EP2773854B1 - Turbomachine - Google Patents

Turbomachine Download PDF

Info

Publication number
EP2773854B1
EP2773854B1 EP12781313.7A EP12781313A EP2773854B1 EP 2773854 B1 EP2773854 B1 EP 2773854B1 EP 12781313 A EP12781313 A EP 12781313A EP 2773854 B1 EP2773854 B1 EP 2773854B1
Authority
EP
European Patent Office
Prior art keywords
blade
guide
rotor
rotation
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12781313.7A
Other languages
German (de)
English (en)
Other versions
EP2773854A2 (fr
Inventor
Frank Eckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Cyplan Ltd
Original Assignee
Duerr Cyplan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201110117593 external-priority patent/DE102011117593A1/de
Application filed by Duerr Cyplan Ltd filed Critical Duerr Cyplan Ltd
Publication of EP2773854A2 publication Critical patent/EP2773854A2/fr
Application granted granted Critical
Publication of EP2773854B1 publication Critical patent/EP2773854B1/fr
Priority to HRP20170078TT priority Critical patent/HRP20170078T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • F01D1/08Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially having inward flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/026Impact turbines with buckets, i.e. impulse turbines, e.g. Pelton turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/06Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially radially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like

Definitions

  • the invention relates to a turbomachine comprising a housing having a housing channel for the inward or outflow of working medium, and having an impeller rotatably mounted about an axis of rotation and having a plurality of impeller blades forming impeller vane channels, the impeller vane channels being via fixed vane channels, having an impeller-side vane channel opening and a vane-channel-side vane channel opening communicate with the housing channel.
  • Turbomachines with a housing and an impeller are known ( JP 9 264 106 A ).
  • the pressure energy of working fluid can be converted into mechanical work and vice versa.
  • the object of the invention is to provide a turbomachine with a high efficiency, in which the impeller blades can be acted upon by a supersonic flow.
  • ORC Organic Rankine Cycle
  • ORC Organic Rankine Cycle
  • the turbomachine has a housing with vane channels that are configured to facilitate formation of vane channels that are coalescing into the vane channels. H. counteracts in the guide vane channels converging pressure surges.
  • the guide vane ducts are therefore configured according to the invention as a Laval nozzle or similar to a Laval nozzle, ie as a flow member having a bottleneck and seen during operation of the turbomachine as a turbine in the flow direction before the bottleneck has a convergent cross section and behind the bottleneck a divergent cross section.
  • the transition from the convergent to the divergent section of the vane channels is gradual.
  • the cross-section of the guide vane channels is preferably angular.
  • the guide vane channels preferably have a concave wall surface facing the impeller and to which the working medium can flow.
  • the impeller facing away from the wall surface of the Leitschaufelkanäle that are flowed through by working medium can, in contrast, is convex.
  • the guide vane channels in a flow direction for the working medium facing the impeller channels have a flow cross-section which increases monotonously.
  • the guide vane ducts in the working medium flow direction facing the impeller passages may have a width in the plane perpendicular to the axis of rotation which increases monotonically and / or the vane passages may have a height in the direction of the axis of rotation in this direction which increases correspondingly monotonically.
  • the vane channels may each have a center uniformly spaced from a wall surface facing the impeller and a wall surface facing away from the impeller, which divides the cross sectional profile of a vane channel into a housing channel side portion and an impeller side portion, the cross sectional profile of each vane channel being asymmetric with respect to the center is.
  • the housing-channel-side section and the impeller-side section preferably each have a free cross-sectional area for the passage of working medium, wherein the free cross-sectional area of the impeller-side section is greater than the free cross-sectional area of the housing-channel-side section.
  • the cross-sectional profile of a guide blade channel may in particular be trapezoidal.
  • a turbomachine according to the invention can be operated in particular as a so-called constant-pressure or impulse turbine, in which a gas and / or vaporous working medium is accelerated while reducing its pressure and the associated expansion between the guide vanes in the guide vane channels, in order then to impinge on the blades of the impeller , This leads to a momentum transfer to the impeller so that a torque can be exerted on an output shaft connected to the impeller. The resulting mechanical power can then be used, for example, to drive a generator for generating electrical energy.
  • the guide vanes of the turbomachine are designed so that the working fluid is guided with a flow to the impeller, which has a vertical to the radius of the impeller flow component.
  • One idea of the invention is, in particular, to guide the working medium through guide vanes onto the impeller, which lie in a plane perpendicular to the axis of rotation of the impeller and are curved towards the impeller.
  • the inventor has recognized that when the working fluid is directed onto the impeller in a straight flow path, only a comparatively small portion of the flow has the ideal angle to the impeller at the downstream end of a corresponding vane passage.
  • the part of the flow which is closest to the vanes has either too little or too much inclination towards the impeller.
  • this has the consequence that strong pressure surges between running and Leitbeschaufelung occur, which affect the efficiency of the turbomachine.
  • the guide vane ducts with openings located on a cylinder jacket surface located coaxially to the axis of rotation of the housing duct side and to guide the working medium in the middle with a flow path which passes through the cylinder jacket surface in an intersection in which the tangent to the flow path and in a tangent to the cylindrical surface lying perpendicular to the axis of rotation form an angle ⁇ 1, for which 5 ° ⁇ 1 ⁇ 20 °, preferably ⁇ 1 ⁇ 12 °.
  • the guide blade channels lying on a coaxial to the axis of rotation arranged cylindrical jacket surface impeller-side guide vane channel openings have and the working medium in the middle with a flow path which passes through the cylinder surface at an intersection in which the tangent to the flow path and lying in a plane perpendicular to the axis of rotation axis tangent to the cylinder surface form an angle ⁇ 2, for which applies ° ⁇ 2 ⁇ 20 °, preferably ⁇ 2 ⁇ 12 °.
