EP2636958B1 - Heizkreisverteiler mit integrierter hydraulischer Weiche - Google Patents

Heizkreisverteiler mit integrierter hydraulischer Weiche Download PDF

Info

Publication number
EP2636958B1
EP2636958B1 EP13157724.9A EP13157724A EP2636958B1 EP 2636958 B1 EP2636958 B1 EP 2636958B1 EP 13157724 A EP13157724 A EP 13157724A EP 2636958 B1 EP2636958 B1 EP 2636958B1
Authority
EP
European Patent Office
Prior art keywords
chamber
heating
flow
circuit
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP13157724.9A
Other languages
English (en)
French (fr)
Other versions
EP2636958A3 (de
EP2636958A2 (de
Inventor
Christian Matzker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinusverteiler GmbH
Original Assignee
Sinusverteiler GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinusverteiler GmbH filed Critical Sinusverteiler GmbH
Publication of EP2636958A2 publication Critical patent/EP2636958A2/de
Publication of EP2636958A3 publication Critical patent/EP2636958A3/de
Application granted granted Critical
Publication of EP2636958B1 publication Critical patent/EP2636958B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1058Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system disposition of pipes and pipe connections
    • F24D3/1066Distributors for heating liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • F24D3/1091Mixing cylinders

Definitions

  • the present invention relates to a heating circuit manifold with integrated hydraulic switch, with an elongated, horizontally arranged in operation housing, in which a flow chamber high heating medium temperature and a return chamber low heating medium temperature and these two chambers fluidly connecting switch chamber are arranged, wherein on the housing on the one hand several Thompsonnikvorlaufan nowadays and a plurality of Walkernikschreiban why and on the other hand each a boiler supply connection and boiler return connection are provided, wherein the boiler flow connection and the boiler return port open into the switch chamber and wherein the switch chamber is connected at two horizontally spaced locations on the one hand to the flow chamber and the other with the return chamber fluidly connected.
  • a heating circuit distributor of the type indicated above is made DE 20 2005 005 008 U1 known.
  • the heated in a boiler heating medium usually water
  • the heating medium flowing back from the heating circuits is collected and returned to the boiler for renewed heating.
  • the integrated hydraulic diverter compensates for different volume flows of the heating medium in the boiler circuit on the one hand and in the heating circuits on the other hand.
  • the distributor has an advantageous compact and space-saving design.
  • a disadvantage is considered in this known distributor, that it is well suited only for the supply of several heating circuits with mutually equal heating circuit flow temperature, because all heating circuits are supplied together from the flow chamber. In modern heating systems, however, there is an increasing need for two or more heating circuits with different heating circuit flow temperature and / or or to supply different heating circuit return temperature during economical operation.
  • a collector-manifold unit with hydraulic switch which can supply two or more heating circuits with heating medium respectively appropriate temperature.
  • This unit is used in particular for connecting one or more heating or cooling sources with a plurality of heating or cooling circuits, wherein the unit comprises a container in the interior of which at least two superposed chambers are provided, which are in fluid communication with each other, and wherein connections for flow and Return of the heat or cold sources and for flow and return of the heating or cooling circuits are arranged on a peripheral wall of the container and connected to one of the chambers.
  • Each chamber is formed by its own arranged inside the container chamber housing, the chamber housing spaced from each other and to inner surfaces of the container and each chamber housing on the top and / or bottom each have at least one flow passage for the heating medium.
  • a heating circuit manifold is provided with which at least two heating circuits can be supplied with heating medium of two different temperatures and compensated with the simultaneously occurring via the integrated hydraulic switch all possibly occurring during operation volume flow differences both between the various heating circuits and between the boiler circuit and the heating circuits can be.
  • the heat energy contained in the heating medium is used optimally and the boiler the heating medium is supplied to the lowest possible temperature for reheating, which brings advantages in particular when using a condensing boilers as a boiler with it.
  • the Schunikverteiler has only a small size, which is practically no larger than in the known distributors according to the above-mentioned in the first place of the prior art.
  • the heating circuit distributor according to the invention has the advantage of a technically simpler design and much more compact design.
  • the heating circuit distributor according to the invention offers a cost-effective solution for supplying heating systems in which the consumer circuits operate at different temperature levels. It can be advantageously dispensed with complex components and elements with a greater regulatory effort for control and regulation.
  • the various chambers of the heating circuit distributor can be accommodated anywhere in the housing.
  • the flow chamber, the return chamber and the intermediate chamber are arranged in an upper part of the housing and that the switch chamber is arranged underneath in a lower part of the housing.
  • the flow chamber, the return chamber and the intermediate chamber may be arranged at a height, so that then the various heating circuit flow connections and return connections can be arranged correspondingly at a height.
  • the boiler feed and boiler return ports connected to the switch chamber may be remote from the heater circuit supply and return circuits on the housing. Overall, this results in a clear, connection error-avoiding connection arrangement for the heating circuit manifold.
  • the housing has a partition, the upper side delimits the flow chamber, the return chamber and the intermediate chamber and the upper chamber and which at least three openings for producing the flow connections between the switch chamber on the one hand and the flow chamber, the return chamber and the intermediate chamber on the other hand.
  • the dividing wall here is a simple and cost-effective component.
  • the invention proposes that seen in the longitudinal direction of the housing, the flow chamber and the return chamber are arranged end face in the housing and that the intermediate chamber extends over the remaining central part of the length of the housing between the flow chamber and the return chamber.
  • the absolute chamber sizes and the ratio of the chamber sizes relative to each other depends on the needs of the associated heating system, in particular how many customer or heating circuits are connected in the different temperature levels at the respective chamber and what volume flow of heating medium is required by the heating circuits.
  • the heating circuit flow connections and Schushi Wegneran are on the upper side and the boiler flow connection and the boiler return port on the underside of the housing. All necessary for connection of the heating circuit manifold pipes can thus be arranged advantageously in a plane.
  • the heating medium flows should be able to flow through the heating circuit distributor with as little loss as possible.
  • the boiler feed connection, the at least one associated with the flow chamber Schunikdorfan gleich and the associated aperture in the partition are aligned with each other and that the boiler return port, the at least one connected to the return chamber Schunikonnean gleich and the associated opening in the partition with each other are arranged in alignment. Flow deflections in the housing of the distributor, which would lead to increased flow resistance, are thus avoided.
  • the intermediate chamber and the switch chamber are fluidly connected to one another via two openings in the partition which are spaced apart from one another in the longitudinal direction of the housing. Due to the distance between the two openings, the one opening is closer to the boiler supply connection and the other opening closer to the boiler return connection, so that can flow through the first-mentioned opening substantially heating medium from the boiler supply connection from the switch chamber in the intermediate chamber, while through the other opening substantially heating medium the intermediate chamber can flow into the switch chamber and then to the boiler return port.
  • At least one heating circuit return connection connected to the intermediate chamber and at least one heating circuit supply connection are each arranged in alignment with one of the openings in the partition between the switch chamber and the intermediate chamber.
  • the invention provides that the two openings each one is assigned over the height of the switch chamber pipe socket with at least one lateral opening, wherein the opening points to the nearest boiler connection.
  • the outer diameter of the pipe socket is chosen so that they occupy most of the cross section of the switch chamber, but still leave a sufficient cross-section to enable the demand-compensating flows. In practice, a residual cross section of about 10 to 20% of the total cross section of the switch chamber is sufficient for the compensation flows.
  • the pipe socket can thus have a relatively large inner diameter, which in turn is advantageous for the demand-compensating flows between the switch chamber and the intermediate chamber.
  • a desired flow resistance can be suitably adjusted by a suitable choice of the size of the lateral opening of the pipe socket.
  • the heating medium flowing in through the associated heating circuit return connection into the intermediate chamber from the heating circuit with the higher heating medium temperature should preferably flow into the heating circuit supply connection for the heating circuit with the low heating medium temperature likewise assigned to the intermediate chamber.
  • an intermediate plate which subdivides this into an upper and lower chamber part, is permeable to the heating medium and represents a flow resistance.
  • the intermediate plate is preferably formed by a perforated plate.
  • a desired flow resistance of the perforated plate can be determined simply by the density and / or the free cross-sectional size of the holes.
  • An additional or alternative technical measure for avoiding or limiting short circuit flows between the boiler flow connection and the boiler return connection through the switch chamber is that preferably one or more transversely arranged flow guide walls project from the partition wall on the underside and / or from the bottom wall on one side extend the height of the switch chamber.
  • the free flow cross section of the switch chamber can thus be reduced to one or more locations to a desired level.
  • the Strömungsleitrank extend a maximum of half the height of the switch chamber and seen in the longitudinal direction of the switch chamber spaced from each other in each case from the boiler flow connection or from the boiler return port.
