JP4079742B2 - Duct bodies in ships - Google Patents

Duct bodies in ships Download PDF

Info

Publication number
JP4079742B2
JP4079742B2 JP2002296818A JP2002296818A JP4079742B2 JP 4079742 B2 JP4079742 B2 JP 4079742B2 JP 2002296818 A JP2002296818 A JP 2002296818A JP 2002296818 A JP2002296818 A JP 2002296818A JP 4079742 B2 JP4079742 B2 JP 4079742B2
Authority
JP
Japan
Prior art keywords
duct body
vertical
duct
horizontal
stern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002296818A
Other languages
Japanese (ja)
Other versions
JP2004130908A (en
Inventor
滋也 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Shipbuilding Corp
Original Assignee
Universal Shipbuilding Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Shipbuilding Corp filed Critical Universal Shipbuilding Corp
Priority to JP2002296818A priority Critical patent/JP4079742B2/en
Publication of JP2004130908A publication Critical patent/JP2004130908A/en
Application granted granted Critical
Publication of JP4079742B2 publication Critical patent/JP4079742B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プロペラの前方に配置されて推力を発生させることにより推進効率の向上を図り得るダクト体に関するものである。
【0002】
【従来の技術】
従来、タンカーなどの船舶においては、図12および図13に示すように、推進効率の向上を図るために、プロペラ51より船首側の船体船尾部52に、リング状のノズル53が設けられていた(例えば、特許文献1参照)。なお、このノズル53は、その断面形状が翼型にされており、その周囲に発生する循環流Γによって、推力(推進力)が得られるようにしたものである。
【0003】
【特許文献1】
実用新案登録第2555130号公報
【0004】
【発明が解決しようとする課題】
ところで、上記従来に係るノズル53での推力の発生状態を、抗力分布図で見ると図14のようになり、特に、底部(図13の斜線にて示す)においては、逆向きの推力(図14の斜線にて示す)が発生し抗力(Fx)が生じているため、推力の増加を図り、推進効率の向上が望まれている。
【0005】
そこで、本発明は、推進効率の向上を図り得る船舶におけるダクト体を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明の第1の手段は、プロペラより船首側の船体船尾部に取り付けられて推進効率の向上を図るためのダクト体であって、
左右一対の鉛直部とこれら鉛直部の上端同士を連結する水平部とから構成されて底部が開放された門型状に形成されるとともに、上記両鉛直部と水平部との連結部分が曲線部にされ、且つ少なくとも上記鉛直部および曲線部の断面形状が翼型にされたものであり、
また上記鉛直部における前後方向の長さが、上方から下方にいくに従って短くなるようにしたものである。
【0007】
上記の構成によると、ダクト体を、断面形状が翼型にされた鉛直部および水平部により門型状にしたので、すなわち従来のリング状ノズル体の底部を無くすようにしたので、リング状のものを設ける場合に比べて、推力が増加し、したがって推進効率の向上を図ることができる。
【0008】
また、本発明の第2の手段は、プロペラより船首側の船体船尾部に配置されて推進効率の向上を図るためのダクト体であって、
左右一対の鉛直部とこれら鉛直部の上端同士を連結する水平部とから構成されて底部が開放された門型状に形成されるとともに、上記両鉛直部と水平部との連結部分が曲線部にされ、且つ少なくとも上記鉛直部および曲線部の断面形状が翼型にされたダクト本体と、このダクト本体における左右の鉛直部の外面に、取付部材を介して所定距離だけ離間された状態で且つ所定高さでもって取り付けられるとともに、水平断面形状が翼型にされた補助翼とから構成されたものであり、
また上記ダクト本体の鉛直部および補助翼における前後方向の長さが、上方から下方にいくに従って短くなるようにしたものである。
【0009】
上記の構成によると、門型状のダクト本体の両外面に補助翼を取り付けたので、ダクト本体による推力の増加に加えて、補助翼においても推力が発生するため、ダクト体としては、より、推進効率の向上を図ることができる。
【0010】
【発明の実施の形態】
以下、本発明の第1の実施の形態に係る船舶におけるダクト体を図面に基づき説明する。
【0011】
