EP2656687B1 - Led-betriebsgerät - Google Patents

Led-betriebsgerät Download PDF

Info

Publication number
EP2656687B1
EP2656687B1 EP11802418.1A EP11802418A EP2656687B1 EP 2656687 B1 EP2656687 B1 EP 2656687B1 EP 11802418 A EP11802418 A EP 11802418A EP 2656687 B1 EP2656687 B1 EP 2656687B1
Authority
EP
European Patent Office
Prior art keywords
led
arrangement
bypass
current
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11802418.1A
Other languages
English (en)
French (fr)
Other versions
EP2656687A1 (de
Inventor
Thomas Kremer
Günter Schreyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bag Electronics GmbH
Original Assignee
BAG Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAG Engineering GmbH filed Critical BAG Engineering GmbH
Publication of EP2656687A1 publication Critical patent/EP2656687A1/de
Application granted granted Critical
Publication of EP2656687B1 publication Critical patent/EP2656687B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices

Definitions

  • the invention relates to an LED operating arrangement for operating a plurality of serially connected LED arrangements, according to the preamble of claim 1.
  • the invention further relates to a method for operating such an LED operating arrangement.
  • An LED operating arrangement is particularly suitable for supply with changing supply voltage, for example when supplied via a commercial AC source.
  • Such an LED operating arrangement is for example in the published patent application DE 10 2007 041 131 A1 described.
  • the applied supply voltage is compared with predetermined threshold values and, depending on the result, the respective bypass arrangement is controlled for bridging the associated LED arrangement or for blocking.
  • the series-connected LED arrangements are thus successively switched on, so that a comparatively efficient conversion of the electrical energy into light radiation is achieved.
  • the publication DE 198 41 490 A1 relates to a circuit arrangement for protecting a series circuit of multiple LEDs before failure.
  • the LEDs are each a bypass device in the form of a Zener diode connected in anti-parallel, with an increased voltage drop at one of the Zener diodes indicates the failure of the associated LED and can be operated by bridging the defective LED, the LED series circuit.
  • the publication US 2004/0233145 A1 relates to an LED drive circuit having a plurality of LEDs arranged in series, a voltage detection circuit for detecting a rectified supply voltage and a plurality of current control units.
  • the current control units are controlled by the voltage detection circuit as a function of the level of the supply voltage for reconfiguration of the LED series arrangement.
  • the publication US 2009/0230883 A1 relates to a generic LED operating arrangement for operating a plurality of serially connected LED arrays, wherein the LED arrays each have a first and a second terminal, the series circuit of the LED arrays is connected to a supply voltage, and wherein at least some of the plurality of LED assemblies each designed as a controllable resistor bypass arrangement is associated such that in each case a bypass terminal of the bypass arrangement is connected to a terminal of the associated LED array, and the respective bypass arrangement further comprises at least one control terminal and bridges the associated LED arrangement in an operating state, wherein the at least one control terminal the respective bypass arrangement is connected to an output of an associated current sensor.
  • the invention has for its object to improve the efficiency of the known LED operating arrangements.
  • the LED operating arrangement according to the invention is characterized in that the respective bypass arrangement as controllable resistance by the output signal of the associated current sensor in intermediate states between the first and the Further operating state is controlled to control the current flowing through the respective bypass means current, and that the respective bypass assembly associated current sensor for detecting a current flow through an LED array is formed, which in the series circuit of the LED devices downstream and in the series circuit of the LED Arranged sequentially to the LED array, which is associated with the respective bypass arrangement, so that the current detected by the associated current sensor of the respective bypass arrangement composed of the current through the respective Bypassan order flowing current and the current flowing through the respective LED array, which is associated with the respective bypass arrangement.
  • a bypass arrangement to an LED arrangement makes it possible that the respective LED arrangement can be bridged by the associated bypass arrangement, insofar are connections or inputs and outputs of the bypass arrangement parallel to the associated LED array or parallel to a series circuit which at least the associated LED array, but possibly also includes other components such as an associated current sensor for the bypass arrangement.
  • the term "adjacent" refers to two consecutive LED arrays in series with respect to two LED arrays, regardless of whether there are other components such as a current sensor or a current or voltage source in series between these two LED arrays of LED arrays are arranged.
  • the adjacent two LED arrays may, for example, be arranged downstream of one another downstream of the series circuit.
  • the respective bypass arrangements are designed as controllable resistors in such a way that, in addition to the states a), conductive, i. bridging the associated LED array and b) blocking, i. the respective assigned LED arrangement not bridging also other intermediate states are adjustable in operation, such that e.g. can assemble a total current through an LED array by a portion of current flowing through an adjacent LED array and a portion of current flowing through a bypass array associated with the adjacent LED array.
  • An LED arrangement may comprise a single LED, but also a plurality of LEDs, in particular in a series connection.
  • LED or light-emitting diode is here understood very broadly and generally includes light-emitting electronic components, in particular organic LEDs.
  • a current control of the respective bypass arrangement means a respective current sensor is realized, manufacturing differences of electrical properties of the components, in particular the respective LEDs, such as forward voltage, temperature behavior and change of these parameters can be automatically taken into account by aging during operation.
  • the safety designs described above for generic LED operating arrangements are unnecessary, so that ultimately the efficiency of the LED operating arrangement according to the invention can be further improved compared to the conventional arrangements.
  • the harmonic content of the current flowing through the series arrangement of the LED arrays is reduced.
  • bypass arrangements suitably comprise their own current sensors assigned to them, so that, in particular, the attainment of the respective forward voltage of the associated LED arrangement can be determined.
  • At least several, preferably (n-1) of the n LED arrangements or also all of the n LED arrangements may be assigned a bypass arrangement as described above.
  • the current sensor which is associated with the respective bypass arrangement, is designed to detect a current flow through an LED arrangement, which is arranged downstream downstream of the LED arrangement, which is associated with the respective bypass arrangement.
  • This design measure can be measured via the current sensor of the instantaneous current, which is passed through the bypass arrangement, as well as the current component, which flows through the bypass arrangement associated with the LED array, and used for the control of the bypass arrangement.
  • the respective current sensor comprises a bypass arrangement.
  • at least one resistor in particular, the current sensor may be formed as a single resistor.
  • the current to be detected is passed through the current sensor, the resulting voltage drop can be provided as a control signal, the associated bypass arrangement.
  • the respective current sensor can also be designed as a resistor network, in particular as a parallel connection of resistors.
  • bypass arrangements associated current sensor are provided, which are expediently arranged in each case in series with the series-connected LED arrays.
  • resistors included in the current sensor and the LED arrays themselves are connected in a common series arrangement. It may be expedient if the respective current sensor, in particular the respective resistor arrangement, is provided in series between the two adjacent LED arrays.
  • one terminal of the respective current sensor is connected to a control terminal of the associated bypass arrangement and another terminal of the respective current sensor is connected to a bypass terminal of the associated bypass arrangement.
  • a bypass connection of a bypass arrangement can directly without an interconnection via other components with a first terminal of the associated LED array and another bypass terminal of the bypass arrangement may be connected via a current sensor to a second terminal of the associated LED arrangement, which current sensor may be arranged in a series connection of LED arrangements and current sensors.
  • the first and second bypass connections of a bypass arrangement can each be directly connected without any interconnection via other components to a respective terminal of the associated LED arrangement.
  • First and second terminals of the associated LED array may be the two supply terminals of the LED arrays.
  • the two bypass connections can represent the bypass input and the bypass output, wherein as explained between input and output of the bypass arrangement in addition to a short circuit and a complete blockage and intermediate states are adjustable, in particular those of a controllable resistor and / or a controllable current source.
  • One or more of the described by-pass arrangements may also include more than a single control input. In this case, multiple signals are used to control the bypass arrangements.
  • At least one of the plurality of bypass arrangements comprises a normally-on transistor such as a FET, in particular, such a bypass arrangement may be designed essentially as a self-conducting transistor. In this case, however, it is also possible for a bypass arrangement to comprise a self-blocking transistor, in particular as a self-blocking transistor.
  • resistors or resistors connected as a current sensor in the series together with the LED assemblies can be dimensioned at an alternating supply voltage as in a sinusoidal AC voltage to adapt the supply current to this supply voltage, in particular to optimize the efficiency and harmonic content of the LED operating arrangement.
  • the accuracy of such an adaptation generally increases with the number of LED arrays which are each assigned a bypass arrangement.
  • the resistances arranged in the series connection with the LED arrangements increase continuously in their resistance value in the direction of current flow.
  • bypass arrangements may be connected in series, i. the input of a bypass arrangement is connected to an output of an adjacent bypass arrangement, wherein several, in particular all bypass arrangements can be connected in series in this way.
  • a current limiting device can be provided which can be provided between the supply voltage terminals of the LED operating arrangement and in series with the series connection of the LED arrangements or within this series connection.
  • the LED operating arrangement expediently has an AC voltage-fed rectifier for providing a pulsating DC voltage supply with which the series connection of the LED arrangements can be fed.
  • a pulsating DC power supply the resistance values of the connected in series with the LED assemblies current sensors or resistors for adjusting the time profile of the flow through the series connection of the LED assemblies to the temporal Adjusted course of the pulsating DC voltage.
  • one or more, in particular all, bypass arrangements have at least one further control terminal which scans the cathode voltage of the LED arrangement, which is arranged downstream of the associated LED arrangement of the bypass arrangement.
  • Both control signals may e.g. be guided via respective series resistors in parallel to the gate of the respective transistor of the bypass arrangement.
  • a further signal that depends on the forward voltage of the downstream adjacent LED array, is used to control the bypass arrangement can be a performance optimization for the last-mentioned LED array perform.
  • the inventive method is characterized in that the respective bypass arrangement is further controlled as controllable resistance by the output signal of the associated current sensor in intermediate states between the operating state of bridging the associated LED array and the operating state of not bypassing the respective bypass arrangement for controlling by the respective Bypass recognized flowing current and that by means of the respective associated current sensor, the current is detected, which flows through the LED array, which is arranged in the series circuit of the LED devices downstream and in the series circuit of the LED arrays successively to the respective LED array, which is associated with the respective bypass arrangement, wherein the sum of the current flowing through the respective LED arrangement and the current supplied by this LED arrangement is supplied by the current detected by means of the respective associated current sensor ordered bypass arrangement flowing current is detected.
  • the method according to the invention can be set up in such a way that the instantaneous value of the current flowing through the respective LED arrangement is detected by the respective current sensor.
  • an LED arrangement can be bridged by means of its associated bypass arrangement.
  • the control of the bypass arrangement can take place by means of the detection of the instantaneous value of a current flow through an LED arrangement which follows in the series connection of the LED arrangements on the LED arrangement which is assigned to this bypass arrangement.
  • the described control of a bypass arrangement takes place in several of the bypass arrangements included, in particular in all bypass arrangements, which are each associated with an LED arrangement.
  • the sum of the current flowing through an LED arrangement and the current bridged by the bypass arrangement assigned to this LED arrangement is expediently detected by means of a respective current sensor, wherein the respective bypass arrangement is controlled by an output signal of this current sensor.
  • a bypass arrangement is operated as a controllable resistor with increasing supply voltage initially in the bridged state, in which the associated LED array is bridged, with increasing current flow through the downstream LED array of resistance the bypass arrangement is increased until a predetermined limit current is reached by the downstream LED array.
  • the predetermined limit current through the respective bypass arrangement with further increasing supply voltage of the current flowing through the bypass means current is kept substantially constant and an increasing voltage at the bypass device drops until the specific forward voltage of the associated LED array is reached.
  • This forward voltage represents the threshold voltage at which the LED array conducts.
  • the resistance of the bypass arrangement is just controlled in this phase of operation insofar that the current flowing through the bypass device is approximately constant. Also by this method step, the time profile of the current flowing through the LED arrays current can be adjusted to the time course of the supply voltage to increase the efficiency.
  • the resistance of the bypass arrangement is increased after reaching the specific forward voltage of the associated LED array with increasing supply voltage by an increasing current flow through this LED array, so that the current flow through the bypass arrangement is reduced.