  • the inventor has recognized that when the distance r 2 of the first blade edge of each impeller vane facing the vane channels from the axis of rotation and the distance r 1 of the second vane edge of each impeller vane facing away from the vane channels from the axis of rotation satisfy the relationship: 70% ⁇ r1 / r2 ⁇ 80%, preferably r1 / r2 ⁇ 75%, the impeller vane channels have a length suitable for supersonic velocity working medium which is conducive to adiabatic expansion of the working medium.
  • the inventor has recognized that it is conducive to the energetic efficiency of the turbomachine when the distance r 2 of the first blade edge of each impeller blade facing the guide vanes from the axis of rotation and the parallel height h E of the first blade edge of each impeller blade following Relationship is sufficient: 12% ⁇ h E / r 2 ⁇ 28%.
  • the blade surfaces of the impeller blades may be parallel to the axis of rotation of the impeller. This allows a simple manufacture of the impeller blades.
  • the impeller has an impeller blade carrier which receives the impeller blades and has a rotationally symmetrical guide contour which can be flowed through by working medium and deflects a flow path for working medium between the impeller channels and a diffuser. By extending the guide contour of the blade carrier in the diffuser, it is possible to avoid a swirling of working medium, which emerges from the impeller blade channels.
  • the impeller blades can be releasably secured to the impeller blade carrier or can be connected to it materially.
  • the vane channels in the housing of the turbomachine are conveniently formed with covered by a cover on a ring-shaped vane carrier helically extending vanes having a the axis of rotation facing away from the convex blade surface.
  • the guide vanes and the guide blade carrier can be connected cohesively.
  • the vanes have blade surfaces that are parallel to the axis of rotation.
  • the distance between two adjacent guide vanes may increase in a direction of the flow of working medium facing the impeller passages here.
  • the height of the guide vanes decreases at least to a bottleneck at a certain radial distance from the axis of rotation with increasing distance from the axis of rotation.
  • the vane support and the cover preferably define a compensating space opened to the housing channel and opening into the guide vane channels, with a cross-section tapering in the direction pointing to the axis of rotation.
  • the guide vane carrier and the guide vanes can in particular be manufactured from an integral pipe socket by means of erosion and / or milling and / or El names, which allows a cost-effective production.
  • the turbomachine is particularly suitable for use in an ORC cycle or as a compressor for compressing gaseous medium containing organic constituents.
  • the turbomachine 10 in Fig. 1 has a housing 12 with a pipe connection 14 for the supply or removal of working medium.
  • an impeller 16 is rotatably supported on a shaft about a rotation axis 18 having a plurality of impeller blades 28 forming an impeller vane ring.
  • a guide vane carrier 20 is fixed with vanes 22.
  • the housing 12 has a housing channel 24, which can be acted upon via the pipe connection 14 in the flow direction of the arrow 15 flowed working medium when the turbomachine 10 is operated as a turbine. In an operation of the turbomachine 10 as a compressor, the working fluid is discharged through the pipe connection 14 from the housing channel 24.
  • the Fig. 2 and Fig. 3 show the vane support 20 with the impeller 16 in a plan view and a side view.
  • the impeller 16 and the vane carrier 20 are shown in a perspective view.
  • the Fig. 5 shows the vane support 20 with the impeller 16 along the line VV Fig. 3 as a cut.
  • the Fig. 6 shows the vane support 20 and the impeller 16 as a rear view in the direction of the arrow 37 from Fig. 3 ,
  • the impeller 16 has an impeller blade carrier 26 to which the impeller blades 28 are fixed cohesively.
  • the impeller blades 28 are stabilized and covered on their side facing away from the impeller blade carrier with an annular bandage member 30, which is connected by means of fastening screws 38 to the impeller blades 28.
  • the impeller blade carrier 26 has a rotationally symmetrical with respect to the axis of rotation 18 Guiding contour 32, which extends into a diffuser space 34 of a diffuser 35.
  • the impeller vanes 28 form impeller vane channels 84 which redirect the working medium flowing between the housing channel 24 and the diffuser space 34.
  • the vanes 22 are materially connected to the guide vane carrier 20.
  • an annular cover 36 held in the housing 12 which forms helically extending vane channels 42 via a pad 33 with the vane support 20 and the vanes 22, each acting as a Laval nozzle.
  • the vane support 20 with the vanes 22 is made of a pipe stub. In terms of manufacturing technology, this opens up the possibility of working out the shape of the guide vanes 22 from the guide blade carrier 20, for example by means of milling, eroding or elimination, after they have been subjected to a turning operation in order to create a curved bevel on the side facing the annular cover 36.
  • the vane support 20 has a mounting flange 40 with which it can be fixed in the housing 12 of the turbomachine 10.
  • the Fig. 7 shows the annular cover 36 in the turbomachine 10 in a perspective view.
  • the Fig. 8 shows the annular cover 36 as a section. Also, the cover 36 can be inexpensively produced as a rotationally symmetric rotary member having a matching pad 33 congruent with the vanes 22 of the vane carrier 22.
  • the Fig. 9 is a partial section of the vane support 20 and the impeller 16.
  • the vanes 22 each have a concave vane surface 46 facing the impeller 16 and a vane surface 44 that is convex.
  • Each vane channel 42 has a center 62 corresponding to a curved line with a curvature vector 43 facing the impeller 16.
  • the vanes 22 have impeller-side vane edges 51, 53 and housing-side vane edges 51 ', 53'.
  • the vanes 22 can be machined on the vane support 20, in particular by means of a so-called end mill, since the bottom wall of a vane duct 42 is flat, the cross-sectional profile of a vane duct 42 has edges and each vane duct 42 is basically the same.
  • the end mill it is e.g. possible to produce any desired straight or curved bent, to the axis of rotation 18 inclined, equal width or width changing Leitschaufelkanalform.
  • the Fig. 10 is a partial section of the vane support 20 along the center 62 in a direction parallel to the rotation axis 18 cutting surface.
  • the placement of the annular cover 36 can create a vane channel geometry that has a narrowest cross section 50 at the radius r min with respect to the axis of rotation 18.
  • Impeller side of the constriction 50 the cross section of the guide vane channel is divergent, ie its free cross-sectional area increases towards the impeller 16 towards.
  • Housing channel side of the constriction 50 the cross section of the guide vane channel 42 is convergent, ie, its free cross-sectional area decreases from the housing channel 24, starting from the impeller 16 back.