  • the flow baffles advantageously shield the aperture (s) between the sipe chamber and the intermediate chamber from the heating medium flow from the boiler feed port to the flow chamber and from the heating medium flow from the return chamber to the boiler return port, but at the same time allow for any necessary counterbalancing flows.
  • the heating circuit distributor according to the invention that at least one mounting sleeve for a temperature sensor on the housing, preferably in the region of the boiler flow connection, is arranged. In this way, one or more temperature sensors that receive temperature data for control of an associated heating system can be easily attached to the heating circuit manifold.
  • the heating circuit distributor expediently consists of blanks made of sheet steel and of pipe sections which are welded together, wherein the pipe connections forming connecting pieces are expediently designed with prefabricated connecting threads for the simple connection of further-running pipelines.
  • the heating circuit manifold may be equipped with a drain port and / or a sludge collection space and / or a magnetic separator and / or a vent valve, if needed.
  • FIG. 1 The drawing shows a heating circuit manifold 1 in a first embodiment, with open front side shown, in a perspective view obliquely from the left front.
  • the heating circuit manifold 1 has a horizontally oriented, elongated, flat parallelepiped housing 10, which is represented by a bottom wall 11, a top wall 12, a front wall 13, otherwise broken away here, only a small portion at the top left, a rear wall 14 and two end walls 15 and 15 'is formed.
  • the individual walls are made of sheet steel, for example, and are tightly welded together.
  • a partition wall 16 is arranged, which extends parallel to the bottom wall 11 and the top wall 12 between them.
  • the space above the dividing wall 16 is subdivided into three chambers by two bulkhead walls 19, 19 'extending parallel to the end walls 15, 15', namely from right to left a feed chamber 2, an intermediate chamber 4 and a return chamber 3.
  • a switch chamber 5 of the heating circuit manifold is below the dividing wall 16 in the housing 10.
  • an intermediate plate 17, here in the form of a perforated plate, is arranged parallel to and at a distance from the dividing wall 16, dividing the intermediate chamber 4 into an upper chamber part 40 and a lower chamber part 40 '.
  • the partition 16 has in the present embodiment a total of four apertures 61, 62, 70 and 70 '.
  • the opening 61 connects the switch chamber 5 near the end wall 15 with the flow chamber 2.
  • the opening 62 connects the return chamber 3 near the other end wall 15 'with the switch chamber 5.
  • the two openings 70 and 70' connect the intermediate chamber 4 and the switch chamber 5 with each other and are spaced apart in the longitudinal direction of the housing 10.
  • Each opening 70, 70 ' is assigned on the underside each one arranged in the switch chamber 5 pipe socket 71, 71'.
  • the in FIG. 1 left pipe socket 71 ' has on its outward, that is, the end wall 15' facing side an opening 72 'to the switch chamber 5; in a corresponding, game-symmetrical arrangement of the pipe socket 71 has on its side facing the other end wall 15 an opening 72 'which in FIG. 1 is not visible.
  • two flow guide walls 18, 18 'aligned transversely to the turnout chamber 5 are provided in the embodiment shown, each extending from the underside of the dividing wall 16 downwards over part of the height of the turnout chamber 5.
  • one or both flow guide walls 18, 18 ' may also be arranged on the upper side of the bottom wall 11.
  • a first heating circuit flow connection 21 which is fluidly connected to the flow chamber 2
  • a first heating circuit return connection 42 which is fluidly connected to the intermediate chamber 4
  • a second Heating circuit flow connection 41 which is fluidly connected to the intermediate chamber 4
  • a second heating circuit return connection 32 which is fluidly connected to the return chamber 3.
  • connections 21, 32, 41 and 42 further piping can be connected, which connect the heating circuit manifold 1 with heaters, which are not shown here.
  • connections 51, 52 can be connected further pipelines that connect the heating circuit 1 with one or more boilers.
  • a sleeve 80 is grown, which serves to receive a temperature sensor, which detects the flow temperature of the inflowing into the heating circuit manifold 1 heating medium.
  • the boiler inlet port 51, the opening 61 and the heating circuit flow connection 21 are arranged in alignment with each other; Similarly, the boiler return port 52, the aperture 62 and the heating circuit return port 32 are aligned with each other. Also, the pipe socket 71, the aperture 70 and the heating circuit return port 42 have here aligned alignment, as well as the pipe socket 71 ', the opening 70' and the heating circuit flow connection 41st
  • FIG. 2 shows the heating circuit manifold 1 from FIG. 1 , again with open front, in a second perspective view obliquely from the right front. Unlike the FIG. 1 is now visible on the right pipe socket 71 whose facing the right end wall 15 opening 72. Regarding the further in FIG. 2 visible individual parts of the heating circuit 1 and the reference numerals drawn is to the previous description of FIG. 1 directed.
  • FIG. 3 the drawing shows the heating circuit manifold 1 from the FIGS. 1 and 2 in a first exemplary operating state, in a schematic representation.
  • heated heating medium such as water flows at a temperature of here, for example, about 60 ° C in the heating circuit manifold 1 and through the turnout chamber 5 and the aperture 61 into the flow chamber 2 a.
  • a first heating circuit is connected, for example, supplies radiators, which require a relatively high flow temperature of, for example, about 60 ° C for their operation.
  • a circulation pump 91 the heating medium from the flow chamber 2 of the heating circuit manifold 1 through the heating circuit flow connection 21 through the first heating circuit is supplied.
  • the heating medium flows with reduced Temperature from here, for example, about 45 ° C through the first heating circuit return connection 42 into the intermediate chamber 4 of the heating circuit manifold.
  • the heating medium flows to the second heating circuit flow connection 41 and is conveyed from there by means of a second circulation pump 92 through a second heating circuit, which supplies, for example, a floor heating system here.
  • the intermediate plate 17 forms a flow resistance for the heating medium, which ensures that in the intermediate chamber 4, the heating medium flows preferably from Schunikonnean gleich 42 to Schunikdorfan gleich 41 and not the way through the intermediate plate 17, the pipe socket 71 'and the switch chamber 5 to the boiler return port 52nd takes.
  • the underfloor heating requires a lower flow temperature, for example, of about 45 ° C, which corresponds almost exactly to the return temperature of the first heating circuit.
  • the now again cooled heating medium flows with a further reduced temperature, here for example of about 35 ° C, through the second return port 32 in the return chamber 3.
  • the heating medium flows through the opening 62 and the switch chamber 5 in the Schukessel Weglaufan gleich 52 and through this to the boiler not shown here for reheating, in order then again to be supplied through the boiler flow connection 51 to the heating circuit manifold 1.
  • both heating circuits have the same volume flow requirement of heating medium, so that balancing flows between the different circuits are not required. Rather, here the two heating circuits are flowed through in succession in a pure series connection of the heating medium.
  • the thermal energy contained in the heating medium is optimally utilized in this way and the heating medium flows back into the return chamber 3 with an advantageously low temperature.
  • FIG. 4 shows the heating circuit manifold 1 in a second exemplary operating state, in the same schematic representation as in FIG. 3 .
  • the operating state of the first heating circuit for the radiator has about twice as large volume flow demand of heating medium as the second heating circuit with the floor heating.
  • the volume flows through the two heating circuits are therefore no longer the same size.
  • the heating medium flowing back from the second heating circuit for the underfloor heating flows through the heating circuit return connection 32 first into the return chamber 3 and from there through the opening 62 into the switch chamber 5, where the two partial volume flows reunite to form the total volume flow and together through the boiler return connection 52 are fed to the boiler for reheating.
  • FIG. 5 shows the heating circuit manifold 1 in a third exemplary operating state, in the same schematic representation as in the Figures 3 and 4 , It is characteristic of this third operating state that now the first heating circuit with the radiators requires a lower volume flow of heating medium than the second heating circuit with the underfloor heating.
  • heated heating medium flowing from the boiler flows through the boiler feed connection 51 into the switch chamber 5.
  • the volume flow of the heating medium is divided into two partial volume flows.
  • a first partial volume flow flows through the opening 61 and the flow chamber 2 via the first heating circuit flow connection 21 into the first heating circuit and is conveyed by the pump 91 through the latter.
  • a second partial volume flow of the heating medium flows first within the turnout chamber 5 in the direction of the pipe stub 71 and through the opening 72 into this and then up into the lower chamber part 40 'of the intermediate chamber 4. Further, this partial volume flow flows through the as a perforated plate executed intermediate plate 17 in the upper chamber portion 40 of the intermediate chamber 4 and unites there with the partial volume flow, which also flows from the first heating circuit through the heating circuit return port 42 in the upper chamber portion 40 of the intermediate chamber 4. Combined then form the two part-volume flows the full volume flow, which meets the higher demand of the second heating circuit of heating medium here.
  • This full volume flow of heating medium flows through the heating circuit flow connection 41 and the mixing valve 90, while being conveyed by the pump 92 through the second heating circuit.
  • the mixing valve 90 By means of the mixing valve 90, the flow temperature of the second heating circuit in the flow direction behind the mixing valve 90 to a desired value, here about 45 ° C, adjusted to avoid too high flow temperature in the second heating circuit by supplying coming directly from the boiler heating medium. After flowing through the second heating circuit, the entire volume flow of the heating medium flows through the heating circuit return port 32 in the return chamber 3 and from there through the opening 62 and the left end of the turnout chamber 5 in the boiler return port 52 and then to reheat to the boiler.
  • a desired value here about 45 ° C
  • FIG. 6 shows the heating circuit manifold 1 in a fourth exemplary operating state, again in the schematic representation of FIGS. 3 to 5 .
  • Characteristic of this fourth operating state is that now both heating circuits have no need for heating medium, because just no heating power is needed.
  • the heated heating medium flows through the boiler inlet connection 51 into the switch chamber 5.