  • the inventive method makes it possible that, adapted to the time profile of the supply voltage, the series-connected LED arrays, successively and adapted to the respective specific forward voltage by controlling the individual bypass arrangements, with current flowing through and thus contribute to light generation. This process takes place in the same way when the supply voltage drops, ie in this case the individual LED arrays are successively bridged by switching on the bypass arrangements.
  • FIG. 1 shows a schematic diagram of the basic structure of an LED operating arrangement according to the invention.
  • This has two network connections, via which the arrangement 1 is supplied with an AC voltage, which is converted via a rectifier 10 into a pulsating DC voltage with the voltage VGL.
  • This voltage is applied to a series circuit of n LED arrays, each having a specific forward voltage.
  • these LED arrangements may comprise one or more LEDs, in particular a plurality of LEDs in a row arrangement.
  • the n LED arrangements have the same structure, but in particular have slightly different forward voltages due to the unavoidable production variations, ie that they transition into the conducting state at slightly different voltages.
  • a current limiter 110 is also provided, which limits the total current through the circuit.
  • the second LED arrangement LED2 and each further upstream LED arrangement up to the last arrangement LEDn has an associated bypass arrangement 20a to 20 (n-1) which, depending on the operating situation, bridges the associated LED arrangement.
  • the respective bypass arrangement 20i, i a Vietnamese (n-1) two terminals A1, A2 and a control terminal S on.
  • the Bypass arrangement 20a is associated with the LED2, ie, depending on the operating situation, the bypass arrangement 20a bridges the LED arrangement LED2.
  • a terminal A1 is connected via the current sensor 100b to the anode of the LED array LED2, the terminal A2 is coupled directly to the cathode of the LED array LED2.
  • a current sensor 100a to 100 (n-1) is provided between each two LED arrays, these current sensors are thus also in series with the serially connected LED arrays and together with them form a series circuit.
  • the output of each current sensor 100a to 100 (n-1) is connected to the control input S of the respective bypass arrangement.
  • the respective current sensor detects a sum current, which is composed by the current through an LED array and the current flowing through the this arrangement associated with the LED bypass arrangement, that is bridged.
  • the current sensor 100a measures, for example, the summation current which is composed by the current through the arrangement LED2 and the current of the bypass arrangement 20a bridged via the connections A1, A2.
  • the current sensor 100a measures the current flowing through the downstream LED array, ie, the LED array LED1.
  • the current sensor 100b measures the total current, which is composed by the LED array LED3 and the current through the bypass arrangement 20b and which corresponds to the current through the downstream LED array LED2.
  • FIG. 2 shows the in FIG. 1 illustrated LED operating arrangement again, wherein both the bypass assemblies 20a - 20 (n-1) and the current limiting device in detail are shown.
  • the bypass arrangements 20a to 20 (n-1) comprise a self-conducting field effect transistor 21a to 21 (n-1), wherein a series resistor 22a to 22 (n-1) is respectively arranged between the gate of the respective transistor and the control input S. ,
  • the current sensors 100a to 100 (n-1) in the embodiment of FIG. 2 designed as resistors, wherein at the control input S of the respective bypass arrangement, the voltage is applied, which drops at the associated current sensor, ie the resistor.
  • bypass arrangements 20a to 20 (n-1) are not only driven to bridge the respective associated LED array or blocking, but depending on the operating situation, these bypass arrangements are generally used as a controllable resistor and / or controllable current source for setting intermediate values controlled so that a parallel connection to the respective associated LED arrangement is realized with adjustable resistance or adjustable the power source.
  • FIGS. 1 and 2 illustrated LED operating arrangements will be described below with further reference to the FIGS. 3a, b . 4a to f and 5a, b explained.
  • the series circuit has a total of six LED arrangements and correspondingly five bypass arrangements, each with associated current sensor.
  • FIGS. 3a, b show the time course of various current and voltage variables within the LED array according to FIG. 2 , FIG. 3a shows for a short time interval, the rise of the pulsating DC voltage VGL and the dependent thereon time course of the guided through the bypass arrangements 20a and 20b or .. bridged current I (21a) or I (21b). In the same time scale is in FIG.
  • the control voltage VS (21a) is identical zero, so that the .Transistor 21a first in the normally-off Condition remains.
  • the rectified supply voltage reaches the forward voltage of the LED array LED1 of about 50 volts, LED1 conducts, and a current I (LED1) flows through the bypass arrangements 20 (n-1) to 20a, the current-sensing resistance sensor 100a, the diode array LED1 and the total current limiting device to ground, said total current limiting device is in turn formed by a normally-on FET 111 and a formed as a resistance current sensor 112.
  • the voltage drop at the current sensor 100a generates a negative control voltage VS (21a) at the control input S, ie a negative gate-source voltage at the transistor 21a.
  • a negative control voltage VS (21a) at the control input S ie a negative gate-source voltage at the transistor 21a.
  • this voltage reaches the gate threshold voltage of the transistor 21a, the current flowing through the bypass arrangement 20a is limited to the ratio of the gate threshold voltage to the resistance value of the current sensor 100a. please refer FIGS. 3a , b.
  • the bypass arrangement 20a operates in this interval as a constant current source, so that between the two terminals A1, A2 of the bypass arrangement 20a, ie between the Drain-source terminals of the transistor 21 a, the difference between the forward voltage of the LED array LED 1 and the further increasing supply voltage VGL drops. Since in the described embodiment, the respective bypass arrangement of the series connection of the associated LED array and the upstream current sensor is connected in parallel, this voltage is also applied to the series connection of the formed as a resistance current sensor 100b and the LED array LED2. In the specified time interval between about 0.5 and about 1.05 ms, the current I (LED1) is kept constant.
  • the LED arrays LEDn to LED1 are constructed substantially identically, inasmuch as the upstream LED array LED 2 becomes conductive when the instantaneous value of the pulsating DC voltage VGL reaches about 100 volts. Then, the LED array LED 2 is also conductive and it flows a current through the designed as a resistor current sensor 100b. The voltage drop generated thereby at this leads to a negative control voltage at the bypass arrangement 20b, so that also in this the conducted or bridged current is limited. In the example given, the resistance of the current sensor 100b is significantly lower than the resistance of the current sensor 100a, so that the described connection of the transistor 21b and the current sensor 100b is now limited to a higher current.
  • This current through the LED array LED2 is now added to the current which is passed through the bypass arrangement 20a, whereby in the current sensor 100a, a higher negative control voltage for the transistor 21a is generated.
  • this negative control voltage VS (21a) then increases from about -0.75 volts to about -1.25 volts.
  • the drain-source path of the transistor 21 a of the bypass device 20 a even higher impedance, in the example given so high that the current I (21 a) to about. Zero drops.
  • the bypass arrangement 20a blocks, so that the entire current passed through the LED array LED1 current through the LED assembly. LED2 flows, see FIG.
  • the resistance value of the current sensor 100b is set in the given example so that when the third forward voltage is reached, the current I (21b) provided via the bypass arrangement 21b again drops sharply, but not to about zero as in the present step but to a comparatively low one Value. Only after reaching the forward voltage of the further LED arrangement is the bypass device 21b then transferred into the blocking state due to the further increased current flow through the current sensor 100b.
  • the LED operating arrangement according to the invention has a plurality of series-connected LED arrangements, of which several are each assigned a bypass arrangement with which the associated LED arrangement can be bridged in an operating state.
  • these bypass arrangements of the LED operating arrangement according to the invention are also set up and connected in order to act as a controllable resistor or as a controllable current source, wherein the control is realized by means of an output signal of a current sensor.
  • this current sensor detects both the current passed through the bypass arrangement and the current flowing through the LED arrangement, which is assigned to the respective bypass arrangement, it is achieved that the reaching or exceeding of the voltage is independent of any reference voltages Forward voltage of this LED array can be detected so that the control of the bypass arrangement automatically adapts to the electronic properties of the associated LED array.
  • FIGS. 4a-f show over a network period, the time courses of the individual currents through the respective LED arrays in an inventively designed LED operating arrangement, which comprises a series connection of six such LED arrays. It puts FIG. 4a the timing of the downstream first LED array LED 1, FIG. 4b the temporal current flow through the second LED array LED2 and ultimately FIG. 4f the time course of the current through the sixth LED array LED6 again.
  • the curves show the successive switching on and off of the respective LED arrangements over the network period. As can be seen, the illumination times of the individual LED arrays are different over the period.
  • FIG. 5a shows the applied DC voltage VGL and FIG. 5b the total current, ie the current I (LED1) through the first LED array LED. 1
  • the LED array LED1 can also be arranged between the high output of the rectifier 10 and the LED array LEDn. Also in this case, the LED array LED1 adjacent to the LED array LED2 is to be regarded as between the two alone, the voltage source with the supply voltage VGL is located.
  • the term "adjacent" in relation to two LED arrangements designates two successive LED arrangements in the series connection, regardless of whether other elements, such as a current sensor or a current sensor, exist between these two LED arrangements Voltage source are arranged in series.
  • FIG. 6 shows a further embodiment of an inventively designed LED operating arrangement, which is only slightly different from the in FIG. 2 differentiates.
  • bypass arrangements 30a to 30 (n-1) are interconnected, which are each controlled by a signal of a stand alone current detector 100a to 100 (n-1).
  • the same components are in terms of execution according to Fig. 2 provided with the same reference numerals.
  • the self-conducting field-effect transistors 31a to 31 (n-1) are different in that they are included in the redesigned bypass arrangement 30a to 30 (n-1).
  • the bypass arrangements 30a to 30 (n-1) comprise a signal terminal S which, like the one in FIG FIG.
  • FIG. 2 illustrated embodiment receives its control signal from a provided in the series circuit of LED arrays current sensor 100a to 100 (n-1), which are also formed here as resistors with well-defined resistance.
  • a second control terminal S2 which senses the cathode voltage of the LED array, which is adjacent to the associated LED array of the bypass arrangement downstream of the flow. Both control signals are conducted via respective series resistors in parallel to the gate of the respective transistor 31a to 31 (n-1).
  • FIG. 7 shows a further embodiment of an inventively designed LED operating arrangement, with respect to the in FIG. 2 illustrated embodiment solely by the design of the bypass arrangement, the design of the Trustrombeskyrs 120 and the placement of the LED array LED1 differs in the series connection of the LED assemblies. In this respect, the same components are again provided with the same reference numerals.
  • the LED array LED1 is disposed between the high output of the rectifier 10 and the LED array LEDn. Also in this case, the LED array LED1 is disposed adjacent to the LED array LED2, since between them both the current limiter 120 and the voltage source with the supply voltage VGL is located.
  • the current sensor 100a the current flowing through LED1 current I (LED1) is detected and the output signal of the current sensor is applied to the control input S of the bypass device 40a, which is associated with the LED array LED2.
  • bypass arrangements included bypass connections A1, A2 and a control input S.
  • auxiliary terminal H is provided, the corresponding terminals are shown by way of example and for clarity of illustration only for the bypass arrangement 40a. All bypass arrangements 40a to 40 (n-1) are again constructed identically. They each comprise a self-locking field-effect transistor whose drain or source is connected to the terminal A1 or A2.
  • the pulsating DC voltage VGL is connected to the gate of the transistor 41a and thus serves to charge the same, so that the transistor already in the presence of a very low voltage VGL in the conductive state.
  • all the bypass arrangements 40a to 40 (n-1) are conductive, so that the associated LED arrangements LED2 to LEDn are bridged.
  • the resistor 45a is provided between the gate and source of the transistor 41a.
  • FIGS. 8a, b show time profiles of different current and voltage within the LED array according to FIG. 7 , similar to this in the FIGS. 3a, b with respect to the embodiment according to FIG. 2 is shown.
  • FIGS. 8a, b again show a short section over a period interval starting from the zero crossing of the pulsating DC voltage VGL.
  • the threshold voltage of the LED array LED1 is reached, and after the rise of the current flowing through the LED1 until a current threshold determined by the controllable Zener diode 44a and the output signal of the current sensor 100a is reached, which over the interval between 0.5 ms and about 1.03 ms is kept approximately constant.
  • the bypass arrangement operates essentially as a constant current source, ie as a controlled resistor, such that the current flowing through the bypass arrangement remains constant.
  • the difference between the threshold voltage of the LED array LED1 and the further increasing voltage VGL drops via the drain-source of the transistor 41a. If VGL reaches the sum of the forward voltages of the two LED arrays LED1 and LED2 conducts LED2, so that the additional current also leads to a further voltage drop at the current sensor 100a, and the transistor 41a goes into the blocking state, I (41a) drops to approximately zero , please refer FIG.
  • the circuit is designed so that after about 1.6 ms when VGL reaches the next forward voltage, more precisely the sum of the forward voltages of the LED arrays LED1, LED2 and LED3, the bypass device 40b also blocks, the current I (41b ) through transistor 41b drops to about zero, see FIG. 8a.
  • FIG. 8b shows the gate-source voltage VGS (41a) of the bypass device 40a. The jump of this gate-source voltage on reaching the threshold voltage for the LED arrangement LED 2 leads to a jump to such values that this bypass arrangement 40a blocks. The further decrease in the gate-source voltage associated with the connection of the further LED arrangements is over FIG. 8b can be seen, but has no effect, since the bypass arrangement 40a already completely blocks.
  • FIG. 9 shows the resulting total current I (LED1) for the self-conducting transistor embodiment in the bypass arrangements (indicated by SL) and for the self-blocking transistor embodiment in the bypass arrangements (indicated by SP) for the period of one grid period. Both embodiments give a comparable result.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Description

