EP2597030B1 - Pre-nozzle for a propulsion system of a water vehicle for improving energy efficiency - Google Patents

Pre-nozzle for a propulsion system of a water vehicle for improving energy efficiency Download PDF

Info

Publication number
EP2597030B1
EP2597030B1 EP13156118.5A EP13156118A EP2597030B1 EP 2597030 B1 EP2597030 B1 EP 2597030B1 EP 13156118 A EP13156118 A EP 13156118A EP 2597030 B1 EP2597030 B1 EP 2597030B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
angle
profile
opening
water inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13156118.5A
Other languages
German (de)
French (fr)
Other versions
EP2597030A2 (en
EP2597030A3 (en
Inventor
Dirk Lehmann
Friedrich Mewis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Becker Marine Systems GmbH and Co KG
Original Assignee
Becker Marine Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Becker Marine Systems GmbH and Co KG filed Critical Becker Marine Systems GmbH and Co KG
Priority to PL13156118T priority Critical patent/PL2597030T3/en
Publication of EP2597030A2 publication Critical patent/EP2597030A2/en
Publication of EP2597030A3 publication Critical patent/EP2597030A3/en
Application granted granted Critical
Publication of EP2597030B1 publication Critical patent/EP2597030B1/en
Priority to HRP20171654TT priority patent/HRP20171654T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/16Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in recesses; with stationary water-guiding elements; Means to prevent fouling of the propeller, e.g. guards, cages or screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/28Other means for improving propeller efficiency

Definitions

  • the invention relates to a pre-nozzle for a propulsion system of a watercraft to improve energy efficiency.
  • a propulsion system for a ship based on a pre-jet is known.
  • the drive system consists of a propeller and a pre-nozzle, which is mounted directly in front of the propeller and has integrated fins or wings in the pre-nozzle.
  • the pre-nozzle has essentially the shape of a flat conical cutout, wherein both openings, both the water inlet and the water outlet opening, are designed as circular openings and the water inlet opening has a larger diameter than the water outlet opening. This makes it possible to improve the propeller inflow as well as to reduce losses in the propeller jet by pre-twist generation by means of the fins or hydrofoils integrated in the pre-nozzle.
  • Object of the present invention is to provide a pre-nozzle for a propulsion system of a watercraft to further improve the drive efficiency, especially for slow, complete ships. This object is achieved by a device having the features of claim 1.
  • the pre-nozzle for a drive system of a watercraft, in particular of a ship of the type described above, according to the invention is designed in such a way that within the pre-nozzle a fin system is arranged.
  • the pre-nozzle is arranged in the shipping direction in front of a propeller. By “in the direction of navigation” is here the forward direction of a ship to understand.
  • Within the pre-nozzle is no propeller, such. B. in Kortdüsen, arranged.
  • the pre-nozzle is spaced from the propeller.
  • the arranged within the pre-nozzle fin system consists of several, for example four or five, fins which are arranged radially to the propeller axis and are connected to the inner surface of the nozzle shell.
  • the individual fins are preferably arranged asymmetrically within the pre-nozzle.
  • the individual fins of the fin system are arranged such that they are substantially within the pre-nozzle and preferably located entirely within the pre-nozzle, i. do not protrude from one or both openings of the pre-nozzle.
  • the propeller of the ship is arranged so that it is substantially outside the pre-nozzle and preferably at no point in the pre-nozzle, i. protrudes through one of the two openings of the pre-nozzle.
  • the extension of the individual fins of the fin system in the longitudinal direction of the pre-nozzle is smaller, or shorter, than the length of the pre-nozzle at its shortest point. Expansion is to be understood as meaning the region or the length along the inner surface of the pre-nozzle, over which the fins extend in the pre-nozzle longitudinal direction. Particularly preferably, the expansion of the individual fins in the longitudinal direction of the pre-nozzle is less than 90%, very particularly preferably less than 80% or even less than 60% of the length of the pre-nozzle at the shortest point of the pre-nozzle.
  • the longitudinal direction corresponds to the flow direction.
  • the individual fins can be employed the same or different. This means that the angles of attack of the individual fins can be chosen and adjusted differently.
  • the angle of attack corresponds to the angle between a surface line along the inner surface of the pre-nozzle and the inner surface-facing side of the edge of the fins.
  • the fins are set at an angle, the angle of attack, to the flow direction.
  • the fins are arranged substantially in the rear region, ie in the region facing the propeller.
  • the inlet area of the pre-nozzle has no fin system and serves only to accelerate the Water flow.
  • the fin system arranged in the rear region of the pre-nozzle or arranged downstream of the inlet region serves (additionally) for pre-twist generation.
  • the pre-nozzle according to the invention is rotationally asymmetrical.
  • the axis of rotation of the pre-nozzle along the pre-nozzle is arranged such that it lies in cross-sectional view of the pre-nozzle in both the vertical and horizontal orientation in the middle and preferably extends through the center of the water outlet opening.
  • the pre-nozzle is thus not imaged onto itself upon rotation about any angle about the axis of rotation.
  • individual flächisegmente for example, a section in the region of the water outlet opening, have rotationally asymmetric properties in itself, the orifice as a whole unit, however, does not represent a body of revolution.
  • rotational asymmetry does not relate to the fin system located within the pre-nozzle. The pre-nozzle is thus independent of the arrangement of the individual fins rotationally asymmetric.
  • the propeller which is located behind the pre-nozzle and spaced therefrom, is stationary, i. H. rotatable about the propeller axis but not (horizontally or vertically) pivotable, and rotatably mounted in a sterntube.
  • the pre-nozzle can be arranged with the rotation axis shifted upwards above the propeller axis.
  • the center of gravity of the pre-nozzle is above the propeller axis.
  • the pre-nozzle can be arranged such that its axis of rotation is parallel to the propeller axis or extends at an angle to the propeller axis and thus is inclined with respect to the propeller axis.
  • the pre-nozzle is centered in the horizontal direction with respect to the propeller axis.
  • the axis of rotation of the pre-nozzle and the propeller axis are in a vertical plane.
  • Nozzles are known in the prior art which are divided into two halves by an approximately vertical plane, with both halves being offset from one another in the longitudinal direction along the vertical plane.
  • the pre-nozzle according to the invention does not consist of two or more longitudinally offset halves.
  • the water outlet opening surface preferably extends over only one plane and in particular not over mutually offset planes.
  • the pre-nozzle according to the invention thus makes it possible to further improve the propulsion efficiency of a ship by improving the propulsion inflow through the formation of the pre-nozzle and reducing the losses in the propeller jet by the pre-nozzle fin system by pre-twisting.
  • the water velocity in the rear of the ship so in the range of the propeller and the pre-nozzle, due to the ship shape or the design of the hull, different.
  • the water velocity in the lower region of the pre-nozzle and the propeller is faster than in the upper region of the pre-nozzle or of the propeller. This is due in particular to the fact that the water inflow velocity in the direction of the pre-nozzle and propeller in the upper region is more strongly decelerated or deflected by the hull than in the lower region.
  • the pre-nozzle Due to the rotationally asymmetric configuration of the pre-nozzle, it is possible to take into account the specific shape of the ship or the influence of the water inflow rates and thus to accelerate the water inflow speed more particularly through the pre-nozzle, especially in the areas of unfavorable aftercurrent, for example in the upper region of the pre-nozzle or propeller as in the region of the cheaper downstream, for example, in the lower region of the pre-nozzle or the propeller. This will distribute the propeller inflow velocity of the water more evenly.
  • the pre-nozzle according to the invention takes into account regions with different secondary flow, in particular a different downstream flow ratio in the upper and lower regions of the pre-jet with respect to the respective flow velocity.
  • Another advantage is that vortex generation can be avoided or reduced by the pre-nozzle according to the invention.
  • the flow is favorably influenced without generating a high resistance or strong vortex.
  • the propeller thrust at the same drive power or alternatively with less drive power without reducing the propeller thrust power and thus energy can be saved.
  • the water inlet opening is expanded upwards or downwards compared with a circular opening of a rotationally symmetrical pre-nozzle.
  • the directions above and below refer here to the installed state of the nozzle to a ship.
  • the water inlet opening of the pre-nozzle according to the invention is widened upwards or downwards. It is also possible that the water inlet opening of the pre-nozzle is extended upwards and downwards.
  • At least one of the two opening surfaces, water inlet opening surface or water outlet opening surface, in the vertical direction has a greater length than in the horizontal direction.
  • the nozzle jacket is typically formed by the so-called "nozzle ring”.
  • the nozzle casing is the so-called casing of the pre-nozzle, wherein the nozzle casing consists of an inner surface and an outer surface.
  • the two surfaces are usually spaced apart from each other.
  • the fin system is not part of the nozzle shell but connected to the inner surface of the nozzle shell with this. In this case, the opening area may be formed over one or more plane or curved planes.
  • the length in the vertical direction is understood to mean the length of the opening area viewed from top to bottom along its vertical center line.
  • the greatest length in the horizontal direction is therefore analogous to the vertical direction, the width of the opening area in the region of its largest dimension to understand.
  • an ellipsoidal opening surface thus has its greatest length in the horizontal direction in the region of its horizontal center line and its greatest length in the vertical direction in the region of its vertical center line.
  • the two opening surfaces, the inlet opening surface and the outlet opening surface may be parallel to each other, partially parallel to each other, and not formed parallel to each other.
  • the lengths in the vertical and horizontal directions always run on the opening surface and thus are not necessarily direct connections of the upper end edge of the nozzle shell with the lower edge of the nozzle shell. If the opening surfaces is formed over several levels, at least one of the two lengths has a kink and / or a curve course.
  • the water inlet-side opening area of the pre-nozzle is greater than a water-inlet-side opening area of a rotationally symmetrical pre-nozzle with the same center radius.
  • the center radius is understood to be the radius of the front nozzle of the upper nozzle jacket arc in the case of a cross-sectional view of the pre-nozzle in the region of the profile center of the pre-nozzle.
  • the center radius represents the radius of the upper circular arc, which would be visible in a cross section in relation to the length of the pre-nozzle, center of the pre-nozzle.
  • the pre-nozzle at least partially encloses the propeller axis of the ship.
  • the pre-nozzle is advantageously arranged such that its axis of rotation is above the propeller axis, but with its lower nozzle shell segment, the propeller axis still encloses.
  • the lower nozzle shell segment can also be on the propeller axis.
  • the inlet opening area of the pre-nozzle is not arranged parallel or only in regions parallel to the water outlet opening area of the pre-nozzle.
  • the water outlet opening area of the pre-nozzle could be (fully) parallel to the cross-section of the pre-nozzle or parallel to the axis of rotation perpendicular and the water inlet opening surface to be inclined to the cross-sectional area of the pre-nozzle or to Rotationsachsensenkrechten the pre-nozzle or (at least partially) have an angle.
  • the pre-nozzle has a greater profile length in the upper region than in the lower region.
  • the profile length runs along the outer surface of the pre-nozzle and thus along a surface line of the nozzle shell.
  • the profile length is not constant and decreases from top to bottom.
  • the profile length can decrease stepwise or suddenly, linearly or following any other function from top to bottom.
  • the profile length remains constant over a range, for example in the upper region of the pre-nozzle and decreases only in the lower region.
  • the profile length of the pre-nozzle in the region of the axis of rotation is greater than in the lower region of the pre-nozzle.
  • the flow-through length is not constant within the pre-nozzle, or longer in the upper region of the pre-nozzle than in the lower region of the pre-nozzle.
  • the water velocity is accelerated in the upper region of the pre-nozzle more or over a longer acceleration distance than in the lower region of the pre-nozzle.
  • the water velocity in the region of the unfavorable downstream flow, in the upper inlet region of the pre-nozzle can be accelerated more than the water already flowing in at higher velocity in the lower region of the pre-nozzle.
  • the water outlet velocity and thus the Propellerzuström aus is more balanced in the upper and lower regions and the speed difference is relatively low.
  • the reduction in the profile length from top to bottom corresponds to an extension of the water inlet opening surface downwards, as thus in the lower area more water, which would have flowed at a constant profile length of the pre-nozzle partially from the outside on the coats of the pre-nozzle, is now detected by the opening and can flow into the pre-nozzle.
  • the water inlet opening surface of the pre-nozzle is provided such that it has at least one intersection angle to the cross-sectional area of the pre-nozzle or to the rotation axis perpendicular to the pre-nozzle.
  • angle of intersection is to be understood as meaning the angle which results in the case of a mental extension of the water inlet opening area and of the cross-sectional area of the pre-nozzle in the area of the intersection of the two sectional areas.
  • the cutting angle thus also corresponds to the angle between the water inlet opening surface and the solder on the pre-nozzle axis, or the axis of rotation of the pre-nozzle.
  • the water inlet opening area and cross-sectional area can thus have several, for example two, angles of intersection with one another.
  • the cutting angle is less than or equal to 90 °, more preferably less than 60 °, and most preferably less than 30 °.
  • the intersection angle between the water inlet-side opening area and the cross-sectional area of the pre-nozzle is constant at least in one area.
  • This range encompasses at least 1%, preferably at least 5% and more preferably at least 20% based on the height of the pre-nozzle in the region of the water outlet opening.
  • the cutting angle is greater than 0 °, at least in this area.
  • the cutting angle could be constant from top to bottom over the entire height of the pre-nozzle.
  • the cutting angle is constant only in a region, for example the lower half of the height of the pre-nozzle, that is to say below the axis of rotation. Since the height of the pre-nozzle does not have to be constant, the height of the pre-nozzle in the area of the water outlet opening is used as a reference.
  • the opening angle of the pre-nozzle is greater than twice the upper profile angle or greater than twice the lower profile angle.
  • the opening angle of the pre-nozzle is the angle between the upper and lower profile line of the pre-nozzle.
  • the profile line is the generatrix in the longitudinal direction of the pre-nozzle along the outer surface of the pre-nozzle jacket.
  • the upper profile line runs along the highest part of the pre-nozzle and the lower profile line along the deepest part of the pre-nozzle.
  • the upper profile line thus has the same length as the profile length in the uppermost region of the pre-nozzle.
  • the lower profile line corresponds to the length of the profile length in the lowest area of the pre-nozzle.
  • the upper profile angle corresponds to the angle between the (mentally elongated) upper profile line and the (mentally elongated) rotation axis of the pre-nozzle.
  • the lower profile angle thus corresponds to the angle between the (mentally elongated) rotation axis and the (mentally extended) lower profile line.
  • the opening angle of the pre-nozzle thus corresponds to the sum of the upper profile angle and the lower profile angle.
  • the opening angle is greater than twice the upper profile angle and thus the lower profile angle is greater than the upper profile angle.
  • the opening angle of the pre-nozzle corresponds to the sum of the double profile angle and the intersection angle.
  • the lower profile angle corresponds to the sum of the cutting angle and the upper profile angle.
  • the water inlet opening area of the pre-nozzle is kinked or curved.
  • the water inlet opening surface can be curved with a constant radius of curvature from top to bottom or have different or multiple radii of curvature.
  • the water inlet opening area seen from top to bottom can have a kink or even several kinks.
  • the water inlet opening surface is formed over several levels, which are at an angle to each other.
  • the water inlet opening surface has a kink and is thus formed over two levels. Both planes are at an angle which is greater than 90 ° and less than 180 ° to each other.
  • the profile length of the pre-nozzle between the upper and lower profile line of the pre-nozzle continuously decreases from top to bottom. Under steady is here to be understood continuously. This means that the profile length continuously decreases from top to bottom. Thus, viewed from top to bottom, the profile length does not increase in any area, but either remains constant within one area and decreases within the next area, or decreases continuously as viewed from top to bottom.
  • the profile length can decrease linearly but also from top to bottom following another function. For example, the profile length could be seen from top to bottom decrease in an arcuate course. It is particularly preferred that the profile length from top to bottom over the entire area, ie between the upper and lower profile line of the pre-nozzle, linearly decreases and thus the value of the intersection angle is constant. Thus, the value of the cutting angle is constant at each point between the upper and lower profile line of the pre-nozzle.
  • the profile length of the pre-nozzle in each region of the pre-nozzle is constant.
  • the water inlet opening area and the water outlet opening area are arranged parallel to each other.
  • the pre-nozzle or the pre-nozzle jacket preferably has straight sections when viewed in cross-section.
  • the Vordüsenmantel has straight sections in cross-sectional view over the entire length of the pre-nozzle.
  • the rectilinear sections connect with cross-sectional view a plurality of arcuate portions with each other.
  • the cross-sectional view of the pre-nozzle jacket could consist of an upper and a lower arc-shaped section or arc segment, wherein both arcuate sections are connected to one another by straight-line sections.
  • two straight-line sections are arranged in the side region of the pre-nozzle jacket and, in particular, opposite one another.
  • the straight sections are in cross-sectional view at the level of the horizontal center line or along the pre-nozzle at the height of the axis of rotation.
  • the arcuate portions could be, for example, semicircles.
  • the straight sections preferably have a rectangular cross section.
  • the rectilinear portions serve to extend the pre-nozzle opening areas in vertical or horizontal direction.
  • the two opening surfaces of the pre-nozzle are widened in the vertical direction by the straight-line sections, whereby thus the pre-nozzle has a greater height than width.
  • Another possible alternative embodiment consists in the formation of the entire nozzle shell with an elliptical cross-section.
  • At least one pre-nozzle opening area has a maximum length between the upper and lower profile line, which is in a ratio between 1.5: 1 and 4: 1 to the mean profile length of the pre-nozzle. Particularly preferred is a ratio between 1.75: 1 and 3: 1, or 1.75: 1 and 2.5: 1, or a ratio in the range of 2: 1.
  • the average profile length of the pre-nozzle is an average profile length of the pre-nozzle.
  • Fig. 1 to 3 show a pre-nozzle 10a with a disposed within the pre-nozzle 10a Fin system 14.
  • the fin system 14 here consists of five individual fins 14a, 14b, 14c, 14d, 14e which are arranged radially in the pre-nozzle 10a and circumferentially asymmetric. It would also be possible more or less to use as five fins.
  • the height of the pre-nozzle in the region of the water outlet opening 13 is smaller than the propeller diameter.
  • the height of the pre-nozzle in the region of the water outlet opening 13 is a maximum of 90%, more preferably a maximum of 80% or even a maximum of 65% of the propeller diameter.
  • the pre-nozzle 10a is as in Fig. 1 shown with respect to the propeller shaft 41 of the ship shifted upwards.
  • rotation axis 18 of the pre-nozzle 10a and propeller axis 41 do not coincide.
  • This has the advantage that, in particular in the case of large, complete ships, in which the region of the unfavorable afterflow is usually in the upper propeller inlet region, the water inflow velocity is more intensified here by the pre-jet effect than in the lower propeller inlet region.
  • the water inflow direction 15 indicates the inflow direction of the water in the direction of the pre-nozzle 10a and thus also the direction of forward travel of the ship in the opposite direction.
  • FIGS. 2 and 3 further show that the water inlet side opening 12 of the pre-nozzle 10a is extended downwards.
  • the opening surfaces 19, 20 enclosed by the front-side edges 31, 32 are parallel to one another.
  • the water inlet-side pre-nozzle opening 12 is beveled viewed from top to bottom.
  • the water inlet opening area 19 enclosed by the end edge 31 of the nozzle shell 11 of the pre-nozzle 10a is formed over two levels 19a, 19b. These two levels are at an angle 36 which is greater than 90 ° and less than 180 ° to each other.
  • the downwardly beveled water inlet opening surface 19 forms a cutting angle 27 to the cross-sectional area 34 of the pre-nozzle 10a in the region of the bend 42 and the imaginary parallel displaced cross-sectional area 34 of the pre-nozzle 10a.
  • the pre-nozzle 10a thus has a shorter profile length 22 in the lower region than in the upper region.
  • the profile length 21, 22 viewed from top to bottom is constant up to the region of the bend 42.
  • the profile length decreases 21, 22 viewed from top to bottom between kink 42 and the lower profile line 24 linearly.
  • the opening angle 30 of the pre-nozzle 10a which is formed by the upper and lower profile line 23, 24 of the pre-nozzle 10a, is greater than twice the upper profile angle 28, which by the two legs, upper profile line 23 and rotation axis 18 of the pre-nozzle 10a is formed.
  • the lower profile angle 29 is formed by the two legs, rotation axis 18 of the pre-nozzle 10 a and lower profile line 24.
  • the lower profile angle 29 corresponds to the sum of the cutting angle 27 and the upper profile angle 28, resulting in a downwardly enlarged opening angle 30, which thus corresponds to the sum of the double upper profile angle 28 and the cutting angle 27.
  • the Vordüsenö Stamms character 19 is enlarged in comparison to an opening of a pre-nozzle with circular and mutually parallel opening surfaces and in particular increases downwards.
  • the opening 12 has an elliptical shape by its bevel in the lower region in plan view from the front.
  • the length of the water inlet-side Vordüsenö Stamms simulation 19 is also in the vertical direction, ie viewed from the upper profile line 23 to the lower profile line 24 longer than in the horizontal direction. The length runs in the vertical direction over the two levels of the water inlet opening surface 19, or along the opening area.
  • the upper and lower profile lines 23, 24 of the pre-nozzle 10a correspond to the generatrices in the uppermost and in the lowest area of the pre-nozzle 10a.
  • FIGS. 2 and 3 further show two brackets 25, 26, wherein a bracket 25 in the upper region of the pre-nozzle 10a and the other bracket 26 in the lower region the pre-nozzle 10a is located.
  • the two brackets 25, 26 are used for attachment or attachment of the pre-nozzle 10a with the hull.
  • the number of brackets 25, 26 may vary.
  • the upper bracket 25 is disposed substantially outboard of the pre-nozzle 10a, and the lower bracket 26 is disposed substantially inward of the pre-nozzle 10a with portions of both brackets 25, 26 projecting forward beyond the pre-nozzle 10a.
  • the effect of the pre-nozzle 10a and the associated acceleration of the water flow in the upper region is greater than in the lower region.
  • the acceleration section within the pre-nozzle 10a is thus shorter in the lower region than in the upper region. This ensures that the water flow in the upper region, ie in the region of the unfavorable downstream flow is accelerated more than in the lower region.
  • the 4 to 6 also show a pre-nozzle 10b with extended water inlet opening 10.
  • the pre-nozzle 10a according to the Fig. 1 to 3 has the in the 4 to 6 shown pre-nozzle 10b also in the upper region of the pre-nozzle 10b longer profile length 21 than in the lower region of the pre-nozzle 10b.
  • the water inlet opening 12 is beveled viewed from top to bottom.
  • the water inlet opening surface 19 is formed only over a plane, this plane is not completely parallel to the cross-sectional area 34 of the pre-nozzle 10b or to the water outlet surface 20 of the pre-nozzle 10b by the bevel.
  • the opening angle 30 of the pre-nozzle 10b thus corresponds to the sum of the upper and the lower profile angle 28, 29, wherein both profile angles 28, 29 of the pre-nozzle 10b are the same size. Due to the bevel viewed from top to bottom, an elliptical opening shape is also created from the front when the top view of the pre-nozzle 10b is viewed from above.
  • the length of the water inlet opening surface 19 in the vertical direction, that is viewed from top to bottom, between the upper and lower profile line 23, 24, is thus also longer than the width, or length in the horizontal direction of the water inlet opening surface 19.
  • the lengths are in each case, or along, the opening area.
  • Fig. 7 to 9 show a pre-nozzle 10c with two mutually parallel opening surfaces 19, 20.
  • the pre-nozzle 10c has a constant profile length 21, 22 on.
  • the opening angle 30 thus corresponds to the sum of the lower and upper profile angle 28, 29, wherein lower and upper profile angle 28, 29 are equal.
  • a cutting angle 27 between the water inlet opening surface 19 and cross-sectional area 34 of the pre-nozzle 10c does not arise here, or is 0 °.
  • the nozzle shell 11 of the pre-nozzle 10c consists essentially of four segments, two arcuate segments 39, 40 and two straight segments 37, 38.
  • the two straight segments 37, 38 are arranged opposite one another in the lateral areas of the pre-nozzle 10c.
  • the front view of the pre-nozzle 10c in Fig. 7 shows that the two straight sections 37, 38 lie at the height of the axis of rotation 18 of the pre-nozzle 10c and thus connect a lower and an upper arcuate portion 39, 40 with each other.
  • the two arcuate portions 39, 40 are as in Fig. 7 shown semicircles or semicircular arc sections. However, the arcuate portions 39, 40 could also have another configuration, for example an elliptical configuration.
  • the front nozzle 10c has a water inlet opening area 19 whose height or length in the vertical direction is greater than the width or length in the horizontal direction.
  • the two rectilinear sections 37, 38 recognizable by cross-sectional viewing are as in FIG Fig. 9 shown constant over the entire length of the pre-nozzle 10c. But it would also be possible, these straight sections 37, 38 along the pre-nozzle 10c, for example, from the water inlet opening 12 to the water outlet opening 13, wedge-shaped or otherwise form.
  • the cross-section of the straight sections 37, 38 which in the present example is rectangular and constant, would change along the pre-nozzle 10c. For example, the rectangular cross-sectional area could decrease viewed from the front to the rear.
  • the rectilinear sections 37, 38 to taper to a point, which means that the cross-sectional area 34 of the pre-nozzle 10c in the region of the water outlet opening 13 would not have any straight sections 37, 38.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Hydraulic Turbines (AREA)
  • Nozzles (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Jet Pumps And Other Pumps (AREA)

