EP2615472B1 - Dispositif et procédé de surveillance d'un courant d'un segment conducteur - Google Patents

Dispositif et procédé de surveillance d'un courant d'un segment conducteur Download PDF

Info

Publication number
EP2615472B1
EP2615472B1 EP13000022.7A EP13000022A EP2615472B1 EP 2615472 B1 EP2615472 B1 EP 2615472B1 EP 13000022 A EP13000022 A EP 13000022A EP 2615472 B1 EP2615472 B1 EP 2615472B1
Authority
EP
European Patent Office
Prior art keywords
current
differential amplifier
input
switch
conductor section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13000022.7A
Other languages
German (de)
English (en)
Other versions
EP2615472A2 (fr
EP2615472A3 (fr
Inventor
Stefan Dr. Albrecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
TDK Micronas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Micronas GmbH filed Critical TDK Micronas GmbH
Publication of EP2615472A2 publication Critical patent/EP2615472A2/fr
Publication of EP2615472A3 publication Critical patent/EP2615472A3/fr
Application granted granted Critical
Publication of EP2615472B1 publication Critical patent/EP2615472B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/04Measuring peak values or amplitude or envelope of ac or of pulses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks

Definitions

  • the invention relates to a monitoring device according to the preamble of claim 1 and a method for monitoring a line section with a monitoring device according to the preamble of patent claim 12.
  • the current of a ground line monitored by the current is determined on the basis of Ohm's law in a first alternative from the measured voltage drop of the ground cable and the known resistance of the ground line.
  • the current in the ground cable at an unknown resistance of the ground cable is determined by means of a self-calibrating instrument amplifier from the voltage drop. Calibration is performed using a precision resistor and a precision power source.
  • the voltage drop at the ground cable is directed by means of an adjustable voltage divider to an input of the instrumentation amplifier. The voltage divider must also be calibrated. From the comparison of the voltage drop across the precision resistor from the output of the instrumentation amplifier and the current source, the current in the ground lead is deduced.
  • the EP 0 206 488 A1 discloses to measure the voltage drop in a current-carrying conductor, in particular in the ground cable, by means of a Kelvin measuring device. From the voltage drop, the current in the conductor is determined. To carry out the measuring method, a constant current source is used in a first step by means of the Kelvin measuring arrangement clamped to the conductor to calibrate a meter with a known current from the power source. In the operating case, that is, when the ground cable with current from the battery, or the generalized expressed the conductor is flowed through current, the current in the ground cable is determined by means of the previously calibrated meter from the measured voltage drop across the ground cable.
  • the object of the invention is to provide a monitoring device and a method for monitoring a line section with a monitoring device, which further develop the state of the art.
  • a monitoring device comprising a first line section having a first connection location and a second connection location spaced from the first connection location in the line direction, and a control unit and a first current determination unit comprising a first current source, wherein the first current source comprises a first connection first connection line is connected to the first connection point and is connected to a second connection line to the second connection point and outputs a first current, a first switch with a control input, wherein the first switch is looped into the first connection line and the first current source with the first connection point connects or disconnects, a first differential amplifier having a first input, a second input and an output, wherein the first input versc with a third lead to the first connection point is maintained and the second input is connected to a fourth connection line to the second connection point, wherein the control unit between the output of the first differential amplifier and the control input of the switch is looped, wherein the first line section is acted upon by an actual current and in a first state, the first switch
  • a method for monitoring a first line section with a monitoring device wherein the first line section has a first connection point and a second connection point spaced apart from the first connection point in the line direction
  • the monitoring device comprises a control unit and a first connection section Current determination unit
  • the first current determination unit comprises a power source
  • the first power source is connected to a first connection line to the first connection point and a second connection line to the second connection point and outputs a first current
  • a first switch is provided with a control input and the first switch is looped into the first connecting line and the first switch is the first Current source to the first connection point connects or disconnects
  • a first differential amplifier having a first input, a second input and an output is provided and the first input of the first differential amplifier is connected by means of a third connecting line to the first connection point and the second input of the first Differential amplifier is connected to a fourth connecting line to the second connection point
  • the control unit is looped
  • An advantage of the monitoring device or the method for monitoring a first line section with a monitoring device is that, during normal operation of a device, the current in a line of the device, in particular a ground line of an electrical consumer without disconnecting the line to be monitored, and in particular can be determined without intervening a costly so-called shunt resistor and without knowing the line resistance of the line section to be monitored. Furthermore, a calibration, ie calibration of the voltmeter before a measurement is unnecessary. Also, no voltage divider between the voltmeter and the junction is required for the determination of the voltage on a line piece. Investigations have shown that impressing the first stream in a current operation in the vast majority of applications little or no impact on the ongoing operation of the device.
  • the current of the first current is generally selected smaller than the actual current.
  • the method is also suitable for a small line resistance of a line section of less than 0.1 ohm.
  • the method can be used particularly for monitoring lines in high current currents, preferably above 100mA, most preferably above 1A.
  • the resistance of the line section can be determined from a single measurement with a known current and the measured voltage, if no actual current is impressed. Investigations have shown, however, that the accuracy of the determination of the resistance, especially in ground cables, among other things, due to the very low line resistance is completely insufficient. Furthermore, the resistance of the line sections depends on the age of the line and the environmental influences such as humidity and temperature, and is partially non-linear in certain areas of the current. As a result, resistance measurements on non-current-carrying conductors, in particular when the measurements have been carried out a long time ago, only give inaccurate results. In contrast, the monitoring device according to the invention achieves a significantly more accurate determination of the current intensity under real operating conditions.
  • control unit is set up to determine the magnitude of the actual current by means of the value of the voltage in the first state and by means of the value of the voltage in the second state and the magnitude of the first current.
  • the calculation of the magnitude of the actual current by means of the control unit is carried out from a measurement of the voltage in the first state and from a measurement of the voltage in the second state and a measurement of the magnitude of the first current.
  • the relationship actual current is equal to the product of the first current times the voltage measured in the second state divided by the difference between the voltage measured in the first state and the voltage measured in the second state.
  • the first current is impressed as a direct current in a first alternative or as an alternating current in a second alternative.
  • the first alternative the first current is impressed as direct current, in the conductor and in the device no time-varying disturbances are impressed into the power grid. It is advantageous in this case to drive the first current slowly up to a first nominal intensity when switching on the current source to the conductor and to slowly shut down the first current to zero before disconnecting the current source from the line segment.
  • An embodiment of the second alternative is particularly advantageous if the actual current itself represents an alternating current and the impressing of the first direct current is not desirable.