  • each of the vanes 42 of the vanes 44, 46 of the vanes has a flat bottom surface 47 and an oblique top surface 49.
  • the Fig. 12 shows the trapezoidal cross-sectional profile of the vane passage 42.
  • the flow path 60 for the working medium passes through the center 62 of the vane passage 42, which divides this into a housing-channel-side 65 and an impeller-side portion 67.
  • the cross-sectional profile of the vane channel 42 is asymmetrical.
  • the free cross-sectional area of the impeller-side portion 67 is larger than the free cross-sectional area of the housing-channel-side portion 65.
  • the Fig. 13 is a longitudinal section of a vane 22.
  • Each vane 22 has a concave vane surface 46 and a convex vane surface 44.
  • the impeller 16 with the impeller vane carrier 26 and the impeller vanes 28 can be made in a similar manner by means of milling, eroding or elimination.
  • the impeller blade carrier 26 can basically be manufactured on a machine tool as a rotating part having a thick edge with a bevel. From this edge, the impeller blade channels 84 are then machined by eroding, El matters or milling. Again, the use of a finger milling cutter is particularly suitable since the bottom of the corresponding channels can be flat over the entire channel length and each channel is equally deep. By guiding the end mill, it is then possible to produce any desired straight or curved curved, to the rotation axis 18 inclined towards, equal width or width changing channel shape. By means of the annular bandage member 30, the desired nozzle channel geometry is thus generated over the slope of the impeller blade carrier 26 with an inlet and outlet edge at each impeller blade.
  • the Leitschaufelkanäle 42 have housing-side openings 48. Like the Fig. 14 shows, they lead the working medium in the center 62 with the flow path 60, which passes through the cylinder jacket surface 56 at an intersection 63. At the point of intersection 63, the tangent 64 to the center 62 and the tangent 66 lying in a plane perpendicular to the axis of rotation 18 form an acute angle ⁇ 1 to the cylinder jacket surface 56. On the impeller side, the guide vane channels 42 have openings 70 lying on a cylinder jacket surface 68 arranged coaxially to the axis of rotation 18.
  • the working medium flow path 60 in the middle 62 of the vane channels 42 passes through the cylinder jacket surface 68 at an intersection 72 in which the tangent 74 to the center 62 and in a direction perpendicular to the axis of rotation 18 Level lying tangent 76 to the cylinder surface 68 form an angle ⁇ 2, for which applies: ⁇ 2 ⁇ 12 °.
  • the Fig. 15 Figure 14 shows a portion of the impeller with impeller blades 28.
  • the impeller blades 28 have a generally crescent-shaped cross-sectional contour and have a concave blade surface 78 extending from a first impeller blade edge 52 facing the nozzle channels 42 at a distance r 2 from the axis of rotation 18 to one of the vane channels 42 facing away from the second impeller blade edge 54, which has the distance r 1 from the axis of rotation 18.
  • the guide blade channels 42 facing impeller blade edges 52 lie on a coaxial with the axis of rotation 18 cylinder jacket surface 53 with the radius r. 2
  • the rotor blade edges 54 facing the axis of rotation 18 are positioned on a cylinder jacket surface 59 with the radius r 1 which is coaxial with the axis of rotation 18.
  • the Fig. 16 shows a portion of the wheel carrier 20 with the impeller 16 from Fig. 5 in an enlarged view.
  • the turbomachine 10 When the turbomachine 10 is operated as a turbine, the working medium flows along the flow path 88 from the housing channel 24 into the diffuser space 34.
  • the working medium enters through a compensation space 41 in the guide vanes 42 formed by the vanes 22, the housing channel side have the entry height h e and then acts on the blades 28 of the impeller 16 at the impeller inlet radius r E.
  • the height of the guide vane channels 42 at the impeller-side outlet opening corresponds to the entry height h E.
  • the working medium flows out in the direction of the straight line 80 Fig. 15 on the impeller blades, which have the height h E at the leading edge 52.
  • the impeller 16 has a discharge radius r A. At the exit edge 54, the impeller blades 28 have the height h A. At the vane edges 51, 53, ie where the working medium exits the vanes, the vanes have the height h LA .
  • each vane channel 42 in the turbomachine 10 ensures that it can act as a lava nozzle. That is, this shape allows impeller 50, the working fluid with a supersonic flow is movable when the pressure of the working fluid in the housing channel 24 exceeds a threshold. This can be achieved that the impeller 16 can be acted upon with working fluid that moves faster than the speed of sound.
  • the course of the guide vane channels 42 in the manner of a spiral section, the curvature of which faces the impeller 16, ensures that a pressure gradient substantially radially symmetrical with respect to the axis of rotation 18 is established in the vane channels 42.
  • the Fig. 17 shows a typical pressure curve in the guide vane channels 42 and the impeller vane channels 84 when the working medium of the turbomachine 10 flows in the direction of arrows 45 with supersonic flow.
  • the pressure field isobars 90 that are formed in the guide vane channels 42 are essentially radially symmetrical with respect to the axis of rotation 18 of the impeller 16 of the turbomachine. This causes the pressure in the impeller blade channels 50 and the guide vane channels 42 to be prevented.
  • the working medium can flow from the housing channel 24 through the guide vane channels 42 via the impeller 16 to the diffuser space 34 so that it almost completely impulses its momentum Impeller blades 28 transmits and not in pressure surges, which reduce the efficiency of the turbomachine 10.
  • the turbomachine 10 described above is suitable in particular for use as a turbine in an Organic Rankine cycle or for the compression in an Organic Rankine cycle process used working medium.
  • the Fig. 18 shows an ORC plant 100 with a turbomachine 110, which is operated as a steam turbine and which is arranged in a working medium circuit 105.
  • a turbomachine 110 which is operated as a steam turbine and which is arranged in a working medium circuit 105.
  • a turbomachine 110 which is operated as a steam turbine and which is arranged in a working medium circuit 105.
  • butane, toluene, silicone oil, ammonia, methylcyclohexane or ethylbenzene are used as fluid working agents.
  • a generator 121 is coupled to the turbomachine 110, which has the structure described with reference to the preceding figures.
  • the ORC system 100 has a working fluid condenser 124.
  • a feed pump 122 acting as a working fluid pump.
  • the feed pump 122 brings the fluid working fluid in the liquid state of aggregation to operating pressure.
  • the liquid working medium flows through a heat exchanger 123 acting as an evapor
  • the working fluid evaporates.
  • saturated steam or dry steam is then provided.