  • the heating medium does not substantially leave the switch chamber 5, but flows through it over its entire length at the two pipe connections 71 and 71 'and at the flow guide walls
  • a certain side stream of heating medium can parallel through the first pipe socket 71, the intermediate chamber 4 and the second pipe socket 71 'to flow to the left end of the switch chamber 5, then by the local boiler return port 52 directly to Return boiler.
  • a clocking of the boiler is avoided and that shortcoming of a low water content of today's modern boiler compensated.
  • FIG. 7 The drawing shows the heating circuit manifold 1 in a second embodiment, at the top in the figure in a schematic view and at the bottom in the figure in a schematic plan view.
  • the heating circuit distributor 1 is after FIG. 7 designed for three heating circuits, so has at its top a total of three Banknikvorlaufan Why 21, 41 and accordingly also three Banknikschreiban say 32, 42.
  • a boiler inlet port 51 and a boiler return port 52 are also arranged here on the underside of the housing 10 of the heating manifold 1.
  • the internal structure of the heating circuit manifold 1 according to FIG. 7 corresponds to the example described above.
  • the terminals 21, 32, 41, 42 are mounted at equal intervals on the upper side of the heating circuit 1. Accordingly, the two bulkhead walls 19 and 19 ', on the one hand the flow chamber 2 and the intermediate chamber 4 and on the other hand, the intermediate chamber 4 and the return chamber 3 separate from each other, arranged offset from the first embodiment.
  • the first bulkhead 19 now lies between the left heating circuit supply connection 21 and the right heating circuit return connection 42.
  • the two first heating circuits for the radiator are flowed through in parallel. These two heating circuits form a series circuit with the third heating circuit for underfloor heating. If the two first heating circuits for the radiator have a different volume flow requirement of heating medium, this can be adjusted by appropriate control of the respective associated circulation pump 91 and 92. If the two first heating circuits for the radiators in the sum should have a different demand for heating medium flow rate than the third heating circuit for underfloor heating, then takes place via the hydraulic switch function of the heating circuit 1 by means of a balance volume flow of heating medium through the switch chamber 5 a corresponding hydraulic compensation, as already described above, even if all heating circuits need no heating medium.
  • FIG. 8 shows the heating circuit distributor 1 in a third embodiment, again at the top in the figure in a schematic view and at the bottom in the figure in a schematic plan view.
  • the heating circuit manifold 1 is designed for the connection of a first heating circuit for radiators, a second heating circuit for underfloor heating and, new, a third heating circuit for a Water heaters.
  • the internal structure of the heating circuit distributor 1 with the housing 10 and the chambers 2, 3, 4 and 5 provided therein corresponds in principle to the previous exemplary embodiments. Different is the arrangement of the bulkhead walls 19 and 19 ', because the in FIG. 8 left bulkhead 19 'is compared to for example after FIG.
  • the heating circuit 1 In normal operation of the heating circuit 1 flows, for example heated to about 60 ° C heating medium again coming from a boiler through the boiler flow connection 51 into the switch chamber 5 and from this immediately further through the opening 61 in the flow chamber 2. There, the volume flow of the heating medium in two partial volume flows, which flow through the two Schunikvorlaufan Why 21 in two different heating circuits, namely a heating circuit with radiators and a heating circuit with a water heater. The promotion of the heating medium through these two heating circuits is again by means of a respective circulation pump 91 and 92.
  • the heating medium flows, cooled to a temperature of, for example, about 45 ° C, through the Schunikmaschinemaschinean gleich 42 into the intermediate chamber 4.
  • the heating medium of its flow temperature is further cooled than in the heating circuit with the radiators, here, for example a temperature of about 35 ° C, and is therefore not supplied to the intermediate chamber 4 via the heating circuit return connection 32, but directly to the return chamber 3.
  • the heating circuit for underfloor heating is supplied via the heating circuit flow connection 41 with heating medium from the intermediate chamber 4, wherein the circulation is effected here by means of the pump 93.
  • the mixing valve 90 the flow of the underfloor heating medium from the return can be mixed if necessary.
  • the heating medium returning from this heating circuit also passes through the second heating circuit return connection 32 into the return chamber 3. There, the partial volume flows of the heating medium are combined again to the full volume flow and this is then through the opening 62, through the left end the switch chamber 5 and the boiler return port 52 are fed to the boiler for reheating.
  • the volume flow differences by means of the hydraulic function of the switch chamber 5 of the heating circuit 1 are compensated in the case of varying or fluctuating volume flow requirement of heating medium in the various heating circuits by equalizing volume flows of the heating medium are passed through the switch chamber 5. This also applies here in the extreme case that none of the heating circuits has a need for heating medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Heizkreisverteiler mit integrierter hydraulischer Weiche, mit einem länglichen, im Betrieb horizontal angeordneten Gehäuse, in dem eine Vorlaufkammer hoher Heizmediumtemperatur und eine Rücklaufkammer niedriger Heizmediumtemperatur und eine diese beiden Kammern strömungsmäßig verbindende Weichenkammer angeordnet sind, wobei an dem Gehäuse einerseits mehrere Heizkreisvorlaufanschlüsse und mehrere Heizkreisrücklaufanschlüsse und andererseits je ein Heizkesselvorlaufanschluss und Heizkesselrücklaufanschluss vorgesehen sind, wobei der Heizkesselvorlaufanschluss und der Heizkesselrücklaufanschluss in die Weichenkammer münden und wobei die Weichenkammer an zwei horizontal voneinander beabstandeten Stellen einerseits mit der Vorlaufkammer und andererseits mit der Rücklaufkammer strömungsmäßig verbunden ist.
  • Ein Heizkreisverteiler der vorstehend angegebenen Art ist aus DE 20 2005 005 008 U1 bekannt. Mittels dieses Verteilers kann das in einem Heizkessel erhitzte Heizmedium, üblicherweise Wasser, auf mehrere Heizkreise verteilt werden. Gleichzeitig wird das aus den Heizkreisen zurückströmende Heizmedium gesammelt und dem Heizkessel zur erneuten Erhitzung wieder zugeführt. Die integrierte hydraulische Weiche sorgt bei Bedarf für einen Ausgleich unterschiedlicher Volumenströme des Heizmediums im Kesselkreis einerseits und in den Heizkreisen andererseits. Dabei hat der Verteiler eine vorteilhaft kompakte und platzsparende Bauweise.
  • Als nachteilig wird bei diesem bekannten Verteiler angesehen, dass er nur für die Versorgung mehrerer Heizkreise mit untereinander gleicher Heizkreisvorlauftemperatur gut geeignet ist, weil alle Heizkreise gemeinsam aus der Vorlaufkammer versorgt werden. Bei modernen Heizungsanlagen besteht aber zunehmend ein Bedarf, zwei oder mehr Heizkreise mit unterschiedlicher Heizkreisvorlauftemperatur und/ oder unterschiedlicher Heizkreisrücklauftemperatur bei wirtschaftlichem Betrieb zu versorgen.
  • Aus DE 20 2010 006 896 U1 ist eine Sammler-Verteiler-Einheit mit hydraulischer Weiche bekannt, die zwei oder mehr Heizkreise mit Heizmedium jeweils passender Temperatur versorgen kann. Diese Einheit dient insbesondere zur Verbindung einer oder mehrerer Wärme- oder Kältequellen mit mehreren Heiz- oder Kühlkreisen, wobei die Einheit einen Behälter aufweist, in dessen Innerem wenigstens zwei übereinander liegende Kammern vorgesehen sind, die miteinander in Strömungsverbindung stehen, und wobei Anschlüsse für Vorlauf und Rücklauf der Wärme- oder Kältequellen und für Vorlauf und Rücklauf der Heiz- oder Kühlkreise an einer Umfangswand des Behälters angeordnet und mit jeweils einer der Kammern verbunden sind. Dabei ist jede Kammer durch ein eigenes im Inneren des Behälters angeordnetes Kammergehäuse gebildet, weisen die Kammergehäuse Abstand zueinander und zu inneren Oberflächen des Behälters auf und weist jedes Kammergehäuse oberseitig und/oder unterseitig jeweils wenigstens einen Strömungsdurchlass für das Heizmedium auf.
  • Ein derartiger Verteiler vermeidet zwar die Nachteile des erstgenannten Verteilers nach dem Stand der Technik, ist jedoch relativ aufwendig in seiner Konstruktion und benötigt einen relativ großen Bauraum, was seinen Einsatz erst bei Heizungsanlagen mit mehr als zwei oder drei Heizkreisen mit unterschiedlicher Heizkreisvorlauftemperatur und/oder mit mehreren Wärmequellen unterschiedlicher Vorlauftemperatur technisch und wirtschaftlich sinnvoll macht.
  • Während die beiden in den vorgenannten Dokumenten zum Stand der Technik vorgestellten Lösungen ohne größeren Regelungsaufwand auskommen, sind aus der Praxis auch Lösungen für Heizungsanlagen, bei denen Verbraucherkreise mit unterschiedlichen Temperaturniveaus angeschlossen sind, bekannt, die für einen optimalen Betrieb dieser Anlagen einen hohen elektronischen Aufwand hinsichtlich Regelung und Steuerung einsetzen. Dies erfordert z.B. elektrisch verstellbare Ventile und Mischer, in ihrer Drehzahl regelbare Pumpen, diverse Temperaturfühler und eine übergeordnete elektronische Steuereinheit, was die Anlagen aufwendig und teuer macht.
  • Es stellt sich daher die Aufgabe, einen Heizkreisverteiler der eingangs genannten Art zu schaffen, der die vorstehend dargelegten Nachteile vermeidet und der bei technisch einfacher, kompakter Bauweise die Versorgung von wenigstens zwei Heizkreisen mit Heizmedium mit zwei unterschiedlichen Heizkreisvorlauftemperaturen ermöglicht.
  • Die Lösung dieser Aufgabe gelingt erfindungsgemäß mit einem Heizkreisverteiler der eingangs genannten Art, der dadurch gekennzeichnet ist,
    • dass zusätzlich zu der Vorlaufkammer hoher Heizmediumtemperatur und der Rücklaufkammer niedriger Heizmediumtemperatur eine Zwischenkammer mittlerer Heizmediumtemperatur im Gehäuse angeordnet ist,
    • dass mit der Vorlaufkammer hoher Heizmediumtemperatur mindestens ein Heizkreisvorlaufanschluss eines Heizkreises mit hoher Heizmediumvorlauftemperatur verbunden ist,
    • dass mit der Zwischenkammer mindestens ein Heizkreisrücklaufanschluss eines Heizkreises mit mittlerer Heizmediumrücklauftemperatur und mindestens ein Heizkreisvorlaufanschluss eines Heizkreises mit mittlerer Heizmediumvorlauftemperatur verbunden sind,
    • dass mit der Rücklaufkammer niedriger Heizmediumtemperatur mindestens ein Heizkreisrücklaufanschluss eines Heizkreises mit niedriger Heizmediumrücklauftemperatur verbunden ist und
    • dass die Zwischenkammer und die Weichenkammer über mindestens eine Verbindung innerhalb des Gehäuses strömungsmäßig miteinander verbunden sind.