  • it is preferable that the frequency of the first current is different from the frequency of the actual current.
  • an alternating current is fed into the first line section by means of the control unit in such a way that the variation of the voltage is determined by means of a lock-in principle and thereby also with small changes of the voltages, preferably below 0.1 V, most preferably below 1 mV, the size of the actual current can be determined reliably.
  • the first current source has a control input connected to the control unit.
  • the first current source can both be switched on and off by means of the control unit.
  • the height of the first current and optionally the frequency of the first current in the embodiment of the alternating current can be set and in particular also regulated.
  • the magnitude of the voltage difference between the measurement during the first and the second state can be used.
  • the first current determination unit comprises an ADC, wherein the ADC is connected between the output of the first differential amplifier and the control unit.
  • the first current source is connected to the first line section by means of the first switch and a second switch and a third switch and a fourth switch in the form of an H-bridge circuit.
  • An advantage of the H-bridge circuit is that the first current of the first current source can easily be fed into the first line section in both technical current directions.
  • the first differential amplifier is connected to the first line section by means of an H-bridge circuit.
  • the two inputs of the differential amplifier can be connected to the first line section such that the voltage difference between the two inputs always lies in the same direction or has the same sign.
  • a second line section is provided with a second current detection unit with a second differential amplifier, wherein a second current is fed into the second line section.
  • the second line section directly adjoins the first line section.
  • the second current determination unit has the circuit components corresponding to the first current determination unit and the circuit components are likewise connected in a corresponding manner. It turns out that the first current and the second current are substantially equal in magnitude.
  • the control unit has a third differential amplifier, wherein a first input of the third differential amplifier with the output of the first differential amplifier and a second input of the third differential amplifier with the output of the second differential amplifier is connected and the first differential amplifier with the second differential amplifier and the third differential amplifier form a multi-stage amplifier unit, wherein at the output of the multi-stage amplifier unit is applied a sum of the voltage differences measured at the first line section and the second line section.
  • a third line section is provided in addition to the first line section and the second line section.
  • the first line section and the second line section are preferably connected in series between a voltage source or a current source, for example a battery and a ground potential.
  • At least one first current source having a first differential amplifier and the second line section at least one second current source having a second differential amplifier are assigned to the first line section.
  • the third line section in this case comprises a battery with the associated internal resistance of the battery and a line switch.
  • the line switch is connected between a predetermined point which is connected to a consumer, and is referred to for example in a motor vehicle with the number 15, and the positive pole of the battery looped.
  • the line switch connects or disconnects the positive pole of the battery with the portion of the line leading to the consumer.
  • a third adjustable current source is provided parallel to the second current source.
  • the control input of the third current source is connected to the control unit.
  • a first circuit device comprises an analog-to-digital converter and a differential amplifier and has a differential input interconnected by means of a third H-bridge with a first line section and one with the Control unit interconnecting output.
  • the third H-bridge includes a ninth bridge switch and a tenth bridge switch.
  • a second circuit device In addition to the first circuit device, a second circuit device is provided.
  • the second circuit device comprises an analog-to-digital converter and a differential amplifier and has a differential input, which is connected to a second line section by means of a fourth H-bridge, and an output which is connected to the control unit.
  • the fourth H-bridge comprises a thirteenth bridge switch, a fourteenth bridge switch, a fifteenth bridge switch and a sixteenth bridge switch. In a first mode all bridge switches of the third H-bridge and on the fourth H-bridge are open. Furthermore, in the first mode all bridge switches of the first H-bridge and all bridge switches of the second H-bridge are open. All control inputs are preferably connected to the control unit ST. Furthermore, a third circuit device is provided, wherein the third circuit device comprises a differential amplifier and an analog-to-digital converter.
  • first to third current source and the first to third circuit devices are each connected to the associated line sections by means of an H-bridge, there is great flexibility with regard to the measurement of the voltage values at the first line section and at the second line section and in the combination the individual measured voltage values.
  • a first input of the third circuit device is connected to the ground potential and a second input of the third circuit device is connected to the positive pole of the battery.
  • the first input and the second input form a differential input.
  • the output of the third circuit device is connected to the control unit.
  • the line switch When the line switch is closed, the actual current flows out of the battery and generates a voltage change at the differential input of the third circuit device.
  • the voltage change basically results a comparison of the voltage applied to the differential input of the third circuit device voltage at an open line switch and a closed line switch.
  • the load on the batteries ie determine the size of the current drain.
  • the first H-bridge may be combined with the connected first current source as a first circuit block.
  • the second H-bridge can be combined with the connected second current source as a second circuit block.
  • the third H-bridge can be combined with the connected first circuit device as a first circuit section and the fourth H-bridge can be combined with the connected second circuit device as a second circuit section.
  • the first circuit block, the second circuit block, the first circuit section and the second circuit section can be combined to form a first circuit unit. With such a circuit unit, the current can preferably be monitored in the case of a single-phase generator or an electric motor.
  • a second circuit unit and a third circuit unit are provided in addition to the first circuit unit.
  • the second circuit unit and the third circuit unit have a corresponding construction with the first circuit unit.
  • the first circuit unit is connected to a first generator branch and the second circuit unit to a second generator branch and the third circuit unit to a third generator branch in each case in series. This allows the currents in each of the three generator branches to be determined and monitored separately.
  • the monitoring device is particularly suitable for controlling or determining the phase currents of a generator or of an electric motor.
  • String currents are understood to be the currents in the derivatives of a generator. Such currents easily reach a current of 10 A and more.
  • the monitoring device is particularly suitable for determining the state of charge of a battery.
  • the first connection point is the positive pole and the second connection point the negative pole of the battery.
  • the monitoring device for controlling the current in ground supply lines in a motor vehicle is particularly suitable. Especially in the ground line from the battery to the motor vehicle particularly high currents flow during the starting process, it being advantageous to monitor their current levels for fault detection in a motor vehicle. Furthermore, it is advantageous to determine the current intensities in an electric vehicle, in particular during the start-up process, and to monitor thereby. Furthermore, it is advantageous to determine or control the state of charge of the battery by means of the monitoring device. Furthermore, by means of the monitoring device, the current intensity in a positive branch between the battery, in particular within the electrical system of a car and a consumer, can be determined or controlled.
  • Another particularly advantageous use consists in the use of the monitoring device for an in situ calibration of unknown currents in a line segment, wherein the variation of the current in the line segment advantageously comprises at least one power of ten.
