des Quotienten th/Tz.
  • Wie aus Fig. 3 ersichtlich, steigt nach dem Einschalten eines der Schaltelemente T1, T2 der Strom durch die Primärwicklung des Heiztransformators 15 und somit der Spannungsabfall Uih über Widerstand R21 an und kann über den Verstärker 21 von der Steuereinheit 13 gemessen werden.
  • Der Spannungsabfall Uih bildet einen Parameter, der vom Widerstand der Kathodenheizung des Magnetrons 3 abhängt. Unter der Annahme, dass keine Verluste im Heiztransformator 15 auftreten, ist Uih gegen Ende des Heizpulses umgekehrt proportional zum Widerstand der Kathodenheizung. Somit bilden Widerstand R21 zusammen mit Verstärker 21 eine Messschaltung, welche dazu ausgestaltet ist, einen vom Widerstand der Kathodenheizung abhängigen Parameter zu bestimmen.
  • In Fig. 3 ist ein Zeitpunkt tm eingezeichnet, zu welchem die Steuerung 13 den Spannungsabfall Uih misst. Dieser Zeitpunkt tm liegt vorzugweise kurz vor dem Ende tx der jeweiligen Heizphase H1 bzw. H2, z.B. höchstens 1 µs vor dem Ende tx der Heizphase. Vorteilhaft findet in jeder Heizphase eine Messung statt.
  • Die Steuereinheit 13 ist dazu ausgestaltet, den das Produkt P = Uz' · Uih(tm) · th konstant zu halten, indem die Dauer th der Heizphasen abhängig von den Werten von Uih(tm) und Uz' variiert wird. Das Produkt P ist zumindest näherungsweise proportional zur Leistung, welche der Kathodenheizung zugeführt wird.
  • Für den Wert der Zwischenspannung Uz' kann näherungsweise der Wert der Zwischenspannung Uz benutzt werden, wie er von der Steuereinheit über den Spannungsteiler R5, R6 ermittelt wird. Solange (in der Vorheizphase) der Hochspannungsgenerator 11 nicht in Betrieb ist, entspricht Uz' bis auf den Spannungsabfall über D1 dem Wert von Uz. Danach ist Uz' zwar teilweise etwas grösser als Uz, doch bleibt bei geeigneter Dimensionierung der Komponenten der Unterschied klein. Falls Uz' genau bestimmt werden soll, kann zusätzlich oder alternativ zu R5, R6 ein zweiter Spannungsteiler vorgesehen sein, der die zweite Zwischenspannung Uz' zur Messung der Steuereinheit 13 zuführt.
  • Vorzugsweise wird P über eine Filterzeit gemittelt, welche mindestens eine halbe Taktperiode der Netzspannung, d.h. mindestens 10 ms, beträgt. Eine Anpassung der Pulsweite th erfolgt erst nach Ablauf der Filterzeit.
  • P ist ein direktes Mass für die Leistung, welche die Gegentakt-Endstufe T1, T2 abgibt, und somit (unter Vernachlässigung der Verlustleistungen, insbesondere im Heiztransformator 15) auch ein Mass für die Heizleistung der Kathodenheizung des Magnetrons 3. Somit bildet die Steuereinheit 13 also einen Leistungsregler, mit welchem die von der Kathodenheizung aufgenommene Leistung auf einen Sollwert geregelt werden kann.
  • Ansteuerung des Hochspannungsgenerators:
  • Im Folgenden wird anhand von Fig. 4 beschrieben, wie die Steuereinheit 13 die Schaltelemente T3 - T6 des Hochspannungsgenerators 11 ansteuert. Die Figur zeigt den Verlauf der Spannungen UG3 - UG6, welche an den Steuereingängen der Schaltelemente T3 - T6 anliegen, sowie den Verlauf des Stroms Ip in der Primärwicklung des Hochspannungstransformators und der Spannung Ur, welche über dem Widerstand R20 abfällt.