  • Die Erfindung betrifft eine LED-Betriebsanordnung zum Betreiben von mehreren seriell geschalteten LED-Anordnungen, nach dem Oberbegriff von Anspruch 1. Die Erfindung betrifft ferner ein Verfahren zum Betrieb einer solchen LED-Betriebsanordnung.
  • Eine LED-Betriebsanordnung eignet sich insbesondere bei einer Versorgung mit verändernder Versorgungsspannung, beispielsweise bei einer Versorgung über eine kommerzielle AC-Quelle. Eine solche LED-Betriebsanordnung ist beispielsweise in der Offenlegungsschrift DE 10 2007 041 131 A1 beschrieben. Dabei wird für jede der Bypassanordnungen die anliegende Versorgungsspannung mit jeweils vorgegebenen Schwellwerten verglichen und in Abhängigkeit des Ergebnisses die jeweilige Bypassanordnung zum Brücken der zugeordneten LED-Anordnung oder zum Sperren angesteuert. Mit steigender Versorgungsspannung werden somit die in Reihe geschalteten LED-Anordnungen sukzessive zugeschaltet, sodass eine vergleichsweise effiziente Umwandlung der elektrischen Energie in Lichtstrahlung erreicht wird.
  • Es ist jedoch festzustellen, dass die elektronischen Bauelemente zur Festlegung der jeweiligen Referenzspannungen als auch die verwendeten Leuchtdioden herstellungsbedingt Streuungen ihrer elektronischen Eigenschaften unterworfen sind, beispielsweise im Falle der LEDs in Bezug auf die jeweilige Flussspannung, das Temperaturverhalten und/oder die Veränderung dieser Größen mit der Alterung des Bauelements. Aus diesem Grunde müssen bei der Konzeption derartiger Schaltungen bezüglich dieser Kenngrößen Sicherheitsbereiche vorgesehen werden, was mit zusätzlichen Verlustleistungen in der Schaltung verbunden ist, wodurch letztlich der Wirkungsgrad limitiert ist.
  • Die Offenlegungsschrift DE 198 41 490 A1 betrifft eine Schaltungsanordnung zum Schutz einer Serienschaltung aus mehreren LEDs vor dem Ausfall. Hierzu sind den LEDs jeweils eine Bypass-Vorrichtung in Form einer Zener-Diode antiparallel geschaltet, wobei ein erhöhter Spannungsabfall an einer der Zener-Dioden den Ausfall der zugeordneten LED anzeigt und durch die Überbrückung der defekten LED die LED-Serienschaltung weiterbetrieben werden kann.
  • Die Offenlegungsschrift US 2004/0233145 A1 betrifft eine LED-Treiberschaltung mit einer Mehrzahl von in Reihe angeordneten LEDs, einer Spannungserfassungsschaltung zur Erfassung einer gleichgerichteten Versorgungsspannung sowie einer Mehrzahl von Stromsteuereinheiten. Die Stromsteuereinheiten werden von der Spannungserfassungsschaltung in Abhängigkeit der Höhe der Versorgungsspannung zur Umkonfiguration der LED-Reihenanordnung angesteuert.
  • Die Offenlegungsschrift US 2009/0230883 A1 betrifft eine gattungsbildende LED-Betriebsanordnung zum Betreiben einer Mehrzahl von seriell geschalteten LED-Anordnungen, wobei die LED-Anordnungen jeweils einen ersten und einen zweiten Anschluss aufweisen, die Serienschaltung der LED-Anordnungen an eine Versorgungsspannung angeschlossen ist, und wobei zumindest einige aus der Mehrzahl von LED-Anordnungen jeweils eine als steuerbarer Widerstand ausgebildete BypassAnordnung derart zugeordnet ist, dass jeweils ein BypassAnschluss der Bypass-Anordnung mit einem Anschluss der zugeordneten LED-Anordnung verbunden ist, und die jeweilige Bypass-Anordnung ferner zumindest einen Steueranschluss aufweist und in einem Betriebszustand die zugeordnete LED-Anordnung überbrückt, wobei der zumindest eine Steueranschluss der jeweiligen Bypass-Anordnung an einen Ausgang eines zugehörigen Stromfühlers angeschlossen ist.
  • Der Erfindung liegt die Aufgabe zugrunde, den Wirkungsgrad der bekannten LED-Betriebsanordnungen zu verbessern.
  • Diese Aufgabe löst die vorliegende Erfindung vorrichtungsseitig schon mit einer LED-Betriebsanordnung mit den Merkmalen von Anspruch 1. Die erfindungsgemäße LED-Betriebsanordnung zeichnet sich dadurch aus, dass die jeweilige Bypassanordnung als steuerbarer Widerstand durch das Ausgangssignal des zugehörigen Stromfühlers in Zwischenzustände zwischen dem ersten und dem weiterem Betriebszustand gesteuert wird zum Steuern des durch die jeweilige Bypasseinrichtung fließenden Stromes, und dass der der jeweiligen Bypassanordnung zugehörige Stromfühler zur Erfassung eines Stromflusses durch eine LED-Anordnung ausgebildet ist, welche in der Serienschaltung der LED-Anordnungen stromflussabwärts und in der Serienschaltung der LED-Anordnungen aufeinanderfolgend zu der LED-Anordnung angeordnet ist, die der jeweiligen Bypassanordnung zugeordnet ist, sodass sich der vom zugehörigen Stromfühler der jeweiligen Bypassanordnung erfasste Strom zusammensetzt aus dem durch die jeweilige Bypassanordnung fließenden Strom und dem Strom, der durch die jeweilige LED-Anordnung fließt, welche der jeweiligen Bypassanordnung zugeordnet ist.
  • Die Zuordnung einer Bypassanordnung zu einer LED-Anordnung ermöglicht es, dass die jeweilige LED-Anordnung durch die zugeordnete Bypassanordnung überbrückt werden kann, insofern liegen Anschlüsse bzw. Ein- und Ausgänge der Bypassanordnung parallel zu der zugeordneten LED-Anordnung bzw. parallel zu einer Reihenschaltung, welche zumindest die zugeordnete LED-Anordnung, jedoch u.U. auch andere Bauelemente wie einen zugeordneten Stromfühler für die Bypassanordnung umfasst. Die Angabe "benachbart" bezeichnet hier in Bezug auf zwei LED-Anordnungen zwei aufeinanderfolgende LED-Anordnungen in der Serienschaltung, unabhängig davon, ob zwischen diesen beiden LED-Anordnungen noch andere Bauteile, wie beispielsweise ein Stromfühler oder eine Strom- oder Spannungsquelle in der Reihenschaltung von LED-Anordnungen angeordnet sind. Die benachbarten zwei LED-Anordnungen können beispielsweise in der Serienschaltung stromflussabwärts hintereinander angeordnet sein.
  • Allgemein sind bei der erfindungsgemäßen LED-Betriebsanordnung die jeweiligen Bypassanordnungen als steuerbare Widerstände ausgebildet, dahingehend, dass neben den Zuständen a) leitend, d.h. die zugeordnete LED-Anordnung überbrückend und b) sperrend, d.h. die jeweilige zugeordnete LED-Anordnung nicht überbrückend auch weitere Zwischenzustände im Betrieb einstellbar sind, derart, dass sich z.B. ein Gesamtstrom durch eine LED-Anordnung zusammensetzen kann durch einen Stromanteil, welcher durch eine benachbarte LED-Anordnung fließt sowie durch einen Stromanteil, welcher durch eine Bypassanordnung fließt, die der benachbarten LED-Anordnung zugeordnet ist.
  • Eine LED-Anordnung kann eine einzelne LED, jedoch auch mehrere LEDs, insbesondere in einer Reihenschaltung umfassen. Ferner wird die Bezeichnung LED oder Leuchtdiode in seiner Bedeutung hier sehr breit verstanden und umfasst allgemein lichtemittierende elektronische Bauelemente, insbesondere auch organische LEDs.
  • Dadurch, dass in der erfindungsgemäßen LED-Betriebsanordnung eine Stromsteuerung der jeweiligen Bypassanordnung mittels eines jeweiligen Stromfühlers realisiert ist, können im Betrieb automatisch Herstellungsstreuungen von elektrischen Eigenschaften der Bauelemente, insbesondere der jeweiligen LEDs, wie beispielsweise Flussspannung, Temperaturverhalten und Veränderung dieser Kenngrößen durch Alterung berücksichtigt werden. Die oben stehend für gattungsbildende LED-Betriebsanordnungen beschriebenen Sicherheitsauslegungen erübrigen sich, sodass letztlich der Wirkungsgrad der erfindungsgemäßen LED-Betriebsanordnung gegenüber den herkömmlichen Anordnungen nochmals verbessert werden kann. Darüber hinaus ist es bei der erfindungsgemäßen LED-Betriebsanordnung nicht unbedingt notwendig, LEDs mit möglichst identischen elektronischen Kenngrößen zu verwenden, da sich die Schaltung automatisch an die spezifischen Eigenschaften der jeweiligen LED bzw. LED-Anordnung anpasst. Darüber hinaus kann mit der Erfindung erreicht werden, dass der Oberwellenanteil des durch die Reihenschaltung der LED-Anordnungen fließenden Stroms verringert wird.
  • Um diese automatische Adaption für die jeweilige LED-Anordnung wirkungsvoll bereitzustellen, umfassen zweckmäßigerweise mehrere, vorzugsweise alle Bypassanordnungen einen eigenen, jeweils dieser zugeordneten Stromfühler, sodass damit insbesondere das Erreichen der jeweiligen Flussspannung der zugeordneten LED-Anordnung ermittelbar ist.
  • Zumindest mehreren, vorzugsweise (n-1) der n LED-Anordnungen oder auch allen der n LED-Anordnungen kann eine wie obenstehend beschriebene Bypassanordnung zugeordnet sein.
  • Erfindungsgemäß ist der Stromfühler, welcher der jeweiligen Bypassanordnung zugehörig ist, zur Erfassung eines Stromflusses durch eine LED-Anordnung ausgebildet, die stromflussabwärts benachbart zu der LED-Anordnung angeordnet ist, welche der jeweiligen Bypassanordnung zugeordnet ist. Durch diese konstruktive Maßnahme kann über den Stromfühler der Momentanstrom, welcher durch die Bypassanordnung geleitet wird, als auch der Stromanteil, welcher durch die der Bypassanordnung zugeordneten LED-Anordnung fließt, gemessen und für die Steuerung der Bypassanordnung verwendet werden.
  • Vorzugsweise umfasst der jeweilige Stromfühler einer Bypassanordnung. zumindest einen Widerstand, insbesondere kann der Stromfühler als einzelner Widerstand ausgebildet sein. Der zu erfassende Strom wird dabei durch den Stromfühler geleitet, der dabei entstehende Spannungsabfall kann als Steuersignal die zugehörige Bypassanordnung bereitgestellt werden. Der jeweilige Stromfühler kann auch als Widerstandsnetzwerk ausgebildet sein, insbesondere auch als Parallelschaltung von Widerständen.
  • Wie obenstehend schon erläutert, sind vorzugsweise mehreren der Bypassanordnungen jeweils zugehörige Stromfühler vorgesehen, die zweckmäßigerweise jeweils in Reihe zu den seriell verschalteten LED-Anordnungen angeordnet sind. Bei dieser Ausführungsform sind demnach vom Stromfühler umfasste Widerstände als auch die LED-Anordnungen selbst in einer gemeinsamen Reihenanordnung verschaltet.. Dabei kann es zweckmäßig sein, wenn der jeweilige Stromfühler, insbesondere die jeweilige Widerstandsanordnung in Reihe zwischen den beiden benachbarten LED-Anordnungen vorgesehen ist.
  • Vorzugsweise ist ein Anschluss des jeweiligen Stromfühlers mit einem Steueranschluss der zugeordneten Bypassanordnung und ein weiterer Anschluss des jeweiligen Stromfühlers mit einem Bypassanschluss der zugeordneten Bypassanordnung verbunden.
  • Vorzugsweise kann ein Bypassanschluss einer Bypassanordnung direkt ohne eine Zwischenverbindung über andere Bauelemente mit einem ersten Anschluss der zugeordneten LED-Anordnung und ein anderer Bypassanschluss der Bypassanordnung über einen Stromfühler mit einem zweiten Anschluss der zugeordneten LED-Anordnung verbunden sein, wobei dieser Stromfühler in einer Reihenschaltung von LED-Anordnungen und Stromfühlern angeordnet sein kann. Andererseits können auch erster und zweiter Bypassanschluss einer Bypassanordnung jeweils direkt ohne eine Zwischenverbindung über andere Bauelemente mit einem jeweiligen Anschluss der zugeordneten LED-Anordnung verbunden sein.
  • Erster und zweiter Anschluss der zugeordneten LED-Anordnung können die beiden Versorgungsanschlüsse der LED-Anordnungen sein. Die beiden Bypassanschlüsse können den Bypasseingang sowie den Bypassausgang darstellen, wobei wie erläutert zwischen Ein und Ausgang der Bypassanordnung neben einem Kurzschluss und einer vollständigen Blockade auch Zwischenzustände einstellbar sind, insbesondere die eines steuerbaren Widerstands und/oder einer steuerbaren Stromquelle.