Description

Die Erfindung betrifft eine Vordüse für ein Antriebssystem eines Wasserfahrzeugs zur Verbesserung der Energieeffizienz.The invention relates to a pre-nozzle for a propulsion system of a watercraft to improve energy efficiency.

Aus dem Stand der Technik sind Antriebssysteme für unterschiedliche Schiffstypen zur Verbesserung des Antriebsleistungsbedarfes bekannt. Aus der EP 2 100 808 A1 ist beispielsweise ein Antriebssystem für ein Schiff basierend auf einer Vordüse bekannt. Das Antriebssystem besteht aus einem Propeller sowie einer Vordüse, welche unmittelbar vor dem Propeller angebracht ist und in der Vordüse integrierte Flossen bzw. Tragflügel aufweist. Die Vordüse hat im Wesentlichen die Form eines flachen Kegelausschnittes wobei beide Öffnungen, sowohl die Wassereintritts- sowie auch die Wasseraustrittsöffnung, als kreisrunde Öffnungen ausgebildet sind und die Wassereintrittsöffnung einen größeren Durchmesser als die Wasseraustrittsöffnung aufweist. Dadurch ist es möglich die Propellerzuströmung zu verbessern sowie durch die in der Vordüse integrierten Flossen bzw. Tragflügel Verluste im Propellerstrahl durch Vordrallerzeugung zu verringern.From the prior art drive systems for different types of ships to improve the drive power demand are known. From the EP 2 100 808 A1 For example, a propulsion system for a ship based on a pre-jet is known. The drive system consists of a propeller and a pre-nozzle, which is mounted directly in front of the propeller and has integrated fins or wings in the pre-nozzle. The pre-nozzle has essentially the shape of a flat conical cutout, wherein both openings, both the water inlet and the water outlet opening, are designed as circular openings and the water inlet opening has a larger diameter than the water outlet opening. This makes it possible to improve the propeller inflow as well as to reduce losses in the propeller jet by pre-twist generation by means of the fins or hydrofoils integrated in the pre-nozzle.

Aufgabe der vorliegenden Erfindung ist es, eine Vordüse für ein Antriebssystem eines Wasserfahrzeuges zur weiteren Verbesserung der Antriebseffizienz, insbesondere für langsame, völlige Schiffe, zu schaffen.
Gelöst wird diese Aufgabe durch eine Vorrichtung mit den Merkmalen des Anspruches 1.
Object of the present invention is to provide a pre-nozzle for a propulsion system of a watercraft to further improve the drive efficiency, especially for slow, complete ships.
This object is achieved by a device having the features of claim 1.

Hiernach ist die Vordüse für ein Antriebssystem eines Wasserfahrzeuges, insbesondere eines Schiffes der eingangsbeschriebenen Art, erfindungsgemäß in der Weise ausgebildet, dass innerhalb der Vordüse ein Fin-System angeordnet ist. Dabei ist die Vordüse in Schifffahrtsrichtung vor einem Propeller angeordnet. Unter "in Schifffahrtsrichtung" ist hier die Vorwärtsfahrrichtung eines Schiffes zu verstehen. Innerhalb der Vordüse ist kein Propeller, wie z. B. bei Kortdüsen, angeordnet. Des Weiteren ist die Vordüse beabstandet zum Propeller angeordnet. Das innerhalb der Vordüse angeordnete Fin-System besteht aus mehreren, beispielsweise vier oder fünf, Fins welche radial zur Propellerachse angeordnet sind und mit der Innenfläche des Düsenmantels verbunden sind. Dabei sind die einzelnen Fins vorzugsweise unsymmetrisch innerhalb der Vordüse angeordnet.Thereafter, the pre-nozzle for a drive system of a watercraft, in particular of a ship of the type described above, according to the invention is designed in such a way that within the pre-nozzle a fin system is arranged. The pre-nozzle is arranged in the shipping direction in front of a propeller. By "in the direction of navigation" is here the forward direction of a ship to understand. Within the pre-nozzle is no propeller, such. B. in Kortdüsen, arranged. Furthermore, the pre-nozzle is spaced from the propeller. The arranged within the pre-nozzle fin system consists of several, for example four or five, fins which are arranged radially to the propeller axis and are connected to the inner surface of the nozzle shell. The individual fins are preferably arranged asymmetrically within the pre-nozzle.