  • Mit der Erfindung wird ein Heizkreisverteiler geschaffen, mit dem wenigstens zwei Heizkreise mit Heizmedium zweier unterschiedlicher Temperaturen versorgt werden können und mit dem gleichzeitig über die integrierte hydraulische Weiche alle gegebenenfalls im Betrieb auftretenden Volumenstromdifferenzen sowohl zwischen den verschiedenen Heizkreisen als auch zwischen dem Kesselkreis und den Heizkreisen ausgeglichen werden können. Ein wirtschaftlich optimaler Betrieb ergibt sich dann, wenn die Rücklauftemperatur des Heizkreises mit der höheren Heizmediumtemperatur im Bereich der Vorlauftemperatur des Heizkreises mit der niedrigeren Heizmediumtemperatur liegt; die Heizkreise können dann strömungsmäßig in Reihe geschaltet von dem Heizmedium nacheinander durchströmt werden, bevor das Heizmedium dem Heizkessel zur erneuten Erhitzung wieder zugeführt wird. Hierbei wird die im Heizmedium enthaltende Wärmeenergie optimal genutzt und dem Heizkessel wird das Heizmedium mit der niedrigsten möglichen Temperatur zu erneuten Erhitzung zugeführt, was Vorteile insbesondere beim Einsatz eines Brennwertkesseln als Heizkessel mit sich bringt. Dabei besitzt der Heizkreisverteiler nur eine geringe Baugröße, die praktisch nicht größer ist als bei den bekannten Verteilern gemäß dem oben an erster Stelle genannten Stand der Technik. Gegenüber Verteilern nach dem oben an zweiter Stelle genannten Stand der Technik besitzt der erfindungsgemäßen Heizkreisverteiler den Vorteil einer technisch einfacheren Konstruktion und wesentlich kompakteren Bauweise. Im Vergleich zu dem oben an dritter Stelle genannten Stand der Technik bietet der erfindungsgemäße Heizkreisverteiler eine kostengünstige Lösung zur Versorgung von Heizungsanlagen, bei denen die Verbraucherkreise mit unterschiedlichen Temperaturniveaus arbeiten. Dabei kann vorteilhaft auf aufwendige Komponenten und Elemente mit einem größeren Regelungsaufwand zur Steuerung und Regelung verzichtet werden.
  • Grundsätzlich können die verschiedenen Kammern des Heizkreisverteilers an beliebigen Stellen im Gehäuse untergebracht sein. Aus Gründen einer übersichtlichen und günstigen Strömungsführung und Anschlussanordnung ist aber erfindungsgemäß bevorzugt vorgesehen, dass die Vorlaufkammer, die Rücklaufkammer und die Zwischenkammer in einem oberen Teil des Gehäuses angeordnet sind und dass die Weichenkammer darunter in einem unteren Teil des Gehäuses angeordnet ist. Die Vorlaufkammer, die Rücklaufkammer und die Zwischenkammer können in einer Höhe angeordnet sein, so dass dann auch die verschiedenen Heizkreisvorlaufanschlüsse und -rücklaufanschlüsse entsprechend auf einer Höhe angeordnet sein können. Die mit der Weichenkammer verbundenen Kesselvorlauf- und Kesselrücklaufanschlüsse können entfernt von den Heizkreisvorlauf- und Heizkreisrücklaufanschlüssen am Gehäuse angeordnet sein. Insgesamt ergibt dies eine übersichtliche, Anschlussfehler vermeidende Anschlussanordnung für den Heizkreisverteiler.
  • Zwecks einer einfachen technischen Konstruktion und günstigen Herstellbarkeit des Heizkreisverteilers ist bevorzugt vorgesehen, dass das Gehäuse eine Trennwand aufweist, welche die Vorlaufkammer, die Rücklaufkammer und die Zwischenkammer unterseitig und die Weichenkammer oberseitig begrenzt und welche mindestens drei Durchbrechungen zur Herstellung der Strömungsverbindungen zwischen der Weichenkammer einerseits und der Vorlaufkammer, der Rücklaufkammer und der Zwischenkammer andererseits aufweist. Trotz ihrer diversen Funktionen ist die Trennwand hier ein einfaches und kostengünstiges Bauteil.
  • Weiter schlägt die Erfindung vor, dass in Längsrichtung des Gehäuses gesehen die Vorlaufkammer und die Rücklaufkammer stirnendseitig im Gehäuse angeordnet sind und dass sich die Zwischenkammer über den verbleibenden mittleren Teil der Länge des Gehäuses zwischen der Vorlaufkammer und der Rücklaufkammer erstreckt. Mit dieser Anordnung der genannten Kammern im Gehäuse relativ zueinander wird eine übersichtliche Zuordnung der verschiedenen Anschlüsse dieser Kammern ermöglicht. Zusätzlich werden Wärmeverluste innerhalb des Verteilers gering gehalten, weil keine besonders großen Temperaturdifferenzen zwischen den einander benachbarten Kammern auftreten.
  • Die absoluten Kammergrößen und das Verhältnis der Kammergrößen relativ zueinander richtet sich nach dem Bedarf der zugehörigen Heizungsanlage, insbesondere danach, wie viele Abnehmer- oder Heizkreise in den unterschiedlichen Temperaturniveaus an der jeweiligen Kammer angebunden sind und welcher Volumenstrom an Heizmedium von den Heizkreisen benötigt wird.
  • Um eine günstige, übersichtliche und platzsparende Verrohrung des erfindungsgemäßen Heizkreisverteiler zu ermöglichen, sind bevorzugt die Heizkreisvorlaufanschlüsse und Heizkreisrücklaufanschlüsse oberseitig und der Kesselvorlaufanschluss und der Kesselrücklaufanschluss unterseitig an dem Gehäuse angeordnet. Alle zum Anschluss des Heizkreisverteilers nötigen Rohrleitungen können somit vorteilhaft in einer Ebene angeordnet werden.
  • Im normalen Betrieb des Heizkreisverteilers, in dem keine Ausgleichsströmungen über die hydraulische Weiche fließen, sollen die Heizmediumströme möglichst verlustarm durch den Heizkreisverteiler strömen können. Zu diesem Zweck wird vorgeschlagen, dass der Kesselvorlaufanschluss, der mindestens eine mit der Vorlaufkammer verbundene Heizkreisvorlaufanschluss und die zugehörige Durchbrechung in der Trennwand miteinander fluchtend angeordnet sind und dass der Kesselrücklaufanschluss, der mindestens eine mit der Rücklaufkammer verbundene Heizkreisrücklaufanschluss und die zugehörige Durchbrechung in der Trennwand miteinander fluchtend angeordnet sind. Strömungsumlenkungen im Gehäuse des Verteilers, die zu einem erhöhten Strömungswiderstand führen würden, werden so vermieden.
  • Zur Erzielung günstiger Strömungsverhältnisse zwischen der Weichenkammer und der Zwischenkammer im Falle von Ausgleichsströmungen ist bevorzugt vorgesehen, dass die Zwischenkammer und die Weichenkammer über zwei in Längsrichtung des Gehäuses voneinander beabstandete Durchbrechungen in der Trennwand miteinander strömungsmäßig verbunden sind. Aufgrund des Abstandes der beiden Durchbrechungen liegt die eine Durchbrechung näher zum Kesselvorlaufanschluss und die andere Durchbrechung näher zum Kesselrücklaufanschluss, so dass durch die erstgenannte Durchbrechung im Wesentlichen Heizmedium vom Kesselvorlaufanschluss aus der Weichenkammer in die Zwischenkammer strömen kann, während durch die andere Durchbrechung im Wesentlichen Heizmedium aus der Zwischenkammer in die Weichenkammer und dann zum Kesselrücklaufanschluss strömen kann.
  • Eine weitere Maßnahme zur Erzielung günstiger Strömungsverhältnisse besteht darin, dass vorzugsweise der mit der Zwischenkammer verbundene mindestens eine Heizkreisrücklaufanschluss und mindestens eine Heizkreisvorlaufanschluss jeweils fluchtend mit einer der Durchbrechungen in der Trennwand zwischen Weichenkammer und Zwischenkammer angeordnet sind.
  • Um eine unerwünschte Kurzschlussströmung vom Kesselvorlaufanschluss durch die Weichenkammer zum Kesselrücklaufanschluss zu vermeiden oder zumindest auf ein nicht störendes Maß zu begrenzen, ist erfindungsgemäß vorgesehen, dass den beiden Durchbrechungen jeweils ein sich über die Höhe der Weichenkammer erstreckender Rohrstutzen mit wenigstens einer seitlichen Öffnung zugeordnet ist, wobei die Öffnung jeweils zum nächstgelegenen Kesselanschluss weist. Zweckmäßig ist dabei der Außendurchmesser der Rohrstutzen so gewählt, dass sie den größten Teil des Querschnitts der Weichenkammer einnehmen, jedoch noch einen ausreichenden Querschnitt zur Ermöglichung der bedarfsweisen Ausgleichsströmungen freilassen. Für die Ausgleichsströmungen reicht in der Praxis ein verbleibender Querschnitt von etwa 10 bis 20% des gesamten Querschnitts der Weichenkammer aus. Die Rohrstutzen können so einen relativ großen Innendurchmesser aufweisen, was wiederum vorteilhaft für die bedarfsweisen Ausgleichsströmungen zwischen der Weichenkammer und der Zwischenkammer ist. Ein hier gewünschter Strömungswiderstand kann durch geeignete Wahl der Größe der seitlichen Öffnung der Rohrstutzen passend eingestellt werden.
  • Das durch den zugehörigen Heizkreisrücklaufanschluss in die Zwischenkammer einströmende Heizmedium aus dem Heizkreis mit der höheren Heizmediumtemperatur soll bevorzugt in den ebenfalls der Zwischenkammer zugeordneten Heizkreisvorlaufanschluss für den Heizkreis mit der niedrigen Heizmediumtemperatur zuströmen. Um diese gewünschte Strömung zu unterstützen, ist gemäß einer weiteren Ausgestaltung des Heizkreisverteilers vorgesehen, dass in der Zwischenkammer eine diese in einen oberen und unteren Kammerteil unterteilende, für das Heizmedium durchlässige und für dieses einen Strömungswiderstand darstellende Zwischenplatte angeordnet ist. Hiermit wird für die vorerwähnte gewünschte Strömung ein niedriger Strömungswiderstand erreicht, während für bedarfsweise auftretende Ausgleichsströmungen das Heizmedium durch die einen Strömungswiderstand darstellende Zwischenplatte strömen muss.
  • Zwecks einfacher Fertigung ist die Zwischenplatte bevorzugt durch ein Lochblech gebildet. Ein gewünschter Strömungswiderstand des Lochblechs kann einfach durch die Dichte und/oder die freie Querschnittsgröße der Löcher festgelegt werden.
  • Eine zusätzliche oder alternative technische Maßnahme zur Vermeidung oder Begrenzung von Kurzschlussströmungen zwischen dem Heizkesselvorlaufanschluss und dem Heizkesselrücklaufanschluss durch die Weichenkammer besteht darin, dass vorzugsweise von der Trennwand unterseitig und/oder von der Bodenwand oberseitig eine oder mehrere quer angeordnete Strömungsleitwände ausgehen, die sich über einen Teil der Höhe der Weichenkammer erstrecken. Der freie Strömungsquerschnitt der Weichenkammer kann so an einer oder mehreren Stellen auf ein gewünschtes Maß reduziert werden.
  • Bevorzugt ist dabei weiter vorgesehen, dass sich die Strömungsleitwände maximal über die halbe Höhe der Weichenkammer erstrecken und in Längsrichtung der Weichenkammer gesehen voneinander beabstandet jeweils innen vom Heizkesselvorlaufanschluss bzw. vom Heizkesselrücklaufanschluss liegen. In dieser Anordnung schirmen die Strömungsleitwände vorteilhaft die Durchbrechung(en) zwischen der Weichenkammer und der Zwischenkammer von der Heizmediumströmung vom Kesselvorlaufanschluss in die Vorlaufkammer und von der Heizmediumströmung aus der Rücklaufkammer in den Kesselrücklaufanschluss ab, erlauben aber gleichzeitig die gegebenenfalls nötigen Ausgleichsströmungen.
  • Schließlich ist für den erfindungsgemäßen Heizkreisverteiler noch vorgesehen, dass wenigstens eine Montagemuffe für einen Temperaturfühler am Gehäuse, vorzugsweise im Bereich des Heizkesselvorlaufanschlusses, angeordnet ist. Auf diese Weise können ein oder mehrere Temperaturfühler, die Temperaturdaten für eine Steuerung einer zugehörigen Heizungsanlage aufnehmen, einfach an dem Heizkreisverteiler angebracht werden.
  • Zwecks einfacher und kostengünstiger Fertigung besteht der erfindungsgemäße Heizkreisverteiler zweckmäßig aus miteinander verschweißten Zuschnitten aus Stahlblech und aus Rohrabschnitten, wobei die Anschlussstutzen bildenden Rohrabschnitte zweckmäßig mit vorgefertigten Anschlussgewinden zum einfachen Anschluss weiterführender Rohrleitungen ausgebildet sind.
  • Wie an sich bekannt, kann der Heizkreisverteiler mit einem Entleerungsstutzen und/ oder einem Schlammsammelraum und/oder einem Magnetabscheider und/oder einem Entlüftungsventil ausgestattet sein, wenn dafür Bedarf besteht.
  • Im Folgenden werden Ausführungsbeispiele der Erfindung anhand einer Zeichnung erläutert. Die Figuren der Zeichnung zeigen:
  • Figur 1
    einen Heizkreisverteiler in einer ersten Ausführung, mit offen dargestellter Vorderseite, in einer ersten perspektivischen Ansicht,
    Figur 2
    den Heizkreisverteiler aus Figur 1, wieder mit offenen dargestellter Vorderseite, in einer zweiten perspektivischen Ansicht,
    Figur 3