  • Eine oder mehrere der beschriebenen Bypassanordnungen kann bzw. können auch mehr als einen einzelnen Steuereingang umfassen. In diesem Fall werden mehrere Signale zur Steuerung der Bypassanordnungen verwendet.
  • Besonders vorteilhaft umfasst zumindest eine der mehreren Bypassanordnungen einen selbstleitenden Transistor wie einen FET, insbesondere kann eine solche Bypassanordnung im Wesentlichen als selbstleitender Transistor ausgebildet sein. Der Gate-Anschluss des Transistors stellt in diesem Fall den zumindest einen Steuereingang der Bypassanordnung dar. Darüber hinaus ist es jedoch auch möglich, dass eine Bypassanordnung einen selbstsperrenden Transistor umfasst, insbesondere als selbstsperrender Transistor ausgebildet ist.
  • Soweit Widerstände bzw. verschaltete Widerstände als Stromfühler in der Reihenschaltung zusammen mit den LED-Anordnungen vorgesehen sind, können diese bei einer alternierenden Versorgungsspannung wie bei einer sinusförmigen Wechselspannung zur Anpassung des Versorgungsstromes an diese Versorgungsspannung dimensioniert sein, insbesondere um Wirkungsgrad und Oberwellenanteil der LED-Betriebsanordnung zu optimieren. Die Genauigkeit einer solchen Anpassung steigt grundsätzlich mit der Anzahl der LED-Anordnungen, welchen jeweils eine Bypassanordnung zugeordnet ist.
  • Beispielsweise kann es zweckmäßig sein, wenn die in der Reihenschaltung mit den LED-Anordnungen angeordneten Widerstände in ihrem Widerstandswert in Stromflussrichtung stetig ansteigen.
  • Zweckmäßigerweise können die Bypassanordnungen in Reihe geschaltet sein, d.h. der Eingang einer Bypassanordnung ist mit einem Ausgang einer benachbarten Bypassanordnung verbunden, wobei mehrere, insbesondere alle Bypassanordnungen derartig in Reihe geschaltet sei können.
  • Zum Schutz der in Reihe geschalteten LED-Anordnungen kann eine Strombegrenzungseinrichtung vorgesehen sein, welche zwischen den Versorgungsspannungsanschlüssen der LED-Betriebsanordnung und in Serie zur Reihenschaltung der LED-Anordnungen bzw. innerhalb dieser Reihenschaltung vorgesehen sein kann.
  • Zweckmäßigerweise weist die LED-Betriebsanordnung einen von Wechselspannung gespeisten Gleichrichter zur Bereitstellung einer pulsierenden Gleichspannungsversorgung auf, mit welcher die Reihenschaltung der LED-Anordnungen speisbar ist. Insbesondere bei einer solchen pulsierenden Gleichspannungsversorgung können die Widerstandswerte der in Reihe zu den LED-Anordnungen geschalteten Stromfühler bzw. Widerstände zur Anpassung des zeitlichen Verlaufs des Durchflussstromes durch die Reihenschaltung der LED-Anordnungen an den zeitlichen Verlauf der pulsierenden Gleichspannung angepasst werden.
  • Vorteilhaft kann auch vorgesehen sein, dass eine oder mehrere, insbesondere alle Bypassanordnungen zumindest einen weiteren Steueranschluss aufweisen, welcher die Kathodenspannung der LED-Anordnung abtastet, die zu der zugeordneten LED-Anordnung der Bypassanordnung stromflussabwärts benachbart angeordnet ist. Beide Steuersignale können z.B. über jeweilige Vorwiderstände parallel an das Gate des jeweiligen Transistors der Bypassanordnung geführt sein. Dadurch, dass neben dem Ausgangssignal des Stromfühlers in dieser Ausführungsform ein weiteres Signal, dass von der Flussspannung der stromabwärts benachbarten LED-Anordnung abhängt, zur Steuerung der Bypassanordnung verwendet wird, lässt sich eine Leistungsoptimierung für die letztgenannte LED-Anordnung durchführen.
  • Verfahrensseitig wird das oben beschriebene Problem durch die Merkmale des Verfahrensanspruch 10 gelöst. Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass die jeweilige Bypassanordnung ferner als steuerbarer Widerstand durch das Ausgangssignal des zugehörigen Stromfühlers in Zwischenzustände zwischen dem Betriebszustand des Überbrückens der zugeordneten LED-Anordnung und dem Betriebszustand des Nichtüberbrückens der jeweiligen Bypassanordnung gesteuert wird zum Steuern des durch die jeweilige Bypasseinrichtung fließenden Stromes und dass mittels des jeweiligen zugehörigen Stromfühlers der Strom erfasst wird, der durch die LED-Anordnung fließt, welche in der Serienschaltung der LED-Anordnungen stromflussabwärts und in der Serienschaltung der LED-Anordnungen aufeinanderfolgend zu der jeweiligen LED-Anordnung angeordnet ist, die der jeweiligen Bypassanordnung zugeordnet ist, wobei durch den mittels des jeweiligen zugehörigen Stromfühlers erfasste Strom die Summe des durch die jeweilige LED-Anordnung fließenden Stroms sowie des durch die dieser LED-Anordnung zugeordneten Bypassanordnung fließenden Stroms erfasst wird.
  • Zweckmäßigerweise kann das erfindungsgemäße Verfahren so eingerichtet sein, dass durch den jeweiligen Stromfühler der Momentanwert des durch die jeweilige LED-Anordnung fließenden Stroms erfasst wird.
  • Je nach Betriebszustand kann eine LED-Anordnung mittels der ihr zugeordneten Bypassanordnung überbrückt werden. Die Steuerung der Bypassanordnung kann dabei mittels der Erfassung des Momentanwertes eines Stromflusses durch eine LED-Anordnung erfolgen, welche in der Reihenschaltung der LED-Anordnungen auf die LED-Anordnung folgt, die dieser Bypassanordnung zugeordnet ist. Die beschriebene Ansteuerung einer Bypassanordnung erfolgt bei mehreren der umfassten Bypassanordnungen, insbesondere bei allen Bypassanordnungen, welche jeweils einer LED-Anordnung zugeordnet sind.
  • Zweckmäßigerweise wird beim erfindungsgemäßen Verfahren mittels eines jeweiligen Stromfühlers die Summe des durch eine LED-Anordnung fließenden Stroms sowie des durch die dieser LED-Anordnung zugeordneten Bypassanordnung gebrückten Stroms erfasst, wobei die jeweilige Bypassanordnung mit einem Ausgangssignal dieses Stromfühlers angesteuert wird. Hierdurch wird erreicht, dass die Steuerung der jeweiligen Bypassanordnung sowohl den gebrückten Strom als auch den durch die zugeordnete LED-Anordnung fließenden Strom berücksichtigt und somit das Erreichen der spezifischen Durchflussspannung an der jeweiligen LED-Anordnung erfasst wird.
  • Zweckmäßigerweise wird eine Bypassanordnung als steuerbarer Widerstand bei steigender Versorgungsspannung zunächst im Brückzustand betrieben, bei welcher die zugeordnete LED-Anordnung überbrückt wird, wobei mit steigendem Stromfluss durch die flussabwärts benachbarte LED-Anordnung der Widerstand der Bypassanordnung erhöht wird bis ein vorgegebener Grenzstrom durch die flussabwärts angeordnete LED-Anordnung erreicht wird. Durch diese Maßnahme kann erreicht werden, dass das Zeitverhalten des sich einstellenden Stromflusses durch die Reihenschaltung der LED-Anordnungen an das Zeitverhalten der Versorgungsspannung angepasst ist, sodass der Wirkungsgrad optimiert werden kann.
  • Zweckmäßigerweise kann ferner vorgesehen sein, dass nach Erreichen des vorgegebenen Grenzstromes durch die jeweilige Bypassanordnung bei weiter sich erhöhender Versorgungsspannung der durch die Bypasseinrichtung fließende Strom im Wesentlichen konstant gehalten wird und eine steigende Spannung an der Bypasseinrichtung abfällt, bis die spezifische Flussspannung der zugeordneten LED-Anordnung erreicht wird. Diese Flussspannung stellt die Schwellspannung dar, ab welcher die LED-Anordnung leitet. Der Widerstand der Bypassanordnung wird in dieser Betriebsphase insofern gerade so gesteuert, dass der durch die Bypasseinrichtung fließende Strom etwa konstant ist. Auch durch diesen Verfahrensschritt kann der zeitliche Verlauf des durch die LED-Anordnungen fließenden Stroms an den zeitlichen Verlauf der Versorgungsspannung zur Erhöhung des Wirkungsgrades angepasst werden.
  • Vorzugsweise wird der Widerstand der Bypassanordnung nach Erreichen der spezifischen Flussspannung der zugeordneten LED-Anordnung bei weiter sich erhöhender Versorgungsspannung durch einen steigenden Stromfluss durch diese LED-Anordnung erhöht, sodass der Stromfluss durch die Bypassanordnung verringert wird.
  • Das erfindungsgemäße Verfahren ermöglicht es, dass angepasst an den zeitlichen Verlauf der Versorgungsspannung die in Reihe geschalteten LED-Anordnungen, sukzessive und angepasst auf die jeweilige spezifische Flussspannung durch Steuern der einzelnen Bypassanordnungen, mit Strom durchflossen werden und damit zur Lichterzeugung beitragen. Dieser Vorgang erfolgt in gleicher Weise beim Abfallen der Versorgungsspannung, d.h. in diesem Fall werden die einzelnen LED-Anordnungen sukzessive durch Einschalten der Bypassanordnungen überbrückt.
  • Die Erfindung wird im Folgenden durch das Beschreiben einiger Ausführungsformen unter Bezugnahme auf die beiliegenden Zeichnungen erläutert, wobei
  • Figur 1
    eine erfindungsgemäß gestaltete LED-Betriebsanordnung in einer Prinzipskizze,
    Figur 2
    die in Figur 1 dargestellte LED-Betriebsanordnung detaillierter,
    Figur 3a, b
    den zeitlichen Verlauf verschiedener Spannungs- bzw. Stromgrößen innerhalb der LED-Anordnung gemäß. Figur 2,
    Figur 4 a - f
    den zeitlichen Verlauf der Einzelströme durch die jeweiligen LED-Anordnungen bei einer LED-Betriebsanordnung gemäß Fig. 2 mit sechs LED-Anordnungen,
    Figur 5 a, b
    den zeitlichen Verlauf der an LED-Betriebsanordnung gemäß Figur 2 mit sechs LED-Anordnungen anliegenden pulsierenden Gleichspannung mit dem sich ergebenden Gesamtstrom für eine Netzperiode,
    Figur 6
    eine weitere Ausführungsform einer erfindungsgemäßen LED-Betriebsanordnung,
    Figur 7
    eine weitere Ausführungsform einer erfindungsgemäß ausgebildeten LED-Betriebsanordnung,
    Figur 8 a, b
    den zeitlichen Verlauf verschiedener Stromund Spannungsgrößen innerhalb der LED-Betriebsanordnung gemäß Figur 7, und
    Figur 9
    im Vergleich den zeitlichen Verlauf des Gesamtstroms durch die LEDs über eine Netzperiode für die in den Figuren 2 und 7 dargestellten Ausführungsformen bei sechs in Reihe geschalteten LED-Anordnungen
    zeigt.
  • Figur 1 zeigt in einer Prinzipskizze den prinzipiellen Aufbau.einer erfindungsgemäßen LED-Betriebsanordnung. Diese weist zwei Netzanschlüsse auf, über welche die Anordnung 1 mit einer Wechselspannung versorgt wird, welche über einen Gleichrichter 10 in eine pulsierende Gleichspannung mit der Spannung VGL umgewandelt wird. Diese Spannung liegt an einer Serienschaltung von n LED-Anordnungen an, welche jeweils eine spezifische Flussspannung aufweisen. Je nach Ausführungsform können diese LED-Anordnungen eine oder mehrere LEDs, insbesondere mehrere LEDs in einer Reihenanordnung umfassen. Obwohl nicht darauf beschränkt, wird im Folgenden davon ausgegangen, dass die n LED-Anordnungen gleich aufgebaut sind, jedoch aufgrund der nicht zu vermeidenden Herstellungsstreuungen insbesondere leicht unterschiedliche Flussspannungen aufweisen, d.h. bei geringfügig unterschiedlichen Spannungen in den leitenden Zustand übergehen.
  • In der Reihenschaltung der LED-Anordnungen ist ferner ein Strombegrenzer 110 vorgesehen, welcher den Gesamtstrom durch die Schaltung begrenzt. Ausgehend von Masse weist die zweite LED-Anordnung LED2 und jede weitere flussaufwärts angeordnete LED-Anordnung bis zur letzten Anordnung LEDn eine zugehörige Bypassanordnung 20a bis 20(n-1) auf, welche je nach Betriebssituation die zugehörige LED-Anordnung brückt. Hierzu weist die jeweilige Bypassanordnung 20i, i = a .... . (n-1) zwei Anschlüsse A1, A2 sowie einen Steueranschluss S auf. Zur Klarheit der Darstellung sind diese Anschlüsse allein für die Bypassanordnung 20a in der Figur 1 angegeben. Die Bypassanordnung 20a ist der LED2 zugeordnet, d.h. je nach Betriebssituation brückt die Bypassanordnung 20a die LED-Anordnung LED2. Hierzu ist ein Anschluss A1 über den Stromfühler 100b mit der Anode der LED-Anordnung LED2 verbunden, der Anschluss A2 ist direkt an die Kathode der LED-Anordnung LED2 angekoppelt.