図1〜図3に示すように、このダクト体1は、プロペラ2の船首側(前方ともいい、船尾側を後方ともいう)位置で船体船尾部3に取り付けられて、推力を発生させることにより、船舶の推進効率の向上を図るためのものである。
【0012】
このダクト体1は、左右一対の鉛直部11とこれら鉛直部11の上端同士を連結する水平部12とから構成されて底部が開放された門型状(前方または後方から見た正面視形状であり、逆U字形状ともいう)に形成され、且つ両鉛直部11,11と水平部12との連結部分(コーナ部分)が所定の半径(曲率)を有する曲線部Rにされるとともに、鉛直部11および水平部12(勿論、曲線部Rも含む)の各断面形状が翼型にされている。
【0013】
そして、上記ダクト体1の船体船尾部3に対する取付けは、その水平部12の中央部が船体船尾部3に後方から外嵌されるとともに、両鉛直部11と船体船尾部3の表面との間に亘ってそれぞれ水平方向で板状の取付部材13が設けられて、船体船尾部3に対して合計三方から行われている。
【0014】
また、ダクト体1における各部の取付姿勢、すなわちプロペラ中心線CL(実際にはこれと平行な直線CL′)に対する翼型のダクト体1における翼弦Cの傾斜角度(迎え角、取付角ともいう)θは、所定の角度範囲内、例えば5〜15度程度にされている。なお、翼自体の姿勢は、その膨出側(翼の上面ともいう)が内側(プロペラ側)にくる(位置する)ようにされている。
【0015】
また、上記ダクト体1の側面視の形状は、鉛直部11の上部11aでは前縁が鉛直にされて翼弦の長さが一定にされるとともに、下部11bでは前縁が船尾側に傾斜させられて翼弦の長さが上方から下方に行くに従って短くなるようにされている。なお、この傾斜した部分での厚さ(翼厚)は、翼弦の長さに比例するようにされている。すなわち、翼弦の長さに対する厚さの比率は一定にされている。
【0016】
このダクト体1を船体船尾部3に取り付けた場合の推力の発生状態を、図4の抗力分布図に示す(但し、この場合の翼弦の傾斜角度θは10度である)。この図4と、図14に示される従来のリング状ノズルにおける抗力分布図とを比較すると、底部に発生する抗力(図14の斜線にて示す)がかなりの割合で低下するとともに、曲線部Rでの推力が増加しているのが分かる。詳しく説明すれば、両側の曲線部Rを船体から離してより推力が得られる流れ場に配置することにより、これら両曲線部Rでの推力の増加が図られているのが分かる。すなわち、推進効率の向上が図られているのが分かる。なお、図4の抗力分布図の曲線部Rにおいて、こぶのように急に変化しているのは、翼弦の長さが連続的に変化していない(一定長から傾斜域に移っているため)からである。
【0017】
このように、ダクト体1を、断面形状が翼型にされた鉛直部11および水平部12により門型状に、すなわち従来のリング状ノズルの底部を無くすとともに、曲線部Rをプロペラ中心線から両側に離間させて水平部分を設けたので、従来のリング状ノズルに比べて、推力が増加し、したがって船舶の推進効率の向上を図ることができる。なお、このダクト体1の大きさは、従来のノズルに比べて小さくされており、具体的には、曲線部Rの半径は、従来のノズルの直径Dの1/4にされるとともに、両曲線部R同士を接続する直線部の長さについても、D/4にされており、したがって全体の幅は3D/4にされている。
【0018】
なお、ダクト体1の鉛直部11の船体への取付部材13を水平方向で設けたが、例えば図2の仮想線にて示すように、斜めに設けてもよい。
ところで、上記第1の実施の形態においては、ダクト体1の前縁の内、下部を船尾側に傾斜させたが、図5(a)に示すように、上部についても船尾側に傾斜させてもよく、この場合、上部の鉛直線に対する傾斜角αは、下部の傾斜角βよりも小さくされる。また、図5(b)に示すように、鉛直部11の前縁全体を船尾側に傾斜させてもよく、さらに(c)に示すように、鉛直部11の前縁を鉛直にして翼弦の長さ(鉛直部の幅)を上下に亘って同一にしてもよい。
【0019】
なお、上記実施の形態に係るダクト体の実質的(取付部分を除く)な推進効率の増加の割合を示すと、図1に示す第1の実施の形態に係るものでは14%程度、図5(a)のものでは12%程度、図5(b)のものでは2%程度、図5(c)のものでは17%程度である。
【0020】
また、上記第1の実施の形態においては、ダクト体11を全体に亘って翼型に形成したが、水平部12の内、コーナ部を除く水平部分については、必ずしも、翼型でなくてもよい。
【0021】
次に、本発明の第2の実施の形態に係る船舶におけるダクト体を、図6〜図9に基づき説明する。
上記第1の実施の形態においてはダクト体を門型状に構成したが、本第2の実施の形態に係るダクト体は、第1の実施の形態に係るダクト体(以下に示すダクト本体に相当する)の両側に補助翼を取り付けたものであり、ダクト本体(ダクト体)については同一の構成であるため、以下においては、補助翼に着目して説明するとともに、ダクト本体については簡単に説明する。
【0022】
すなわち、図6〜図9に示すように、本第2の実施の形態に係るダクト体21は、左右一対の鉛直部22およびこれら鉛直部22の上端同士を連結する水平部23から構成されるとともに底部が開放された門型状に形成され、且つ両鉛直部22,22と水平部23との連結部分(コーナ部分)が所定の半径(曲率)を有する曲線部Rにされるとともに、鉛直部22および水平部23(勿論、曲線部Rを含む)の各断面形状が翼型にされたダクト本体24と、このダクト本体24における左右の鉛直部22の外面に、上下一対の板状の取付部材25を介して所定距離だけ離間された状態で且つ所定高さでもって取り付けられるとともに水平断面形状が翼型にされた補助翼(垂直翼ともいう)26とから構成されている。
【0023】