  • Die Steuereinheit 13 ist dazu ausgestaltet, die vier Schaltelemente T3 - T6 zyklisch zu betreiben. Eine typische Zyklusperiode tc liegt vorteilhaft im Bereich von 10 - 50 µs.
  • Jede Zyklusperiode umfasst vier Phasen A - D:
    • In der Phase A sind die Schaltelemente T3 und T6 eingeschaltet und die Schaltelemente T4 und T5 ausgeschaltet, so dass sich ein positiver Storm Ip von der Zwischenspannung Uz durch die Brückenschaltung gegen Masse aufbaut. Dieser Strom führt zu einem ansteigenden Spannungsabfall Ur über R20. (Da die Induktivität des Hochspannungstransformators 14 wesentlich höher ist als jene des Heiztransformators 15, geht der Strom im Gegensatz zur Situation nach Fig. 3 nicht in Sättigung sondern steigt über die Phase A praktisch linear an.)
    • In der Phase B bleibt Schaltelement T6 eingeschaltet. Schaltelement T3 wird ausgeschaltet und sodann Schaltelement T4 eingeschaltet. Der Strom durch den Hochspannungstransformator 14 baut sich wieder ab, indem er das Schaltelement T6 und die Freilaufdiode des Schaltelements T4 durchfliesst.
    • In der Phase C wird das Schaltelement T6 abgeschaltet und das Schaltelement T5 eingeschaltet. Es baut sich nun ein negativer Strom Ip von der Zwischenspannung Uz durch die Brückenschaltung und die Primärwicklung gegen Masse auf. Dieser Strom führt wieder zu einem ansteigenden Spannungsabfall Ur über R20.
    • In der Phase D bleibt Schaltelement T4 eingeschaltet. Schaltelement T5 wird ausgeschaltet und sodann Schaltelement T6 eingeschaltet. Der Strom durch den Hochspannungstransformator 14 baut sich wieder ab, indem er das Schaltelement T4 und die Freilaufdiode des Schaltelements T6 durchfliesst.
  • Im Betrieb sind die Phasen A und C vorzugsweise gleich lang, d.h. die entsprechenden Zeitdauern tA und tC sind identisch. Ebenso sind die Phasen B und D vorzugsweise gleich lang, d.h. die entsprechenden Zeitdauern tB und tD sind identisch. Die Phasen A und C sind in der Regel jedoch kürzer oder höchstens gleich lang wie die Phasen B und D. Durch das Verhältnis von tA + tC zur Zykluszeit tc kann die vom Magnetron abzugebende Leistung eingestellt werden. Dieses Verhältnis wird von der Steuerung 13 z.B. entsprechend Vorgaben des Benutzers eingestellt.
  • Betrieb:
  • Wenn der Benutzer den Mikrowellenofen aktiviert, d.h. den Befehl gegeben hat, den Lebensmitteln im Garraum Energie zuzuführen, startet die Steuerung 13 zunächst eine Vorheizphase. In dieser Vorheizphase bleiben die Schaltelemente T3 - T6 alle ausgeschaltet, so dass keine Hochspannung am Magnetron 3 anliegt. An die Vorheizphase schliesst sodann eine Betriebsphase an, in welcher auch die Schaltelemente T3 - T6 alternierend in Betrieb genommen werden, um die Hochspannung an das Magnetron anzulegen und die gewünschte Mikrowellenstrahlung zu erzeugen. Im Folgenden wird die Betriebsphase genauer beschrieben.
  • Wie eingangs erwähnt, wird in der Betriebsphase die Leistung der Kathodenheizung möglichst tief gehalten, und zwar so tief, dass gerade noch ein stabiler Betrieb des Magnetrons 3 möglich ist.