Unter "innerhalb der Vordüse" ist derjenige Bereich zu verstehen, welcher durch den Düsenmantel einer an den beiden Öffnungen gedanklich geschlossenen Vordüse eingeschlossen ist. Somit sind die einzelnen Fins des Fin-Systems derart angeordnet, dass sie sich im Wesentlichen innerhalb der Vordüse befinden und bevorzugt komplett innerhalb der Vordüse befinden, d.h. nicht aus einer oder beiden Öffnungen der Vordüse herausragen. Im Gegensatz dazu ist der Propeller des Schiffs derart angeordnet, dass er sich im Wesentlichen außerhalb der Vordüse befindet und bevorzugt an keiner Stelle in die Vordüse, d.h. durch eine der beiden Öffnungen der Vordüse hineinragt."Within the pre-nozzle" is to be understood that region which is enclosed by the nozzle casing of a frontally closed nozzle at the two openings. Thus, the individual fins of the fin system are arranged such that they are substantially within the pre-nozzle and preferably located entirely within the pre-nozzle, i. do not protrude from one or both openings of the pre-nozzle. In contrast, the propeller of the ship is arranged so that it is substantially outside the pre-nozzle and preferably at no point in the pre-nozzle, i. protrudes through one of the two openings of the pre-nozzle.

Vorzugsweise ist die Ausdehnung der einzelnen Fins des Fin-Systems in Längsrichtung der Vordüse kleiner, bzw. kürzer, als die Länge der Vordüse an ihrer kürzesten Stelle. Unter Ausdehnung ist dabei der Bereich bzw. die Länge entlang der Innenfläche der Vordüse zu verstehen, über die sich die Fins in Vordüsenlängsrichtung erstrecken. Besonders bevorzugt ist die Ausdehnung der einzelnen Fins in Längsrichtung der Vordüse kleiner als 90 %, ganz besonders bevorzugt kleiner als 80 % oder auch kleiner als 60 % der Länge der Vordüse an der kürzesten Stelle der Vordüse. Die Längsrichtung entspricht der Strömungsrichtung. Dabei können die einzelnen Fins gleich oder unterschiedlich angestellt sein. Das bedeutet, dass die Anstellwinkel der einzelnen Fins unterschiedlich gewählt und eingestellt sein können. Der Anstellwinkel entspricht dem Winkel zwischen einer Mantellinie entlang der Innenfläche der Vordüse und der der Innenfläche zugewandten Seite der Kante der Fins. Somit sind die Fins in einem Winkel, dem Anstellwinkel, zur Strömungsrichtung angestellt. Weiterhin ist es bevorzugt, dass die Fins im Wesentlichen im hinteren Bereich, d. h. im Propeller zugewandten Bereich, angeordnet sind. Somit weist der Eintrittsbereich der Vordüse kein Fin-System auf und dient ausschließlich der Beschleunigung des Wasserflusses. Das im hinteren Bereich der Vordüse angeordnete, bzw. das im Anschluss an den Eintrittsbereich angeordnete Fin-System dient (zusätzlich) der Vordrallerzeugung.Preferably, the extension of the individual fins of the fin system in the longitudinal direction of the pre-nozzle is smaller, or shorter, than the length of the pre-nozzle at its shortest point. Expansion is to be understood as meaning the region or the length along the inner surface of the pre-nozzle, over which the fins extend in the pre-nozzle longitudinal direction. Particularly preferably, the expansion of the individual fins in the longitudinal direction of the pre-nozzle is less than 90%, very particularly preferably less than 80% or even less than 60% of the length of the pre-nozzle at the shortest point of the pre-nozzle. The longitudinal direction corresponds to the flow direction. The individual fins can be employed the same or different. This means that the angles of attack of the individual fins can be chosen and adjusted differently. The angle of attack corresponds to the angle between a surface line along the inner surface of the pre-nozzle and the inner surface-facing side of the edge of the fins. Thus, the fins are set at an angle, the angle of attack, to the flow direction. Furthermore, it is preferred that the fins are arranged substantially in the rear region, ie in the region facing the propeller. Thus, the inlet area of the pre-nozzle has no fin system and serves only to accelerate the Water flow. The fin system arranged in the rear region of the pre-nozzle or arranged downstream of the inlet region serves (additionally) for pre-twist generation.

Ferner ist die erfindungsgemäße Vordüse rotationsasymmetrisch ausgebildet. Dabei ist die Rotationsachse der Vordüse längs der Vordüse derart angeordnet, dass sie bei Querschnittsbetrachtung der Vordüse sowohl in vertikaler wie auch horizontaler Ausrichtung in der Mitte liegt sowie bevorzugt durch die Mitte der Wasseraustrittsöffnung verläuft. Durch die rotationsasymmetrische Ausbildung der Vordüse wird die Vordüse somit nicht bei Drehung um jeden beliebigen Winkel um die Rotationsachse auf sich selbst abgebildet. Dabei ist es möglich, dass einzelne Flächerisegmente, beispielsweise ein Ausschnitt im Bereich der Wasseraustrittsöffnung, in sich rotationsasymmetrische Eigenschaften aufweisen, die Vordüse als Gesamteinheit allerdings keinen Rotationskörper darstellt. Ferner bezieht sich die Rotationsasymmetrie nicht auf das innerhalb der Vordüse angeordnete Fin-System. Die Vordüse ist also unabhängig von der Anordnung der einzelnen Fins rotationsasymmetrisch.Furthermore, the pre-nozzle according to the invention is rotationally asymmetrical. In this case, the axis of rotation of the pre-nozzle along the pre-nozzle is arranged such that it lies in cross-sectional view of the pre-nozzle in both the vertical and horizontal orientation in the middle and preferably extends through the center of the water outlet opening. As a result of the rotationally asymmetrical design of the pre-nozzle, the pre-nozzle is thus not imaged onto itself upon rotation about any angle about the axis of rotation. It is possible that individual flächisegmente, for example, a section in the region of the water outlet opening, have rotationally asymmetric properties in itself, the orifice as a whole unit, however, does not represent a body of revolution. Furthermore, rotational asymmetry does not relate to the fin system located within the pre-nozzle. The pre-nozzle is thus independent of the arrangement of the individual fins rotationally asymmetric.

Der Propeller welcher hinter der Vordüse und beabstandet davon angeordnet ist, ist feststehend, d. h. um die Propellerachse drehbar aber nicht (horizontal oder vertikal) schwenkbar, und in einem Stevenrohr drehbar gelagert. Die Vordüse kann dabei mit nach oben verschobener, oberhalb der Propellerachse liegender Rotationsachse angeordnet sein. Somit liegt der Schwerpunkt der Vordüse oberhalb der Propellerachse. Dabei kann die Vordüse derart angeordnet sein, dass ihre Rotationsachse parallel zur Propellerachse verläuft oder in einem Winkel zur Propellerachse verläuft und somit in Bezug auf die Propellerachse schräg gestellt ist.The propeller, which is located behind the pre-nozzle and spaced therefrom, is stationary, i. H. rotatable about the propeller axis but not (horizontally or vertically) pivotable, and rotatably mounted in a sterntube. The pre-nozzle can be arranged with the rotation axis shifted upwards above the propeller axis. Thus, the center of gravity of the pre-nozzle is above the propeller axis. In this case, the pre-nozzle can be arranged such that its axis of rotation is parallel to the propeller axis or extends at an angle to the propeller axis and thus is inclined with respect to the propeller axis.

Die Vordüse ist in horizontaler Richtung mittig, bezogen auf die Propellerachse, ausgerichtet. Somit liegen die Rotationsachse der Vordüse und die Propellerachse in einer vertikalen Ebene.The pre-nozzle is centered in the horizontal direction with respect to the propeller axis. Thus, the axis of rotation of the pre-nozzle and the propeller axis are in a vertical plane.

Aus dem Stand der Technik sind Düsen bekannt, welche durch eine annähernd vertikale Ebene in zwei Hälften geteilt sind, wobei beide Hälften zueinander in Längsrichtung entlang der vertikalen Ebene versetzt angeordnet sind. Die erfindungsgemäße Vordüse besteht nicht aus zwei oder mehr in Längsrichtung versetzten Hälften. Somit erstreckt sich die Wasseraustrittsöffnungsfläche bevorzugt über nur eine Ebene und insbesondere nicht über zueinander versetzte Ebenen.Nozzles are known in the prior art which are divided into two halves by an approximately vertical plane, with both halves being offset from one another in the longitudinal direction along the vertical plane. The pre-nozzle according to the invention does not consist of two or more longitudinally offset halves. Thus, the water outlet opening surface preferably extends over only one plane and in particular not over mutually offset planes.

Durch die erfindungsgemäße Vordüse ist es somit möglich die Antriebseffizienz eines Schiffes dadurch weiter zu verbessern, dass durch die Ausbildung der Vordüse die Propellerzuströmung verbessert wird und durch das in der Vordüse angeordnete Fin-System durch Vordrallerzeugung die Verluste im Propellerstrahl verringert werden. Insbesondere ist es durch die rotationsasymmetrische Ausbildung der Vordüse möglich, Bereiche des ungünstigen Nachstromes zu berücksichtigen und somit die Propellerzuströmung weiter zu verbessern.The pre-nozzle according to the invention thus makes it possible to further improve the propulsion efficiency of a ship by improving the propulsion inflow through the formation of the pre-nozzle and reducing the losses in the propeller jet by the pre-nozzle fin system by pre-twisting. In particular, it is possible by the rotationally asymmetrical design of the pre-nozzle to take into account areas of unfavorable downstream flow and thus to further improve the propeller inflow.

Insbesondere bei großen, völligen Schiffen, wie z. B. Tanker, Bulker oder Schlepper, ist die Wassergeschwindigkeit im hinteren Bereich des Schiffes, also im Bereich des Propellers und der Vordüse, aufgrund der Schiffsform bzw. der Ausgestaltung des Schiffskörpers, unterschiedlich. Beispielsweise ist es möglich, dass die Wassergeschwindigkeit im unteren Bereich der Vordüse und des Propellers schneller ist als im oberen Bereich der Vordüse bzw. des Propellers. Dies ist insbesondere dadurch bedingt, dass die Wasserzuströmgeschwindigkeit in Richtung Vordüse und Propeller im oberen Bereich durch den Schiffskörper stärker abgebremst bzw. abgelenkt wird als im unteren Bereich. Durch die rotationsasymmetrische Ausgestaltung der Vordüse ist es möglich die spezielle Schiffsform bzw. die dadurch verbundene Beeinflussung der Wasserzuströmgeschwindigkeiten zu berücksichtigen und somit die Wasserzuströmgeschwindigkeit insbesondere in den Bereichen ungünstigen Nachstroms, beispielsweise im oberen Bereich der Vordüse bzw. des Propellers, durch die Vordüse stärker zu beschleunigen als im Bereich des günstigeren Nachstromes, beispielsweise im unteren Bereich der Vordüse bzw. des Propellers. Dadurch wird die Propelleranströmgeschwindigkeit des Wassers gleichmäßiger verteilt. Somit werden durch die erfindungsgemäße Vordüse Bereiche mit unterschiedlichem Nachstrom, insbesondere ein im oberen und unteren Bereich der Vordüse unterschiedliches Nachstromverhältnis in Bezug auf die jeweilige Strömungsgeschwindigkeit berücksichtigt.Especially with large, complete ships, such. As tankers, bulkers or tugs, the water velocity in the rear of the ship, so in the range of the propeller and the pre-nozzle, due to the ship shape or the design of the hull, different. For example, it is possible that the water velocity in the lower region of the pre-nozzle and the propeller is faster than in the upper region of the pre-nozzle or of the propeller. This is due in particular to the fact that the water inflow velocity in the direction of the pre-nozzle and propeller in the upper region is more strongly decelerated or deflected by the hull than in the lower region. Due to the rotationally asymmetric configuration of the pre-nozzle, it is possible to take into account the specific shape of the ship or the influence of the water inflow rates and thus to accelerate the water inflow speed more particularly through the pre-nozzle, especially in the areas of unfavorable aftercurrent, for example in the upper region of the pre-nozzle or propeller as in the region of the cheaper downstream, for example, in the lower region of the pre-nozzle or the propeller. This will distribute the propeller inflow velocity of the water more evenly. Thus be through the pre-nozzle according to the invention takes into account regions with different secondary flow, in particular a different downstream flow ratio in the upper and lower regions of the pre-jet with respect to the respective flow velocity.

Ein weiterer Vorteil ist, dass durch die erfindungsgemäße Vordüse eine Wirbelerzeugung vermieden bzw. reduziert werden kann. Das bedeutet, dass der durch den Schiffskörper abgelenkte Wasserstrom nicht bzw. in geringem Maße auf Außenflächen des Düsenmantels auftritt und somit keine bzw. weniger Wasserwirbel erzeugt werden. Insgesamt kann somit der Propulsionswirkungsgrad erhöht werden. Mit der erfindungsgemäßen Vordüse sowie insbesondere aufgrund der Anordnung der Vordüse wird die Strömung günstig beeinflusst ohne dabei einen hohen Widerstand oder starke Wirbel zu erzeugen. Im Ergebnis kann durch die erfindungsgemäße Vorrichtung der Propellerschub bei gleicher Antriebsleistung erhöht werden oder alternativ bei geringerer Antriebsleistung ohne Verringerung des Propellerschubs Leistung und somit Energie eingespart werden.Another advantage is that vortex generation can be avoided or reduced by the pre-nozzle according to the invention. This means that the water flow diverted through the hull does not occur, or occurs to a lesser extent, on the outer surfaces of the nozzle shell, and thus no or fewer vortices are produced. Overall, thus, the propulsion efficiency can be increased. With the pre-nozzle according to the invention and in particular due to the arrangement of the pre-nozzle, the flow is favorably influenced without generating a high resistance or strong vortex. As a result, can be increased by the inventive device, the propeller thrust at the same drive power or alternatively with less drive power without reducing the propeller thrust power and thus energy can be saved.

Vorzugsweise ist die Wassereintrittsöffnung verglichen mit einer kreisförmigen Öffnung einer rotationssymmetrischen Vordüse nach oben oder nach unten erweitert. Die Richtungen oben und unten beziehen sich hier auf den eingebauten Zustand der Vordüse an ein Schiff. Abhängig vom Bereich des ungünstigen Nachstromes bzw. in Abhängigkeit vom Schiffskörper ist die Wassereintrittsöffnung der erfindungsgemäßen Vordüse nach oben oder nach unten erweitert. Es ist auch möglich, dass die Wassereintrittsöffnung der Vordüse nach oben und nach unten erweitert ist. Durch die Erweiterung der Wassereintrittsöffnung kann eine größere Wassermenge in die Wassereintrittsöffnung der Vordüse hineinfließen, wobei Verluste durch den vom Schiffskörper abgelenkten Wasserstrom, welcher zum Teil bei einer nicht erweiterten Wassereintrittsöffnung der Vordüse auf den Außenbereich des Düsenmantels trifft, verringert werden. Durch eine verbesserte Anströmung wird die Effizienz erhöht.Preferably, the water inlet opening is expanded upwards or downwards compared with a circular opening of a rotationally symmetrical pre-nozzle. The directions above and below refer here to the installed state of the nozzle to a ship. Depending on the region of the unfavorable downstream flow or in dependence on the hull, the water inlet opening of the pre-nozzle according to the invention is widened upwards or downwards. It is also possible that the water inlet opening of the pre-nozzle is extended upwards and downwards. Due to the widening of the water inlet opening, a larger amount of water can flow into the water inlet opening of the pre-nozzle, losses being reduced by the water flow deflected by the hull, which partly hits the outside area of the nozzle shell when the pre-nozzle does not have a widened water inlet opening. Improved flow improves efficiency.