  • line segments can be monitored in a simple and reliable manner, which have completely different current strengths.
  • the picture of the FIG. 1 shows a monitoring device UW with a first line section L1 with a first connection point AS1 and one of the first connection point AS1 in the line direction spaced second connection point AS2.
  • the monitoring device UW has a control unit ST and a first current determination unit STE1 and a first analog-to-digital converter ADC1, a first differential amplifier DIF1 and a first current source IQ1.
  • the first current source IQ1 is connected to a first connection line ANL1 to the first connection point AS1 and connected to a second connection line ANL2 to the second connection point AS2.
  • the first current source IQ1 outputs a first current 11.
  • a first switch S1 with a control input EST1 is provided, wherein the first switch S1 is looped into the first connecting line ANL1 and connects or disconnects the first current source IQ1 with the first connection point AS1.
  • the first circuit unit SE1 has a first analog-to-digital converter ADC and a first differential amplifier DIF1.
  • the first differential amplifier DIF1 has a first input, a second input and an output, wherein the first input is formed as an inverting input and is connected to a third connecting line ANL3 to the first terminal AS1 and the second input is formed as a non-inverting input and with a fourth connection line ANL4 is connected to the second connection point AS2.
  • the output of the differential amplifier is connected to an input of an analog-to-digital converter ADC.
  • the analog-to-digital converter ADC has an output connected to the control unit ST.
  • the first circuit unit SE1 is between the output of the first differential amplifier DIF1 and the control input EST1 of the switch S1 looped. Furthermore, the control unit ST is connected to the control input EST1 of the first switch S1.
  • the first differential amplifier DIF1 forms, together with the first current source IQ1 and the first switch S1, a first analog circuit block ER1.
  • the first line section L1 is connected to the first connection point AS1 with a reference potential designed as a ground potential.
  • a first actual current IST1 i. an unillustrated device is operated and receives power.
  • the first switch S1 is closed and the first current I1 is impressed in the first line section L1 in addition to the first actual current IST1.
  • a first voltage U1 is applied between the first input and the second input of the first differential amplifier DIF1.
  • the first voltage U1 is due to the size of the first actual current IST1 and the size of the first current I1 and the non-negligible line resistance of the first line section L1.
  • the first switch S1 is open and between the first input and the second input of the first differential amplifier DIF1 is a second exclusively due to the first actual current IST1 voltage U2. It is understood that the second voltage U2 is different from the first voltage U1. If the first current I1 has the same technical current direction as the first actual current IST1, the first voltage U1 is greater than the second voltage U2. Conversely, the second voltage U2 is greater than the first voltage U1 when the technical current direction of the two currents is different. It is understood that this always means the amount of the first voltage U1 and the second voltage U2. It is further noted that the size of the first current I1 is generally chosen to be smaller than the magnitude of the first actual current IST1.
  • the determination of the magnitude of the first actual current IST1 is performed from the difference of the first voltage U1 and the second voltage U2 by means of the control unit ST. It is understood that the knowledge of the size of the first current I1 is necessary for determining the first actual current IST1 is. A calculation or knowledge of the resistance of the first line section is thereby avoided in an advantageous manner.
  • the first differential amplifier DIV1 is integrated in a first analog circuit unit AFE.
  • the first analog circuit unit AFE1 is connected to a first inverting signal line SIG1 and to a non-inverting signal line SIG2 to the first analog-to-digital converter ADC1. This allows differential signals to be applied to the first analog-to-digital converter ADC1.
  • a rectangular signal RSIG is applied to the control input STE1 of the first switch S1 and to the first analog circuit unit AFE1.
  • the first current source IQ1 now has a control input.
  • the control input of the first current source IQ1 is connected to the control unit ST by means of a control line LIQ1.
  • the signal RSIG is formed by an external source, not shown. According to an alternative, not shown, the signal RSIG can also be generated by means of the control unit ST.
  • the first analog circuit unit AFE1 forms, together with the first current source IQ1 and the first switch S1, the first analog circuit block ER1.
  • the first switch S1 is alternately closed and opened. Whenever the switch S1 is closed, a first current I1 is impressed.
  • the first current I1 can be changed in height by means of the control unit ST.
  • the FIG. 3 shows an equivalent circuit diagram of a monitoring device according to the embodiment shown in the FIG. 1 or the embodiment shown in the FIG. 2 , In the following, only the differences of one of the above figures will be explained.
  • the first actual current IST1 is impressed by a current source IQB into a series arrangement of a first line resistance RL1 and a second line resistance RL2 and a third line resistance RL3.
  • At the first line resistance RL1 drops a first voltage UA1, at the second line resistance RL2 a second voltage UL and at the third resistor RL3 a third voltage UA2.
  • the third connecting line ANL3 is represented by a fourth resistor RANL3 and the fourth connecting line ANL4 is represented by a fifth resistor RANL4.
  • the input resistance of the first circuit block ER1 is represented by means of a sixth resistor RDIFE. It should be noted that the input resistance in the present case is essentially determined by the input resistance of the first differential amplifier DIF1.
  • the output of the first analog circuit block ER1 is formed by a first voltage source UQ1 with a series output resistance RA.
  • the first voltage source UQ1 generates a first output voltage UA1 which is applied via the output resistance RA to the differential input of the first analog-to-digital converter ADC1. This shows that a monitoring device can already be formed purely in analog circuit technology without an analog-to-digital converter.
  • the FIG. 4a shows for reasons of clarity, part of a further embodiment of the monitoring device UW as a greatly simplified equivalent circuit diagram.
  • the first current source IQ1 is connected to the first line section L1 with a first H-bridge.
  • the associated control inputs are not shown in all bridge switches.
  • the first line section L1 comprises not only the pure current-carrying line but also a voltage source UQB shown as a battery.
  • the respective numbers 30 and 31 in a circle indicate selected points of the cable routing in a motor vehicle, the numbers 30 generally denoting the positive input of the battery and 31 indicating the return from the negative terminal of the battery to the body of the ground cable in a motor vehicle.
  • the first H-bridge includes one first bridge switch SH1, a second bridge switch SH2, a third bridge switch SH3 and a fourth bridge switch SH4.
  • the first bridge switch SH1 and the fourth bridge switch SH4 are open and the second bridge switch SH2 and the third bridge switch SH3 are closed.
  • the first current source IQ1 is connected to the first line section L1 in such a way that the first current of I1 is impressed with a technical current direction in the direction of the reference potential or of the ground potential.
  • a second current source IQ2 is provided.
  • the second current source IQ2 is connected to a second H-bridge with a second line section L2, which is not shown directly.
  • the line resistance of the second line section L2 is represented by means of an equivalent resistor RLB.
  • the second H-bridge comprises a fifth bridge switch SH5, a sixth bridge switch SH6, a seventh bridge switch SH7 and an eighth bridge switch SH8.
  • the fifth bridge switch SH5 and the eighth bridge switch SH8 are closed and the sixth bridge switch SH6 and the seventh bridge switch SH7 are opened.
  • the second current source IQ2 is connected to the second line section L2 in such a way that a second current I2 with a technical current direction is impressed against the direction of the first current I1.
  • the line network outside the monitoring device for example, in the direction of a consumer, not shown, not burdened by the monitoring device, ie an additional voltage drop is not present in the line network outside the monitoring device.
  • the monitoring device allows a voltage source, such as a battery UQB, to be monitored in a particularly simple and advantageous manner.