  • In der beschriebenen Ausführungsform ist zwischen zwei LED-Anordnungen jeweils ein Stromfühler 100a bis 100(n-1) vorgesehen, diese Stromfühler liegen somit auch in Reihe zu den seriell verschalteten LED-Anordnungen und bilden mit diesen gemeinsam eine Reihenschaltung. Der Ausgang eines jeden Stromfühlers 100a bis 100(n-1) ist mit dem Steuereingang S der jeweiligen Bypassanordnung verbunden.
  • Wie aus Figur 1 ersichtlich, erfasst der jeweilige Stromfühler einen Summenstrom, welcher sich durch den Strom durch eine LED-Anordnung und den Strom zusammensetzt, welcher durch die dieser LED-Anordnung zugeordneten Bypassanordnung fließt, d.h. gebrückt wird. Der Stromfühler 100a misst beispielsweise den Summenstrom, welcher sich durch den Strom durch die Anordnung LED2 und den über die Anschlüsse A1, A2 gebrückten Strom der Bypassanordnung 20a zusammensetzt. Demnach misst der Stromfühler 100a in der beschriebenen Ausführungsform den Strom, welcher durch die flussabwärts benachbarte LED-Anordnung, d.h. die LED-Anordnung LED1 fließt. Dieser Sachverhalt gilt für alle der verwendeten Stromfühler der Bypassanordnungen, beispielsweise misst der Stromfühler 100b den Summenstrom, welcher sich durch die LED-Anordnung LED3 und den Strom durch die Bypassanordnung 20b zusammensetzt und welcher dem Strom durch die flussabwärts benachbarte LED-Anordnung LED2 entspricht.
  • Figur 2 zeigt die in Figur 1 dargestellte LED-Betriebsanordnung nochmals, wobei sowohl die Bypassanordnungen 20a - 20(n-1) als auch die Strombegrenzungseinrichtung im Detail dargestellt sind. Die Bypassanordnungen 20a bis 20(n-1) umfassen in der dargestellten Ausführungsform einen selbstleitenden Feldeffekttransistor 21a bis 21(n-1) wobei zwischen dem Gate des jeweiligen Transistors und dem Steuereingang S jeweils ein Vorwiderstand 22a bis 22(n-1) angeordnet ist.
  • Die Stromfühler 100a bis 100(n-1) sind in der Ausführungsform gemäß Figur 2 als Widerstände ausgebildet, wobei am Steuereingang S der jeweiligen Bypassanordnung die Spannung anliegt, welche an dem zugehörigen Stromfühler, d.h. dem Widerstand abfällt.
  • Gemäß der Erfindung werden die Bypassanordnungen 20a bis 20(n-1) nicht nur zum Brücken der jeweils zugeordneten LED-Anordnung bzw. zum Sperren angesteuert, sondern je nach Betriebssituation werden diese Bypassanordnungen allgemein als steuerbarer Widerstand und/oder steuerbare Stromquelle zum Einstellen von Zwischenwerten angesteuert, sodass eine Parallelschaltung zu der jeweils zugeordneten LED-Anordnung realisiert ist mit einstellbarem Widerstand bzw. einstellbarem der Stromquelle.
  • Die Funktionsweise der in den Figuren 1 und 2 dargestellten erfindungsgemäßen LED-Betriebsanordnungen wird im Folgenden unter weiterer Bezugnahme auf die Figuren 3a, b, 4a bis f und 5a, b erläutert. Dabei wird im Folgenden davon ausgegangen, dass die Reihenschaltung insgesamt sechs LED-Anordnungen und dementsprechend fünf Bypassanordnungen mit jeweils zugehörigem Stromfühler aufweist.
  • Es sei zunächst angenommen, dass die anliegende pulsierende Gleichspannung VGL einen Nulldurchgang zu positiven Spannungswerten durchläuft. Alle selbstleitenden Feldeffekttransistoren 21a bis 21(n-1) sind zunächst leitend geschaltet, sodass die steigende Spannung VGL bei Vernachlässigung der zwischen Drain und Source in den Transistoren abfallenden Spannungen an der Anode der stromflussabwärts letzten LED-Anordnung LED 1 anliegt. Die Figuren 3a, b zeigen den zeitlichen Verlauf verschiedener Strom- und Spannungsgrößen innerhalb der LED-Anordnung gemäß Figur 2. Figur 3a zeigt für ein kurzes Zeitintervall das Steigen der pulsierenden Gleichspannung VGL sowie den davon abhängigen zeitlichen Verlauf der durch die Bypassanordnungen 20a bzw. 20b hindurch geführten bzw.. gebrückten Strom I(21a) bzw. I(21b). In der gleichen Zeitskala ist in Figur 3b der zeitliche Verlauf der am Steuereingang S der Bypasseinrichtung 20a anliegenden und durch den Stromfühler 100a erzeugten Steuerspannung VS(21a) sowie der zeitliche Verlauf der Ströme I(LED1) bzw. I(LED2) durch die beiden LED-Anordnungen LED1 bzw. LED2 dargestellt.
  • Da zunächst die steigende, an der Anode der LED-Abordnung LED1 anliegende gleichgerichtete Versorgungsspannung VGL kleiner als die Flussspannung von LED1 ist, fließt kein Laststrom, insofern ist zunächst auch die Steuerspannung VS(21a) identisch Null, sodass der .Transistor 21a zunächst im selbstleitenden Zustand verbleibt. Nach etwa 0,5 ms erreicht die gleichgerichtete Versorgungsspannung die Flussspannung der LED-Anordnung LED1 von etwa 50 Volt, LED1 leitet und es fließt ein Strom I(LED1) über die Bypassanordnungen 20(n-1) bis 20a, den als Widerstand ausgebildeten Stromfühler 100a, die Diodenanordnung LED1 sowie die Gesamtstrombegrenzungseinrichtung nach Masse, wobei diese Gesamtstrombegrenzungseinrichtung wiederum durch einen selbstleitenden FET 111 und einen als Widerstand ausgebildeten Stromfühler 112 gebildet ist. Der Spannungsabfall am Stromfühler 100a erzeugt eine negative Steuerspannung VS(21a) am Steuereingang S, d.h. eine negative Gate-Source-Spannung am Transistor 21a. Erreicht diese Spannung die Gate-Schwell-Spannung des Transistors 21a, so wird der durch die Bypassanordnung 20a fließende Strom auf das Verhältnis der Gate-SchwellSpannung zum Widerstandswert des Stromfühlers 100a beschränkt, siehe Figuren 3a, b. Dieser Strom bleibt in dem beschriebenen Beispiel im Zeitintervall zwischen etwa 0,5 ms bis etwa 1,05 ms im Wesentlichen konstant, die Bypassanordnung 20a arbeitet in diesem Intervall als Konstantstromquelle, sodass zwischen den beiden Anschlüssen A1, A2 der Bypassanordnung 20a, d.h. zwischen den Drain-Source-Anschlüssen des Transistors 21a die Differenz zwischen der Flussspannung der LED-Anordnung LED1 und der weiter steigenden Versorgungsspannung VGL abfällt. Da in der beschriebenen Ausführungsform die jeweilige Bypassanordnung der Reihenschaltung der zugeordneten LED-Anordnung und dem stromaufwärts angeordneten Stromfühler parallel geschaltet ist, liegt diese Spannung auch an der Reihenschaltung des als Widerstand ausgebildeten Stromfühlers 100b sowie der LED-Anordnung LED2 an. In dem angegebenen Zeitintervall zwischen etwa 0,5 und etwa 1,05 ms wird der Strom I(LED1) konstant gehalten.
  • Wie angegeben, sind die LED-Anordnungen LEDn bis LED1 im Wesentlichen identisch aufgebaut, insofern wird die flussaufwärts zweite LED-Anordnung LED 2 leitend, wenn der Momentanwert der pulsierenden Gleichspannung VGL etwa 100 Volt erreicht. Dann wird die LED-Anordnung LED 2 auch leitend und es fließt ein Strom über den auch als Widerstand ausgebildeten Stromfühler 100b. Der dadurch an diesem erzeugte Spannungsabfall führt zu einer negativen Steuerspannung an der Bypassanordnung 20b, sodass auch in dieser der hindurch geführte bzw. gebrückte Strom begrenzt wird. In dem angegebenen Beispiel ist der Widerstand des Stromfühlers 100b deutlich niederohmiger als der Widerstand des Stromfühlers 100a, sodass die beschriebene Verschaltung des Transistors 21b und des Stromfühlers 100b nun auf einen höheren Strom begrenzt. Dieser Strom durch die LED-Anordnung LED2 addiert sich nun zum Strom, welcher durch die Bypassanordnung 20a geführt ist, wodurch im Stromfühler 100a eine höhere negative Steuerspannung für den Transistor 21a erzeugt wird. In dem in Figur 3a dargestellten Beispiel erhöht sich diese negative Steuerspannung VS(21a) dann von etwa - 0,75 Volt auf etwa - 1,25 Volt. Somit wird die Drain-Source-Strecke des Transistors 21a der Bypasseinrichtung 20a noch hochohmiger, in dem angegebenen Beispiel so hoch, dass der Strom I(21a) auf etwa. Null abfällt. Die Bypassanordnung 20a sperrt, sodass der gesamte Strom durch die LED-Anordnung LED1 geführte Strom auch durch die LED-Anordnung. LED2 fließt, siehe Figur 3b, aus welcher hervorgeht, dass beide Ströme I(LED1) und I(LED2) nach dem Erreichen der Schwellspannung für die zweite LED-Anordnung identisch sind. Im Zeitintervall zwischen den Zeitpunkten T = 1,05 ms und T = 1,6 ms arbeitet nun die Bypassanordnung 21b als Stromquelle, im Wesentlichen als Konstantstromquelle in ähnlicher Weise wie für die Bypassanordnung 20a beschrieben.
  • Erreicht nun der Momentanwert der pulsierenden Gleichspannung VGL die Summe der Flussspannungen für die Anordnungen LED1, LED2 und LED3, geht die letztgenannte LED-Anordnung zum Zeitpunkt von etwa t = 1,6 ms auch in den leitenden Zustand über, siehe die in den Figuren 3a, b dargestellten Zeitverläufe. Der Widerstandswert des Stromfühlers 100b ist in dem angegebenen Beispiel so eingestellt, dass mit Erreichen der dritten Flussspannung der über die Bypassanordnung 21b bereitgestellte Strom I(21b) wiederum stark abfällt, jedoch nicht wie in der vorliegenden Stufe auf etwa Null, sondern auf einen vergleichsweise geringen Wert. Erst nach Erreichen der Flussspannung der weiteren LED-Anordnung wird aufgrund des weiter erhöhten Stromflusses durch den Stromfühler 100b die Bypasseinrichtung 21b dann in den sperrenden Zustand übergeführt.
  • Dieser für die stromabwärts gelegenen ersten Bypassanordnungen beschriebene Vorgang setzt sich mit steigender pulsierender Gleichspannung VGL fort bis bei entsprechender Konzeption der Schaltung alle in Reihe geschalteten LED-Anordnungen in den leitenden Zustand übergegangen sind. Mit weiter steigender Gleichspannung VGL wird der Gesamtstrom dann durch den Strombegrenzer 111, 112 limitiert. Mit dem Wiederabfallen der anliegenden Spannung VGL läuft der beschriebene Prozess in umgekehrter Reihenfolge ab, die LED-Anordnungen werden sukzessive von den zugehörigen Bypassan-ordnungen gebrückt bis zum Schluss allein die LED-Anordnung LED1 noch von Strom durchflossen ist, welche nach dem Abfallen der Spannung VGL unter deren Flussspannung auch sperrt.
  • Wie aus der obigen Darstellung hervorgeht, weist die erfindungsgemäße LED-Betriebsanordnung eine Vielzahl von in Reihe geschalteten LED-Anordnungen auf, von welchen mehreren jeweils eine Bypassanordnung zugeordnet ist, mit der die zugeordnete LED-Anordnung in einem Betriebszustand gebrückt werden kann. Darüber hinaus sind diese Bypassanordnungen der erfindungsgemäßen LED-Betriebsanordnung jedoch auch eingerichtet und verschaltet, um als steuerbarer Widerstand bzw. als steuerbare Stromquelle zu wirken, wobei die Steuerung mittels eines Ausgangssignals eines Stromfühlers realisiert ist. Dadurch, dass dieser Stromfühler sowohl den durch die Bypassanordnung geführten bzw. erzeugten Strom als auch den Strom, welcher durch die LED-Anordnung fließt, erfasst, welche der jeweiligen Bypassanordnung zugeordnet ist, wird erreicht, dass unabhängig von irgendwelchen Referenzspannungen das Erreichen oder Überschreiten der Flussspannung dieser LED-Anordnung erfasst werden kann, sodass sich die Steuerung der Bypassanordnung an die elektronischen Eigenschaften der zugeordneten LED-Anordnung automatisch anpasst.
  • Die Figuren 4a - f zeigen über eine Netzperiode die Zeitverläufe der Einzelströme durch die jeweiligen LED-Anordnungen bei einer erfindungsgemäß ausgebildeten LED-Betriebsanordnung, welche eine Reihenschaltung von sechs derartiger LED-Anordnungen umfasst. Dabei stellt Figur 4a den zeitlichen Ablauf der stromabwärts ersten LED-Anordnung LED1, Figur 4b den zeitlichen Stromverlauf durch die zweite LED-Anordnung LED2 und letztlich Figur 4f den zeitlichen Verlauf des Stromes durch die sechste LED-Anordnung LED6 wieder. Die Kurven zeigen das sukzessive Ein- bzw. Ausschalten der jeweiligen LED-Anordnungen über die Netzperiode. Wie ersichtlich, sind die Leuchtzeiten der einzelnen LED-Anordnungen über die Periode unterschiedlich.