Des Weiteren ist es bevorzugt, dass mindestens eine der beiden Öffnungsflächen, Wassereintrittsöffnungsfläche oder Wasseraustrittsöffnungsfläche, in vertikaler Richtung eine größere Länge als in horizontaler Richtung aufweist. Unter Öffnungsflächen der Vordüse sind jeweils die durch die stirnseitigen Kanten des Düsenmantels der Vordüse eingeschlossenen Flächen zu verstehen. Der Düsenmantel wird typischerweise vom sogenannten "Düsenring" gebildet. Bei dem Düsenmantel handelt es sich um die sogenannte Ummantelung der Vordüse, wobei der Düsenmantel aus einer Innenfläche und einer Außenfläche besteht. Die beiden Flächen sind dabei in der Regel zueinander beabstandet. Das Fin-System ist nicht Bestandteil des Düsenmantels sondern an der Innenfläche des Düsenmantels mit diesem verbunden. Dabei kann die Öffnungsfläche über eine oder über mehrere ebene oder gekrümmte Ebenen ausgebildet sein. Unter der Länge in vertikaler Richtung ist dabei die Länge der Öffnungsfläche von oben nach unten betrachtet entlang ihrer vertikalen Mittellinie zu verstehen. Unter der größten Länge in horizontaler Richtung ist somit analog zur vertikalen Richtung die Breite der Öffnungsfläche im Bereich ihrer größten Ausdehnung zu verstehen. Eine ellipsenförmige Öffnungsfläche weist beispielsweise somit ihre größte Länge in horizontaler Richtung im Bereich ihrer horizontalen Mittellinie und ihre größte Länge in vertikaler Richtung im Bereich ihrer vertikalen Mittellinie auf. Die beiden Öffnungsflächen, die Eintrittsöffnungsfläche sowie die Austrittsöffnungsfläche, können dabei parallel zueinander, teilweise parallel zueinander, sowie nicht parallel zueinander ausgebildet sein. Die Längen in vertikaler und horizontaler Richtung verlaufen dabei immer auf der Öffnungsfläche und sind somit nicht zwingenderweise direkte Verbindungen der oberen stirnseitigen Kante des Düsenmantels mit der unteren Kante des Düsenmantels. Falls die Öffnungsflächen über mehrere Ebenen ausgebildet ist, weist zumindest eine der beiden Längen einen Knick und/oder einen Bogenverlauf auf.Furthermore, it is preferred that at least one of the two opening surfaces, water inlet opening surface or water outlet opening surface, in the vertical direction has a greater length than in the horizontal direction. Under opening surfaces of the pre-nozzle in each case to be understood by the frontal edges of the nozzle shell of the pre-nozzle enclosed areas. The nozzle jacket is typically formed by the so-called "nozzle ring". The nozzle casing is the so-called casing of the pre-nozzle, wherein the nozzle casing consists of an inner surface and an outer surface. The two surfaces are usually spaced apart from each other. The fin system is not part of the nozzle shell but connected to the inner surface of the nozzle shell with this. In this case, the opening area may be formed over one or more plane or curved planes. The length in the vertical direction is understood to mean the length of the opening area viewed from top to bottom along its vertical center line. The greatest length in the horizontal direction is therefore analogous to the vertical direction, the width of the opening area in the region of its largest dimension to understand. For example, an ellipsoidal opening surface thus has its greatest length in the horizontal direction in the region of its horizontal center line and its greatest length in the vertical direction in the region of its vertical center line. The two opening surfaces, the inlet opening surface and the outlet opening surface, may be parallel to each other, partially parallel to each other, and not formed parallel to each other. The lengths in the vertical and horizontal directions always run on the opening surface and thus are not necessarily direct connections of the upper end edge of the nozzle shell with the lower edge of the nozzle shell. If the opening surfaces is formed over several levels, at least one of the two lengths has a kink and / or a curve course.

Bevorzugterweise ist die wassereintrittsseitige Öffnungsfläche der Vordüse größer als eine wassereintrittsseitige Öffnungsfläche einer rotationssymmetrischen Vordüse mit gleichem Mittenradius. Unter Mittenradius ist der Radius der Vordüse des oberen Düsenmantelbogens bei Querschnittsbetrachtung der Vordüse im Bereich der Profilmitte der Vordüse zu verstehen. Somit stellt der Mittenradius den Radius des oberen Kreisbogens dar, welcher in einem Querschnitt in der, bezogen auf die Länge der Vordüse, Mitte der Vordüse sichtbar wäre.Preferably, the water inlet-side opening area of the pre-nozzle is greater than a water-inlet-side opening area of a rotationally symmetrical pre-nozzle with the same center radius. The center radius is understood to be the radius of the front nozzle of the upper nozzle jacket arc in the case of a cross-sectional view of the pre-nozzle in the region of the profile center of the pre-nozzle. Thus, the center radius represents the radius of the upper circular arc, which would be visible in a cross section in relation to the length of the pre-nozzle, center of the pre-nozzle.

Des Weiteren ist es bevorzugt, dass die Vordüse zumindest bereichsweise die Propellerachse des Schiffes umschließt. Dabei ist die Vordüse vorteilhaft derart angeordnet, dass ihre Rotationsachse oberhalb der Propellerachse liegt, mit ihrem unteren Düsenmantelsegment die Propellerachse aber noch umschließt. Alternativ kann das untere Düsenmantelsegment auch auf der Propellerachse liegen.Furthermore, it is preferred that the pre-nozzle at least partially encloses the propeller axis of the ship. In this case, the pre-nozzle is advantageously arranged such that its axis of rotation is above the propeller axis, but with its lower nozzle shell segment, the propeller axis still encloses. Alternatively, the lower nozzle shell segment can also be on the propeller axis.

Ferner ist es bevorzugt, dass die Eintrittsöffnungsfläche der Vordüse nicht parallel bzw. nur bereichsweise parallel zur Wasseraustrittsöffnungsfläche der Vordüse angeordnet ist. Beispielsweise könnte die Wasseraustrittsöffnungsfläche der Vordüse (vollständig) parallel zum Querschnitt der Vordüse bzw. parallel zur Rotationsachsensenkrechten sein und die Wassereintrittsöffnungsfläche zur Querschnittsfläche der Vordüse bzw. zur Rotationsachsensenkrechten der Vordüse schräggestellt sein bzw. (zumindest bereichsweise) einen Winkel aufweisen.Furthermore, it is preferred that the inlet opening area of the pre-nozzle is not arranged parallel or only in regions parallel to the water outlet opening area of the pre-nozzle. For example, the water outlet opening area of the pre-nozzle could be (fully) parallel to the cross-section of the pre-nozzle or parallel to the axis of rotation perpendicular and the water inlet opening surface to be inclined to the cross-sectional area of the pre-nozzle or to Rotationsachsensenkrechten the pre-nozzle or (at least partially) have an angle.

Bevorzugterweise weist die Vordüse im oberen Bereich eine größere Profillänge als im unteren Bereich auf. Die Profillänge verläuft entlang der äußeren Mantelfläche der Vordüse und somit entlang einer Mantellinie des Düsenmantels. Somit ist die Profillänge nicht konstant und nimmt von oben nach unten betrachtet ab. Dabei kann die Profillänge stufenartig oder sprungartig, linear, oder einer beliebig anderen Funktion folgend von oben nach unten abnehmen. Des Weiteren ist es möglich, dass die Profillänge über einen Bereich, beispielsweise im oberen Bereich der Vordüse konstant bleibt und nur im unteren Bereich abnimmt. Ferner ist es bevorzugt, dass die Profillänge der Vordüse im Bereich der Rotationsachse größer als im unteren Bereich der Vordüse ist.Preferably, the pre-nozzle has a greater profile length in the upper region than in the lower region. The profile length runs along the outer surface of the pre-nozzle and thus along a surface line of the nozzle shell. Thus the profile length is not constant and decreases from top to bottom. In this case, the profile length can decrease stepwise or suddenly, linearly or following any other function from top to bottom. Furthermore, it is possible that the profile length remains constant over a range, for example in the upper region of the pre-nozzle and decreases only in the lower region. Furthermore, it is preferred that the profile length of the pre-nozzle in the region of the axis of rotation is greater than in the lower region of the pre-nozzle.

Somit ist die Durchströmlänge von oben nach unten betrachtet innerhalb der Vordüse nicht konstant, bzw. im oberen Bereich der Vordüse länger als im unteren Bereich der Vordüse. Dadurch sowie auch insbesondere aufgrund die Verengung des Querschnitts der Vordüse und der Anstellung zur Strömungsrichtung wird die Wassergeschwindigkeit im oberen Bereich der Vordüse stärker bzw. über eine längere Beschleunigungsstrecke beschleunigt wird als im unteren Bereich der Vordüse. Somit kann durch die Vordüse die Wassergeschwindigkeit im Bereich des ungünstigen Nachstromes, im oberen Eintrittsbereich der Vordüse, stärker beschleunigt werden als das bereits mit höherer Geschwindigkeit einströmende Wasser im unteren Bereich der Vordüse. Somit ist die Wasseraustrittsgeschwindigkeit und somit die Propellerzuströmgeschwindigkeit im oberen und unteren Bereich ausgeglichener bzw. die Geschwindigkeitsdifferenz ist relativ gering. Ferner entspricht die Verringerung der Profillänge von oben nach unten betrachtet einer Erweiterung der Wassereintrittsöffnungsfläche nach unten, da somit im unteren Bereich mehr Wasser, welches bei konstanter Profillänge der Vordüse teilweise von außen auf den Mäntel der Vordüse geströmt wäre, nunmehr von der Öffnung erfasst wird und in die Vordüse einströmen kann.Thus, viewed from top to bottom, the flow-through length is not constant within the pre-nozzle, or longer in the upper region of the pre-nozzle than in the lower region of the pre-nozzle. As a result, as well as in particular due to the narrowing the cross section of the pre-nozzle and the adjustment to the flow direction, the water velocity is accelerated in the upper region of the pre-nozzle more or over a longer acceleration distance than in the lower region of the pre-nozzle. Thus, by the pre-nozzle, the water velocity in the region of the unfavorable downstream flow, in the upper inlet region of the pre-nozzle, can be accelerated more than the water already flowing in at higher velocity in the lower region of the pre-nozzle. Thus, the water outlet velocity and thus the Propellerzuströmgeschwindigkeit is more balanced in the upper and lower regions and the speed difference is relatively low. Furthermore, the reduction in the profile length from top to bottom corresponds to an extension of the water inlet opening surface downwards, as thus in the lower area more water, which would have flowed at a constant profile length of the pre-nozzle partially from the outside on the coats of the pre-nozzle, is now detected by the opening and can flow into the pre-nozzle.

Bevorzugterweise ist die Wassereintrittsöffnungsfläche der Vordüse derart vorgesehen, dass sie zur Querschnittsfläche der Vordüse bzw. zur Rotationsachsensenkrechten der Vordüse mindestens einen Schnittwinkel aufweist. Dabei ist unter Schnittwinkel derjenige Winkel zu verstehen, welcher sich bei gedanklicher Verlängerung der Wassereintrittsöffnungsfläche sowie der Querschnittsfläche der Vordüse im Bereich des Schnittpunktes der beiden Schnittflächen ergibt. Der Schnittwinkel entspricht somit auch dem Winkel zwischen Wassereintrittsöffnungsfläche und dem Lot auf der Vordüsenachse, bzw. der Rotationsachse der Vordüse. Da die Wassereintrittsöffnungsfläche über mehrere Ebenen ausgebildet sein kann, können die Wassereintrittsöffnungsfläche und Querschnittsfläche somit mehrere, beispielsweise zwei, Schnittwinkel zueinander aufweisen. Bevorzugterweise ist der Schnittwinkel kleiner gleich 90°, besonders bevorzugt kleiner als 60° und ganz besonders bevorzugt kleiner als 30°.Preferably, the water inlet opening surface of the pre-nozzle is provided such that it has at least one intersection angle to the cross-sectional area of the pre-nozzle or to the rotation axis perpendicular to the pre-nozzle. Here, the term "angle of intersection" is to be understood as meaning the angle which results in the case of a mental extension of the water inlet opening area and of the cross-sectional area of the pre-nozzle in the area of the intersection of the two sectional areas. The cutting angle thus also corresponds to the angle between the water inlet opening surface and the solder on the pre-nozzle axis, or the axis of rotation of the pre-nozzle. Since the water inlet opening area can be formed over several levels, the water inlet opening area and cross-sectional area can thus have several, for example two, angles of intersection with one another. Preferably, the cutting angle is less than or equal to 90 °, more preferably less than 60 °, and most preferably less than 30 °.

Bevorzugterweise ist der Schnittwinkel zwischen der wassereintrittsseitigen Öffnungsfläche sowie der Querschnittsfläche der Vordüse mindestens in einem Bereich konstant. Dieser Bereich umfasst dabei mindestens 1 %, bevorzugt mindestens 5 % und besonders bevorzugt mindestens 20 % bezogen auf die Höhe der Vordüse im Bereich der Wasseraustrittsöffnung. Des Weiteren ist der Schnittwinkel zumindest in diesem Bereich größer als 0°. Beispielsweise könnte der Schnittwinkel von oben nach unten über die gesamte Höhe der Vordüse konstant sein. Des Weiteren ist vorgesehen, dass der Schnittwinkel lediglich in einem Bereich, beispielsweise der unteren Hälfte der Höhe der Vordüse, also unterhalb der Rotationsachse, konstant ist. Da die Höhe der Vordüse nicht konstant sein muss, wird die Höhe der Vordüse im Bereich der Wasseraustrittsöffnung als Referenz herangezogen.Preferably, the intersection angle between the water inlet-side opening area and the cross-sectional area of the pre-nozzle is constant at least in one area. This range encompasses at least 1%, preferably at least 5% and more preferably at least 20% based on the height of the pre-nozzle in the region of the water outlet opening. Furthermore, the cutting angle is greater than 0 °, at least in this area. For example, the cutting angle could be constant from top to bottom over the entire height of the pre-nozzle. Furthermore, it is provided that the cutting angle is constant only in a region, for example the lower half of the height of the pre-nozzle, that is to say below the axis of rotation. Since the height of the pre-nozzle does not have to be constant, the height of the pre-nozzle in the area of the water outlet opening is used as a reference.