    den Heizkreisverteiler aus den Figuren 1 und 2 in einem ersten Betriebszustand, in schematischer Darstellung,
    Figur 4
    den Heizkreisverteiler in einem zweiten Betriebszustand, in schematischer Darstellung,
    Figur 5
    den Heizkreisverteiler in einem dritten Betriebszustand, in schematischer Darstellung,
    Figur 6
    den Heizkreisverteiler in einem vierten Betriebszustand, in schematischer Darstellung,
    Figur 7
    den Heizkreisverteiler in einer zweiten Ausführung, oben in der Figur in schematischer Ansicht und unten in der Figur in schematischer Draufsicht, und
    Figur 8
    den Heizkreisverteiler in einer dritten Ausführung, oben in der Figur in schematischer Ansicht und unten in der Figur in schematischer Draufsicht.
  • In den verschiedenen Figuren der Zeichnung sind gleiche Teile stets mit den gleichen Bezugsziffern bezeichnet, sodass nicht zu jeder Zeichnungsfigur jeweils alle Bezugsziffern erläutert werden müssen.
  • Figur 1 der Zeichnung zeigt einen Heizkreisverteiler 1 in einer ersten Ausführung, mit offenen dargestellter Vorderseite, in einer perspektivischen Ansicht schräg von links vorne. Der Heizkreisverteiler 1 besitzt ein horizontal ausgerichtetes, längliches, flach quaderförmiges Gehäuse 10, das durch eine Bodenwand 11, eine Deckwand 12, eine hier nur zu einem kleinen Teil links oben dargestellte, ansonsten weggebrochene Vorderwand 13, eine Rückwand 14 und zwei Stirnwände 15 und 15' gebildet ist. Die einzelnen Wände bestehen beispielsweise aus Stahlblech und sind dicht miteinander verschweißt.
  • Im Inneren des Gehäuses 10 ist eine Trennwand 16 angeordnet, die parallel zur Bodenwand 11 und zur Deckwand 12 zwischen diesen verläuft. Der Raum oberhalb der Trennwand 16 ist durch zwei parallel zu den Stirnwänden 15, 15' verlaufende Schottwände 19, 19' in drei Kammern unterteilt, nämlich von rechts nach links eine Vorlaufkammer 2, eine Zwischenkammer 4 und eine Rücklaufkammer 3. Unterhalb der Trennwand 16 liegt im Gehäuse 10 eine Weichenkammer 5 des Heizkreisverteilers 1.
  • In der Zwischenkammer 4 ist parallel und mit Abstand zur Trennwand 16 eine Zwischenplatte 17, hier in Form eines Lochblechs, angeordnet, welche die Zwischenkammer 4 in einen oberen Kammerteil 40 und einen unteren Kammerteil 40' unterteilt.
  • Die Trennwand 16 weist im vorliegenden Ausführungsbeispiel insgesamt vier Durchbrechungen 61, 62, 70 und 70' auf. Die Durchbrechung 61 verbindet die Weichenkammer 5 nahe der Stirnwand 15 mit der Vorlaufkammer 2. Die Durchbrechung 62 verbindet die Rücklaufkammer 3 nahe der anderen Stirnwand 15' mit der Weichenkammer 5. Die beiden Durchbrechungen 70 und 70' verbinden die Zwischenkammer 4 und die Weichenkammer 5 miteinander und sind in Längsrichtung des Gehäuses 10 voneinander beabstandet.
  • Jeder Durchbrechung 70, 70' ist unterseitig jeweils ein in der Weichenkammer 5 angeordneter Rohrstutzen 71, 71' zugeordnet. Der in Figur 1 linke Rohrstutzen 71' besitzt an seiner nach außen, das heißt zur Stirnwand 15' weisenden Seite eine Öffnung 72' zur Weichenkammer 5 auf; in entsprechender, spielsymmetrischer Anordnung besitzt der Rohrstutzen 71 an seiner der anderen Stirnwand 15 zugewandten Seite eine Öffnung 72', die in Figur 1 nicht sichtbar ist.
  • In der Weichenkammer 5 sind bei dem gezeigten Ausführungsbeispiel weiterhin zwei quer zur Weichenkammer 5 ausgerichtete Strömungsleitwände 18, 18' vorgesehen, die sich jeweils von der Unterseite der Trennwand 16 ausgehend über einen Teil der Höhe der Weichenkammer 5 nach unten in diese hinein erstrecken. Alternativ zur dargestellten Ausführung können auch eine oder beide Strömungsleitwände 18, 18' auf der Oberseite der Bodenwand 11 angeordnet sein.
  • Außen auf der Deckwand 12 des Gehäuses 10 sind hier insgesamt vier Anschlüsse vorgesehen, nämlich von rechts nach links ein erster Heizkreisvorlaufanschluss 21, der mit der Vorlaufkammer 2 strömungsmäßig verbunden ist, ein erster Heizkreisrücklaufanschluss 42, der mit der Zwischenkammer 4 strömungsmäßig verbunden ist, ein zweiter Heizkreisvorlaufanschluss 41, der strömungsmäßig mit der Zwischenkammer 4 verbunden ist, und ein zweiter Heizkreisrücklaufanschluss 32, der strömungsmäßig mit der Rücklaufkammer 3 verbunden ist. An die genannten Anschlüsse 21, 32, 41 und 42 sind weiterführende Rohrleitungen anschließbar, die den Heizkreisverteiler 1 mit Heizeinrichtungen, die hier nicht dargestellt sind, verbinden.
  • An der Unterseite der Bodenwand 11 sind zwei weitere Anschlüsse angeordnet, nämlich nahe der rechten Stirnwand 15 ein Heizkesselvorlaufanschluss 51 und nahe der linken Stirnwand 15' ein Heizkesselrücklaufanschluss 52. Mit den Anschlüssen 51, 52 sind weiterführende Rohrleitungen verbindbar, die den Heizkreisverteiler 1 mit einem oder mehreren Heizkesseln verbinden.
  • An der in Figur 1 rechten Stirnwand 15 ist in Höhe der Weichenkammer 5 eine Muffe 80 angebaut, die zur Aufnahme eines Temperaturfühlers dient, welcher die Vorlauftemperatur des in den Heizkreisverteiler 1 einströmenden Heizmediums erfasst.
  • Wie die Figur 1 veranschaulicht, sind hier der Heizkesselvorlaufanschluss 51, die Durchbrechung 61 und der Heizkreisvorlaufanschluss 21 fluchtend miteinander angeordnet; ebenso sind der Heizkesselrücklaufanschluss 52, die Durchbrechung 62 und der Heizkreisrücklaufanschluss 32 miteinander fluchtend ausgerichtet. Auch der Rohrstutzen 71, die Durchbrechung 70 und der Heizkreisrücklaufanschluss 42 besitzen hier eine miteinander fluchtende Ausrichtung, ebenso wie der Rohrstutzen 71', die Durchbrechung 70' und der Heizkreisvorlaufanschluss 41.
  • Figur 2 zeigt den Heizkreisverteiler 1 aus Figur 1, wieder mit offen dargestellter Vorderseite, in einer zweiten perspektivischen Ansicht schräg von rechts vorne. Im Unterschied zu der Figur 1 ist nun an dem rechten Rohrstutzen 71 dessen zur rechten Stirnwand 15 weisende Öffnung 72 sichtbar. Hinsichtlich der weiteren in Figur 2 sichtbaren Einzelteile des Heizkreisverteilers 1 und der eingezeichneten Bezugsziffern wird auf die vorhergehende Beschreibung der Figur 1 verwiesen.
  • Figur 3 der Zeichnung zeigt den Heizkreisverteiler 1 aus den Figuren 1 und 2 in einem ersten beispielhaften Betriebszustand, in schematischer Darstellung. Durch den Heizkesselvorlaufanschluss 51 strömt erhitztes Heizmedium, wie Wasser, mit einer Temperatur von hier beispielsweise etwa 60 °C in den Heizkreisverteiler 1 und durch dessen Weichenkammer 5 und die Durchbrechung 61 hindurch in die Vorlaufkammer 2 ein.
  • Mit dem Heizkreisvorlaufanschluss 21 und dem Heizkreisrücklaufanschluss 42 ist ein erster Heizkreis verbunden, der beispielsweise Heizkörper versorgt, welche eine relativ hohe Vorlauftemperatur von beispielsweise etwa 60 °C für ihren Betrieb benötigen. Über eine Zirkulationspumpe 91 wird das Heizmedium aus der Vorlaufkammer 2 des Heizkreisverteilers 1 durch den Heizkreisvorlaufanschluss 21 hindurch dem ersten Heizkreis zugeführt. Nach Abgabe von Wärme aus dem Heizmedium in den hier nicht dargestellten Heizkörpern strömt das Heizmedium mit verminderter Temperatur von hier beispielsweise etwa 45 °C durch den ersten Heizkreisrücklaufanschluss 42 in die Zwischenkammer 4 des Heizkreisverteilers 1.
  • Durch die Zwischenkammer 4 strömt das Heizmedium zum zweiten Heizkreisvorlaufanschluss 41 und wird von dort mittels einer zweiten Zirkulationspumpe 92 durch einen zweiten Heizkreis gefördert, der hier beispielsweise eine Fußbodenheizung versorgt. Die Zwischenplatte 17 bildet dabei einen Strömungswiderstand für das Heizmedium, der dafür sorgt, dass in der Zwischenkammer 4 das Heizmedium bevorzugt vom Heizkreisrücklaufanschluss 42 zum Heizkreisvorlaufanschluss 41 strömt und nicht den Weg durch die Zwischenplatte 17, den Rohrstutzen 71' und die Weichenkammer 5 zum Heizkesselrücklaufanschluss 52 nimmt.
  • Die Fußbodenheizung benötigt eine geringere Vorlauftemperatur, beispielsweise von etwa 45 °C, was ziemlich exakt der Rücklauftemperatur des ersten Heizkreises entspricht. Nach Durchströmen der Fußbodenheizung fließt das nun nochmals abgekühlte Heizmedium mit einer weiter reduzierten Temperatur, hier beispielsweise von etwa 35 °C, durch den zweiten Rücklaufanschluss 32 in die Rücklaufkammer 3. Aus der Rücklaufkammer 3 strömt das Heizmedium durch die Durchbrechung 62 und die Weichenkammer 5 in den Heizkesselrücklaufanschluss 52 und durch diesen zu dem hier nicht dargestellten Heizkessel zur erneuten Erhitzung, um dann wieder durch den Heizkesselvorlaufanschluss 51 dem Heizkreisverteiler 1 zugeführt zu werden.
  • In dem in Figur 3 dargestellten Betriebszustand haben beide Heizkreise einen gleich großen Volumenstrombedarf an Heizmedium, so dass Ausgleichsströmungen zwischen den verschiedenen Kreisen nicht erforderlich sind. Vielmehr werden hier die beiden Heizkreise in einer reinen Reihenschaltung nacheinander von dem Heizmedium durchströmt. Die im Heizmedium enthaltende Wärmeenergie wird auf diese Weise optimal ausgenutzt und das Heizmedium strömt mit einer vorteilhaft niedrigen Temperatur in die Rücklaufkammer 3 zurück. Besonders in Verbindung mit einem Brennwertkessel als Heizkessel ergibt sich so ein besonderes wirtschaftlicher Heizbetrieb.
  • In dem zwischen dem Heizkreisverteiler 1 und dem nicht dargestellten Heizkessel gebildeten Kesselkreis ist zweckmäßig, wie an sich üblich, eine weitere Zirkulationspumpe zur Förderung des Heizmediums vorgesehen.
  • Die Figur 4 zeigt den Heizkreisverteiler 1 in einem zweiten beispielhaften Betriebszustand, in gleicher schematischer Darstellung wie in Figur 3. In dem in Figur 4 gezeigten Betriebszustand hat der erste Heizkreis für die Heizkörper einen etwa doppelt so großen Volumenstrombedarf an Heizmedium wie der zweite Heizkreis mit der Fußbodenheizung. Die Volumenströme durch die beiden Heizkreise sind also nicht mehr gleich groß. Zum Ausgleich dieser unterschiedlichen Volumenströme in den beiden Heizkreisen dient die in den Heizkreisverteiler 1 integrierte hydraulische Weiche in Form der Weichenkammer 5.
  • Zunächst strömt auch hier von einem Heizkessel erhitztes Heizmedium durch den Heizkesselvorlaufanschluss 51, die Weichenkammer 5, die Durchbrechung 61 und die Vorlaufkammer 2 sowie den Heizkreisvorlaufanschluss 21 in den ersten Heizkreis, der Heizkörper versorgt. Die Förderung des Heizmediums durch den ersten Heizkreis bewirkt auch hier wieder die Pumpe 91. Das aus dem ersten Heizkreis zurücklaufende Heizmedium fließt mit reduzierter Temperatur durch den Heizkreisrücklaufanschluss 42 in die Zwischenkammer 4 des Heizkreisverteilers 1. Ein Teil des Volumenstroms des durch den Heizkreisrücklaufanschluss 42 in die Zwischenkammer vier einströmenden Heizmediums, hier etwa die Hälfte davon, fließt durch den Heizkreisvorlaufanschluss 41 über ein Mischventilen 90 durch die zweite Pumpe 92 in den zweiten Heizkreis. Überschüssiges Heizmedium aus der Zwischenkammer vier, welches hier nun nicht für den zweiten Heizkreis benötigt wird, strömt durch die als Lochblech ausgeführte Zwischenplatte 17 aus dem oberen Kammerteil 40 der Zwischenkammer 4 in deren unteren Kammerteil 40'. Von dort fließt das überschüssige Heizmedium durch den Rohrstutzen 71' und dessen Öffnung 72' in den linken Teil der Weichenkammer 5.
  • Das aus dem zweiten Heizkreis für die Fußbodenheizung zurückströmende Heizmedium fließt durch den Heizkreisrücklaufanschluss 32 zunächst in die Rücklaufkammer 3 und aus dieser durch die Durchbrechung 62 in die Weichenkammer 5, wo sich die beiden Teil-Volumenströme wieder zu dem gesamten Volumenstrom vereinigen und gemeinsam durch den Heizkesselrücklaufanschluss 52 zur erneuten Erhitzung dem Heizkessel zugeführt werden.