  • Um die Grenze dieses stabilen Betriebs zu erkennen, werden - wie eingangs bereits erwähnt - Schwankungen in einem vom Anodenstrom abhängigen Parameter untersucht. In der soweit beschriebenen Ausführung handelt es sich bei diesem Parameter um die Anstiegsgeschwindigkeit der Strompulse durch die Primärspule des Hochspannungstransformators 14. Hierzu wird der Anstieg des Spannungsabfalls Ur über R20 gemessen.
  • Fig. 5 zeigt den Verlauf des Spannungsabfalls Ur im Detail. Die Steuereinheit 13 führt pro Strompuls zwei Messungen zu den Zeiten t1 und t2 durch und errechnet hieraus den entsprechenden Unterschied Δ = Ur(t2) - Ur(t1), welcher ein Mass für die Anstiegsgeschwindigkeit des Strompulses ist. Fig. 5 zeigt zwei entsprechende Messungen Δi und Δi+1, wobei i bzw. i+1 die Indizes zweier aufeinander folgender Strompulse darstellen.
  • Anstelle der Messung zweier Werte zu den Zeiten t1 und t2 kann auch nur ein Wert in bekanntem zeitlichem Abstand vom Pulsstart gemessen werden. Die Messung zweier Werte besitzt jedoch den Vorteil, dass die Pulsform genauer ermittelt werden kann, was insbesondere eine zuverlässigere Erkennung von Fehlzuständen erlaubt. So werden z.B. zum Zeitpunkt t1 negative Ströme bzw. Spannungen detektiert, falls am Ausgang des Hochspannungstransformators 14 ein Kurzschluss herrscht.
  • Schwankungen in den Anstiegsgeschwindigkeiten, wie sie in Fig. 5 gestrichelt dargestellt sind, können zwei Ursachen haben:
    1. 1) Eine erste Ursache liegt darin, dass die Zwischenspannung Uz nur unvollständig geglättet ist. Sie variiert mit einer Frequenz, welche dem Doppelten der Netzfrequenz entspricht, also mit ca. 100 Hz. Je höher die Zwischenspannung Uz ist, desto grösser ist die Anstiegsgeschwindigkeit der Strompulse. Die mit Uz skalierte Anstiegsgeschwindigkeit Δi/Uz ist jedoch deutlich weniger abhängig von der Zwischenspannung Uz. Dies ist in Fig. 6a illustriert, welche die Zwischenspannung Uz, den Wert der Anstiegsgeschwindigkeit Δi und der skalierten Anstiegsgeschwindigkeit Δi/Uz darstellt.
    2. 2) Eine zweite Ursache liegt in der Instabilität des Magnetrons 3. Wenn die Heizleistung zu tief ist, beginnen die Anstiegsgeschwindigkeiten zu schwanken, vgl. Fig. 6b. Die Schwankungen sind auch in der skalierten Anstiegsgeschwindigkeit Δ/Uz zu beobachten.
  • Sobald die Steuereinheit 13 Schwankungen der in Fig. 6b dargestellten Art feststellt, erhöht sie den Sollwert für die Heizleistung der Kathodenheizung.
  • Um die Schwankungen numerisch zu erfassen, errechnet die Steuereinheit in der vorliegenden Ausführung den folgenden Kennwert S für die Schwankungen: S = i Δ i + 1 U z i + 1 Δ i U z i .
    Figure imgb0001
  • Hierbei bezeichnet Uzi die Zwischenspannung Uz zum Zeitpunkt des Pulses i. Die Summe erstreckt sich vorzugsweise über mindestens eine halbe Netzperiode, d.h. 10 ms. Liegt der Wert S über einem oberen Schwellwert S1, so erhöht die Steuereinheit 13 den Sollwert für die Heizleistung. Liegt der Wert S über einem tieferen, unteren Schwellwert S2, so reduziert die Steuereinheit 13 den Sollwert für die Heizleistung.