Ferner ist es bevorzugt, dass der Öffnungswinkel der Vordüse größer als der doppelte obere Profilwinkel oder größer als der doppelte untere Profilwinkel ist. Dabei ist der Öffnungswinkel der Vordüse der Winkel zwischen oberer und unterer Profillinie der Vordüse. Die Profillinie ist die Mantellinie in Längsrichtung der Vordüse entlang der Außenfläche des Vordüsenmantels. Dabei verläuft die obere Profillinie entlang des höchsten Bereiches der Vordüse und die untere Profillinie entlang des tiefsten Bereiches der Vordüse. Die obere Profillinie weist somit dieselbe Länge wie die Profillänge im obersten Bereich der Vordüse auf. Die untere Profillinie entspricht der Länge der Profillänge im untersten Bereich der Vordüse. Der obere Profilwinkel entspricht dem Winkel zwischen der (gedanklich verlängerten) oberen Profillinie und der (gedanklich verlängerten) Rotationsachse der Vordüse. Der untere Profilwinkel entspricht somit dem Winkel zwischen der (gedanklich verlängerten) Rotationsachse sowie der (gedanklich verlängerten) unteren Profillinie. Der Öffnungswinkel der Vordüse entspricht somit der Summe des oberen Profilwinkels und des unteren Profilwinkels.Furthermore, it is preferred that the opening angle of the pre-nozzle is greater than twice the upper profile angle or greater than twice the lower profile angle. The opening angle of the pre-nozzle is the angle between the upper and lower profile line of the pre-nozzle. The profile line is the generatrix in the longitudinal direction of the pre-nozzle along the outer surface of the pre-nozzle jacket. The upper profile line runs along the highest part of the pre-nozzle and the lower profile line along the deepest part of the pre-nozzle. The upper profile line thus has the same length as the profile length in the uppermost region of the pre-nozzle. The lower profile line corresponds to the length of the profile length in the lowest area of the pre-nozzle. The upper profile angle corresponds to the angle between the (mentally elongated) upper profile line and the (mentally elongated) rotation axis of the pre-nozzle. The lower profile angle thus corresponds to the angle between the (mentally elongated) rotation axis and the (mentally extended) lower profile line. The opening angle of the pre-nozzle thus corresponds to the sum of the upper profile angle and the lower profile angle.

Bevorzugterweise ist der Öffnungswinkel größer als der doppelte obere Profilwinkel und somit ist der untere Profilwinkel größer als der obere Profilwinkel.Preferably, the opening angle is greater than twice the upper profile angle and thus the lower profile angle is greater than the upper profile angle.

Auch ist es bevorzugt, dass der Öffnungswinkel der Vordüse der Summe des doppelten Profilwinkels und des Schnittwinkels entspricht. Somit entspricht der untere Profilwinkel der Summe des Schnittwinkels und des oberen Profilwinkels. Dadurch ist die Öffnung der Vordüse um den Schnittwinkel, also dem Winkel zwischen Querschnittsfläche und Wassereintrittsöffnungsfläche, nach unten gesehen hin erweitert.It is also preferred that the opening angle of the pre-nozzle corresponds to the sum of the double profile angle and the intersection angle. Thus, the lower profile angle corresponds to the sum of the cutting angle and the upper profile angle. As a result, the opening of the pre-nozzle to the cutting angle, ie the angle between the cross-sectional area and the water inlet opening area, extended towards the bottom.

Bevorzugterweise ist die Wassereintrittsöffnungsfläche der Vordüse geknickt oder gekrümmt. Dabei kann die Wassereintrittsöffnungsfläche mit einem konstanten Krümmungsradius von oben nach unten gesehen gekrümmt sein oder unterschiedliche bzw. mehrere Krümmungsradien aufweisen. Des Weiteren kann die Wassereintrittsöffnungsfläche von oben nach unten gesehen einen Knick oder auch mehrere Knicks aufweisen. Dadurch ist die Wassereintrittsöffnungsfläche über mehrere Ebenen ausgebildet, welche unter einem Winkel zueinanderstehen. Besonders bevorzugt weist die Wassereintrittsöffnungsfläche einen Knick auf und ist somit über zwei Ebenen ausgebildet. Dabei stehen beide Ebenen in einem Winkel, welcher größer als 90° und kleiner als 180° ist, zueinander.Preferably, the water inlet opening area of the pre-nozzle is kinked or curved. In this case, the water inlet opening surface can be curved with a constant radius of curvature from top to bottom or have different or multiple radii of curvature. Furthermore, the water inlet opening area seen from top to bottom can have a kink or even several kinks. As a result, the water inlet opening surface is formed over several levels, which are at an angle to each other. Particularly preferably, the water inlet opening surface has a kink and is thus formed over two levels. Both planes are at an angle which is greater than 90 ° and less than 180 ° to each other.

Weiterhin ist es bevorzugt, dass die Profillänge der Vordüse zwischen oberer und unterer Profillinie der Vordüse von oben nach unten stetig abnimmt. Unter stetig ist hier kontinuierlich zu verstehen. Dies bedeutet, dass die Profillänge von oben nach unten gesehen kontinuierlich abnimmt. Somit nimmt die Profillänge von oben nach unten betrachtet in keinem Bereich zu, sondern bleibt entweder innerhalb eines Bereiches konstant und nimmt innerhalb des nächsten Bereiches ab, oder nimmt ununterbrochen von oben nach unten betrachtet ab. Dabei kann die Profillänge linear aber auch einer anderen Funktion folgend von oben nach unten abnehmen. Beispielsweise könnte die Profillänge von oben nach unten gesehen in einem bogenförmigen Verlauf abnehmen. Besonders bevorzugt ist es, dass die Profillänge von oben nach unten über den Gesamtbereich, d. h. zwischen oberer und unterer Profillinie der Vordüse, linear abnimmt und somit der Wert des Schnittwinkels konstant ist. Somit ist der Wert des Schnittwinkels an jeder Stelle zwischen oberer und unterer Profillinie der Vordüse konstant.Furthermore, it is preferred that the profile length of the pre-nozzle between the upper and lower profile line of the pre-nozzle continuously decreases from top to bottom. Under steady is here to be understood continuously. This means that the profile length continuously decreases from top to bottom. Thus, viewed from top to bottom, the profile length does not increase in any area, but either remains constant within one area and decreases within the next area, or decreases continuously as viewed from top to bottom. The profile length can decrease linearly but also from top to bottom following another function. For example, the profile length could be seen from top to bottom decrease in an arcuate course. It is particularly preferred that the profile length from top to bottom over the entire area, ie between the upper and lower profile line of the pre-nozzle, linearly decreases and thus the value of the intersection angle is constant. Thus, the value of the cutting angle is constant at each point between the upper and lower profile line of the pre-nozzle.

In einer weiteren Ausführungsform ist vorgesehen, dass die Profillänge der Vordüse in jedem Bereich der Vordüse konstant ist. Somit sind Wassereintrittsöffnungsfläche und Wasseraustrittsöffnungsfläche parallel zueinander angeordnet.In a further embodiment it is provided that the profile length of the pre-nozzle in each region of the pre-nozzle is constant. Thus, the water inlet opening area and the water outlet opening area are arranged parallel to each other.

Bevorzugterweise weist die Vordüse bzw. der Vordüsenmantel bei Querschnittsbetrachtung gradlinige Abschnitte auf. Insbesondere weist der Vordüsenmantel grade Abschnitte bei Querschnittsbetrachtung über die gesamte Länge der Vordüse auf. Dabei ist es bevorzugt, dass die gradlinigen Abschnitte bei Querschnittsbetrachtung mehrere bogenförmige Abschnitte miteinander verbinden. Beispielsweise könnte der Vordüsenmantel bei Querschnittsbetrachtung aus einem oberen und einem unteren bogenförmigen Abschnitt bzw. Bogensegment bestehen, wobei beide bogenförmige Abschnitte durch gradlinige Abschnitte miteinander verbunden sind. Vorzugsweise sind zwei gradlinige Abschnitte im Seitenbereich des Vordüsenmantels sowie insbesondere einander gegenüberliegend angeordnet. Dadurch befinden sich die gradlinigen Abschnitte bei Querschnittsbetrachtung auf Höhe der horizontalen Mittellinie bzw. entlang der Vordüse auf Höhe der Rotationsachse. Die bogenförmigen Abschnitte könnten dabei beispielsweise Halbkreise sein. Des Weiteren sind andere Formungen, wie beispielsweise Ellipsenausschnitte, denkbar. Die gradlinigen Abschnitte weisen vorzugsweise einen rechteckigen Querschnitt auf. Somit dienen die gradlinigen Abschnitte zur Verlängerung der Vordüsenöffnungsflächen in vertikale oder horizontale Richtung. Bevorzugterweise werden durch die gradlinigen Abschnitte die beiden Öffnungsflächen der Vordüse in vertikaler Richtung erweitert, wobei somit die Vordüse eine größere Höhe als Breite aufweist. Eine weitere mögliche alternative Ausführungsform besteht in der Ausbildung des gesamten Düsenmantels mit ellipsenförmigem Querschnitt.The pre-nozzle or the pre-nozzle jacket preferably has straight sections when viewed in cross-section. In particular, the Vordüsenmantel has straight sections in cross-sectional view over the entire length of the pre-nozzle. It is preferred that the rectilinear sections connect with cross-sectional view a plurality of arcuate portions with each other. For example, the cross-sectional view of the pre-nozzle jacket could consist of an upper and a lower arc-shaped section or arc segment, wherein both arcuate sections are connected to one another by straight-line sections. Preferably, two straight-line sections are arranged in the side region of the pre-nozzle jacket and, in particular, opposite one another. As a result, the straight sections are in cross-sectional view at the level of the horizontal center line or along the pre-nozzle at the height of the axis of rotation. The arcuate portions could be, for example, semicircles. Furthermore, other shapes, such as elliptical necklines, conceivable. The straight sections preferably have a rectangular cross section. Thus, the rectilinear portions serve to extend the pre-nozzle opening areas in vertical or horizontal direction. Preferably, the two opening surfaces of the pre-nozzle are widened in the vertical direction by the straight-line sections, whereby thus the pre-nozzle has a greater height than width. Another possible alternative embodiment consists in the formation of the entire nozzle shell with an elliptical cross-section.

Weiterhin ist es bevorzugt, dass mindestens eine Vordüsenöffnungsfläche (Eintrittsöffnungsfläche oder Austrittsöffnungsfläche) eine größte Länge zwischen oberer und unterer Profillinie aufweist, welche in einem Verhältnis zwischen 1,5 : 1 und 4 : 1 zur mittleren Profillänge der Vordüse steht. Besonders bevorzugt ist ein Verhältnis zwischen 1,75 : 1 und 3 : 1, bzw. 1,75 : 1 und 2,5 : 1, bzw. ein Verhältnis im Bereich von 2 : 1. Unter mittlerer Profillänge der Vordüse ist eine durchschnittliche Profillänge der Vordüse zu verstehen.Furthermore, it is preferred that at least one pre-nozzle opening area (inlet opening area or outlet opening area) has a maximum length between the upper and lower profile line, which is in a ratio between 1.5: 1 and 4: 1 to the mean profile length of the pre-nozzle. Particularly preferred is a ratio between 1.75: 1 and 3: 1, or 1.75: 1 and 2.5: 1, or a ratio in the range of 2: 1. The average profile length of the pre-nozzle is an average profile length of the pre-nozzle.

Die Erfindung wird nun mit Bezug auf die begleitenden Zeichnungen anhand besonders bevorzugter Ausführungsformen beispielhaft erläutert.The invention will now be described by way of example with reference to the accompanying drawings by way of particularly preferred embodiments.

Es zeigen:

Fig. 1
eine rotationsasymmetrische Vordüse in einer Ansicht von vorne, bzw. die Draufsicht auf die Wassereintrittsöffnung der Vordüse,
Fig. 2
eine Längsschnittbetrachtung einer rotationsasymmetrischen Vordüse gemäß Fig. 1,
Fig. 3
eine perspektivische Ansicht einer rotationsasymmetrischen Vordüse gemäß Fig. 1,
Fig. 4
eine weitere rotationsasymmetrische Vordüse in einer Ansicht von vorne, bzw. Draufsicht auf die Vordüseneintrittsöffnung,
Fig. 5
eine Längsschnittansicht einer Vordüse gemäß Fig. 4 mit von oben nach unten gesehen linear abnehmender Profillänge im Bereich der Wassereintrittsöffnung,
Fig. 6
eine perspektivische Ansicht einer Vordüse gemäß Fig. 4 mit von oben nach unten gesehen linear abnehmender Profillänge,
Fig. 7
eine rotationsasymmetrische Vordüse mit konstanter Profillänge in einer Ansicht von vorne bzw. Draufsicht auf die Wassereintrittsöffnung,
Fig. 8
eine Längsschnittbetrachtung einer rotationsasymmetrische Vordüse gemäß Fig. 7 mit konstanter Profillänge, und
Fig. 9
eine perspektivische Ansicht einer rotationsasymmetrischen Vordüse gemäß Fig. 7 mit konstanter Profillänge.
Show it:
Fig. 1
a rotationally asymmetrical pre-nozzle in a view from the front, or the top view of the water inlet opening of the pre-nozzle,
Fig. 2
a longitudinal sectional view of a rotationally asymmetric pre-nozzle according to Fig. 1 .
Fig. 3
a perspective view of a rotationally asymmetric pre-nozzle according to Fig. 1 .
Fig. 4
a further rotationally asymmetrical pre-nozzle in a view from the front, or top view of the pre-nozzle inlet opening,
Fig. 5
a longitudinal sectional view of a pre-nozzle according to Fig. 4 with profile length decreasing linearly from top to bottom in the area of the water inlet opening,
Fig. 6
a perspective view of a pre-nozzle according to Fig. 4 with linearly decreasing profile length as seen from top to bottom,
Fig. 7
a rotationally asymmetric pre-nozzle with a constant profile length in a view from the front or top view of the water inlet opening,
Fig. 8
a longitudinal sectional view of a rotationally asymmetric pre-nozzle according to Fig. 7 with constant profile length, and
Fig. 9
a perspective view of a rotationally asymmetric pre-nozzle according to Fig. 7 with constant profile length.