  • Wie obenstehend erläutert, können die Stromsprünge beim Einschalten der jeweiligen LED-Anordnungen beim Erreichen der jeweiligen Flussspannung mittels Wahl des jeweiligen Stromfühlers bzw. des Widerstandswertes dieses Stromfühlers 100a bis 100f an den Verlauf der anliegenden pulsierenden Gleichspannung VGL.angepasst werden, um den Wirkungsgrad der Betriebsanordnung zu optimieren. Insofern sind idealerweise die in ihrer Gesamtheit in Figur 4a gezeigten Stromsprünge nicht äquidistant, sondern sind an die Steigung der Versorgungsspannung bzw. vorliegend der pulsierenden Gleichspannung VGL angepasst. Figur 5a zeigt die anliegende Gleichspannung VGL und Figur 5b den Gesamtstrom, d.h. den Strom I(LED1) durch die erste LED-Anordnung LED 1.
  • Es sei darauf hingewiesen, dass bei der in Figur 2 dargestellten Ausführungsform einer erfindungsgemäßen LED-Betriebsanordnung die LED-Anordnung LED1 auch zwischen dem High-Ausgang des Gleichrichters 10 und der LED-Anordnung LEDn angeordnet sein kann. Auch in diesem Fall ist die LED-Anordnung LED1 benachbart zur LED-Anordnung LED2 anzusehen, da zwischen beiden allein die Spannungsquelle mit der Versorgungsspannung VGL liegt. Im Sinne der vorliegenden Erfindung bezeichnet die Angabe "benachbart" in Bezug auf zwei LED-Anordnungen zwei aufeinanderfolgende LED-Anordnungen in der Serienschaltung, unabhängig davon, ob zwischen diesen beiden LED-Anordnungen noch andere Elemente, wie beispielsweise ein Stromfühler oder eine Strom- oder Spannungsquelle in Reihe angeordnet sind.
  • Figur 6 zeigt eine weitere Ausführungsform einer erfindungsgemäß ausgebildeten LED-Betriebsanordnung, welche sich nur geringfügig von der in Figur 2 dargestellten unterscheidet. Wiederum sind bei einer Reihenschaltung von n LED-Anordnungen (n-1) Bypassanordnungen 30a bis 30(n-1) verschaltet, welche jeweils durch ein Signal eines eigenständigen Stromfühlers 100a bis 100 (n-1) gesteuert werden. Gleiche Bauteile sind in Bezug auf die Ausführung gemäß Fig. 2 mit den gleichen Bezugszeichen versehen. Obwohl auch identisch zu der in Figur 2 gezeigten Ausführungsform, sind die selbstleitenden Feldeffekttransistoren 31a bis 31(n-1) anders bezeichnet, da sie von der neu gestalteten Bypassanordnung 30a bis 30(n-1) umfasst sind. Die Bypassanordnungen 30a bis 30(n-1) umfassen wiederum einen Signalanschluss S, welcher wie bei der in Figur 2 dargestellten Ausführungsform sein Steuersignal von einem in der Reihenschaltung von LED-Anordnungen vorgesehenen Stromfühler 100a bis 100(n-1) erhält, die auch hier als Widerstände mit wohl definiertem Widerstandswert ausgebildet sind. Der einzige Unterschied zu Fig. 2 besteht darin, dass die Bypassanordnungen gemäß Figur 6 einen zweiten Steueranschluss S2 aufweisen, welcher die Kathodenspannung der LED-Anordnung abtastet, die der zugeordneten LED-Anordnung der Bypassanordnung stromflussabwärts benachbart angeordnet ist. Beide Steuersignale werden über jeweilige Vorwiderstände parallel an das Gate des jeweiligen Transistors 31a bis 31(n-1) geführt.
  • Bis auf den Umstand, dass die jeweilige Bypassanordnung mit zwei Steuersignalen versorgt wird, unterscheidet sich damit die in Figur 6 dargestellte LED-Betriebsanordnung nicht von der in Figur 2 dargestellten. Das in den Figuren 3 - 5 beschriebene zeitliche Verhalten ist sehr ähnlich, allein die Stromsprünge beim Erreichen der jeweiligen Schwellspannung einer LED-Anordnung sind bei der in Figur 6 dargestellten Ausführungsform auch an die reale Schwellspannung der LED-Anordnung angepasst, welche der Bypassanordnung nachgeschaltet ist. (Die beschriebene Parallelschaltung beider Steuersignale auf das Gate des jeweiligen Transistors hat zur Folge, dass bei erhöhter Flussspannung in der stromabwärts benachbarten LED-Anordnung dann in der Bypassanordnung ein erniedrigter Konstantstrom bzw. bei geringerer Flussspannung ein erhöhter Konstantstrom eingestellt wird. Die Schaltung ist insofern bestrebt, eine konstante elektrische Leistung für die stromabwärts benachbarte LED-Anordnung einzustellen.
  • Figur 7 zeigt eine weitere Ausführungsform einer erfindungsgemäß ausgebildeten LED-Betriebsanordnung, die sich in Bezug auf die in Figur 2 dargestellte Ausführungsform allein durch die Gestaltung der Bypassanordnung, die Gestaltung des Gesamtstrombegrenzers 120 sowie der Platzierung der LED-Anordnung LED1 in der Reihenschaltung der LED-Anordnungen unterscheidet. Insofern sind gleiche Bauteile wiederum mit gleichen Bezugszeichen versehen.
  • Bei der in Figur 7 dargestellten Ausführungsform einer erfindungsgemäßen LED-Betriebsanordnung ist die LED-Anordnung LED1 zwischen dem High-Ausgang des Gleichrichters 10 und der LED-Anordnung LEDn angeordnet. Auch in diesem Fall ist die LED-Anordnung LED1 benachbart zur LED-Anordnung LED2 angeordnet, da zwischen beiden allein der Strombegrenzer 120 und die Spannungsquelle mit der Versorgungsspannung VGL liegt. Im Stromfühler 100a wird der durch LED1 fließende Strom I(LED1) erfasst und das Ausgangsignal des Stromfühlers liegt am Steuereingang S der Bypasseinrichtung 40a an, welcher der LED-Anordnung LED2 zugeordnet ist.
  • Die Verschaltung der jeweiligen Bypassanordnung in Bezug auf die Abfolge von LED-Anordnungen und jeweiligen Stromfühlern ist ansonsten identisch mit der in Figur 2 dargestellten .Betriebsanordnung. Allein die interne Gestaltung des Strombegrenzers und der der Bypassanordnungen ist unterschiedlich zu der vorbeschriebenen, jedoch weisen auch die gemäß Figur 7 umfassten Bypassanordnungen Bypassanschlüsse A1, A2 sowie einen Steuereingang S auf. Zusätzlich ist ein Hilfsanschluss H vorgesehen, die entsprechenden Anschlüsse sind beispielhaft und zur Klarheit der Darstellung nur für die Bypassanordnung 40a dargestellt. Alle Bypassanordnungen 40a bis 40(n-1) sind wiederum identisch aufgebaut. Sie umfassen jeweils einen selbstsperrenden Feldeffekttransistor, dessen Drain bzw. Source mit dem Anschluss A1 bzw. A2 verbunden ist. Über den Hilfsanschluss H und die Vorwiderstände 42a, 43a ist die pulsierende Gleichspannung VGL an das Gate des Transistors 41a angeschlossen und dient somit zum Aufladen desselben, sodass der Transistor schon beim Vorliegen einer sehr geringen Spannung VGL in den leitenden Zustand übergeht. Insofern sind wiederum zunächst nach dem Nulldurchgang der anliegenden Spannung VGL alle Bypassanordnungen 40a bis 40(n-1) leitend, sodass die zugeordneten LED-Anordnungen LED2 bis LEDn gebrückt sind.
    Zwischen Gate und Source des Transistors 41a ist der Widerstand 45a vorgesehen.
  • Die Figuren 8a, b zeigen zeitliche Verläufe verschiedener Strom- und Spannungsgrößen innerhalb der LED-Anordnung gemäß Figur 7, ähnlich wie dies in den Figuren 3a, b bezüglich der Ausführungsform gemäß Figur 2 dargestellt ist.
  • Die Figuren 8a, b zeigen wiederum einen kurzen Ausschnitt über ein Periodenintervall ausgehend vom Nulldurchgang der pulsierenden Gleichspannung VGL. Nach etwas mehr als 0,5 ms wird die Schwellspannung der LED-Anordnung LED1 erreicht, wobei nach dem Steigen des durch die LED1 fließenden Stromes bis eine durch die steuerbare Zehnerdiode 44a und das Ausgangssignal des Stromfühlers 100a bestimmte Stromschwelle erreicht wird, welche über das Intervall zwischen 0,5 ms und etwa 1,03 ms etwa konstant gehalten wird. In diesem Intervall arbeitet die Bypassanordnung im Wesentlichen als Konstantstromquelle, d.h. als gesteuerter Widerstand, derart, dass der durch die Bypassanordnung fließende Strom konstant bleibt. In diesem Zeitintervall fällt wiederum über Drain-Source des Transistors 41a die Differenz zwischen der Schwellspannung der LED-Anordnung LED1 und der weiter steigenden Spannung VGL ab. Erreicht VGL die Summe der Flussspannungen der beiden LED-Anordnungen LED1 und LED2 leitet LED2, sodass der zusätzliche Strom auch am Stromfühler 100a zu einem weiteren Spannungsabfall führt, und der Transistor 41a geht in den sperrenden Zustand über, I(41a) fällt auf etwa Null, siehe Figur 8a. In der gezeigten Ausführungsform ist die Schaltung so konzipiert, dass nach etwa 1,6 ms beim Erreichen der nächsten Flussspannung durch VGL, genauer der Summe der Flussspannungen der LED-Anordnungen LED1, LED2 und LED3 auch die Bypasseinrichtung 40b sperrt, der Strom I(41b) durch den Transistor 41b fällt auf etwa Null ab, siehe Figur 8a. Figur 8b zeigt die Gate-Source-Spannung VGS (41a) der Bypasseinrichtung 40a. Der Sprung dieser Gate-Source-Spannung beim Erreichen der Schwellspannung für die LED-Anordnung LED 2 führt zu einem Sprung zu solchen Werten, dass diese Bypass-Anordnung 40a sperrt. Das mit dem Zuschalten der weiteren LED-Anordnungen verbundene weitere Absinken .der Gate-Source-Spannung ist aus Figur 8b ersichtlich, hat jedoch keine Wirkung mehr, da die Bypassanordnung 40a schon vollständig sperrt.
  • Der beschriebene Vorgang setzt sich mit steigender pulsierender Gleichspannung VGL fort bis bei entsprechender Konzeption der Schaltung alle in Reihe geschalteten LED-Anordnungen in den leitenden Zustand übergegangen sind. Mit weiter steigender Gleichspannung VGL wird der Gesamtstrom dann durch den Strombegrenzer limitiert. Beim Wiederabfallen der anliegenden Spannung VGL läuft der beschriebene Prozess in umgekehrter Reihenfolge ab, die LED-Anordnungen werden sukzessive von den zugehörigen Bypassanordnungen gebrückt bis keine LED-Anordnung mehr von Strom durchflossen ist.
  • Figur 9 zeigt den resultierenden.Gesamtstrom I(LED1) für die Ausführungsform mit selbstleitendem Transistor in den Bypassanordnungen (gekennzeichnet mit SL) und für die Ausführungsform mit selbstsperrendem Transistor in den Bypassanordnungen (gekennzeichnet mit SP) für den Zeitraum einer Netzperiode. Beide Ausführungsformen ergeben ein vergleichbares Ergebnis.
  • Bezugszeichenliste
  • 1,2,3
    LED-Betriebsanordnung
    10
    Gleichrichter
    20i
    Bypassanordnung, i= a ... n-1
    21i
    Selbstleitender Feldeffekttransistor, i= a ... n-1
    22i
    Vorwiderstand, i= a ... n-1
    30i
    Bypassanordnung, i= a ... n-1
    31i
    Selbstleitender Feldeffekttransistor, i= a ... n-1
    32i
    Vorwiderstand, i= a ... n-1
    33i
    Vorwiderstand, i= a ... n-1
    40i
    Bypassanordnung, i= a ... n-1
    41i
    Selbstsperrender Feldeffekttransistor, i= a ... n-1
    42i
    Vorwiderstand, i= a ... n-1
    43i
    Vorwiderstand, i= a ... n-1
    44i
    Steuerbare Z-Diode, i= a ... n-1
    45i
    Gate-Source-Widerstand, i= a ... n-1
    100i
    Stromfühler, i= a ... n-1
    110
    Strombegrenzer
    111
    Selbstleitender Feldeffekttransistor
    112
    Stromfühler
    113
    Vorwiderstand
    120
    Strombegrenzer
    121
    Selbstsperrender Feldeffekttransistor
    122
    Stromfühler
    A1,
    A2 Bypassanschluss (Source-, Drain-Anschluss)
    H
    Hilfsspannungsanschluss
    I(LEDi, i=1...n)
    Stromfluss durch die i-te LED-Anordnung
    LEDi
    LED-Anordnung, i=l...n
    N, L
    Netzanschluss
    S, S2
    Steueranschluss
    VGL
    Pulsierende Gleichspannung
    VN
    Netzspannung
    VS(21i, i=a...n-1)
    Steuerspannung des Transistors 21i
    VGS(41i, i= a... n-1)
    Gate-Source-Spannung des Transistors 41i