  • Anstelle der Formel (1), welche die Schwankungen aus der Summe der Absolutwerte der Differenzen der skalierten Stromanstiegsgeschwindigkeiten bestimmt, kann zur Ermittlung der Schwankungen beispielsweise auch eine andere Funktion verwendet werden, welche von den absoluten Differenzen der skalierten Stromanstiegsgeschwindigkeiten mehrerer Paare von aufeinander folgenden Strompulse i, i+1 abhängt S = F Δ i + 1 U z i + 1 Δ i U z i i = 1.. N ,
    Figure imgb0002
    wobei F die genannte Funktion ist, und N die Zahl der in der Funktion F berücksichtigten Paare von Strompulsen. F kann z.B. die Summe der Quadrate der Differenzen der skalierten Stromanstiegsgeschwindigkeiten sein.
  • Es zeigt sich, dass bei Beginn einer Instabilität die ersten Schwankungen jeweils zwischen aufeinander folgenden Strompulsen sichtbar werden, indem der eine Strompuls schneller und dafür der nächste Strompuls langsamer ansteigt, wie dies in Fig. 6b illustriert ist. Deshalb ist eine Funktion der Art von Gleichung (1) bzw. (2) ein besonders guter Indikator des Einsetzens von Instabilitäten.
  • Alternativ zu einer Formel der in Gleichung (2) gezeigten Art kann jedoch auch eine andere Grösse verwendet werden, welche die Schwankung der skalierten Stromanstiegsgeschwindigkeiten oder der nicht-skalierten Stromanstiegsgeschwindigkeiten beschreibt. Beispielsweise können die nicht-skalierten Stromanstiegsgeschwindigkeiten in einem Hochpass gefiltert werden, und sodann kann deren statistische Varianz errechnet werden. Der Hochpass besitzt dabei eine Grenzfrequenz, welche höher ist als die doppelte Netzfrequenz, aber tiefer als die Schaltfrequenz des Wechselrichters.
  • Bemerkungen :
  • Im obigen Ausführungsbeispiel wird der Spannungsabfall Ur über R20 als Parameter für die Schwankungen des Anodenstroms des Magnetrons 3 verwendet. Alternativ kann jedoch z.B. auch ein anderer Wert verwendet werden, der den Strom im Primär- oder Sekundärkreis des Hochspannungstransformators 14 beschreibt. Beispielsweise kann eine Messwicklung im Hochspannungstransformator 14 integriert werden, deren Spannung überwacht wird. Oder der Anodenstrom kann auch direkt gemessen und z.B. über einen Optokoppler an die Steuereinheit 13 übermittelt werden.
  • Die Ablaufsteuerung der beschriebenen Verfahrensschritte kann als Hard- und/oder Software in der Steuereinheit 13 implementiert sein.
  • Zusammenfassend wird also eine Steuerschaltung für einen Mikrowellenofen beschrieben. Diese besitzt eine Gegentakt-Endstufe T1, T2 zum Ansteuern eines Heiztransformators 15, mit welchem die Kathodenheizung des Magnetrons 3 betrieben wird. Für die Erzeugung der Hochspannung ist ein separater Hochspannungstransformator 14 vorgesehen, der von einer Brückenschaltung T3 - T6 gespeist wird. Die Steuereinheit 13 des Geräts ist dazu ausgestaltet, Schwankungen in einem vom Anodenstrom des Magnetrons 3 abhängigen Parameter zu ermitteln. Sind diese Schwankungen hoch, so wird die Heizleistung der Kathodenheizung erhöht. Auf diese Weise kann das Magnetron 3 mit einer optimalen, geringen Heizleistung betrieben werden.
  • Während in der vorliegenden Anmeldung bevorzugte Ausführungen der Erfindung beschrieben sind, ist klar darauf hinzuweisen, dass die Erfindung nicht auf diese beschränkt ist und in auch anderer Weise innerhalb des Umfangs der folgenden Ansprüche ausgeführt werden kann.