  • FIG. 4b a further preferred wiring configuration of the first current source IQ1 and the second current source IQ2 is shown.
  • the first bridge switch SH1 and the fourth bridge switch SH4 are closed, and the second bridge switch SH2 and the third bridge switch SH3 are opened.
  • the first current source IQ1 is connected to the first line section L1 such that the first current I1 is impressed with a technical current direction opposite to the direction toward the reference potential or to the ground potential.
  • the fifth bridge switch SH5 and the eighth bridge switch SH8 are opened and the sixth bridge switch SH6 and the seventh bridge switch SH7 are closed.
  • the second current source IQ2 is connected to the second line section L2 in such a way that a second current I2 with a technical current direction is impressed against the direction of the first current I1, i. the second current I2 is thus impressed in the direction of the reference potential or the ground potential. It is preferable to make the height of the first current I1 equal to the height of the second current I2.
  • the line network outside the monitoring device is not loaded, d. H. An additional voltage drop is not present in the line network outside the monitoring device.
  • first current source IQ1 and the second current source IQ2 can also be formed with the respective line sections.
  • the height of the first current I1 and the magnitude of the second current I2 can be added with two further interconnection executions.
  • the illustrated embodiment has a multistage amplifier unit INST1 and, for reasons of clarity, represents only a part of the monitoring unit in a greatly simplified equivalent circuit diagram. In the following, only the differences from the preceding figures will be explained.
  • the multistage amplifier unit INST1 comprises the first differential amplifier DIF1, a second differential amplifier DIF2 and a third differential amplifier DIF3.
  • the first current I1 is impressed in addition to the flowing actual current IST1.
  • the second current I2 is impressed in addition to the flowing actual current IST1.
  • the first current I1 is selected to be the same as the second current I2.
  • the voltage which drops at the line resistance is applied to a first input and to a second input of the second differential amplifier DIF2.
  • the amplified voltage is output.
  • the output of the first differential amplifier DIF1 is connected to a first input and the output of the second differential amplifier DIF2 is connected to a second input of the third differential amplifier DIF3.
  • At an output of the third differential amplifier DIF3 is the amplified voltage of the sum of the two output voltages of the first differential amplifier DIF1 and the second differential amplifier DIF2.
  • the inputs of the first differential amplifier DIF1 and the inputs of the second differential amplifier DIF2 are connected to the respective line sections such that the voltage drop from the first line section L1 and the voltage drop across the line add second line section L2. It should be noted that, for simplicity, both the first current source IQ1 with the first power section L1 and the second power source IQ2 with the second line section L2 are shown as hard-wired.
  • One advantage is that with the interconnection of the three differential amplifiers DIF1-DIF3 as a multistage amplifier unit INST1, even very small voltages in the range below 10 mV can be reliably measured and evaluated. In this way, the determination of the actual current IST1 can be carried out in a simple and reliable manner and analogously. From the analogue output signals of the multistage amplifier unit INST1 with impressed first current I1 and second current I2 and without impressed first current I1 and second current I2, the total resistance of the first line section L1 and the second line section L2 can be determined by comparing the voltage values and thereby the current value of the determine the first actual current IST1.
  • the voltage drop through the impressed first current I1 can be determined by a summation on the third differential amplifier DIF3 and thereby determine the line resistance.
  • the voltage drop of the first actual current IST1 and thereby the current intensity of the first actual current can be determined by means of a difference formation at the third differential amplifier DIF3.
  • FIG. 6 In the picture of the FIG. 6 is a further particularly advantageous embodiment of the monitoring device UW shown. For reasons of clarity, only parts of the monitoring device UW are shown here in the equivalent circuit diagram. In the following, only the differences to one of the above figures are explained.
  • the standing in a circle number 15 indicates in this case another selected point in the cable management in a motor vehicle.
  • a third line section L3 is provided in addition to the first line section L1 and the second line section L2 with the associated equivalent resistors RLA and RLB.
  • the third line section L3 comprises the battery UQB, the internal resistance of the battery UQB, a line switch SA with a section of line not shown in detail between the point numbered 15 and the positive pole of the battery UQB.
  • the switch SA connects or disconnects the positive terminal of the battery UQB with that portion of the line which is identified by the number 15.
  • Parallel to the second current source IQ2 is a third adjustable current source IQ3 provided.
  • the control input of the third current source IQ3 is connected to the control unit ST - not shown.
  • the first circuit device DADC1 comprises an analog-to-digital converter and a differential amplifier and has a differential input, which is connected to a first line section L1 by means of a third H-bridge, and an output which is connected to the control unit ST.
  • the first line section L1 is represented by the equivalent resistance RLA.
  • the third H-bridge comprises a ninth bridge switch SH9, a tenth bridge switch SH10, all bridge switches of the third H-bridge being shown open.
  • a second circuit device DADC2 is provided.
  • the second circuit device DADC2 comprises an analog-to-digital converter and a differential amplifier and has a differential input, which is connected to a second line section L2 by means of a fourth H-bridge, and an output which is connected to the control unit ST.
  • the line resistance of the second line section L2 is represented by means of an equivalent resistor RLB.
  • the fourth H-bridge includes a thirteenth bridge switch SH13, a fourteenth bridge switch SH14, a fifteenth bridge switch SH15 and a sixteenth bridge switch SH16. At the fourth H-bridge, all bridge switches are open.
  • a first input of a third circuit device DADC3 is connected to the ground potential and a second input of the third circuit device DADC3 is connected to the positive pole of the battery QUB.
  • the first input and the second input form a differential input.
  • the output of the third circuit device DADC3 is connected to the control unit ST.
  • the third circuit device DADC3 comprises a differential amplifier not shown in more detail and an analog-to-digital converter.
  • the switch SA When the switch SA is closed, the actual current IST1 flows out of the UQB and generates a voltage change at the differential input of the third circuit device.
  • the voltage change basically results from a comparison of the voltage applied to the differential input of the third circuit device DADC3 with an opened line switch SA and with a closed line switch SA. This allows the load on the batteries, d. H. determine the size of the current drain. In addition, can be monitored at an open line switch SA from the measured voltage of the battery UQB their state of charge.
  • FIG. 7 is a highly simplified equivalent circuit diagram of a part of the monitoring device UW of the embodiment shown in FIG. 6 shown.
  • the first H-bridge with the connected first current source IQ1 is combined as a first circuit block ISH1.
  • the second H-bridge with the connected second current source IQ2 is combined as a second circuit block ISH2.
  • the third H-bridge is connected to the connected first circuit device DADC1 as the first circuit section SEH1 and the fourth H-bridge is combined with the connected second circuit device DADC2 as the second circuit section SEH2.
  • the first circuit block ISH1, the second circuit block ISH2, the first circuit section SEH1 and the second circuit section SEH2 are combined to form a first circuit unit U1.
  • the picture of the FIG. 8 shows a further simplified equivalent circuit diagram of a monitoring device UW.
  • the monitoring device UW has, in addition to the first circuit unit U1, a second circuit unit U2 and a third circuit unit U3.
  • the first circuit unit U1 is connected to a first generator branch G1 and the second circuit unit U2 to a second generator branch G2 and the third circuit unit U3 to a third generator branch G3.
  • the current strengths in each of the three generator branches G1 to G3 can be determined and monitored.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Amplifiers (AREA)