なお、ダクト本体24の船体船尾部3に対する取付けについても、第1の実施の形態と同様に、水平部23の中央部が船体船尾部3に後方から外嵌されるとともに、両鉛直部22と船体船尾部3の表面との間に亘ってそれぞれ水平方向で板状の取付部材27が設けられて、船体船尾部3に対して合計三方から行われている。
【0024】
上記ダクト本体24の側面視形状は、鉛直部22の前縁が上方から下方に行くに従って船尾側に傾斜されている。
また、補助翼26については、その側面視形状において、ダクト本体24の側面視形状を少し小さくした形状にされるとともに、翼形状の膨らみ側が鉛直部22のそれと同様に内側(プロペラ側)にくるように取り付けられる。
【0025】
なお、この補助翼26を配置する際、船長方向において、ダクト本体24に対して流体力学的干渉を避けるために、補助翼26の前縁がダクト本体24の前縁より後方にくるようにされる。また、補助翼26の後縁は、翼面積を稼ぐためにも、ダクト本体24の後縁に一致される。
【0026】
また、プロペラ中心線CL(実際にはこれと平行な直線CL′)に対する補助翼26の傾斜角θ2は、鉛直部22における傾斜角θ1よりも大きくなるように、すなわちダクト本体24と補助翼26の前縁側の入口幅の方が後縁側の出口幅よりも広くされている。
【0027】
このダクト体21を船体船尾部3に取り付けた状態での抗力分布をグラフに示すと図10のようになる(この場合の翼弦の傾斜角度θも10度である)。このグラフと、第2の実施の形態に係るダクト体における抗力分布を示す図4のグラフとを比較すると、第2の実施の形態に係るダクト体21に発生する推力に、補助翼26にて発生する推力(図10の斜線にて示す)がさらに増加しているのが分かる。この図10に示すグラフでは、ダクト本体24にて発生する推力は、図4に示す曲線部Rでの増加の状態(こぶの部分)とは異なり、滑らかに変化しているが、これは翼弦の長さが連続的に変化しているからである。なお、図10において、補助翼の上端位置をξ1(−ξ1)として補助翼の下端位置ξ2(−ξ2)を表している。
【0028】
このように、門型状のダクト本体24の両外面に、補助翼26を鉛直方向で取り付けたので、ダクト本体24による推力の増加に加えて、補助翼26においても推力が発生するため、ダクト体21として、より、推進効率の向上を図ることができる。
【0029】
また、第1の実施の形態と同様に、ダクト本体24の船体への取付部材27を水平方向に設けたが、例えば図8の仮想線にて示すように、斜めに設けてもよい。
【0030】
ところで、上記第2の実施の形態においては、ダクト本体24の鉛直部22の前縁全体を且つ下部の翼弦が短くなるように船尾側に傾斜させたが、図11(a)に示すように、上部22aについては鉛直となるようにするとともに、補助翼26についても同様に下部26bを船尾側に傾斜させてもよく、また図11(b)に示すように、図11(a)に示すダクト本体24に取り付けられる補助翼26の前縁全体を且つ下部の翼弦が短くなるように船尾側に傾斜させてもよく、さらに図11(c)に示すように、鉛直部22および補助翼26の前縁全体を鉛直に、すなわちそれぞれの翼弦を上下に亘って同一の長さにしてもよい。
【0031】
なお、上記第2の実施の形態に係るダクト体およびその変形例に係るダクト体の実質的(取付部分を除く)な推進効率の増加の割合を示すと、図6に示す第2の実施の形態に係るものでは23%程度、図11(a)のものでは20%程度、図11(b)のものでは22%程度、図11(c)のものでは13%程度である。
【0032】
【発明の効果】
以上のように本発明の第1の手段に係るダクト体の構成によると、ダクト体を、断面形状が翼型にされた鉛直部および水平部により門型状にしたので、すなわち従来のリング状ノズル体の底部を無くすようにしたので、リング状のものを設ける場合に比べて、推力が増加し、したがって推進効率の向上を図ることができる。
【0033】
また、本発明の第2の手段に係るダクト体の構成によると、門型状のダクト本体の両外面に補助翼を取り付けたので、ダクト本体による推力の増加に加えて、補助翼においても推力が発生するため、ダクト体としては、より、推進効率の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るダクト体を示す側面図である。
【図2】図1のA−A矢視図である。
【図3】同ダクト体の水平断面図である。
【図4】同ダクト体に発生する抗力分布を示す図である。
【図5】第1の実施の形態に係るダクト体の変形例を示す概略側面図である。
【図6】本発明の第2の実施の形態に係るダクト体の外観を示す斜視図である。
【図7】同ダクト体の側面図である。
【図8】図7のB−B矢視図である。
【図9】同ダクト体の水平断面図である。
【図10】同ダクト体に発生する抗力分布を示す図である。
【図11】第2の実施の形態に係るダクト体の変形例を示す概略側面図である。
【図12】従来例に係るノズル状ダクトの側面図である。
【図13】図12のC−C矢視図である。
【図14】同ダクト体に発生する抗力分布を示す図である。
【符号の説明】
1 ダクト体
2 プロペラ
3 船体船尾部
11 鉛直部
12 水平部
13 曲線部
14 取付部材
21 ダクト体
22 鉛直部
23 水平部
24 ダクト本体
25 取付部材
26 補助翼
27 取付部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a duct body that can be disposed in front of a propeller to generate propulsion to improve propulsion efficiency.