Fig. 1 bis 3 zeigen eine Vordüse 10a mit einem innerhalb der Vordüse 10a angeordneten Fin-System 14. Das Fin-System 14 besteht hier aus fünf einzelnen Fins 14a, 14b, 14c, 14d, 14e welche innerhalb der Vordüse 10a radial und über den Umfang unsymmetrisch angeordnet sind. Es wäre auch möglich mehr oder weniger als fünf Fins zu verwenden. Die Höhe der Vordüse im Bereich der Wasseraustrittsöffnung 13 ist kleiner als der Propellerdurchmesser. Bevorzugterweise beträgt die Höhe der Vordüse im Bereich der Wasseraustrittsöffnung 13 maximal 90 %, besonders bevorzugt maximal 80 % oder auch maximal 65 % des Propellerdurchmessers. Fig. 1 to 3 show a pre-nozzle 10a with a disposed within the pre-nozzle 10a Fin system 14. The fin system 14 here consists of five individual fins 14a, 14b, 14c, 14d, 14e which are arranged radially in the pre-nozzle 10a and circumferentially asymmetric. It would also be possible more or less to use as five fins. The height of the pre-nozzle in the region of the water outlet opening 13 is smaller than the propeller diameter. Preferably, the height of the pre-nozzle in the region of the water outlet opening 13 is a maximum of 90%, more preferably a maximum of 80% or even a maximum of 65% of the propeller diameter.

Die Vordüse 10a ist, wie in Fig. 1 gezeigt, bezüglich der Propellerachse 41 des Schiffes nach oben verschoben angeordnet. Somit fallen Rotationsachse 18 der Vordüse 10a und Propellerachse 41 nicht aufeinander. Dies hat den Vorteil, dass insbesondere bei großen, völligen Schiffen, bei denen der Bereich des ungünstigen Nachstromes üblicherweise im oberen Propellerzuströmbereich liegt, hier durch die Vordüsenwirkung die Wasserzuströmgeschwindigkeit mehr verstärkt wird als im unteren Propellerzuströmbereich. Die Wasserzuflussrichtung 15 zeigt die Zuflussrichtung des Wassers in Richtung Vordüse 10a und somit auch die der Vorwärtsfahrt des Schiffes entgegengesetzte Richtung an.The pre-nozzle 10a is as in Fig. 1 shown with respect to the propeller shaft 41 of the ship shifted upwards. Thus, rotation axis 18 of the pre-nozzle 10a and propeller axis 41 do not coincide. This has the advantage that, in particular in the case of large, complete ships, in which the region of the unfavorable afterflow is usually in the upper propeller inlet region, the water inflow velocity is more intensified here by the pre-jet effect than in the lower propeller inlet region. The water inflow direction 15 indicates the inflow direction of the water in the direction of the pre-nozzle 10a and thus also the direction of forward travel of the ship in the opposite direction.

Fig. 2 und 3 zeigen des Weiteren, dass die wassereintrittsseitige Öffnung 12 der Vordüse 10a nach unten erweitert ist. Im oberen Bereich der Vordüse 10a, oberhalb der Rotationsachse 18 der Vordüse 10a, sind die durch die stirnseitigen Kanten 31, 32 eingeschlossenen Öffnungsflächen 19, 20 parallel zueinander. Im unteren Bereich der Vordüse 10a ist die wassereintrittsseitige Vordüsenöffnung 12 von oben nach unten betrachtet abgeschrägt. Somit ist die durch die stirnseitige Kante 31 des Düsenmantels 11 der Vordüse 10a eingeschlossene Wassereintrittsöffnungsfläche 19 über zwei Ebenen 19a, 19b ausgebildet. Diese beiden Ebenen stehen in einem Winkel 36, welcher größer als 90° und kleiner als 180° ist, zueinander. FIGS. 2 and 3 further show that the water inlet side opening 12 of the pre-nozzle 10a is extended downwards. In the upper region of the pre-nozzle 10a, above the axis of rotation 18 of the pre-nozzle 10a, the opening surfaces 19, 20 enclosed by the front-side edges 31, 32 are parallel to one another. In the lower region of the pre-nozzle 10a, the water inlet-side pre-nozzle opening 12 is beveled viewed from top to bottom. Thus, the water inlet opening area 19 enclosed by the end edge 31 of the nozzle shell 11 of the pre-nozzle 10a is formed over two levels 19a, 19b. These two levels are at an angle 36 which is greater than 90 ° and less than 180 ° to each other.

Des Weiteren bildet die nach unten abgeschrägte Wassereintrittsöffnungsfläche 19 einen Schnittwinkel 27 zur Querschnittsfläche 34 der Vordüse 10a in dem Bereich des Knicks 42 bzw. zur gedanklich parallel verschobenen Querschnittsfläche 34 der Vordüse 10a.Furthermore, the downwardly beveled water inlet opening surface 19 forms a cutting angle 27 to the cross-sectional area 34 of the pre-nozzle 10a in the region of the bend 42 and the imaginary parallel displaced cross-sectional area 34 of the pre-nozzle 10a.

Ferner weist die Vordüse 10a somit im unteren Bereich eine kürzere Profillänge 22 auf als im oberen Bereich. Insbesondere ist die Profillänge 21, 22 von oben nach unten betrachtet bis zum Bereich des Knicks 42 konstant. Im weiteren Verlauf nimmt die Profillänge 21, 22 von oben nach unten betrachtet zwischen Knick 42 und der unteren Profillinie 24 linear ab.Furthermore, the pre-nozzle 10a thus has a shorter profile length 22 in the lower region than in the upper region. In particular, the profile length 21, 22 viewed from top to bottom is constant up to the region of the bend 42. In the course of the profile length decreases 21, 22 viewed from top to bottom between kink 42 and the lower profile line 24 linearly.

Ferner ist insbesondere aus Fig. 2 ersichtlich, dass der Öffnungswinkel 30 der Vordüse 10a, welcher durch die obere und untere Profillinie 23, 24 der Vordüse 10a gebildet wird, größer ist als der doppelte obere Profilwinkel 28, welcher durch die beiden Schenkel, obere Profillinie 23 und Rotationsachse 18 der Vordüse 10a gebildet wird. Analog zum oberen Profilwinkel 28 wird der untere Profilwinkel 29 durch die beiden Schenkel, Rotationsachse 18 der Vordüse 10a und untere Profillinie 24, ausgebildet. Aus Fig. 2 ist ersichtlich, dass der untere Profilwinkel 29 der Summe des Schnittwinkels 27 und des oberen Profilwinkels 28 entspricht, wodurch sich ein nach unten vergrößerter Öffnungswinkel 30 ergibt, welcher somit der Summe des doppelten oberen Profilwinkels 28 und des Schnittwinkels 27 entspricht. Somit ist die Vordüsenöffnungsfläche 19 im Vergleich zu einer Öffnung einer Vordüse mit kreisrunden und parallel zueinander angeordneten Öffnungsflächen vergrößert und insbesondere nach unten vergrößert.Furthermore, in particular Fig. 2 It can be seen that the opening angle 30 of the pre-nozzle 10a, which is formed by the upper and lower profile line 23, 24 of the pre-nozzle 10a, is greater than twice the upper profile angle 28, which by the two legs, upper profile line 23 and rotation axis 18 of the pre-nozzle 10a is formed. Analogous to the upper profile angle 28, the lower profile angle 29 is formed by the two legs, rotation axis 18 of the pre-nozzle 10 a and lower profile line 24. Out Fig. 2 It can be seen that the lower profile angle 29 corresponds to the sum of the cutting angle 27 and the upper profile angle 28, resulting in a downwardly enlarged opening angle 30, which thus corresponds to the sum of the double upper profile angle 28 and the cutting angle 27. Thus, the Vordüsenöffnungsfläche 19 is enlarged in comparison to an opening of a pre-nozzle with circular and mutually parallel opening surfaces and in particular increases downwards.

Ein weiteres Merkmal der Wassereintrittsöffnungsfläche 19 ist, dass die Öffnung 12 durch ihre Abschrägung im unteren Bereich bei Draufsicht von vorne eine elliptische Form aufweist. Die Länge der wassereintrittsseitigen Vordüsenöffnungsfläche 19 ist ferner in vertikaler Richtung, also von oberer Profillinie 23 zur unteren Profillinie 24 betrachtet länger als in horizontaler Richtung. Dabei verläuft die Länge in vertikaler Richtung über die beiden Ebenen der Wassereintrittsöffnungsfläche 19 auf, bzw. entlang der Öffnungsfläche. Die obere und untere Profillinie 23, 24 der Vordüse 10a entsprechen den Mantellinien im obersten bzw. im untersten Bereich der Vordüse 10a.Another feature of the water inlet opening surface 19 is that the opening 12 has an elliptical shape by its bevel in the lower region in plan view from the front. The length of the water inlet-side Vordüsenöffnungsfläche 19 is also in the vertical direction, ie viewed from the upper profile line 23 to the lower profile line 24 longer than in the horizontal direction. The length runs in the vertical direction over the two levels of the water inlet opening surface 19, or along the opening area. The upper and lower profile lines 23, 24 of the pre-nozzle 10a correspond to the generatrices in the uppermost and in the lowest area of the pre-nozzle 10a.

Fig. 2 und 3 zeigen weiterhin zwei Brackets 25, 26, wobei sich ein Bracket 25 im oberen Bereich der Vordüse 10a und das andere Bracket 26 im unteren Bereich der Vordüse 10a befindet. Die beiden Brackets 25, 26 dienen zur Anbringung bzw. Befestigung der Vordüse 10a mit dem Schiffskörper. Je nach Schiffstyp kann die Anzahl der Brackets 25, 26 variieren. Des Weiteren ist es möglich, die Brackets 25, 26 andersartig beispielsweise im Seitenbereich des Düsenmantels 11 anzubringen. Das obere Bracket 25 ist im Wesentlichen außen an der Vordüse 10a angeordnet und das untere Bracket 26 ist im Wesentlichen innen an der Vordüse 10a angeordnet, wobei Abschnitte beider Brackets 25, 26 nach vorne hin über die Vordüse 10a hinaus vorstehen. FIGS. 2 and 3 further show two brackets 25, 26, wherein a bracket 25 in the upper region of the pre-nozzle 10a and the other bracket 26 in the lower region the pre-nozzle 10a is located. The two brackets 25, 26 are used for attachment or attachment of the pre-nozzle 10a with the hull. Depending on the type of ship, the number of brackets 25, 26 may vary. Furthermore, it is possible to mount the brackets 25, 26 differently, for example, in the side area of the nozzle shell 11. The upper bracket 25 is disposed substantially outboard of the pre-nozzle 10a, and the lower bracket 26 is disposed substantially inward of the pre-nozzle 10a with portions of both brackets 25, 26 projecting forward beyond the pre-nozzle 10a.

Dadurch das die untere Profillänge 22 der Vordüse 10a kürzer ist als die obere Profillänge 23 der Vordüse 10a, ist die Wirkung der Vordüse 10a und die damit verbundene Beschleunigung des Wasserstromes im oberen Bereich größer als im unteren Bereich. Die Beschleunigungsstrecke innerhalb der Vordüse 10a ist somit im unteren Bereich kürzer als im oberen Bereich. Dadurch wird erreicht, dass der Wasserfluss im oberen Bereich, also im Bereich des ungünstigen Nachstromes stärker beschleunigt wird als im unteren Bereich. Somit wird nicht nur durch die im Bezug auf die Propellerachse 41 des Schiffes nach oben verschobene Vordüse 10a der Bereich des ungünstigen Nachstromes stärker begünstigt, bzw. der Wasserfluss stärker beschleunigt, sondern es findet zusätzlich durch die von oben nach unten abnehmende Profillänge 21, 22 der Vordüse 10a ein besserer Ausgleich der Wassergeschwindigkeiten zwischen oberen und unteren Bereich statt.Characterized that the lower profile length 22 of the pre-nozzle 10a is shorter than the upper profile length 23 of the pre-nozzle 10a, the effect of the pre-nozzle 10a and the associated acceleration of the water flow in the upper region is greater than in the lower region. The acceleration section within the pre-nozzle 10a is thus shorter in the lower region than in the upper region. This ensures that the water flow in the upper region, ie in the region of the unfavorable downstream flow is accelerated more than in the lower region. Thus, not only by the upwardly displaced with respect to the propeller shaft 41 of the ship up front nozzle 10a, the region of the unfavorable aftercurrent, or the water flow more accelerated, but it additionally finds by decreasing from top to bottom profile length 21, 22 of the Pre-nozzle 10a a better balance of water speeds between upper and lower range instead.

Fig. 4 bis 6 zeigen ebenfalls eine Vordüse 10b mit erweiterter Wassereintrittsöffnung 10. Wie bei der Vordüse 10a gemäß den Fig. 1 bis 3 hat die in den Fig. 4 bis 6 gezeigte Vordüse 10b ebenfalls eine im oberen Bereich der Vordüse 10b längere Profillänge 21 als im unteren Bereich der Vordüse 10b. Hierzu ist die Wassereintrittsöffnung 12 von oben nach unten betrachtet abgeschrägt. Im Gegensatz zur Vordüse 10a ist die Wassereintrittsöffnungsfläche 19 nur über eine Ebene ausgebildet, wobei diese Ebene durch die Abschrägung vollständig nicht parallel zur Querschnittsfläche 34 der Vordüse 10b bzw. zur Wasseraustrittsfläche 20 der Vordüse 10b ist. 4 to 6 also show a pre-nozzle 10b with extended water inlet opening 10. As with the pre-nozzle 10a according to the Fig. 1 to 3 has the in the 4 to 6 shown pre-nozzle 10b also in the upper region of the pre-nozzle 10b longer profile length 21 than in the lower region of the pre-nozzle 10b. For this purpose, the water inlet opening 12 is beveled viewed from top to bottom. In contrast to the pre-nozzle 10a, the water inlet opening surface 19 is formed only over a plane, this plane is not completely parallel to the cross-sectional area 34 of the pre-nozzle 10b or to the water outlet surface 20 of the pre-nozzle 10b by the bevel.

Da die Profillänge 21, 22 von oben nach unten betrachtet linear über die gesamte Höhe der Vordüse 10b abnimmt, ist der Schnittwinkel 27 zwischen Wassereintrittsöffnungsfläche 19 und Querschnittsfläche 34 bzw. Rotationsachsensenkrechten 35 im Gesamtbereich, also über die gesamte Höhe der Vordüse 10b, konstant. Der Öffnungswinkel 30 der Vordüse 10b entspricht somit der Summe des oberen und des unteren Profilwinkels 28, 29, wobei beide Profilwinkel 28, 29 der Vordüse 10b gleich groß sind. Durch die von oben nach unten betrachtete Abschrägung entsteht bei Draufsicht auf die Vordüse 10b von vorne ebenfalls eine elliptische Öffnungsform. Die Länge der Wassereintrittsöffnungsfläche 19 in vertikaler Richtung, also von oben nach unten betrachtet, zwischen oberer und unterer Profillinie 23, 24, ist somit ebenfalls länger als die Breite, bzw. Länge in horizontaler Richtung der Wassereintrittsöffnungsfläche 19. Dabei verlaufen die Längen jeweils auf, bzw. entlang, der Öffnungsfläche.Since the profile length 21, 22 decreases linearly over the entire height of the pre-nozzle 10b viewed from top to bottom, the intersection angle 27 between the water inlet opening surface 19 and cross-sectional area 34 or Rotationsachsensenkrechte 35 in the total area, ie over the entire height of the pre-nozzle 10b, constant. The opening angle 30 of the pre-nozzle 10b thus corresponds to the sum of the upper and the lower profile angle 28, 29, wherein both profile angles 28, 29 of the pre-nozzle 10b are the same size. Due to the bevel viewed from top to bottom, an elliptical opening shape is also created from the front when the top view of the pre-nozzle 10b is viewed from above. The length of the water inlet opening surface 19 in the vertical direction, that is viewed from top to bottom, between the upper and lower profile line 23, 24, is thus also longer than the width, or length in the horizontal direction of the water inlet opening surface 19. The lengths are in each case, or along, the opening area.