Claims (14)

  1. Mikrowellenofen mit einem Magnetron (3) umfassend eine Kathode (K), eine Anode (A) und eine Kathodenheizung und mit einer Ansteuerschaltung für das Magnetron (3), wobei die Ansteuerschaltung aufweist:
    einen Hochspannungsgenerator (11) zum Erzeugen einer Hochspannung zwischen der Anode (A) und der Kathode (K),
    einen Heizstromgenerator (12) zum Erzeugen eines Heizstroms für die Kathodenheizung und
    eine Steuerung (13), die
    eine Messschaltung (R20, 18) aufweist, welche dazu ausgestaltet ist, Schwankungen in einem von einem Anodenstrom des Magnetrons abhängigen Parameter zu bestimmen, dadurch gekennzeichnet, dass die Steuerung (13) dazu ausgestaltet ist, den Heizstromgenerator (12) abhängig von den Schwankungen derart zu steuern, dass der Heizstrom bei zunehmenden Schwankungen erhöht wird, bis die Schwankungen zurückgehen.
  2. Mikrowellenofen nach Anspruch 1 mit einem Leistungsregler (13, 21, R21), mit welchem eine von der Kathodenheizung aufgenommene Heizleistung regelbar ist, wobei die Steuerung (13) dazu ausgestaltet ist, einen Sollwert für die Heizleistung abhängig von den Schwankungen vorzugeben.
  3. Mikrowellenofen nach einem der vorangehenden Ansprüche, wobei der Hochspannungsgenerator (11) einen Wechselrichter (T3 - T6) und einen Hochspannungstransformator (14) aufweist, wobei der Wechselrichter (T3 - T6) Strompulse in eine Primärwicklung des Hochspannungstransformators (14) einspeist, wobei eine Sekundärwicklung des Hochspannungstransformators über einen Gleichrichter (D2, D3) eine Spannung über der Anode (A) und der Kathode (K) des Magnetrons (3) erzeugt, und wobei die Messschaltung (R20, 18) zur Messung von Schwankungen in den Strompulsen ausgestaltet ist.
  4. Mikrowellenofen nach Anspruch 3, wobei der Wechselrichter eine Brückenschaltung mit vier Schaltelementen (T3 - T6) ist.
  5. Mikrowellenofen nach einem der Ansprüche 3 oder 4, wobei zwischen dem Wechselrichter und einem Referenzpotenzial, insbesondere Masse, ein Widerstand (R20) angeordnet ist, wobei die Messschaltung (R20, 18) zur Messung eines Spannungsabfalls über dem Widerstand (R20) ausgestaltet ist.
  6. Mikrowellenofen nach einem der Ansprüche 3 bis 5, wobei die Messschaltung (R20, 18) dazu ausgestaltet ist, Anstiegsgeschwindigkeiten der Strompulse zu messen und Schwankungen in den Anstiegsgeschwindigkeiten zu ermitteln.
  7. Mikrowellenofen nach Anspruch 6, wobei die Messschaltung (R20, 18) dazu ausgestaltet ist, zu mindestens zwei Zeiten (t1, t2) in jedem Strompuls i eine Stromhöhe zu messen und hieraus die Anstiegsgeschwindigkeit Δi des Stroms im Strompuls zu ermitteln.
  8. Mikrowellenofen nach Anspruch 7, wobei die Steuerung (13) dazu ausgestaltet ist,
    eine skalierte Anstiegsgeschwindigkeit Δi/Uzi zu berechnen, wobei Uzi eine Zwischenspannung ist, die zum Zeitpunkt des Pulses i über dem Wechselrichter (T3 - T6) anliegt, und
    die Schwankungen aus der skalierten Anstiegsgeschwindigkeit zu ermitteln.
  9. Mikrowellenofen nach Anspruch 8, wobei die Steuerung (13) dazu ausgestaltet ist, eine Funktion zu berechnen, welche von den absoluten Differenzen der skalierten Stromanstiegsgeschwindigkeiten mehrerer Paare von aufeinander folgenden Strompulse i, i+1 abhängt.
  10. Mikrowellenofen nach einem der vorangehenden Ansprüche, wobei die Steuerung (13) dazu ausgestaltet ist,
    einen Kennwert (S) für die Schwankungen zu berechnen,
    den Heizstrom zu erhöhen, wenn der Kennwert (S) über einen oberen Schwellwert (S1) ansteigt.
  11. Vorrichtung nach Anspruch 10, wobei die Steuerung (13) weiter dazu ausgestaltet ist, den Heizstrom zu reduzieren, wenn der Kennwert (S) unter einen unteren Schwellwert (S2) abfällt.
  12. Verfahren zum Betrieb eines Mikrowellenofens nach einem der vorangehenden Ansprüche, wobei das Verfahren durch folgende Schritte gekennzeichnet ist:
    Messen von Schwankungen in einem von einem Anodenstrom des Magnetrons (3) abhängigen Parameter und
    Steuern des Heizstromgenerators (12) abhängig von den Schwankungen derart, dass der Heizstrom bei zunehmenden Schwankungen erhöht wird, bis die Schwankungen zurückgehen.
  13. Verfahren nach Anspruch 12 wobei zur Erzeugung des Anodenstroms ein Hochspannungstransformator (14) über einen Gleichrichter (D2, D3) an das Magnetron angeschlossen ist, wobei in eine Primärwicklung des Hochspannungstransformators (14) Strompulse eingespeist werden, und wobei die Schwankungen als Schwankungen in den Strompulsen gemessen werden.
  14. Verfahren nach Anspruch 13, wobei Anstiegsgeschwindigkeiten der Strompulse gemessen werden und die Schwankungen als Schwankungen in den Anstiegsgeschwindigkeiten gemessen werden.
EP14001470.5A 2014-04-24 2014-04-24 Mikrowellenofen mit schwankungsgesteuerter Heizleistung Active EP2854480B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14001470.5A EP2854480B1 (de) 2014-04-24 2014-04-24 Mikrowellenofen mit schwankungsgesteuerter Heizleistung
DK14001470.5T DK2854480T3 (en) 2014-04-24 2014-04-24 Microwave with fluctuations controlled heat output
SI201430065A SI2854480T1 (sl) 2014-04-24 2014-04-24 Mikrovalovna pečica z nihalno krmiljeno grelno močjo
PL14001470.5T PL2854480T3 (pl) 2014-04-24 2014-04-24 Kuchenka mikrofalowa ze sterowaną fluktuacjami mocą grzejną