  • the specific volume and the temperature of the steam increase.
  • the vapor of the working fluid is then released almost isentropically to a lower pressure via the turbomachine 110 connected to a generator 121.
  • the turbomachine 110 drives the generator 121.
  • the working fluid condenser 124 is a heat exchanger, through which a coolant circuit 131, which contains a cooling fluid, is guided. Via the coolant circuit 131, the heat released during the condensation is fed into a heat network (not shown). Alternatively, it is also possible to deliver the heat of the guided in the coolant line 131 coolant via a heat exchanger to the environment.
  • heat exchanger condenses the working fluid and goes completely into the liquid state of aggregation. With the working as a pump pump feed pump 122, the working fluid is then brought back to operating pressure and passes again in the acting as an evaporator heat exchanger 123. The circuit for the working fluid in the ORC system 2 is then closed.
  • the Fig. 19 is a partial section of a vane support 220 and an impeller 216 in another turbomachine 210, the structure of which based on the Fig. 1 to Fig. 16 basically described. Functionally identical elements in the figures for the turbomachine 10 and the turbomachine 210 are therefore identified below with numbers increased by the number 200 as reference numerals.
  • the turbomachine 210 has guide vane channels 242, through which the working medium with the flow path 260 from the housing channel on the impeller blades 228 of the impeller 216 can pass.
  • the Fig. 20 10 shows a nozzle channel 242 along the flow path 260 in the center 262 thereof in the direction of arrows XX-XX Fig. 19 ,
  • the vane channel 242 is a cut in the direction arrows XXI-XXI Fig. 19 shown.
  • angles 8 ° ⁇ ⁇ 2 ⁇ 22 ° are also possible.
  • the Fig. 22 shows the rectangular cross-sectional profile of the guide vane channel 222.
  • the Fig. 23 shows the cross-sectional profile 222 'of a guide vane duct of another turbomachine, which is constructed according to the above turbomachines.
  • the cross-sectional profile 222 'of this Leitschaufelkanals is not rectangular, but round.
  • the Fig. 24 shows a vane 222 from the Fig. 19 in a longitudinal section.
  • the Fig. 25 is a partial section of a Leitschaufelanis 220 "and an impeller 216" in another turbomachine 210 ", whose structure is based on the Fig. 1 to Fig. 16 basically described. Functionally identical elements in the figures for the turbomachine 10 and the turbomachine 210 "are therefore identified below as numbers with numbers increased by the number 200.
  • the turbomachine 210" has guide vane channels 242 "through which the working medium communicates with the flow path 260" Housing channel on the impeller blades 228 "of the impeller 216" can pass.
  • the vanes 222 are rounded at their housing channel facing ends 223" in the manner of a cylinder jacket portion to allow entry of working medium from the housing channel into the nozzle channels with reduced flow losses.
  • Fig. 25 Cross section shown a radius between 1 mm and 5 mm.
  • At least one vane channel 242 ", preferably all Leischaufelkanäle have an at least partially constant width b on.
  • the portion of constant width b preferably extends along at least half of a housing channel bounded by two vanes 222 ".
  • the Fig. 26 10 shows a vane channel 242 "along the flow path 260 'extending in the center 262 thereof in the direction of the arrows XX" -XX " Fig. 25 ,
  • Each vane channel 242 "in the turbomachine 210" has a throat 250 "with a narrowest cross section at the distance a from the cylinder jacket surface 268".
  • the cross section of the vane passage is divergent, i.e., with the width b being the same, the height h is added to the impeller 216".
  • Housing channel side of the throat 250 is the cross-section of the guide vane channel 242" convergent, i. its free cross-sectional area decreases starting from the housing channel to the impeller 216 ''.
  • other nozzle geometries, in particular subsonic nozzles can also be provided.
  • the Fig. 27 shows another, fourth turbomachine 310. Functionally corresponding elements in the figures to the turbomachine 10 and the turbomachine 310 are therefore identified below with numbers increased by 300 numbers as reference numerals.
  • the turbomachine 310 has a cylindrical housing 312 with a pipe connection 314 designed as a pipe socket
  • Fig. 28 is the turbomachine as a section along the line XXVIII-XXVIII off Fig. 27 shown with an additional connection wall 301.
  • Fig. 29 is the Turbomachine as a section along the line XXIX-XXIX off Fig. 27 to see.
  • the housing channel 324 surrounds the impeller 316 annularly.
  • the guide vanes 322 are rounded at their ends 323 facing the housing channel 324 in order to allow the entry of working medium from the housing channel into the guide blade channels with the lowest possible flow losses.
  • the Indian Fig. 30 . Fig. 31 and Fig. 32 shown guide vane carrier 320 with the guide vanes 322 is also made here of a pipe socket, in which the guide vanes 322 are incorporated by means of milling, eroding or elimination.
  • the vane carrier 320 has a mounting flange 340, with which it can be fixed in the housing 312 of the turbomachine 310.
  • the guide vanes 322 in the turbomachine 310 are also covered here with an annular cover 336.
  • This cover 336 forms with the vane support 320 and the vanes 322 formed thereon vane channels 342, each having an opening communicating with the housing channel 324.
  • the vane channels 324 also have a helical course here and guide the working fluid on a flow path between the housing channel 324 and the impeller 316, which has a curvature facing the impeller 316.
  • the cross-section of the nozzle channels 342 with respect to the axis of rotation 318 tapers at a substantially constant width up to the throat 350 having the distance rnmin from the axis of rotation 318.
  • Each guide vane channel 342 thus also has the shape of a spiral-curved nozzle which, in the manner of a Laval nozzle, initially tapers in the direction pointing to the impeller 316, starting from the housing channel 324 and then widening, the nozzle having a trapezoidal opening cross-section.
  • the Fig. 33 shows the impeller 316 in the turbomachine 310 without the bandage member 330 covering the impeller blades 328 forming the impeller vane channels 384
  • Fig. 34 the housing 312 of the turbomachine 310 is shown.
  • the housing 310 is a tubular body in which are preferably incorporated by means of turning flange portions 315, where the vane support 320 and the cover 336 is fixed to the guide vane channels 342.
  • the invention relates to a turbomachine 10 with a housing 12, which has a housing channel 24 for the inflow or outflow of working medium.
  • the turbomachine includes an impeller 16 rotatably disposed about an axis of rotation 18 and having a plurality of impeller vanes 50 forming impeller vane passages 84.
  • the impeller vane channels 84 communicate with the housing channel 24 via vane channels 42 formed in the housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (15)