Fig. 7 bis 9 zeigen eine Vordüse 10c mit zwei zueinander parallelen Öffnungsflächen 19, 20. Im Gegensatz zu den Vordüsen 10a und 10b weist die Vordüse 10c eine konstante Profillänge 21, 22 auf. Der Öffnungswinkel 30 entspricht somit der Summe aus unterem und oberem Profilwinkel 28, 29, wobei unterer und oberer Profilwinkel 28, 29 gleich groß sind. Ein Schnittwinkel 27 zwischen Wassereintrittsöffnungsfläche 19 und Querschnittsfläche 34 der Vordüse 10c entsteht hier nicht, bzw. ist 0°. Fig. 7 to 9 show a pre-nozzle 10c with two mutually parallel opening surfaces 19, 20. In contrast to the pre-nozzles 10a and 10b, the pre-nozzle 10c has a constant profile length 21, 22 on. The opening angle 30 thus corresponds to the sum of the lower and upper profile angle 28, 29, wherein lower and upper profile angle 28, 29 are equal. A cutting angle 27 between the water inlet opening surface 19 and cross-sectional area 34 of the pre-nozzle 10c does not arise here, or is 0 °.

Der Düsenmantel 11 der Vordüse 10c besteht im Wesentlichen aus vier Segmenten, zwei bogenförmigen Segmenten 39, 40 und zwei gradlinigen Segmenten 37, 38. Die beiden gradlinigen Segmente 37, 38 sind in den Seitenbereichen der Vordüse 10c einander gegenüberliegend angeordnet. Die Vorderansicht der Vordüse 10c in Fig. 7 zeigt, dass die beiden gradlinigen Abschnitte 37, 38 auf Höhe der Rotationsachse 18 der Vordüse 10c liegen und somit einen unteren und einen oberen bogenförmigen Abschnitt 39, 40 miteinander verbinden. Die beiden bogenförmigen Abschnitte 39, 40 sind wie in Fig. 7 gezeigt Halbkreise bzw. halbkreisförmige Bogenabschnitte. Die bogenförmigen Abschnitte 39, 40 könnten aber auch eine andere Ausgestaltung, beispielsweise eine elliptische Ausgestaltung, aufweisen.The nozzle shell 11 of the pre-nozzle 10c consists essentially of four segments, two arcuate segments 39, 40 and two straight segments 37, 38. The two straight segments 37, 38 are arranged opposite one another in the lateral areas of the pre-nozzle 10c. The front view of the pre-nozzle 10c in Fig. 7 shows that the two straight sections 37, 38 lie at the height of the axis of rotation 18 of the pre-nozzle 10c and thus connect a lower and an upper arcuate portion 39, 40 with each other. The two arcuate portions 39, 40 are as in Fig. 7 shown semicircles or semicircular arc sections. However, the arcuate portions 39, 40 could also have another configuration, for example an elliptical configuration.

Wie bei den Vordüsen 10a und 10b ergibt sich bei der Vordüse 10c eine Wassereintrittsöffnungsfläche 19 dessen Höhe bzw. Länge in vertikaler Richtung größer ist als die Breite, bzw. Länge in horizontaler Richtung.As with the front nozzles 10a and 10b, the front nozzle 10c has a water inlet opening area 19 whose height or length in the vertical direction is greater than the width or length in the horizontal direction.

Die beiden bei Querschnittsbetrachtung erkennbaren gradlinigen Abschnitte 37, 38 sind wie in Fig. 9 gezeigt über die Gesamtlänge der Vordüse 10c konstant. Es wäre aber auch möglich, diese gradlinigen Abschnitte 37, 38 längs der Vordüse 10c, beispielsweise von der Wassereintrittsöffnung 12 zur Wasseraustrittsöffnung 13, keilförmig oder anderweitig auszubilden. Demnach würde sich der Querschnitt der gradlinigen Abschnitte 37, 38, welcher im vorliegenden Beispiel rechteckig und konstant ist, entlang der Vordüse 10c verändern. Beispielsweise könnte die rechteckige Querschnittsfläche von vorne nach hinten betrachtet abnehmen. Des Weiteren wäre es denkbar, die gradlinigen Abschnitte 37, 38 spitz zulaufen zu lassen, was bedeutet, dass die Querschnittsfläche 34 der Vordüse 10c im Bereich der Wasseraustrittsöffnung 13 keine gradlinigen Abschnitte 37, 38 aufweisen würde.The two rectilinear sections 37, 38 recognizable by cross-sectional viewing are as in FIG Fig. 9 shown constant over the entire length of the pre-nozzle 10c. But it would also be possible, these straight sections 37, 38 along the pre-nozzle 10c, for example, from the water inlet opening 12 to the water outlet opening 13, wedge-shaped or otherwise form. Thus, the cross-section of the straight sections 37, 38, which in the present example is rectangular and constant, would change along the pre-nozzle 10c. For example, the rectangular cross-sectional area could decrease viewed from the front to the rear. Furthermore, it would be conceivable for the rectilinear sections 37, 38 to taper to a point, which means that the cross-sectional area 34 of the pre-nozzle 10c in the region of the water outlet opening 13 would not have any straight sections 37, 38.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

100100
Antriebssystem eines SchiffesDrive system of a ship
10a, 10b, 10c10a, 10b, 10c
Vordüseprenozzle
1111
Düsenmantelnozzle casing
1212
Eintrittsöffnunginlet opening
1313
Austrittsöffnungoutlet opening
1414
Fin-SystemFin system
14a, 14b, 14c, 14d, 14e14a, 14b, 14c, 14d, 14e
FinsFins
1515
WasserzuflussrichtungWater flow direction
1616
DüsenmantelinnenseiteNozzle casing inside
1717
DüsenmantelaußenseiteNozzle casing exterior
1818
Rotationsachse der VordüseRotation axis of the pre-nozzle
1919
WassereintrittsöffnungsflächeWater inlet opening area
2020
WasseraustrittsöffnungsflächeWater outlet area
2121
obere Profillängeupper profile length
2222
untere Profillängelower profile length
2323
Profillinie obenProfile line above
2424
Profillinie untenProfile line below
25,2625.26
Bracketsbrackets
2727
Schnittwinkelcutting angle
2828
oberer Profilwinkelupper profile angle
2929
unterer Profilwinkellower profile angle
3030
Öffnungswinkelopening angle
3131
stirnseitige Kante des Düsenmantels -vorneFrontal edge of the nozzle shell -front
3232
stirnseitige Kante des Düsenmantels - hintenFront edge of the nozzle shell - behind
3333
Mittenradiuscenter radius
3434
QuerschnittsflächeCross sectional area
3535
RotationsachsensenkrechteRotation axes perpendicular
3636
Winkel zwischen Ebenen der WassereintrittsöffnungsflächeAngle between levels of water inlet opening area
37, 3837, 38
gradlinige Abschnittestraight sections
39,4039.40
bogenförmige Abschnittearcuate sections
4141
Propellerachsepropeller axis
4242
Knickkink

Claims (20)

  1. A pre-nozzle (10a, 10b, 10c) for a drive system of a watercraft, wherein the pre-nozzle (10a, 10b, 10c) comprises a water inlet opening (12) and a water outlet opening (13), wherein a fin system (14) is disposed inside the pre-nozzle (10a, 10b, 10c), wherein the inlet region of the pre-nozzle (10a, 10b, 10c) comprises no fin system (14), wherein no propeller is disposed inside the pre-nozzle (10a, 10b, 10c), characterized in that the pre-nozzle (10a, 10b, 10c) is rotationally asymmetrical, wherein, in a cross-sectional view, the body of the pre-nozzle (10a, 10b, 10c) comprises in particular two rectilinear sections (37, 38), in particular over the entire length of the pre-nozzle (10a, 10b, 10c)
  2. The pre-nozzle according to claim 1, characterized in that the water inlet opening (12) of the pre-nozzle (10a, 10b, 10c) is expanded in particular downwards and/or upwards to improve the water inflow.
  3. The pre-nozzle according to either one of claims 1 or 2, characterized in that opening areas (19, 20) of the water inlet opening (12) and the water outlet opening (13) of the pre-nozzle (10a, 10b, 10c) are each enclosed by a front-end edge (31, 32) of a nozzle body (11) of the pre-nozzle (10a, 10b, 10c), wherein at least one of the two enclosed opening areas (19, 20) has a greater length between an upper profile line (23) and a lower profile line (24) than in the horizontal direction.
  4. The pre-nozzle according to claim 3, characterized in that the opening area (19) on the water inlet side of the pre-nozzle (10a, 10b, 10c) is greater than the opening area on the water inlet side of a rotationally symmetrical pre-nozzle having the same central radius.
  5. The pre-nozzle according to any one of the preceding claims, characterized in that the pre-nozzle (10a, 10b, 10c) at least partially encloses a propeller axis (41) of a watercraft.
  6. The pre-nozzle according to any one of the preceding claims, characterized in that the opening areas (19, 20) of the water inlet opening (12) and the water outlet opening (13) of the pre-nozzle (10a, 10b, 10c) are each enclosed by a front-end edge (31, 32) of a nozzle body (11) of the pre-nozzle (10a, 10b, 10c), wherein the two opening areas (19, 20) of the pre-nozzle (10a, 10b, 10c) are at least partially not parallel to one another.
  7. The pre-nozzle according to any one of the preceding claims, characterized in that the pre-nozzle (10a, 10b, 10c) has a profile length (21, 22), wherein the profile length is not constant and wherein, in particular in the upper region of the pre-nozzle (10a, 10b, 10c), and preferably in the area of the axis of rotation (18), the profile length is greater than in the lower region of the pre-nozzle (10a, 10b, 10c).
  8. The pre-nozzle of a ship according to claim 7, characterized in that the profile length (21, 22) of the pre-nozzle (10a, 10b, 10c) decreases steadily within at least one region, preferably in the lower region, when viewed from top to bottom.
  9. The pre-nozzle according to any one of the preceding claims, characterized in that the opening areas (19, 20) of the water inlet opening (12) and the water outlet opening (13) of the pre-nozzle (10a, 10b, 10c) are each enclosed by a front-end edge (31, 32) of a nozzle body (11) of the pre-nozzle (10a, 10b, 10c), wherein the opening area (19) on the water inlet side of the pre-nozzle (10a, 10b, 10c) has at least one cutting angle (27) to the cross-sectional area (34) of the pre-nozzle (10a, 10b, 10c).
  10. The pre-nozzle of a ship according to claim 9, characterized in that the cutting angle (27) is constant and greater than 0° in at least one region.
  11. The pre-nozzle according to any one of the preceding claims, characterized in that the pre-nozzle (10a, 10b, 10c) has an upper profile angle (28) between the upper profile line (23) and the axis of rotation (18) of the pre-nozzle (10a, 10b, 10c) and/or that the pre-nozzle (10a, 10b, 10c) has a lower profile angle (29) between the axis of rotation (18) and the lower profile line (24) of the pre-nozzle (10a, 10b, 10c), wherein the opening angle (30) of the pre-nozzle (10a, 10b, 10c) between upper and lower profile line (23, 24) of the pre-nozzle (10a, 10b, 10c) is greater than twice the upper profile angle (28) or greater than twice the lower profile angle (29).
  12. The pre-nozzle according to any one of claims 9 to 11, characterized in that the opening angle (30) of the pre-nozzle (10a, 10b, 10c) between upper and lower profile line (23, 24) of the pre-nozzle (10a, 10b, 10c) corresponds to the sum of twice the upper profile angle (28) and the cutting angle (27) or to the sum of twice the lower profile angle (29) and the cutting angle (27).
  13. The pre-nozzle according to any one of claims 11 or 12, characterized in that the lower profile angle (29) is greater than the upper profile angle (28).
  14. The pre-nozzle according to any one of the preceding claims, characterized in that the opening area (19) on the water inlet side of the pre-nozzle (10a, 10b, 10c) is buckled or curved, an in particular is formed over at least two planes, which are at an angle (36) to one another, wherein the angle (36) is greater than 90° and smaller than 180°.
  15. The pre-nozzle according to any one of the preceding claims, characterized in that the profile length (21, 22) of the pre-nozzle (10a, 10b, 10c) between upper and lower profile line (23, 24) of the pre-nozzle (10a, 10b, 10c) decreases steadily from top to bottom.
  16. The pre-nozzle according to any one of claims 9 to 15, characterized in that the value of the cutting angle (27) is constant.
  17. The pre-nozzle according to any one of claims 1 to 5, characterized in that the pre-nozzle (10c) has a profile length (21, 22), wherein the profile length (21, 22) is constant in each region of the pre-nozzle (10c).
  18. The pre-nozzle according to any one of the preceding claims, characterized in that, in a cross-sectional view, the rectilinear sections (37, 38) interconnect a plurality of, in particular two, arcuate sections (39, 40).
  19. The pre-nozzle according to any one of the preceding claims, characterized in that the rectilinear sections (37, 38) are disposed at the side region of the pre-nozzle (10), in particular opposite one another.
  20. The pre-nozzle according to any one of the preceding claims, characterized in that the ratio of the greatest length of at least one opening area (19, 20) of the pre-nozzle (10a, 10b, 10c) in the vertical direction to the average profile length of the pre-nozzle (10) is between 1.5 : 1 and 4 : 1, preferably between 1.75 : 1 and 3 : 1, particularly preferably between 1.75 : 1 and 2.5 : 1.
EP13156118.5A 2011-02-25 2011-07-12 Pre-nozzle for a propulsion system of a water vehicle for improving energy efficiency Active EP2597030B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL13156118T PL2597030T3 (en) 2011-02-25 2011-07-12 Pre-nozzle for a propulsion system of a water vehicle for improving energy efficiency
HRP20171654TT HRP20171654T1 (en) 2011-02-25 2017-10-30 Pre-nozzle for a propulsion system of a water vehicle for improving energy efficiency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202011000439U DE202011000439U1 (en) 2011-02-25 2011-02-25 Pre-nozzle for a propulsion system of a watercraft to improve energy efficiency
EP11173670.8A EP2492185B1 (en) 2011-02-25 2011-07-12 Pre-nozzle for a drive system of a water vehicle for improving energy efficiency

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP11173670.8A Division-Into EP2492185B1 (en) 2011-02-25 2011-07-12 Pre-nozzle for a drive system of a water vehicle for improving energy efficiency
EP11173670.8A Division EP2492185B1 (en) 2011-02-25 2011-07-12 Pre-nozzle for a drive system of a water vehicle for improving energy efficiency
EP11173670.8 Division 2011-07-12