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP14001470.5A EP2854480B1 (de) 2014-04-24 2014-04-24 Mikrowellenofen mit schwankungsgesteuerter Heizleistung

Publications (2)

Publication Number Publication Date
EP2854480A1 EP2854480A1 (de) 2015-04-01
EP2854480B1 true EP2854480B1 (de) 2016-06-22

Family

ID=50628607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14001470.5A Active EP2854480B1 (de) 2014-04-24 2014-04-24 Mikrowellenofen mit schwankungsgesteuerter Heizleistung

Country Status (4)

Country Link
EP (1) EP2854480B1 (de)
DK (1) DK2854480T3 (de)
PL (1) PL2854480T3 (de)
SI (1) SI2854480T1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022122426A1 (de) 2022-09-05 2024-03-07 Topinox Sarl Verfahren zum Einschalten eines Mikrowellengenerators, Mikrowellengenerator-Baugruppe sowie Gargerät

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019000108A1 (en) 2017-06-26 2019-01-03 V-Zug Ag MICROWAVE OVEN HAVING EXTRA LOW VOLTAGE SAFETY MECHANISM

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742442A (en) 1986-06-17 1988-05-03 Nilssen Ole K Controlled magnetron power supply including dual-mode inverter
SE509506C2 (sv) * 1996-09-10 1999-02-01 Ikl Skellefteaa Ab Förfarande och anordning för reglering av glödströmmen hos en magnetron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022122426A1 (de) 2022-09-05 2024-03-07 Topinox Sarl Verfahren zum Einschalten eines Mikrowellengenerators, Mikrowellengenerator-Baugruppe sowie Gargerät