  1. Turbomachine (10) comprenant un boîtier (12), qui présente un canal de boîtier (24) pour l'entrée ou la sortie de fluide de travail et comprenant un rotor (16) disposé de manière rotative autour d'un axe de rotation (18), qui présente une pluralité d'aubes de rotor (28) qui forment des canaux d'aubes de rotor (84),
    les canaux d'aubes de rotor (84) communiquant avec le canal de boîtier (24) par le biais de canaux d'aubes directrices (42, 242") fixés au boîtier qui présentent une ouverture de canal d'aube directrice (70) du côté du rotor et une ouverture de canal d'aube directrice (48, 248") du côté du canal de boîtier,
    caractérisée en ce que
    les canaux d'aubes directrices (42, 242) présentent une zone rétrécie (50, 250) et
    une section transversale divergente entre la zone rétrécie (50, 250) et l'ouverture de canal d'aube directrice (70) du côté du rotor et
    une section transversale convergente entre la zone rétrécie (50) et l'ouverture de canal d'aube directrice (48) du côté du canal de boîtier.
  2. Turbomachine selon la revendication 1, caractérisée en ce que les canaux d'aubes directrices (42) présentent une surface de paroi concave (46) pouvant recevoir l'afflux du fluide de travail, tournée vers le rotor (16), et/ou en ce que les canaux d'aubes directrices (42) présentent une surface de paroi convexe (44) pouvant recevoir l'afflux du fluide de travail, détournée du rotor (16).
  3. Turbomachine selon la revendication 1 ou 2, caractérisée en ce que les canaux d'aubes directrices (42) présentent, entre l'ouverture de canal d'aube directrice (48) du côté du canal de boîtier et l'ouverture de canal d'aube directrice (70) du côté du rotor, dans un plan perpendiculaire à l'axe de rotation (18), une largeur croissante depuis la zone rétrécie (50) vers l'ouverture de canal d'aube directrice (70) du côté du rotor, et/ou en ce que les canaux d'aubes directrices (242") présentent, entre l'ouverture de canal d'aube directrice (248") du côté du canal de boîtier et l'ouverture de canal d'aube directrice (70) du côté du rotor, une hauteur (h) croissante par rapport à un plan perpendiculaire à l'axe de rotation (18), depuis la zone rétrécie (250") vers l'ouverture de canal d'aube directrice (70) du côté du rotor.
  4. Turbomachine selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les canaux d'aubes directrices (42) présentent à chaque fois un centre (62) espacé uniformément d'une surface de paroi (46) tournée vers le rotor (16) et d'une surface de paroi (44) détournée du rotor (16), lequel centre divise le profil en section transversale d'un canal d'aube directrice (42) en une portion du côté du canal de boîtier (65) et une portion du côté du rotor (67), le profil en section transversale de chaque canal d'aube directrice n'étant pas symétrique par rapport au centre (62).
  5. Turbomachine selon la revendication 4, caractérisée en ce que la portion du côté du canal de boîtier (65) et la portion du côté du rotor (67) présentent à chaque fois une surface en section transversale libre pour le passage de fluide de travail, la surface en section transversale libre de la portion du côté du rotor (67) étant plus grande que la surface en section transversale libre de la portion du côté du canal de boîtier (65).
  6. Turbomachine selon l'une quelconque des revendications 1 à 5, caractérisée en ce que les ouvertures des canaux d'aubes directrices (48) du côté du canal de boîtier sont situées sur une surface d'enveloppe cylindrique (56) disposée coaxialement par rapport à l'axe de rotation (18) et les canaux d'aubes directrices (42) conduisent le fluide de travail au centre par une voie d'écoulement (60) qui traverse la surface d'enveloppe cylindrique (56) en un point d'intersection (63) auquel la tangente (64) à la voie d'écoulement (60) et la tangente (66) à la surface d'enveloppe cylindrique (56), située dans un plan perpendiculaire à l'axe de rotation (18), forment un angle α1, pour lequel on a 5° ≤ α1 ≤ 20°, et/ou en ce que les ouvertures de canaux d'aubes directrices (70) du côté du rotor sont situées sur une surface d'enveloppe cylindrique (68) disposée coaxialement par rapport à l'axe de rotation (18) et conduisent le fluide de travail au centre par une voie d'écoulement (60) qui traverse la surface d'enveloppe cylindrique (68) en un point d'intersection (72) auquel la tangente (74) à la voie d'écoulement (60) et la tangente (76) à la surface d'enveloppe cylindrique (68), située dans un plan perpendiculaire à l'axe de rotation (18), forment un angle α2 pour lequel on a 5° ≤ α2 ≤ 20°.