Claims (10)

  1. LED-Betriebsanordnung (1, 2, 3) zum Betreiben einer Mehrzahl von seriell geschalteten LED-Anordnungen (LE-Di, i= 1...n) mit jeweils einem ersten und einem zweiten Anschluss, umfassend eine Versorgungsspannung (VN, VGL), die an die Serienschaltung der LED-Anordnungen (LEDi, i= l...n) angeschlossen ist;
    eine Mehrzahl von Schaltungsanordnungen, wobei jeder der Schaltungsanordnungen umfasst:
    eine der LED-Anordnungen (LEDi, i= l...n), eine Bypass-Anordnung (20i, i= a...n-1), aufweisend einen ersten und zweiten Bypassanschluss (A2, A1) sowie mindestens einen Steueranschluss (S), wobei der erste Bypassanschluss (A2) mit dem ersten Anschluss der LED-Anordnung (LEDi, i= l...n) verbunden ist und wobei die Bypass-Anordnung (20i, i= a...n-1) als steuerbarer Widerstand ausgebildet ist;
    einen Stromfühler (100a ... n-1), wobei der Stromfühler (100a ... n-1) einen Ausgang zur Ausgabe eines Ausgangssignals aufweist, und wobei der Stromfühler (100a ... n-1) stromflussabwärts von der LED-Anordnung angeordnet ist und zur Erfassung des Stromflusses durch die LED-Anordnung (LEDi, i= l...n) ausgebildet ist;
    und wobei der Steueranschluss (S) der Bypass-Anordnung (20i, i= a...n-1) mit dem Ausgang des Stromfühlers (100a ... n-1) verbunden ist und basierend auf dem Ausgangssignal der steuerbare Widerstand derart einstellbar ist, dass die Bypass-Anordnung in einem ersten Betriebszustand, welcher die LED-Anordnung (LEDi, i= l...n) überbrückt, einem weiteren Betriebszustand welcher die LED-Anordnung (LEDi, i= l...n) nicht überbrückt oder Zwischenbetriebszuständen zwischen dem ersten und dem weiteren Betriebszustand betreibbar ist;
    dadurch gekennzeichnet, dass die Schaltungsanordnungen in Reihe geschaltet sind und wobei in jeder Schaltungsanordnung der Stromfühler (100a ... n-1) in Serie zu der LED-Anordnung (LEDi, i= l...n) angeordnet ist, so dass der von dem Stromfühler (100a ... n-1) erfasste Strom, der Strom durch die Bypass-Anordnung (20i, i= a...n-1) und der LED-Anordnung (LEDi, i= l...n) ist.
  2. LED-Betriebsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass der Stromfühler (100a ..n-1) einen Widerstand umfasst.
  3. LED-Betriebsanordnung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Stromfühler (100a ..n-1) einen Anschluss aufweist, der mit dem ersten Bypassanschluss (A2) verbunden ist.
  4. LED-Betriebsanordnung nach Anspruch 3 , dadurch gekennzeichnet, dass in jeder Schaltungsanordnung, außer der stromflussaufwärts obersten Schaltungsanordnung, der zweite Bypassanschluss (A1) mit dem ersten Bypassanschluss (A2) der stromflussaufwärts vorhergehenden Schaltungsanordnung verbunden ist.
  5. LED-Betriebsanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass jede Bypass-Anordnung (20i; 30i, i= a...n-1) einen selbstleitenden Transistor oder einen selbstsperrenden Transistor umfasst.
  6. LED-Betriebsanordnung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die in der Serienschaltung der LED-Anordnungen (LEDi, i=l ... n) vorgesehenen Widerstände der Stromfühler (100a ..n-1) in ihrem Widerstandswert in Stromflussabwärtsrichtung stetig ansteigen, wobei die LED-Betriebsanordnung (1,2,3) so ausgelegt ist, dass sie, wenn sie Strom empfängt, die LED-Anordnungen (LEDi, i=l...n) der Reihe nach zuschalten.
  7. LED-Betriebsanordnung nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass die Bypass-Anordnungen (20i; 30i; 40i, i= a...n-1) in Reihe geschaltet sind.
  8. LED-Betriebsanordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Versorgungsspannung (VN, VGL) eine pulsierende Gleichspannung (VGL) ist, die mittels eines Gleichrichters, der mit Wechselspannung gespeist wird, bereitgestellt wird.
  9. LED-Betriebsanordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in zumindest einer der Schaltungsanordnungen die Bypassanordnung (30i, i= a...n-1) einen weiteren Steueranschluss (S2) aufweist, welcher mit der LED-Anordnung der Schaltungsanordnung verbunden ist, die in der Serienschaltung der Schaltungsanordnungen stromflussabwärts nachfolgend zu der mindestens einen Schaltungsanordnung angeordnet ist.
  10. Verfahren zum Betreiben einer LED-Betriebsanordnung (1,2,3) gemäß einem der Ansprüche 1 bis 9, folgende Schritte umfassend:
    Betreiben der LED-Anordnung (LEDi, i=1...n) mit der Versorgungsspannung; sowie folgender Schritte in jeder Schaltungsanordnung:
    Erfassen des Stromes durch die LED-Anordnung (LEDi, i=1...n) und der Bypass-Anordnung (20i; 30i, i= a...n-1) mittels des Stromfühlers (100a .. n-1) ;
    Einstellen des steuerbaren Widerstandes der Bypass-Anordnung (20i; 30i, i= a...n-1) basierend auf dem Ausgangssignal des Stromfühlers (100a ..n-1);
    Betreiben der LED-Anordnung (LEDi, i=1...n) in einem der ersten, zweiten Betriebszustände oder der Zwischenbetriebszustände.
EP11802418.1A 2010-12-22 2011-12-21 Led-betriebsgerät Active EP2656687B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010063985A DE102010063985A1 (de) 2010-12-22 2010-12-22 LED-Betriebsgerät
PCT/EP2011/073640 WO2012085118A1 (de) 2010-12-22 2011-12-21 Led-betriebsgerät