  • Im Betriebszustand nach Figur 4 wird vorteilhaft jedem Heizkreis der gerade benötigte Volumenstrom an Heizmedium mit der jeweils benötigten Vorlauftemperatur zugeführt; gleichzeitig bleibt im Kesselkreis der volle Volumenstrom des Heizmediums erhalten.
  • Figur 5 zeigt den Heizkreisverteiler 1 in einem dritten beispielhaften Betriebszustand, in gleicher schematischer Darstellung wie in den Figuren 3 und 4. Für diesen dritten Betriebszustand ist charakteristisch, dass nun der erste Heizkreis mit den Heizkörpern einen geringeren Volumenstrom an Heizmedium benötigt als der zweite Heizkreis mit der Fußbodenheizung.
  • Auch hier strömt erhitztes Heizmedium vom Heizkessel kommend durch den Heizkesselvorlaufanschluss 51 in die Weichenkammer 5. In der Weichenkammer 5 teilt sich der Volumenstrom des Heizmediums in zwei Teil-Volumenströme. Ein erster Teil-Volumenstrom fließt durch die Durchbrechung 61 und die Vorlaufkammer 2 über den ersten Heizkreisvorlaufanschluss 21 in den ersten Heizkreis und wird mittels der Pumpe 91 durch diesen gefördert.
  • Ein zweiter Teil-Volumenstrom des Heizmediums fließt zunächst innerhalb der Weichenkammer 5 in Richtung zum Rohrstutzen 71 und durch dessen Öffnung 72 in diesen hinein und dann nach oben in den unteren Kammerteil 40' der Zwischenkammer 4. Weiter strömt dieser Teil-Volumenstrom durch die als Lochblech ausgeführte Zwischenplatte 17 in den oberen Kammerteil 40 der Zwischenkammer 4 und vereinigt sich dort mit dem Teil-Volumenstrom, der aus dem ersten Heizkreis durch den Heizkreisrücklaufanschluss 42 ebenfalls in den oberen Kammerteil 40 der Zwischenkammer 4 einströmt. Vereinigt bilden dann die beiden Teil-Volumenströme den vollen Volumenstrom, der hier den höheren Bedarf des zweiten Heizkreises an Heizmedium erfüllt. Dieser volle Volumenstrom an Heizmedium fließt durch den Heizkreisvorlaufanschluss 41 und das Mischventil 90 unter Förderung durch die Pumpe 92 durch den zweiten Heizkreis. Mittels des Mischventils 90 wird die Vorlauftemperatur des zweiten Heizkreises in Strömungsrichtung hinter dem Mischventil 90 auf einem gewünschten Wert, hier etwa 45 °C, eingestellt, um eine zu hohe Vorlauftemperatur im zweiten Heizkreis durch das Zuführen von unmittelbar vom Heizkessel kommendem Heizmedium zu vermeiden. Nach Durchströmen des zweiten Heizkreises fließt der gesamte Volumenstrom des Heizmediums durch den Heizkreisrücklaufanschluss 32 in die Rücklaufkammer 3 und von dieser durch die Durchbrechung 62 und den linken Endbereich der Weichenkammer 5 in den Heizkesselrücklaufanschluss 52 und dann zur erneuten Erhitzung zum Heizkessel.
  • Figur 6 zeigt den Heizkreisverteiler 1 in einem vierten beispielhaften Betriebszustand, wieder in der schematischen Darstellung der Figuren 3 bis 5. Kennzeichnend für diesen vierten Betriebszustand ist, dass nun beide Heizkreise keinen Bedarf an Heizmedium haben, weil gerade keine Heizleistung benötigt wird. Bei in Betrieb befindlichem Heizkessel fließt das erhitzte Heizmedium durch den Heizkesselvorlaufanschluss 51 in die Weichenkammer 5. Im vorliegenden Fall verlässt das Heizmedium im Wesentlichen die Weichenkammer 5 nicht, sondern durchströmt diese auf ihrer vollen Länge an den beiden Rohrstutzen 71 und 71' und an den Strömungsleitwänden 18, 18' vorbei bis zum Heizkesselrücklaufanschluss 52. Ein gewisser Nebenstrom an Heizmedium kann parallel auch durch den ersten Rohrstutzen 71, die Zwischenkammer 4 und den zweiten Rohrstutzen 71' zum linken Ende der Weichenkammer 5 strömen, um dann durch den dortigen Heizkesselrücklaufanschluss 52 unmittelbar zum Heizkessel zurückzufließen. Hierdurch wird ein Takten des Heizkessels vermieden und dass Manko eines geringen Wasserinhalts heutiger moderner Heizkessel kompensiert.
  • Figur 7 der Zeichnung zeigt den Heizkreisverteiler 1 in einer zweiten Ausführung, oben in der Figur in schematischer Ansicht und unten in der Figur in schematischer Draufsicht. Im Unterschied zu dem zuvor beschriebenen Ausführungsbeispiel ist der Heizkreisverteiler 1 nach Figur 7 für drei Heizkreise ausgelegt, besitzt also an seiner Oberseite insgesamt drei Heizkreisvorlaufanschlüsse 21, 41 und entsprechend auch drei Heizkreisrücklaufanschlüsse 32, 42. Ein Heizkesselvorlaufanschluss 51 und ein Heizkesselrücklaufanschluss 52 sind auch hier an der Unterseite des Gehäuses 10 des Heizkreisverteilers 1 angeordnet. Der innere Aufbau des Heizkreisverteilers 1 gemäß Figur 7 entspricht dem zuvor beschriebenen Beispiel. Unterschiedlich ist, dass an die Vorlaufkammer 2 nun zwei Heizkreisvorlaufanschlüsse 21 und an die Zwischenkammer 4 nun zwei Heizkreisrücklaufanschlüsse 42 angesetzt sind. Die beiden ersten, diesen Anschlüssen zugeordneten Heizkreise werden also parallel von dem Heizmedium durchströmt und versorgen beispielsweise Heizkörper mit einer hohen Vorlauftemperatur von hier beispielsweise etwa 60 °C. Das auf eine Temperatur von beispielsweise etwa 45 °C abgekühlte Heizmedium aus den beiden ersten Heizkreisen gelangt über die beiden Heizkreisrücklaufanschlüsse 42 in die Zwischenkammer 4 und von dort vereinigt über den Heizkreisvorlaufanschluss 41 in den dritten Heizkreis, der wieder ein Fußbodenheizungskreis ist, welcher einen geringeren Vorlauftemperaturbedarf, hier von etwa 45 °C, hat. Das im dritten Heizkreis dann auf etwa 35 °C abgekühlte Heizmedium gelangt schließlich durch den Heizkreisrücklaufanschluss 32 in die Rücklaufkammer 3 und aus dieser durch die Durchbrechung 62 und den Heizkesselrücklaufanschluss 52 wieder zu dem auch hier nicht dargestellten Heizkessel zur erneuten Erhitzung.
  • Wie die Figur 7 veranschaulicht, sind die Anschlüsse 21, 32, 41, 42 in voneinander gleichen Abständen oberseitig am Heizkreisverteiler 1 angebracht. Dementsprechend sind die beiden Schottwände 19 und 19', die einerseits die Vorlaufkammer 2 und die Zwischenkammer 4 und anderseits die Zwischenkammer 4 und die Rücklaufkammer 3 voneinander trennen, gegenüber dem ersten Ausführungsbeispiel versetzt angeordnet. Die erste Schottwand 19 liegt nun zwischen dem linken Heizkreisvorlaufanschluss 21 und dem rechten Heizkreisrücklaufanschluss 42. Die zweite Schottwand 19' liegt unverändert zwischen dem Heizkreisvorlaufanschluss 41 und dem Heizkreisrücklaufanschluss 32.
  • Im normalen Betrieb werden die beiden ersten Heizkreise für die Heizkörper parallel durchströmt. Diese beiden Heizkreise bilden mit dem dritten Heizkreis für die Fußbodenheizung eine Reihenschaltung. Falls die beiden ersten Heizkreise für die Heizkörper einen unterschiedlichen Volumenstrombedarf an Heizmedium haben, kann dies durch entsprechende Steuerung der jeweils zugehörigen Zirkulationspumpe 91 und 92 eingestellt werden. Falls die beiden ersten Heizkreise für die Heizkörper in der Summe einen anderen Bedarf an Heizmedium-Volumenstrom haben sollten als der dritte Heizkreis für die Fußbodenheizung, dann erfolgt über die hydraulische Weichenfunktion des Heizkreisverteilers 1 mittels Führung eines Ausgleichs-Volumenstroms an Heizmedium durch die Weichenkammer 5 ein entsprechender hydraulischer Ausgleich, wie oben schon beschrieben, auch wenn alle Heizkreise kein Heizmedium benötigen.
  • Hinsichtlich der weiteren Bezugsziffern in Figur 7 wird auf die vorhergehende Beschreibung verwiesen.
  • Figur 8 der Zeichnung schließlich zeigt den Heizkreisverteiler 1 in einer dritten Ausführung, wieder oben in der Figur in schematischer Ansicht und unten in der Figur in schematischer Draufsicht. In dieser Ausführung ist der Heizkreisverteiler 1 ausgelegt für den Anschluss eines ersten Heizkreises für Heizkörper, eines zweiten Heizkreises für eine Fußbodenheizung und, neu, eines dritten Heizkreises für einen Warmwasserbereiter. Der innere Aufbau des Heizkreisverteilers 1 mit dem Gehäuse 10 und den darin vorgesehenen Kammern 2, 3, 4 und 5 entspricht grundsätzlich den vorherigen Ausführungsbeispielen. Unterschiedlich ist die Anordnung der Schottwände 19 und 19', denn die in Figur 8 linke Schottwand 19' ist im Vergleich zum Beispiel nach Figur 7 nun nach rechts gerückt, nämlich in eine Position zwischen dem Heizkreisvorlaufanschluss 41 und dem rechten von zwei Heizkreisrücklaufanschlüsse 32. Somit wird die Rücklaufkammer 3 in Längsrichtung des Gehäuses 10 gesehen länger, während die Zwischenkammer 4 hier um das gleiche Maß verkürzt wird.
  • Im normalen Betrieb des Heizkreisverteilers 1 strömt beispielsweise auf etwa 60 °C erhitztes Heizmedium wieder von einem Heizkessel kommend durch den Heizkesselvorlaufanschluss 51 in die Weichenkammer 5 und aus dieser unmittelbar weiter durch die Durchbrechung 61 in die Vorlaufkammer 2. Dort teilt sich der Volumenstrom des Heizmediums in zwei Teil-Volumenströme, die durch die beiden Heizkreisvorlaufanschlüsse 21 in zwei verschiedenen Heizkreise, nämlich einen Heizkreis mit Heizkörpern und einen Heizkreis mit einem Warmwasserbereiter, strömen. Die Förderung des Heizmediums durch diese beiden Heizkreise erfolgt wieder mittels je einer Zirkulationspumpe 91 und 92.
  • Aus dem Heizkreis mit den Heizkörpern fließt das Heizmedium, auf eine Temperatur von beispielsweise etwa 45 °C abgekühlt, durch den Heizkreisrücklaufanschluss 42 in die Zwischenkammer 4. Im Warmwasserbereiter wird das Heizmedium von seiner Vorlauftemperatur weiter abgekühlt als im Heizkreis mit den Heizkörpern, hier beispielsweise auf eine Temperatur von etwa 35 °C, und wird deshalb über den Heizkreisrücklaufanschluss 32 nicht der Zwischenkammer 4, sondern direkt der Rücklaufkammer 3 zugeführt.
  • Der Heizkreis für die Fußbodenheizung wird über den Heizkreisvorlaufanschluss 41 mit Heizmedium aus der Zwischenkammer 4 versorgt, wobei die Zirkulation hier mittels der Pumpe 93 bewirkt wird. Über das Mischventil 90 kann dem Vorlauf der Fußbodenheizung Heizmedium aus deren Rücklauf bei Bedarf zugemischt werden. Das aus diesem Heizkreis zurückkehrende Heizmedium gelangt durch den zweiten Heizkreisrücklaufanschluss 32 ebenfalls in die Rücklaufkammer 3. Dort werden die Teil-Volumenströme des Heizmediums wieder zu dem vollen Volumenstrom vereinigt und dieser wird dann durch die Durchbrechung 62, durch den linken Endbereich der Weichenkammer 5 und den Heizkesselrücklaufanschluss 52 dem Heizkessel zur erneuten Erhitzung zugeführt.
  • Auch in dieser Ausführung des Heizkreisverteilers 1 werden im Falle von unterschiedlichem oder schwankendem Volumenstrombedarf an Heizmedium in den verschiedenen Heizkreisen die Volumenstromdifferenzen mittels der hydraulischen Funktion der Weichenkammer 5 des Heizkreisverteilers 1 ausgeglichen, indem Ausgleichsvolumenströme des Heizmediums durch die Weichenkammer 5 geleitet werden. Dies gilt auch hier für den Extremfall, dass keiner der Heizkreise einen Bedarf an Heizmedium hat.
  • Hinsichtlich der weiteren Bezugsziffern in Figur 8 wird auf die vorhergehende Beschreibung verwiesen. Bezugszeichenliste:
    Zeichen Bezeichnung
    1 Heizkreisverteiler
    10 Gehäuse
    11 Bodenwand
    12 Deckwand
    13 Vorderwand
    14 Rückwand
    15, 15' Stirnwände
    16 Trennwand
    17 Zwischenplatte
    18, 18' Strömungsleitwände
    19, 19' Schottwände
    2 Vorlaufkammer
    21 Heizkreisvorlaufanschluss an 2
    3 Rücklaufkammer
    32 Heizkreisrücklaufanschluss an 3
    4 Zwischenkammer
    40, 40' oberer, unterer Kammerteil von 4
    41 Heizkreisvorlaufanschluss an 4
    42 Heizkreisrücklaufanschluss an 4
    5 Weichenkammer
    51 Heizkesselvorlaufanschluss an 5
    52 Heizkesselrücklaufanschluss an 5
    61 Durchbrechung in 16 zwischen 5 und 2
    62 Durchbrechung in 16 zwischen 3 und 5
    70, 70' Durchbrechungen in 16 zwischen 5 und 4
    71, 71' Rohrstutzen
    72, 72' Öffnung in 71, 71'
    80 Temperaturfühlermuffe
    90 Mischventil
    91, 92, 93 Pumpen