Publications (3)

Publication Number Publication Date
EP2597030A2 EP2597030A2 (en) 2013-05-29
EP2597030A3 EP2597030A3 (en) 2013-08-07
EP2597030B1 true EP2597030B1 (en) 2017-08-02

Family

ID=44860215

Family Applications (3)

Application Number Title Priority Date Filing Date
EP11173670.8A Active EP2492185B1 (en) 2011-02-25 2011-07-12 Pre-nozzle for a drive system of a water vehicle for improving energy efficiency
EP13156115.1A Active EP2597029B1 (en) 2011-02-25 2011-07-12 Pre-nozzle for a drive system of a water vehicle for improving energy efficiency
EP13156118.5A Active EP2597030B1 (en) 2011-02-25 2011-07-12 Pre-nozzle for a propulsion system of a water vehicle for improving energy efficiency

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP11173670.8A Active EP2492185B1 (en) 2011-02-25 2011-07-12 Pre-nozzle for a drive system of a water vehicle for improving energy efficiency
EP13156115.1A Active EP2597029B1 (en) 2011-02-25 2011-07-12 Pre-nozzle for a drive system of a water vehicle for improving energy efficiency

Country Status (16)

Country Link
US (1) US8944869B2 (en)
EP (3) EP2492185B1 (en)
JP (3) JP5676506B2 (en)
KR (4) KR20120098514A (en)
CN (4) CN104648641B (en)
CA (1) CA2769332C (en)
DE (3) DE202011000439U1 (en)
DK (3) DK2492185T3 (en)
ES (3) ES2590044T3 (en)
HK (3) HK1172301A1 (en)
HR (3) HRP20140573T1 (en)
NO (1) NO2903476T3 (en)
PL (3) PL2597029T3 (en)
PT (2) PT2492185E (en)
SG (2) SG10201400515XA (en)
TW (3) TWI583598B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011000439U1 (en) * 2011-02-25 2012-08-21 Becker Marine Systems Gmbh & Co. Kg Pre-nozzle for a propulsion system of a watercraft to improve energy efficiency
AU2012289899B2 (en) * 2011-08-04 2017-05-18 Hugh B. Nicholson Aeration system
NO335715B1 (en) * 2013-01-31 2015-01-26 Rolls Royce Marine As Marine vessel propulsion unit comprising a nozzle exhibiting a replaceable sectioned leading edge at the inlet of the nozzle
DE202013101943U1 (en) 2013-05-06 2013-06-11 Becker Marine Systems Gmbh & Co. Kg Device for reducing the power requirement of a watercraft
KR101425369B1 (en) * 2013-05-30 2014-08-06 에스티엑스조선해양 주식회사 appendage of duct with guide fin directed in center of radial
CN103332280B (en) * 2013-07-01 2017-09-29 中国船舶科学研究中心上海分部 Radiance type preposed guide wheel
CN103332281B (en) * 2013-07-19 2017-03-08 上海船舶研究设计院 Triangle conduit of prewhirling for dextrorotation single-blade ship
CN104002950B (en) * 2014-05-06 2017-01-04 浙江海洋学院 The energy-conservation wake compensating duct of prewhirling of a kind of novel fishing boat
DE102015103285A1 (en) 2015-03-06 2016-09-08 Becker Marine Systems Gmbh & Co. Kg Arrangement for multi-propeller ships with external propeller shafts and method for producing such an arrangement
CN105346698A (en) * 2015-12-02 2016-02-24 南通虹波机械有限公司 Efficient energy-saving guide wheel
CN106314737B (en) * 2016-09-20 2018-03-27 宋华权 The new compound electric plating propulsion of warship binary
CN107487429A (en) * 2017-08-23 2017-12-19 北京臻迪科技股份有限公司 Stator blade structure, propeller and submarine navigation device
CN109606596A (en) * 2018-11-29 2019-04-12 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) Energy saving half guide wheel before a kind of paddle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537096A (en) * 1976-07-06 1978-01-23 Mitsui Eng & Shipbuild Co Ltd Ship

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4070984A (en) * 1977-07-25 1978-01-31 Kappas Chris S Outboard motor and weed guard therefor
US4327469A (en) * 1980-03-10 1982-05-04 Mitsui Engineering And Shipbuilding Co., Ltd. Method for mounting ring-shaped construction on ship stern
JPS632400Y2 (en) * 1980-05-14 1988-01-21
US4428735A (en) * 1982-01-25 1984-01-31 Arctic Pilot Project Inc. Propeller mount for icebreaker
JPS58139395U (en) 1982-03-16 1983-09-19 三菱重工業株式会社 Reaction Fin
JPS58139396U (en) 1982-03-17 1983-09-19 三菱重工業株式会社 Reaction fin rectifier type strut
SE8402792L (en) * 1984-05-23 1985-11-24 Kamewa Ab thruster
US4593547A (en) 1985-06-26 1986-06-10 Danly Machine Corporation Hydraulic overload control system for power presses
JPH0450238Y2 (en) * 1985-08-28 1992-11-26
US4680017A (en) * 1986-03-10 1987-07-14 Eller Dennis E Motorboat propeller guard for improved performance
JPS62214094A (en) * 1986-03-12 1987-09-19 Mitsubishi Heavy Ind Ltd Propulsion efficiency improving device for vessel
US4957459A (en) * 1989-08-23 1990-09-18 Brunswick Corporation Propeller shroud with load bearing structure
US5292088A (en) * 1989-10-10 1994-03-08 Lemont Harold E Propulsive thrust ring system
DE4025339C2 (en) * 1990-08-10 1999-07-08 Schneekluth Herbert Control system
JP2948413B2 (en) * 1991-11-14 1999-09-13 三菱重工業株式会社 Reaction fin device for ships
JP3235772B2 (en) * 1995-12-22 2001-12-04 住友重機械工業株式会社 Ship with stern duct
US20010051475A1 (en) * 1996-11-07 2001-12-13 Reinhold Reuter Twin-propeller drive for watercraft
US5928042A (en) * 1998-03-26 1999-07-27 Glenn F. Mattina Propeller guard
US5906522A (en) * 1998-04-01 1999-05-25 Hooper; Robert P. Thrust enhancer for marine propeller
US6159060A (en) * 1999-08-04 2000-12-12 The United States Of America As Represented By The Secretary Of The Navy Protective shrouding with debris diverting inflow vanes for pump-jet propulsion unit
US6618125B2 (en) * 2000-09-05 2003-09-09 The United States Of America As Represented By The Secretary Of The Army Code-multiplexed read-out for ladar systems
JP2002087385A (en) * 2000-09-19 2002-03-27 Sanshin Ind Co Ltd Corrosion-proof structure of water jet propeller
US6572422B2 (en) * 2000-10-10 2003-06-03 Monterey Bay Aquarium Research Institute (Mbari) Tail assembly for an underwater vehicle
JP4079742B2 (en) 2002-10-10 2008-04-23 ユニバーサル造船株式会社 Duct bodies in ships
CA2425430A1 (en) 2003-04-17 2004-10-17 Shi Heng Yang A front-mounted water-separation propeller
US7267589B2 (en) 2004-07-22 2007-09-11 Enviroprop Corporation System and apparatus for improving safety and thrust from a hydro-drive device
KR100625847B1 (en) * 2004-10-14 2006-09-20 부산대학교 산학협력단 Asymmetric Pre-swirl Stator for Cavitation Suppression
JP5025247B2 (en) 2006-12-13 2012-09-12 ユニバーサル造船株式会社 Ship duct and ship with ship duct
DE202008006069U1 (en) 2008-03-10 2008-07-17 Becker Marine Systems Gmbh & Co. Kg Device for reducing the power requirement of a ship
US8142242B2 (en) * 2009-05-19 2012-03-27 Advanced Marine Concepts, Llc Marine propulsion system
KR20110018505A (en) * 2009-08-18 2011-02-24 대우조선해양 주식회사 Pre-swirl stator and manufacturing method thereof
JP2011042201A (en) 2009-08-20 2011-03-03 Universal Shipbuilding Corp Stern duct with small blades and vessel
DE202011000439U1 (en) * 2011-02-25 2012-08-21 Becker Marine Systems Gmbh & Co. Kg Pre-nozzle for a propulsion system of a watercraft to improve energy efficiency
US8356566B1 (en) * 2011-03-18 2013-01-22 David Alan Sellins Multi-directional marine propulsor apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537096A (en) * 1976-07-06 1978-01-23 Mitsui Eng & Shipbuild Co Ltd Ship

Also Published As

Publication number Publication date
CN104648642B (en) 2017-07-28
JP6212027B2 (en) 2017-10-11
SG183644A1 (en) 2012-09-27
US8944869B2 (en) 2015-02-03
HK1172301A1 (en) 2013-04-19
KR20120098514A (en) 2012-09-05
HK1205077A1 (en) 2015-12-11
PL2492185T3 (en) 2014-09-30
EP2492185B1 (en) 2014-04-02
ES2590044T3 (en) 2016-11-17
DE202011110549U1 (en) 2014-07-25
NO2903476T3 (en) 2018-03-03
DK2597029T3 (en) 2016-09-19
JP5676506B2 (en) 2015-02-25
TW201512037A (en) 2015-04-01
HRP20140573T1 (en) 2014-08-01
ES2645399T3 (en) 2017-12-05
JP2012180085A (en) 2012-09-20
TW201242841A (en) 2012-11-01
ES2475994T3 (en) 2014-07-11
CN104309791B (en) 2017-06-09
CN104309791A (en) 2015-01-28
HK1182675A1 (en) 2013-12-06
EP2597029A3 (en) 2013-07-10
DE202011110550U1 (en) 2014-07-25
KR20150116806A (en) 2015-10-16
PL2597030T3 (en) 2018-02-28
TWI498253B (en) 2015-09-01
TWI583597B (en) 2017-05-21
EP2597030A2 (en) 2013-05-29
HRP20171654T1 (en) 2017-12-15
US20130059491A1 (en) 2013-03-07
HRP20161152T1 (en) 2016-11-18
EP2597029A2 (en) 2013-05-29
CA2769332A1 (en) 2012-08-25
CN102673760B (en) 2015-07-22
CN104648642A (en) 2015-05-27
EP2492185A1 (en) 2012-08-29
EP2597029B1 (en) 2016-06-08
CN104648641A (en) 2015-05-27
TW201512036A (en) 2015-04-01
JP2014111458A (en) 2014-06-19
DK2492185T3 (en) 2014-07-07
DE202011000439U1 (en) 2012-08-21
EP2597030A3 (en) 2013-08-07
KR20150003446U (en) 2015-09-16
JP2015057348A (en) 2015-03-26
PT2597030T (en) 2017-11-13
PL2597029T3 (en) 2016-12-30
DK2597030T3 (en) 2017-11-13
SG10201400515XA (en) 2014-05-29
CN104648641B (en) 2017-09-12
CN102673760A (en) 2012-09-19
CA2769332C (en) 2015-06-02
PT2492185E (en) 2014-07-11
TWI583598B (en) 2017-05-21
KR20150120897A (en) 2015-10-28

Similar Documents

Publication Publication Date Title
EP2597030B1 (en) Pre-nozzle for a propulsion system of a water vehicle for improving energy efficiency
EP2591994B1 (en) Device for lowering the fuel consumption of the propulsion of a watercraft
EP2100809B1 (en) Device for lowering the drive output requirements of a ship
EP2994379B1 (en) Apparatus to reduce required propulsion power of waterborne vessel
DE1528824C3 (en) Axial fluid flow machine with reversible working direction
EP3064427B1 (en) Assembly for multi-screws ships having external propeller shafts and a method of manufacturing such an assembly
EP2060482B1 (en) Kort nozzle
EP3298284B1 (en) Flat flow-conducting grille
EP2277772B1 (en) Ducted propeller for ships
EP2730771B1 (en) Nozzle for a gas turbine engine with baffles
EP2570341B1 (en) Propeller nozzle
WO2017063830A1 (en) Continuous-flow energy installation, in particular a wind power installation
DE2653630C2 (en) Device for pumping fluids
EP1570175B1 (en) Method and device for reducing pressure fluctuations in an induction pipe of a water turbine or water pump or water-pump turbine
EP2281743B1 (en) Propeller engine pod
EP2730772B1 (en) Nozzle with baffles
DE803865C (en) Device for converting a straight flow into a curved flow (and vice versa) through a blade grille
DE202009002642U1 (en) Device for reducing the power requirement of a ship
DE4220960A1 (en) Blades for axial and radial flow machines - use series of segments and connecting elements to create variable flow contour
DE102010013067B4 (en) Hydropower plant
DE102010022070A1 (en) Drive unit for watercraft, has driving element comprising drive blades that include convex outer surface edge and concave inner surface edge in cross-section, where drive blades are helically arranged at radial distance around shaft
DE969975C (en) Guide vane wheel for fluid transmission
WO2002020347A2 (en) Driving mechanism disposed on the outside of the hull of a watercraft
DE60113962T2 (en) rotary pump
EP4298013A1 (en) Energy-saving arrangement for twin-screw ships

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2492185

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B63H 5/16 20060101ALI20130702BHEP

Ipc: B63H 1/28 20060101AFI20130702BHEP

17P Request for examination filed

Effective date: 20131016

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1182676

Country of ref document: HK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BECKER MARINE SYSTEMS GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170222

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BECKER MARINE SYSTEMS GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2492185

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 914130

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012748

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20171654

Country of ref document: HR

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20171108

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2597030

Country of ref document: PT

Date of ref document: 20171113

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20171027

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2645399

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171205

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20171654

Country of ref document: HR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171202

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20170402979

Country of ref document: GR

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012748

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180503

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1182676

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180712

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180712

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20171654

Country of ref document: HR

Payment date: 20190704

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 914130

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20171654

Country of ref document: HR

Payment date: 20200702

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20171654

Country of ref document: HR

Payment date: 20210709

Year of fee payment: 11

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20171654

Country of ref document: HR

Payment date: 20220708

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20171654

Country of ref document: HR

Payment date: 20230630

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230629

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230629

Year of fee payment: 13

Ref country code: NL

Payment date: 20230720

Year of fee payment: 13

Ref country code: HR

Payment date: 20230630

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230711

Year of fee payment: 13

Ref country code: RO

Payment date: 20230705

Year of fee payment: 13

Ref country code: NO

Payment date: 20230720

Year of fee payment: 13

Ref country code: IT

Payment date: 20230731

Year of fee payment: 13

Ref country code: GB

Payment date: 20230724

Year of fee payment: 13

Ref country code: FI

Payment date: 20230719

Year of fee payment: 13

Ref country code: ES

Payment date: 20230821

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20230718

Year of fee payment: 13

Ref country code: FR

Payment date: 20230724

Year of fee payment: 13

Ref country code: DK

Payment date: 20230724

Year of fee payment: 13

Ref country code: DE

Payment date: 20230809

Year of fee payment: 13