Publications (2)

Publication Number Publication Date
EP2656687A1 EP2656687A1 (de) 2013-10-30
EP2656687B1 true EP2656687B1 (de) 2016-07-13

Family

ID=45420656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11802418.1A Active EP2656687B1 (de) 2010-12-22 2011-12-21 Led-betriebsgerät

Country Status (3)

Country Link
EP (1) EP2656687B1 (de)
DE (1) DE102010063985A1 (de)
WO (1) WO2012085118A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006848B1 (fr) * 2013-06-07 2019-04-26 Westline Circuit et procede d'alimentation de diodes, dispositif d'eclairage a base de diodes comprenant un tel circuit.
FR3023669A1 (fr) * 2014-07-11 2016-01-15 Aledia Circuit optoelectronique a diodes electroluminescentes a scintillement reduit
DE102014224635A1 (de) * 2014-12-02 2016-06-16 Zumtobel Lighting Gmbh LED-Modul

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090230883A1 (en) * 2008-03-17 2009-09-17 Micrel, Inc. Stacked LED Controllers

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19841490B4 (de) * 1998-09-10 2005-06-30 Infineon Technologies Ag Schaltungsanordnung zum Schutz einer Serienschaltung aus mindestens zwei Leuchdioden vor dem Ausfall
DE10103611B4 (de) * 2001-01-26 2013-12-19 Insta Elektro Gmbh Schaltungsanordnung zum Betreiben von mehreren Leuchtmitteln
DE10159765C2 (de) * 2001-12-05 2003-11-06 Audi Ag Anordnung zur Ansteuerung einer Anzahl von lichtemittierenden Dioden und Verfahren zum Betreiben einer derartigen Anordnung
US7009580B2 (en) * 2002-03-01 2006-03-07 Cotco Holdings, Ltd. Solid state lighting array driving circuit
US6989807B2 (en) * 2003-05-19 2006-01-24 Add Microtech Corp. LED driving device
JP2005216812A (ja) * 2004-02-02 2005-08-11 Pioneer Electronic Corp 点灯装置および照明装置
US7649326B2 (en) * 2006-03-27 2010-01-19 Texas Instruments Incorporated Highly efficient series string LED driver with individual LED control
US7963670B2 (en) * 2006-07-31 2011-06-21 1 Energy Solutions, Inc. Bypass components in series wired LED light strings
US8587217B2 (en) * 2007-08-24 2013-11-19 Cirrus Logic, Inc. Multi-LED control
TW200910290A (en) * 2007-08-28 2009-03-01 Coretronic Corp Light source device
DE102007041131B4 (de) 2007-08-30 2015-07-23 Osram Gmbh Anordnung, Verwendung und Verfahren zur Ansteuerung von Licht emittierenden Bauelementen
CN105142257A (zh) * 2008-03-17 2015-12-09 埃尔多实验室控股有限公司 Led组件、led固定件、控制方法和软件程序
JP2009231580A (ja) * 2008-03-24 2009-10-08 Stanley Electric Co Ltd Led駆動モジュール
US8242704B2 (en) * 2008-09-09 2012-08-14 Point Somee Limited Liability Company Apparatus, method and system for providing power to solid state lighting
US8410717B2 (en) * 2009-06-04 2013-04-02 Point Somee Limited Liability Company Apparatus, method and system for providing AC line power to lighting devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090230883A1 (en) * 2008-03-17 2009-09-17 Micrel, Inc. Stacked LED Controllers

Also Published As

Publication number Publication date
DE102010063985A1 (de) 2012-06-28
EP2656687A1 (de) 2013-10-30
WO2012085118A1 (de) 2012-06-28

Similar Documents

Publication Publication Date Title
DE102010002707B4 (de) Fehlererkennung für eine Serienschaltung von Leuchtdioden
DE102005012625B4 (de) Verfahren sowie Schaltungsanordnung zur Ansteuerung von Leuchtdioden
DE102014118795A1 (de) Beleuchtungsbaugruppe und Leuchte
DE202012013514U1 (de) Beleuchtungsvorrichtung mit lichtemittierenden Halbleiterdioden
DE102015116943B4 (de) Detektion eines einzelnen LED-Fehlers in einer LED-Kette
DE102009025752A1 (de) Verfahren und Schaltungsanordnung zur Ansteuerung einer Last
WO2011101368A2 (de) Vorrichtung zur energieversorgung von mehreren led-einheiten
DE202013008967U1 (de) LED Ansteuerschaltung
DE102010060857A1 (de) Steuer- und/oder Regelungsmittel für ein Leuchtdiodenfeld, Schaltungsanordnung mit einem solchen Steuer- und/oder Regelungsmittel und Verfahren zum Betreiben einer solchen Schaltungsanordnung
EP2014136B1 (de) Fehlererkennung von leuchtdioden
EP2656687B1 (de) Led-betriebsgerät
EP3973746B1 (de) Verfahren und vorrichtungen zur regelung der ausgangsspannung eines spannungsreglers
WO2020233751A1 (de) Verfahren und vorrichtungen zur regelung der ausgangsspannung eines spannungsreglers
DE102005056338A1 (de) Schaltungsanordnung und Verfahren zur Spannungskonversion
DE10324609B4 (de) Ansteuerschaltung und LED-Array sowie Verfahren zum Betreiben eines LED-Arrays
EP1945006B1 (de) Leuchtdioden-Schaltung mit in Reihe geschaltete Gruppen von parallelen LED-Zweigen.
DE102016124655B4 (de) Stromerfassung in einer leistungsversorgung
EP3125651B1 (de) Dimmen von beleuchtungsvorrichtungen
DE202016103031U1 (de) Ansteuerbare Bypass-Diode
EP3554196B1 (de) Temperaturüberwachtes led-modul
DE102014008614B4 (de) LED-Beleuchtungsvorrichtung für eine Wechselspannungsversorgung in einem Flugzeug sowie Flugzeug mit der LED-Beleuchtungsvorrichtung
EP2989860B1 (de) Modul mit messsignalrückführung über potentialtrennenden wandler
EP3518625B1 (de) Treiberschaltung zur stromversorgung einer oder mehrerer leds
DE102013112815A1 (de) Sicherheitssteuerung
DE102011105550B4 (de) Treiberanordnung, Beleuchtungsanordnung und Verfahren zur Detektion eines Fehlerzustandes einer Leuchteinheit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130715

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140917

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 813185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010173

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BAG ELECTRONICS GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170105 AND 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010173

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: BAG ELECTRONICS GMBH, DE

Effective date: 20170317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161013

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

26N No opposition filed

Effective date: 20170418

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 813185

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011010173

Country of ref document: DE

Owner name: TRILUX GMBH & CO. KG, DE

Free format text: FORMER OWNER: BAG ELECTRONICS GMBH, 59759 ARNSBERG, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011010173

Country of ref document: DE

Owner name: TRILUX GMBH & CO. KG, DE

Free format text: FORMER OWNER: BAG ENGINEERING GMBH, 59759 ARNSBERG, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011010173

Country of ref document: DE

Representative=s name: LIPPERT STACHOW PATENTANWAELTE RECHTSANWAELTE , DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011010173

Country of ref document: DE

Owner name: ONGINEER GMBH, DE

Free format text: FORMER OWNER: BAG ENGINEERING GMBH, 59759 ARNSBERG, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011010173

Country of ref document: DE

Owner name: ONGINEER GMBH, DE

Free format text: FORMER OWNER: BAG ELECTRONICS GMBH, 59759 ARNSBERG, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180315 AND 20180326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111221

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ONGINEER GMBH, DE

Effective date: 20180716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011010173

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011010173

Country of ref document: DE

Owner name: TRILUX GMBH & CO. KG, DE

Free format text: FORMER OWNER: ONGINEER GMBH, 32339 ESPELKAMP, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011010173

Country of ref document: DE

Representative=s name: LIPPERT STACHOW PATENTANWAELTE RECHTSANWAELTE , DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210121 AND 20210127

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240226

Year of fee payment: 13