Claims (18)

  1. Dispositif de surveillance (UW) avec un premier segment conducteur (L1) avec un premier point de raccordement et un deuxième point de raccordement (AS2) espacé du premier point de raccordement (AS1) dans la direction du conducteur, et avec une unité de commande (ST) et avec une première unité de détection de courant (STE1), présentant
    - une première source de courant (IQ1), la première source de courant (IQ1) étant connectée au premier point de raccordement (AS1) avec un premier conducteur de raccordement (ANL1) et connectée au deuxième point de raccordement (AS2) avec un deuxième conducteur de raccordement (ANL2) et produit un premier courant (I1),
    - un premier interrupteur (S1) avec une entrée de commande (EST1), dans lequel le premier interrupteur (S1) est monté dans le deuxième conducteur de raccordement et il relie la première source de courant (IQ1) au deuxième point de raccordement (AS2) ou il l'en sépare,
    - un premier amplificateur différentiel (DIF1) avec une première entrée, une deuxième entrée et une sortie, dans lequel la première entrée est connectée au premier point de raccordement (AS1) avec un troisième conducteur de raccordement et la deuxième entrée est connectée au deuxième point de raccordement (AS2) avec un quatrième conducteur de raccordement,
    dans lequel l'unité de commande (ST) est montée entre la sortie du premier amplificateur différentiel (DIF1) et l'entrée de commande du premier interrupteur (S1), et
    le premier segment conducteur (L1) est alimenté avec un courant réel (IST1) et, dans un premier état, le premier interrupteur est fermé et le premier courant (I1) est présent dans le premier segment conducteur (L1) en plus du premier courant réel (IST1) et il existe entre la première entrée et la deuxième entrée du premier amplificateur différentiel (DIF1) une tension définie par la grandeur du courant réel (IST1) et la grandeur du premier courant (I1) et,
    dans un deuxième état, le premier interrupteur (S1) est ouvert et il existe entre la première entrée et la deuxième entrée du premier amplificateur différentiel (DIF1) une deuxième tension définie exclusivement par le courant réel (IST1),
    caractérisé en ce que
    il est prévu un deuxième segment conducteur (L2) avec une deuxième unité de détection de courant avec un deuxième amplificateur différentiel (DIF2) et un deuxième courant (I2) est injecté au moyen d'une deuxième source de courant (IQ2) dans le deuxième segment conducteur (L2), et
    le premier courant (I1) et le deuxième courant (I2) sont essentiellement de même valeur opposée, et
    l'unité de commande (ST) présente un troisième amplificateur différentiel (DIF3) et une première entrée du troisième amplificateur différentiel (DIF3) est connectée à la sortie du premier amplificateur différentiel (DIF1) et une deuxième entrée du troisième amplificateur différentiel (DIF3) est connectée à la sortie du deuxième amplificateur différentiel (DIF2) et le premier amplificateur différentiel (DIF1) forme avec le deuxième amplificateur différentiel (DIF2) et le troisième amplificateur différentiel (DIF3) une unité d'amplificateur à plusieurs étages (INST1) et une somme des différences de tension mesurées au premier segment conducteur et au deuxième segment conducteur est présente à la sortie de l'unité d'amplificateur à plusieurs étages et
    l'unité de commande (ST) est conçue pour déterminer la grandeur du courant réel (IST1) à partir des tensions du premier état et du deuxième état.
  2. Dispositif de surveillance (UW) selon la revendication 1, caractérisé en ce que le premier courant (I1) est un courant continu ou un courant alternatif.
  3. Dispositif de surveillance (UW) selon la revendication 1 ou la revendication 2, caractérisé en ce que la première source de courant présente une entrée de commande connectée à l'unité de commande.
  4. Dispositif de surveillance (UW) selon l'une quelconque des revendications précédentes, caractérisé en ce que la première unité de détection de courant comprend un convertisseur analogique-numérique (ADC) et l'ADC est connecté entre l'unité de commande et la sortie du premier amplificateur différentiel.
  5. Dispositif de surveillance (UW) selon l'une quelconque des revendications précédentes, caractérisé en ce que la première source de courant (IQ1) est connectée au premier segment conducteur (L1) au moyen du premier interrupteur de pont (SH1) et d'un deuxième interrupteur de pont (SH2) et d'un troisième interrupteur de pont (SH3) et d'un quatrième interrupteur de pont (SH4) sous la forme d'un circuit de pont en H.
  6. Dispositif de surveillance (UW) selon l'une quelconque des revendications précédentes, caractérisé en ce que le premier amplificateur différentiel (DIF1) est connecté au premier segment conducteur (L1) au moyen d'un circuit de pont en H.
  7. Dispositif de surveillance (UW) selon l'une quelconque des revendications 4 à 7, caractérisé en ce qu'un premier dispositif de circuit (DADC1) composé du premier amplificateur différentiel (DIF1) et du premier convertisseur analogique-numérique (ADC1) est connecté au premier segment conducteur (L1) au moyen d'un circuit de pont en H.
  8. Dispositif de surveillance (UW) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est prévu un deuxième pont en H, dans lequel la deuxième source de courant (IQ2) est connectée au deuxième segment conducteur (L2) au moyen du cinquième interrupteur de pont (SH5) et d'un sixième interrupteur de pont (SH6) et d'un septième interrupteur de pont (SH7) et d'un huitième interrupteur de pont (SH8) sous la forme d'un circuit de pont en H.
  9. Dispositif de surveillance (UW) selon la revendication 8, caractérisé en ce que le deuxième segment conducteur (L2) jouxte immédiatement le premier segment conducteur (L1).
  10. Dispositif de surveillance (UW) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'unité de commande (ST) est conçue pour déterminer la grandeur du courant réel (IST1) au moyen de la valeur de la tension dans le premier état et au moyen de la valeur de la tension dans le deuxième état et de la grandeur du premier courant (I1).