  7. Turbomachine selon la revendication 6, caractérisée en ce que les aubes de rotor (28) présentent un contour en section transversale essentiellement en forme de croissant, et présentent une surface d'aube concave (78) qui s'étend depuis une première arête d'aube (52) tournée vers les canaux d'aubes directrices (42) vers une deuxième arête d'aube (54) détournée des canaux d'aubes directrices (42), une tangente (80) située dans un plan perpendiculaire à l'axe de rotation (18), s'appliquant au niveau de la première arête d'aube (52) à la surface d'aube concave (78), formant avec une droite (81) passant par la première arête d'aube (52) et coupant l'axe de rotation (18) perpendiculairement, un angle obtus β̃1 = β1+90°, pour lequel on a 5° ≤ β̃1 - 90° ≤ 45°.
  8. Turbomachine selon la revendication 7, caractérisée en ce qu'une tangente (80) située dans un plan perpendiculaire à l'axe de rotation (18), s'appliquant au niveau de la deuxième arête d'aube (54) à la surface d'aube concave (78), forme avec une droite (89) passant par la deuxième arête d'aube (54) et coupant l'axe de rotation (18) perpendiculairement un angle aigu β̃2 = 90°-β2, pour lequel on a 5° ≤ 90 - β̃2 ≤ 90° et/ou en ce que la distance r2 de la première arête d'aube (52) tournée vers les canaux d'aubes directrices (42) de chaque aube de rotor (28) à l'axe de rotation (18) et la distance r1 de la deuxième arête d'aube (54) détournée des canaux d'aubes directrices de chaque aube de rotor (28) à l'axe de rotation (18) satisfait à la relation suivante : 70% < r1/r2 < 80%, et/ou le nombre Z des aubes de rotor (28) du rotor (16) satisfait à la relation suivante : Z C r 1 / r 2 ,
    Figure imgb0027
    la distance r2 étant la distance de la première arête d'aube (52) tournée vers les canaux d'aubes directrices (42) de chaque aube de rotor (28) à l'axe de rotation (18) et la distance r1 étant la distance de la deuxième arête d'aube (54) détournée des canaux d'aubes directrices (42) de chaque aube de rotor (28) à l'axe de rotation (18) et C étant une constante, avec 70 ≤ C ≤ 90, et/ou en ce que la distance r2 de la première arête d'aube (52) tournée vers les canaux d'aubes directrices (42) de chaque aube de rotor (28) à l'axe de rotation (18) et la hauteur (hE) de la première arête d'aube (52) de chaque aube de rotor (28), parallèle à l'axe de rotation (18), satisfait à la relation suivante : 12 % ≤ hE/r2 ≤ 28 %.
  9. Turbomachine selon l'une quelconque des revendications 1 à 7, caractérisée en ce que le rotor (16) présente un support d'aubes de rotor (26) recevant les aubes de rotor (28) avec un contour directeur (87) à symétrie de révolution pouvant recevoir l'afflux de fluide de travail, qui dévie une voie d'écoulement (88) pour le fluide de travail entre les canaux d'aubes de rotor (84) et un espace de diffusion (34).
  10. Turbomachine selon la revendication 9, caractérisée en ce que le contour directeur (87) s'étend dans l'espace de diffusion (34).
  11. Turbomachine selon l'une quelconque des revendications 1 à 10, caractérisée en ce que les canaux d'aubes directrices (42) dans le boîtier (12) sont formés avec des aubes directrices (22) en forme de spirale recouvertes d'un revêtement (36) et reçues au niveau d'un support d'aubes directrices annulaire (20), lesquelles présentent une surface d'aube convexe (44) détournée de l'axe de rotation (18), et/ou en ce que le support d'aubes directrices (20) et le revêtement (36) définissent un espace de compensation (41) ouvert vers le canal de boîtier (24) et débouchant dans les canaux d'aubes directrices (42) avec une section transversale rétrécie dans la direction de l'axe de rotation (18).
  12. Turbomachine selon la revendication 10 ou 11, caractérisée en ce que les aubes directrices (22) ont des surfaces d'aubes (44, 46) qui sont parallèles à l'axe de rotation (18).
  13. Turbomachine selon la revendication 12, caractérisée en ce que la distance entre deux aubes directrices adjacentes (22) augmente dans une direction d'écoulement pour le fluide de travail tournée vers les canaux de rotor (84).
  14. Turbomachine selon la revendication 13, caractérisée en ce que la hauteur des aubes directrices (22) diminue avec l'augmentation de la distance à l'axe de rotation (18).
  15. Utilisation d'une turbomachine (10) réalisée selon l'une quelconque des revendications 1 à 14 en tant que turbine dans un processus à cycle de Rankine à fluide organique ou en tant que compresseur pour comprimer un fluide gazeux.
EP12781313.7A 2011-11-03 2012-11-02 Turbomachine Active EP2773854B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20170078TT HRP20170078T1 (hr) 2011-11-03 2017-01-18 Turbo stroj