Claims (14)

  1. Heizkreisverteiler (1) mit integrierter hydraulischer Weiche, mit einem länglichen, im Betrieb horizontal angeordneten Gehäuse (10), in dem eine Vorlaufkammer (2) hoher Heizmediumtemperatur und eine Rücklaufkammer (3) niedriger Heizmediumtemperatur und eine diese beiden Kammern (2, 3) strömungsmäßig verbindende Weichenkammer (5) angeordnet sind, wobei an dem Gehäuse (10) einerseits mehrere Heizkreisvorlaufanschlüsse (21, 41) und mehrere Heizkreisrücklaufanschlüsse (32, 42) und andererseits je ein Heizkesselvorlaufanschluss (51) und Heizkesselrücklaufanschluss (52) vorgesehen sind, wobei der Heizkesselvorlaufanschluss (51) und der Heizkesselrücklaufanschluss (52) in die Weichenkammer (5) münden und wobei die Weichenkammer (5) an zwei horizontal voneinander beabstandeten Stellen einerseits mit der Vorlaufkammer (2) und andererseits mit der Rücklaufkammer (3) strömungsmäßig verbunden ist,
    dadurch gekennzeichnet,
    - dass zusätzlich zu der Vorlaufkammer (2) hoher Heizmediumtemperatur und der Rücklaufkammer (3) niedriger Heizmediumtemperatur eine Zwischenkammer (4) mittlerer Heizmediumtemperatur im Gehäuse (10) angeordnet ist,
    - dass mit der Vorlaufkammer (2) hoher Heizmediumtemperatur mindestens ein Heizkreisvorlaufanschluss (21) eines Heizkreises mit hoher Heizmediumvorlauftemperatur verbunden ist,
    - dass mit der Zwischenkammer (4) mindestens ein Heizkreisrücklaufanschluss (42) eines Heizkreises mit mittlerer Heizmediumrücklauftemperatur und mindestens ein Heizkreisvorlaufanschluss (41) eines Heizkreises mit mittlerer Heizmediumvorlauftemperatur verbunden sind,
    - dass mit der Rücklaufkammer (3) niedriger Heizmediumtemperatur mindestens ein Heizkreisrücklaufanschluss (32) eines Heizkreises mit niedriger Heizmediumrücklauftemperatur verbunden ist und
    - dass die Zwischenkammer (4) und die Weichenkammer (5) über mindestens eine Verbindung innerhalb des Gehäuses (10) strömungsmäßig miteinander verbunden sind.
  2. Heizkreisverteiler nach Anspruch 1, dadurch gekennzeichnet, dass die Vorlaufkammer (2), die Rücklaufkammer (3) und die Zwischenkammer (4) in einem oberen Teil des Gehäuses (10) angeordnet sind und dass die Weichenkammer (5) darunter in einem unteren Teil des Gehäuses (10) angeordnet ist.
  3. Heizkreisverteiler nach Anspruch 2, dadurch gekennzeichnet, dass das Gehäuse (10) eine Trennwand (16) aufweist, welche die Vorlaufkammer (2), die Rücklaufkammer (3) und die Zwischenkammer (4) unterseitig und die Weichenkammer (5) oberseitig begrenzt und welche mindestens drei Durchbrechungen (61, 62, 70, 70') zur Herstellung der Strömungsverbindungen zwischen der Weichenkammer (5) einerseits und der Vorlaufkammer (2), der Rücklaufkammer (3) und der Zwischenkammer (4) andererseits aufweist.
  4. Heizkreisverteiler nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in Längsrichtung des Gehäuses (10) gesehen die Vorlaufkammer (2) und die Rücklaufkammer (3) stirnendseitig im Gehäuse (10) angeordnet sind und dass sich die Zwischenkammer (4) über den verbleibenden mittleren Teil der Länge des Gehäuses (10) zwischen der Vorlaufkammer (2) und der Rücklaufkammer (3) erstreckt.
  5. Heizkreisverteiler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Kesselvorlaufanschluss (51) und der Kesselrücklaufanschluss (52) unterseitig und die Heizkreisvorlaufanschlüsse (21, 41) und Heizkreisrücklaufanschlüsse (32, 42) oberseitig an dem Gehäuse (10) angeordnet sind.
  6. Heizkreisverteiler nach den Ansprüchen 3 und 5, dadurch gekennzeichnet, dass der Kesselvorlaufanschluss (51), der mindestens eine mit der Vorlaufkammer (2) verbundene Heizkreisvorlaufanschluss (21) und die zugehörige Durchbrechung (61) in der Trennwand (16) miteinander fluchtend angeordnet sind und dass der Kesselrücklaufanschluss (52), der mindestens eine mit der Rücklaufkammer (3) verbundene Heizkreisrücklaufanschluss (32) und die zugehörige Durchbrechung (62) in der Trennwand (16) miteinander fluchtend angeordnet sind.
  7. Heizkreisverteiler nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Zwischenkammer (4) und die Weichenkammer (5) über zwei in Längsrichtung des Gehäuses (10) voneinander beabstandete Durchbrechungen (70, 70') in der Trennwand (16) miteinander strömungsmäßig verbunden sind.
  8. Heizkreisverteiler nach Anspruch 7, dadurch gekennzeichnet, dass der mit der Zwischenkammer (4) verbundene mindestens eine Heizkreisrücklaufanschluss (42) und mindestens eine Heizkreisvorlaufanschluss (41) jeweils fluchtend mit einer der Durchbrechungen (70, 70') in der Trennwand (16) zwischen Weichenkammer (5) und Zwischenkammer (4) angeordnet sind.
  9. Heizkreisverteiler nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass den beiden Durchbrechungen (70, 70') jeweils ein sich über die Höhe der Weichenkammer (5) erstreckender Rohrstutzen (71) mit wenigstens einer seitlichen Öffnung (72) zugeordnet ist, wobei die Öffnung (72) jeweils zum nächstgelegenen Kesselanschluss (51, 52) weist.
  10. Heizkreisverteiler nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass in der Zwischenkammer (4) eine diese in einen oberen und unteren Kammerteil (40, 40') unterteilende, für das Heizmedium durchlässige und für dieses einen Strömungswiderstand darstellende Zwischenplatte (17) angeordnet ist.
  11. Heizkreisverteiler nach Anspruch 10, dadurch gekennzeichnet, dass die Zwischenplatte (17) durch ein Lochblech gebildet ist.
  12. Heizkreisverteiler nach einem der Ansprüche 3 bis 11, dadurch gekennzeichnet, dass von der Trennwand (16) unterseitig und/oder von der Bodenwand (11) oberseitig eine oder mehrere quer angeordnete Strömungsleitwände (18, 18') ausgehen, die sich über einen Teil der Höhe der Weichenkammer erstrecken.
  13. Heizkreisverteiler nach Anspruch 12, dadurch gekennzeichnet, dass sich die Strömungsleitwände (18, 18') maximal über die halbe Höhe der Weichenkammer (5) erstrecken und in Längsrichtung der Weichenkammer (5) gesehen voneinander beabstandet jeweils innen vom Heizkesselvorlaufanschluss (51) bzw. vom Heizkesselrücklaufanschluss (52) liegen.
  14. Heizkreisverteiler nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass wenigstens eine Montagemuffe (80) für einen Temperaturfühler am Gehäuse (10), vorzugsweise im Bereich des Heizkesselvorlaufanschlusses (51), angeordnet ist.
EP13157724.9A 2012-03-09 2013-03-05 Heizkreisverteiler mit integrierter hydraulischer Weiche Not-in-force EP2636958B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012203747A DE102012203747A1 (de) 2012-03-09 2012-03-09 Heizkreisverteiler mit integrierter hydraulischer Weiche