  11. Dispositif de surveillance (UW) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'unité de commande (ST) est conçue pour déterminer la grandeur du courant réel (IST1) sans calcul ou connaissance de la résistance du premier segment conducteur (L1).
  12. Procédé de surveillance d'un premier segment conducteur (L1) avec un dispositif de surveillance (UW), dans lequel le premier segment conducteur (L1) présente un premier point de raccordement (AS1) et un deuxième point de raccordement (AS2) espacé du premier point de raccordement (AS1) dans la direction du conducteur, le dispositif de surveillance (UW) présente une unité de commande (ST) et une première unité de détection de courant (STE1) et la première unité de détection de courant (STE1) présente:
    - une première source de courant (IQ1), dans lequel la première source de courant (IQ1) est connectée au premier point de raccordement (AS1) avec un premier conducteur de raccordement et au deuxième point de raccordement (AS2) avec un deuxième conducteur de raccordement et produit un premier courant (I1),
    - un premier interrupteur (S1) avec une entrée de commande et le premier interrupteur (S1) est monté dans le premier conducteur de raccordement et il relie la première source de courant (IQ1) au premier point de raccordement (AS2) ou il l'en sépare,
    - un premier amplificateur différentiel (DIF1), avec une première entrée, une deuxième entrée et une sortie, dans lequel la première entrée est connectée au premier point de raccordement (AS1) avec un troisième conducteur de raccordement et la deuxième entrée est connectée au deuxième point de raccordement (AS2) avec un quatrième conducteur de raccordement,
    dans lequel l'unité de commande (ST) est montée entre la sortie du premier amplificateur différentiel (DIF 1) et l'entrée de commande de l'interrupteur (S1), et le premier segment conducteur est alimenté avec un courant réel (IST1) et dans un premier état le premier interrupteur (S1) est fermé et le premier courant (I1) est présent dans le premier segment conducteur (L1) en plus du premier courant réel (IST1) et il existe entre la première entrée et la deuxième entrée du premier amplificateur différentiel (DIF1) une tension définie par la grandeur du courant réel (IST1) et la grandeur du premier courant (I1),
    dans un deuxième état, le premier interrupteur (S1) sera ouvert et il existe entre la première entrée et la deuxième entrée du premier amplificateur différentiel (DIF1) une deuxième tension définie exclusivement par le courant réel (IST1) et
    dans un deuxième état, le premier interrupteur (S1) est ouvert et il existe entre la première entrée et la deuxième entrée du premier amplificateur différentiel (DIF1) une deuxième tension définie exclusivement par le courant réel (IST1), caractérisé en ce que
    il est prévu un deuxième segment conducteur (L2) avec une deuxième unité de détection de courant avec un deuxième amplificateur différentiel (DIF2) et on injecte un deuxième courant (12) au moyen d'une deuxième source de courant (IQ2) dans le deuxième segment conducteur (L2), et
    le premier courant (I1) et le deuxième courant (I2) sont essentiellement de même valeur opposée, et
    l'unité de commande (ST) présente un troisième amplificateur différentiel (DIF3) et on connecte une première entrée du troisième amplificateur différentiel (DIF3) à la sortie du premier amplificateur différentiel (DIF1) et une deuxième entrée du troisième amplificateur différentiel (DIF3) à la sortie du deuxième amplificateur différentiel (DIF2) et le premier amplificateur différentiel (DIF1) forme avec le deuxième amplificateur différentiel (DIF2) et le troisième amplificateur différentiel (DIF3) une unité d'amplificateur à plusieurs étages (INST1) et une somme des différences de tension mesurées au premier segment conducteur et au deuxième segment conducteur est présente à la sortie de l'unité d'amplificateur à plusieurs étages et
    on détermine au moyen de l'unité de commande (ST) la grandeur du courant réel (IST1) à partir des deux tensions du premier état et du deuxième état.
  13. Procédé selon la revendication 12, caractérisé en ce que l'on injecte au moyen de l'unité de commande (ST) un courant alternatif dans le premier segment conducteur et on détermine la grandeur du courant réel (IST1) au moyen d'un principe de détection synchrone.
  14. Procédé selon la revendication 12 ou la revendication 13, caractérisé en ce que l'on détermine au moyen de l'unité de commande (ST) la grandeur du courant réel (IST1) au moyen de la valeur de la tension dans le premier état et au moyen de la valeur de la tension dans le deuxième état et de la grandeur du premier courant (I1).
  15. Utilisation du dispositif de surveillance (UW) selon l'une quelconque des revendications précédentes pour le contrôle de courants de phase d'un générateur ou d'un moteur électrique.
  16. Utilisation du dispositif de surveillance (UW) selon l'une quelconque des revendications précédentes pour la détermination de l'état de charge d'une batterie ou pour le contrôle de l'intensité du courant dans une branche positive entre la batterie et un consommateur ou pour le contrôle de l'intensité du courant dans une branche positive entre la batterie à l'intérieur du réseau embarqué d'une auto et un consommateur.
  17. Utilisation du dispositif de surveillance (UW) selon l'une quelconque des revendications précédentes pour le contrôle du courant dans des conducteurs de masse dans un véhicule automobile.
  18. Utilisation du dispositif de surveillance (UW) selon l'une quelconque des revendications précédentes pour le calibrage in situ d'intensités de courant inconnues dans un segment conducteur, dans laquelle la variation de l'intensité de courant dans le segment conducteur comprend au moins une puissance dix.
EP13000022.7A 2012-01-16 2013-01-03 Dispositif et procédé de surveillance d'un courant d'un segment conducteur Active EP2615472B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012000557A DE102012000557A1 (de) 2012-01-16 2012-01-16 Überwachungseinrichtung und Verfahren zur Überwachung eines Leitungsabschnittes mit einer Überwachungseinrichtung