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201110117593 DE102011117593A1 (de) 2011-11-03 2011-11-03 Verbesserte Beschauflung für Gleichdruckturbinen mit Überschallströmung
DE202011107502 2011-11-03
PCT/EP2012/071774 WO2013064674A2 (fr) 2011-11-03 2012-11-02 Turbomachine

Publications (2)

Publication Number Publication Date
EP2773854A2 EP2773854A2 (fr) 2014-09-10
EP2773854B1 true EP2773854B1 (fr) 2016-10-19

Family

ID=47143096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12781313.7A Active EP2773854B1 (fr) 2011-11-03 2012-11-02 Turbomachine

Country Status (4)

Country Link
US (1) US9982539B2 (fr)
EP (1) EP2773854B1 (fr)
HR (1) HRP20170078T1 (fr)
WO (1) WO2013064674A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013064674A2 (fr) 2011-11-03 2013-05-10 Duerr Cyplan Ltd. Turbomachine
WO2017104916A1 (fr) * 2015-12-15 2017-06-22 포스코에너지 주식회사 Turbine à vapeur du type à réaction
US9890649B2 (en) * 2016-01-29 2018-02-13 Pratt & Whitney Canada Corp. Inlet guide assembly
WO2018106539A1 (fr) * 2016-12-05 2018-06-14 Cummins Filtration Ip, Inc. Ensemble de séparation comprenant une turbine à impulsion en une seule pièce
JP6866187B2 (ja) * 2017-03-01 2021-04-28 パナソニック株式会社 タービンノズル及びそれを備えたラジアルタービン
DE202018101699U1 (de) * 2018-03-27 2019-07-02 Borgwarner Inc. Turbine mit Verstellring

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2021289A (en) * 1934-06-22 1935-11-19 Chauncey L Caylor Rotary steam engine
US2524549A (en) * 1945-07-11 1950-10-03 Theimer Oscar Turbine
US2694950A (en) * 1947-10-08 1954-11-23 Gen Motors Corp Hydraulic torque converter transmission
US3378229A (en) * 1965-07-16 1968-04-16 Gen Electric Radial flow turbine
US3761195A (en) * 1971-05-04 1973-09-25 M Eskeli Compressing centrifuge
US4177005A (en) * 1975-09-06 1979-12-04 Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft (M.A.N.) Variable-throat spiral duct system for rotary stream-flow machines
US4150918A (en) 1976-01-21 1979-04-24 Hollymatic Corporation Pressure gas engine
CA1061716A (fr) * 1977-02-09 1979-09-04 James V. Theis (Jr.) Moteur a gaz sous pression
DE3675605D1 (de) * 1985-07-17 1990-12-20 Geoffrey Light Wilde Variabler einlass fuer eine radialturbine.
JPH09264106A (ja) 1996-03-28 1997-10-07 Mitsubishi Heavy Ind Ltd タービンの排気ディフューザ
US6554562B2 (en) * 2001-06-15 2003-04-29 Honeywell International, Inc. Combustor hot streak alignment for gas turbine engine
WO2006038836A1 (fr) * 2004-09-22 2006-04-13 Volvo Lastvagnar Ab Unite de turbocompresseur comprenant une turbine a double entree
DE102006005843B3 (de) * 2005-11-17 2007-05-10 Frank Eckert Reaktionsrad zur Verwendung in Turbinen- bzw. Verdichteranordnungen
EP1862641A1 (fr) * 2006-06-02 2007-12-05 Siemens Aktiengesellschaft Canal d'écoulement axial pour turbomachine
EP2140111B1 (fr) * 2007-04-24 2014-05-07 Alstom Technology Ltd Turbomachine
JP2009264106A (ja) 2008-04-21 2009-11-12 Toyota Motor Corp 車両
DE102008039085A1 (de) * 2008-08-21 2010-02-25 Daimler Ag Brennkraftmaschine mit einem Abgasturbolader
US8137054B2 (en) * 2008-12-23 2012-03-20 General Electric Company Supersonic compressor
US9097258B2 (en) * 2009-06-25 2015-08-04 General Electric Company Supersonic compressor comprising radial flow path
US9574542B2 (en) * 2009-12-04 2017-02-21 Wave Power Renewables Limited Turbines
CN102822531B (zh) * 2010-03-15 2015-07-01 夏普株式会社 风扇、成型用模具和流体输送装置
WO2013064674A2 (fr) 2011-11-03 2013-05-10 Duerr Cyplan Ltd. Turbomachine