Publications (3)

Publication Number Publication Date
EP2636958A2 EP2636958A2 (de) 2013-09-11
EP2636958A3 EP2636958A3 (de) 2015-09-02
EP2636958B1 true EP2636958B1 (de) 2017-05-10

Family

ID=47900634

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13157724.9A Not-in-force EP2636958B1 (de) 2012-03-09 2013-03-05 Heizkreisverteiler mit integrierter hydraulischer Weiche

Country Status (2)

Country Link
EP (1) EP2636958B1 (de)
DE (1) DE102012203747A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016075676A1 (en) * 2014-11-12 2016-05-19 Rea David Patrick A manifold, a buffer tank comprising the manifold, and a method for operating a heat exchange system
ITUA20161626A1 (it) * 2016-03-14 2017-09-14 Riello Spa Modulo di interfaccia per un impianto termico ibrido e impianto termico ibrido comprendente detto modulo
US20170363300A1 (en) * 2016-06-15 2017-12-21 Polar Furnace Mfg. Inc. Furnace with Manifold for Controlling Supply of Heated Liquid to Multiple Heating Loops
RU196611U1 (ru) * 2019-12-02 2020-03-06 Сергей Юрьевич Кириченко Безнапорный коллектор двухплоскостной
EP4151910A1 (de) * 2021-09-20 2023-03-22 Aqotec GmbH Heizkreisverteiler

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0847515B1 (de) * 1995-08-29 2001-12-12 Monard (Research & Development) Limited Hydraulische weiche für zentralheizungsanlage
FR2740204B1 (fr) * 1995-10-18 1997-12-26 Guillot Ind Sa Dispositif de raccordement sur une chaudiere regulee permettant l'alimentation et la regulation de deux circuits de chauffage
DE202004019873U1 (de) * 2004-12-20 2005-03-03 Watts Industries Deutschland Gmbh Verteilervorrichtung für einen mit einem flüssigen Medium betriebenen Kreislauf einer Wärmeversorgungsanlage
DE202005005008U1 (de) 2005-03-24 2005-07-28 Comfort Sinusverteiler Gmbh Rohrverteiler für eine Heizungs- oder Kühlanlage
DE202005014015U1 (de) * 2005-09-05 2005-11-17 Comfort Sinusverteiler Gmbh Rohrverteiler für eine Heizungs- oder Kühlanlage
DE202005014029U1 (de) * 2005-09-05 2005-11-17 Comfort-Sinusverteiler Gmbh Rohrverteiler für eine Heizungs- oder Kühlanlage
DE202006019415U1 (de) * 2006-12-22 2007-04-05 Watts Industries Deutschland Gmbh Vorrichtung zum Speisen von Hoch- und Niedertemperaturverbrauchskreisen
DE202008011672U1 (de) * 2008-09-02 2010-01-28 Comfort-Sinusverteiler Gmbh Rohrverteiler für eine Heizungs- oder Kühlanlage
DE202009001056U1 (de) * 2009-01-29 2010-06-24 Comfort-Sinusverteiler Gmbh Heizkreisverteiler
DE202010006896U1 (de) 2010-05-18 2011-10-07 Comfort Sinusverteiler Gmbh Sammler-Verteiler-Einheit mit hydraulischer Weiche
GB2480669A (en) * 2010-05-27 2011-11-30 Zonealone Ltd Manifold for a heating or refrigeration system

Also Published As

Publication number Publication date
EP2636958A3 (de) 2015-09-02
DE102012203747A1 (de) 2013-09-12
EP2636958A2 (de) 2013-09-11

Similar Documents

Publication Publication Date Title
EP1717520B1 (de) Rohrverteiler für eine Heizungs- oder Kühlanlage
EP3119623B1 (de) Heizkühlmodul
EP2636958B1 (de) Heizkreisverteiler mit integrierter hydraulischer Weiche
EP2213948A2 (de) Heizkreisverteiler
DE10349150A1 (de) Wärmeübertrager, insbesondere für Kraftfahrzeuge
EP0683362A1 (de) Wärmespeicher
EP1760406B1 (de) Rohrverteiler für eine Heizungs- oder Kühlanlage
EP2886963B1 (de) Sammler- und Verteilereinheit für das Wärmeträgermedium einer Heizungsanlage mit mehreren Heizkesseln und mehreren Heizkreisen
DE102013209157A1 (de) Kondensator
DE202010014435U1 (de) Hydraulische Weiche einer Heiz- oder Kühlanlage
EP1760407A1 (de) Rohrverteiler für eine Heizungs- oder Kühlanlage
EP2481991B1 (de) Sammler und Verteiler für eine Heiz- oder Kühlanlage
EP3228943B1 (de) Verbindungseinheit zum verbinden einer druckhalte- und/oder entgasungsvorrichtung mit einem heizkreisverteiler einer heizungsanlage
DE102006031406A1 (de) Heizkörper, insbesondere Röhrenradiator
EP2530409A2 (de) Wärmepumpenanlage sowie Verfahren zum Betrieb einer Wärmepumpenanlage
DE10311532B4 (de) Wärmeverteilermodul
DE202010006896U1 (de) Sammler-Verteiler-Einheit mit hydraulischer Weiche
EP1020687B1 (de) Vorrichtung zum Verteilen und Mischen eines im geschlossenen Kreislauf umgewälzten Wärmeträgermediums
AT411624B (de) Plattenwärmetauscher, insbesondere ölkühler
DE102007035817B4 (de) Röhrenradiator
EP2309219A1 (de) Vorrichtung zur Beeinflussung der Temperatur eines flüssigen Mediums
DE102007008172B4 (de) Temperiervorrichtung für eine Druckmaschine
DE19910829B4 (de) Mehrkreiswärmetauscher
DE102014015697B4 (de) Kühlvorrichtung für ein Kraftfahrzeug
DE202019101030U1 (de) Baueinheit für eine Heizungsanlage und Heizungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F24D 3/10 20060101AFI20150730BHEP

17P Request for examination filed

Effective date: 20160301

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTG Intention to grant announced

Effective date: 20160726

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTG Intention to grant announced

Effective date: 20161014

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20161116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 892777

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013007193

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170510

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170811

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170810

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170910

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LUCHS AND PARTNER AG PATENTANWAELTE, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013007193

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180331

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220314

Year of fee payment: 10

Ref country code: AT

Payment date: 20220309

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220427

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502013007193

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 892777

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230305