Publications (3)

Publication Number Publication Date
EP2615472A2 EP2615472A2 (fr) 2013-07-17
EP2615472A3 EP2615472A3 (fr) 2015-09-02
EP2615472B1 true EP2615472B1 (fr) 2016-11-23

Family

ID=47563156

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13000022.7A Active EP2615472B1 (fr) 2012-01-16 2013-01-03 Dispositif et procédé de surveillance d'un courant d'un segment conducteur

Country Status (4)

Country Link
US (2) US20130187634A1 (fr)
EP (1) EP2615472B1 (fr)
CN (1) CN103293369B (fr)
DE (1) DE102012000557A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014219235B4 (de) * 2014-09-24 2018-06-07 Conti Temic Microelectronic Gmbh Schaltungsvorrichtung und Verfahren zum Ermitteln eines Zustandes einer Verriegelungsleiterschleife
US10078619B2 (en) 2014-12-16 2018-09-18 International Business Machines Corporation Dynamic association of application workload tiers to infrastructure elements in a cloud computing environment
GB2550606B (en) * 2016-05-25 2019-10-16 Exact Projects Ltd Apparatus for and a method of detecting leakage of current
TWM546626U (zh) * 2016-08-31 2017-08-01 威盛電子股份有限公司 充電裝置及其纜線與電子標記晶片
US10263454B2 (en) 2016-08-31 2019-04-16 Via Technologies, Inc. Charger and power delivery control chip and charging method thereof
DE102017211105A1 (de) * 2017-06-29 2019-01-03 Schmidhauser Ag Stromrichter zur Ansteuerung eines Elektromotors
CN109696571B (zh) * 2017-10-24 2020-12-11 王万俊 一种全角度相位电流发生仪
DE102019205771A1 (de) * 2019-04-23 2020-10-29 Robert Bosch Gmbh Verfahren zur Ermittlung eines Versorgungsstroms eines elektrischen Energieversorgungssystems
US11428719B2 (en) * 2020-01-10 2022-08-30 Analog Devices International Unlimited Company Electrical signal measurement using subdivision