Also Published As

Publication number Publication date
WO2013064674A3 (fr) 2013-08-08
US20140234094A1 (en) 2014-08-21
HRP20170078T1 (hr) 2017-03-10
WO2013064674A2 (fr) 2013-05-10
EP2773854A2 (fr) 2014-09-10
US9982539B2 (en) 2018-05-29

Similar Documents

Publication Publication Date Title
EP0690206B1 (fr) Diffuseur pour une turbomachine
EP2773854B1 (fr) Turbomachine
DE60320537T2 (de) Kompressor mit schaufelspitzeneinrichtung
EP0581978B1 (fr) Diffuseur à zones multiples pour turbomachine
EP2378072B1 (fr) Canal en dérivation d&#39;un turboréacteur
DE60133629T2 (de) Verfahren zum betrieb einer gasturbine mit verstellbaren leitschaufeln
DE60211061T2 (de) Axialturbine mit einer Stufe in einem Abströmkanal
WO2008110445A1 (fr) Dispositif diffuseur
DE2907748A1 (de) Einrichtung zur minimierung und konstanthaltung der bei axialturbinen vorhandenen schaufelspitzenspiele, insbesondere fuer gasturbinentriebwerke
DE2417880A1 (de) Konvergierende/divergierende dueseneinheit zur erzeugung und expansion einer ueberschallstroemung
EP0397768B1 (fr) Turbine pour turbocompresseur
DE102017111721A1 (de) Auslassdiffusor
DE1960479B2 (de) Gasturbinen-geblaesetriebwerk
DE102012000889A1 (de) Fluggasturbine mit justierbarem Fan
CH703654A2 (de) Einrichtung mit einer Turbine und einem Diffusor.
CH703666A2 (de) Einrichtung mit einer Turbine, einem Diffusor und einem Nabenströmungspfadprofil.
WO2004055362A1 (fr) Procede et dispositif permettant de reduire des fluctuations de pression dans le tube d&#39;aspiration d&#39;une turbine ou pompe ou turbine-pompe a eau
DE102011055379A1 (de) Abdampfhaubendiffusor
CH652450A5 (de) Turbinen-auspuffstutzen.
DE102014115963A1 (de) Rotor-Kühlung
EP1153219B1 (fr) Diffuseur sans pulsations de l&#39;interface d&#39;impact, et procede pour empecher les pulsations de l&#39;interface d&#39;impact de diffuseurs
EP2805059A1 (fr) Procédé et dispositif pour stabiliser un flux de compresseur
DE3242713A1 (de) Einlassgehaeuse fuer dampfturbine
DE102011117593A1 (de) Verbesserte Beschauflung für Gleichdruckturbinen mit Überschallströmung
DE968101C (de) Einrichtung an radialen Kreiselverdichtern und -pumpen zur Umsetzung von kinetischer Energie des Stroemungsmittels in Druckenergie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140508

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012008591

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01D0025300000

Ipc: F01D0001080000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01D 1/08 20060101AFI20150626BHEP

Ipc: F01D 1/06 20060101ALI20150626BHEP

Ipc: F01D 25/30 20060101ALI20150626BHEP

Ipc: F01D 1/02 20060101ALI20150626BHEP

INTG Intention to grant announced

Effective date: 20150804

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160318

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20160405

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 838528

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012008591

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20170078

Country of ref document: HR

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUEA

Owner name: DUERR CYPLAN LTD., GB

Free format text: FORMER OWNER: DUERR CYPLAN LTD., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012008591

Country of ref document: DE

Owner name: DUERR SYSTEMS AG, DE

Free format text: FORMER OWNERS: DUERR CYPLAN LTD., READING, BERKSHIRE, GB; ECKERT, FRANK, 07356 BAD LOBENSTEIN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012008591

Country of ref document: DE

Owner name: DUERR CYPLAN LTD., READING, GB

Free format text: FORMER OWNERS: DUERR CYPLAN LTD., READING, BERKSHIRE, GB; ECKERT, FRANK, 07356 BAD LOBENSTEIN, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DUERR CYPLAN LTD.

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161019

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20170078

Country of ref document: HR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170316 AND 20170323

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170324 AND 20170330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170119

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012008591

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170119

26N No opposition filed

Effective date: 20170720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 838528

Country of ref document: AT

Kind code of ref document: T

Owner name: DUERR CYPLAN LTD., GB

Effective date: 20180626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170078

Country of ref document: HR

Payment date: 20181024

Year of fee payment: 7

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170078

Country of ref document: HR

Payment date: 20191021

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012008591

Country of ref document: DE

Owner name: DUERR SYSTEMS AG, DE

Free format text: FORMER OWNER: DUERR CYPLAN LTD., READING, BERKSHIRE, GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170078

Country of ref document: HR

Payment date: 20201023

Year of fee payment: 9

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170078

Country of ref document: HR

Payment date: 20211027

Year of fee payment: 10

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170078

Country of ref document: HR

Payment date: 20221024

Year of fee payment: 11

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20170078

Country of ref document: HR

Payment date: 20231019

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231121

Year of fee payment: 12

Ref country code: HR

Payment date: 20231019

Year of fee payment: 12

Ref country code: FR

Payment date: 20231120

Year of fee payment: 12

Ref country code: DE

Payment date: 20231121

Year of fee payment: 12

Ref country code: CH

Payment date: 20231201

Year of fee payment: 12

Ref country code: AT

Payment date: 20231121

Year of fee payment: 12