Also Published As

Publication number Publication date
EP2854480A1 (de) 2015-04-01
PL2854480T3 (pl) 2016-12-30
DK2854480T3 (en) 2016-09-26
SI2854480T1 (sl) 2016-11-30

Similar Documents

Publication Publication Date Title
EP1788696B1 (de) Regelschaltung zur Strom- und Spannungsregelung in einem Schaltnetzteil
EP1258978B1 (de) Stromversorgungssystem
DE3587792T2 (de) Elektronisches Vorschaltgerät für Leuchtstofflampen.
DE3612707C2 (de)
DE102005050036A1 (de) Induktionsheizeinrichtung und zugehöriges Betriebs- und Topferkennungsverfahren
EP2483999B1 (de) Verfahren und schaltung zur ein-pin leistungsfaktor-korrektur
DE102009027347A1 (de) Steuerung für einen Synchron-Schaltwandler im Lückbetrieb
EP4040640A1 (de) Verfahren zum betreiben einer vorrichtung zum drahtlosen übertragen von energie in richtung eines elektrischen verbrauchers mittels induktiver kopplung, vorrichtung und system
EP2727236A1 (de) Verfahren zum ansteuern eines wechselrichters eines elektrowerkzeuges und elektrowerkzeug
EP2854480B1 (de) Mikrowellenofen mit schwankungsgesteuerter Heizleistung
EP1737279A2 (de) Vorrichtung zum Bereitstellen einer sinusförmig amplitudenmodulierten Betriebsspannung Beleuchtungssystem und Verfahren zum Erzeugen einer amplitudenmodulierten Spannung
WO2007003474A2 (de) Steuerungsverfahren für zweistufige konverter
DE102011005446A1 (de) Schaltungsanordnung mit Wechselrichter zur Spannungsversorgung einer Röntgenröhre und zugehöriges Verfahren
EP3043461B1 (de) Versorgungsschaltung zur versorgung eines schweissgerätes
EP1189490B1 (de) Elektronisches Vorschaltgerät
EP4073920B1 (de) Verfahren zur identifikation einer filterinduktivität eines netzwechselrichters
CH686617A5 (de) Elektrische Speiseschaltung zur Erzeugung von einzeln steuerbaren Stromimpulsen.
EP1524576B1 (de) Hochsetzsteller mit Leistungsfaktorkorrektur
EP2852250B1 (de) Mikrowellenofen mit Lastenausgleich im Hochspannungsgenerator
CH688066A5 (de) Wechselstrom/Gleichstrom-Wandler nach dem Buck-/Boost-Prinzip.
EP3662724B1 (de) Betriebsgerät für eine elektrische last und verfahren
EP2854479B1 (de) Mikrowellenofen mit verzögerter Einschaltung der Hochspannung
DE102018110696B3 (de) Betriebsvorrichtung und Verfahren zum Betreiben einer Leuchtmittelanordnung
DE2924682A1 (de) Speiseanordnung
DE102016107578A1 (de) Betriebsschaltung und Verfahren zum Betreiben wenigstens eines Leuchtmittels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140424

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20150928

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160302

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 808313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014000954

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160922

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160922

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161022

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014000954

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014000954

Country of ref document: DE

Representative=s name: KLUNKER IP PATENTANWAELTE PARTG MBB, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170424

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170430

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170430

REG Reference to a national code

Ref country code: SI

Ref legal event code: SP73

Owner name: V-ZUG AG; CH

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20190321

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190418

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20190425

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20190426

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190418

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 808313

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190424

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190424

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200424

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230426

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230426

Year of fee payment: 10

Ref country code: DE

Payment date: 20230420

Year of fee payment: 10

Ref country code: CH

Payment date: 20230502

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230413

Year of fee payment: 10

Ref country code: SE

Payment date: 20230420

Year of fee payment: 10