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277749A (en) * 1979-02-21 1981-07-07 Hewlett-Packard Company Input circuit for electronic instruments
GB2175402A (en) 1985-05-14 1986-11-26 Salplex Ltd Apparatus and method for measuring battery currents
US5386188A (en) * 1993-01-15 1995-01-31 Keithley Instruments, Inc. In-circuit current measurement
US5703490A (en) * 1995-07-28 1997-12-30 Honeywell Inc. Circuit and method for measuring current in an H-bridge drive network
US5804979A (en) * 1997-05-13 1998-09-08 Fluke Corporation Circuit for measuring in-circuit resistance and current
US6111767A (en) * 1998-06-22 2000-08-29 Heliotronics, Inc. Inverter integrated instrumentation having a current-voltage curve tracer
JP3684090B2 (ja) * 1998-10-28 2005-08-17 株式会社東芝 半導体集積回路装置
US6285191B1 (en) 1999-10-08 2001-09-04 Alliedsignal Inc. Measurement of current in a vehicle using battery cable as a shunt
FR2802302B1 (fr) * 1999-12-09 2002-02-15 Sagem Appareil de mesure de l'intensite du courant dans un conducteur
DE10013345B4 (de) * 2000-03-17 2004-08-26 Sauer-Danfoss Holding Aps Einrichtung zum Messen eines durch eine Leiterbahn fließenden elektrischen Stroms und deren Anwendung
WO2002075332A1 (fr) * 2001-03-16 2002-09-26 Tokyo Electron Limited Systeme et procede de controle de l'impedance
JP3914004B2 (ja) * 2001-05-25 2007-05-16 矢崎総業株式会社 半導体素子の過電流検出・保護装置
US6982559B2 (en) * 2004-01-14 2006-01-03 Kyocera Wireless Corp. Accurate and efficient sensing circuit and method for bi-directional signals
JP2005333770A (ja) * 2004-05-21 2005-12-02 Sanyo Electric Co Ltd 自動車用インバータ装置
AT414048B (de) * 2004-07-06 2006-08-15 Lem Norma Gmbh Verfahren und einrichtung zur strommessung
JP5072338B2 (ja) * 2006-12-12 2012-11-14 ルネサスエレクトロニクス株式会社 同期電動機の制御装置
US9063202B2 (en) * 2008-09-15 2015-06-23 Caterpillar Inc. Method and apparatus for detecting phase current imbalance in a power generator
DE102010028086A1 (de) * 2010-04-22 2011-10-27 Robert Bosch Gmbh Verfahren zum Messen eines Stromes und einer Temperatur in einem Kraftfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US9714962B2 (en) 2017-07-25
US20130187634A1 (en) 2013-07-25
EP2615472A2 (fr) 2013-07-17
EP2615472A3 (fr) 2015-09-02
CN103293369B (zh) 2016-04-27
DE102012000557A1 (de) 2013-07-18
CN103293369A (zh) 2013-09-11
US20150022182A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
EP2615472B1 (fr) Dispositif et procédé de surveillance d'un courant d'un segment conducteur
DE19706946C2 (de) Battierüberwachungseinheit
DE102004010707A1 (de) Energiezähleranordnung und Verfahren zum Kalibrieren
DE2917237C2 (fr)
EP3449264B1 (fr) Procédé pour déterminer un courant de charge et capteur de batterie
WO2014037465A1 (fr) Procédé et circuit permettant de contrôler la plausibilité d'un résultat de mesure de capteur de courant
DE102017203535A1 (de) Stromsensor mit optimierter Stromdichteverteilung, Verfahren zum Bestimmen eines Laststroms
DE102018107514A1 (de) Strommesstechniken zum kompensieren einer nebenschlussdrift
DE202017106294U1 (de) Stromerfassungselement für stromgeregelte Schaltung und dergleichen
DE102007038225B4 (de) Hochstabiles kapazitives Messsystem für extreme Einsatzbedingungen
EP1203961B1 (fr) Méthode de mesure de la résistance et de l'inductivité d'une ligne
DE102016204941A1 (de) Verfahren zum Bestimmen eines Laststroms und Batteriesensor
EP2031412B1 (fr) Dispositif de mesure galvanique séparée de la réception de puissance électrique d'un bipôle
DE102015210426A1 (de) Anordnung und Verfahren zum Erfassen eines Stroms mittels eines induktiven Stromsensors
DE102005024020B4 (de) Vorrichtung zum Kalibrieren von Dehnungsmessschaltungen
DE10240243A1 (de) Verfahren und Messanordnung zum Abgleich der Nullpunktdrift von Stromsensoren
DE102013011790B4 (de) Überwachungssystem
DE102016202501B4 (de) Verfahren zum Bestimmen eines Kalibrierstrompulses
EP3640651B1 (fr) Procédé de fonctionnement d'un capteur de courant et capteur de courant
DE102020215410A1 (de) Stromstärkemessung
DE69937088T2 (de) Vorrichtung zur Bestimmung elektrischer Energie
EP3701608B1 (fr) Circuit de protection d'un transistor à effet de champ
EP2284544B1 (fr) Procédé et dispositif de mesure sans capteur de la vitesse de rotation d'un moteur électrique
DE2353812A1 (de) Temperaturmesschaltung
DE102007007406B4 (de) Elektronischer Druckschalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: G01R 35/00 20060101AFI20150730BHEP

Ipc: G01R 1/20 20060101ALI20150730BHEP

17P Request for examination filed

Effective date: 20150825

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013005436

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01R0035000000

Ipc: G01R0031000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01R 31/00 20060101AFI20160616BHEP

Ipc: G01R 1/20 20060101ALI20160616BHEP

Ipc: G01R 35/00 20060101ALI20160616BHEP

Ipc: G01R 19/00 20060101ALI20160616BHEP

INTG Intention to grant announced

Effective date: 20160707

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20161013

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 848385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005436

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013005436

Country of ref document: DE

Representative=s name: KOCH-MUELLER PATENTANWALTSGESELLSCHAFT MBH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013005436

Country of ref document: DE

Owner name: TDK-MICRONAS GMBH, DE

Free format text: FORMER OWNER: MICRONAS GMBH, 79108 FREIBURG, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005436

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

26N No opposition filed

Effective date: 20170824

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170103

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: TDK-MICRONAS GMBH, DE

Effective date: 20180717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 848385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200121

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 12