[0002]
[Prior art]
Conventionally, in a ship such as a tanker, as shown in FIGS. 12 and 13, in order to improve propulsion efficiency, a ring-shaped nozzle 53 is provided in the hull stern portion 52 on the bow side of the propeller 51. (For example, refer to Patent Document 1). The nozzle 53 has a blade shape in cross section, and a thrust (propulsive force) is obtained by a circulating flow Γ generated around the nozzle 53.
[0003]
[Patent Document 1]
Utility Model Registration No. 2555130
[Problems to be solved by the invention]
By the way, when the generation state of the thrust in the conventional nozzle 53 is viewed in the drag distribution diagram, it is as shown in FIG. 14, and in particular, in the bottom portion (shown by hatched lines in FIG. 13), the thrust in the reverse direction (see FIG. 14) and drag (F x ) is generated, so that it is desired to increase thrust and improve propulsion efficiency.
[0005]
Then, an object of this invention is to provide the duct body in the ship which can aim at the improvement of propulsion efficiency.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the first means of the present invention is a duct body that is attached to the stern part of the hull on the bow side from the propeller to improve the propulsion efficiency,
It is composed of a pair of left and right vertical parts and a horizontal part that connects the upper ends of these vertical parts, and is formed in a gate shape with the bottom part open, and the connecting part between the two vertical parts and the horizontal part is a curved part. And the cross-sectional shape of at least the vertical part and the curved part is an airfoil,
Further, the length in the front-rear direction of the vertical portion is shortened from the top to the bottom.
[0007]
According to the above configuration, the duct body is formed in a gate shape with the vertical portion and the horizontal portion having a cross-sectional shape of an airfoil, that is, the bottom portion of the conventional ring-shaped nozzle body is eliminated. Compared with the case where a thing is provided, the thrust is increased, and therefore the propulsion efficiency can be improved.
[0008]
Further, the second means of the present invention is a duct body that is arranged in the hull stern part on the bow side of the propeller to improve the propulsion efficiency,
It is composed of a pair of left and right vertical parts and a horizontal part that connects the upper ends of these vertical parts, and is formed in a gate shape with the bottom part open, and the connecting part between the two vertical parts and the horizontal part is a curved part. And at least a predetermined distance from the outer surface of the left and right vertical parts of the duct main body through a mounting member, and the duct main body in which the cross-sectional shapes of the vertical part and the curved part are airfoil-shaped. Attached with a predetermined height and composed of an auxiliary wing whose horizontal cross-sectional shape is shaped like an airfoil,
Further, the length in the front-rear direction of the vertical portion and the auxiliary wing of the duct body is made shorter from the upper side to the lower side.
[0009]
According to the above configuration, since the auxiliary wings are attached to both outer surfaces of the portal-shaped duct body, in addition to the increase in thrust by the duct body, thrust is also generated in the auxiliary wings. Propulsion efficiency can be improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the duct body in the ship concerning the 1st embodiment of the present invention is explained based on a drawing.
[0011]
As shown in FIGS. 1 to 3, the duct body 1 is attached to the hull stern portion 3 at the bow side (also referred to as the front and the stern side as the rear) of the propeller 2 to generate thrust. This is intended to improve the propulsion efficiency of the ship.
[0012]
The duct body 1 includes a pair of left and right vertical parts 11 and a horizontal part 12 that connects the upper ends of the vertical parts 11 and has a gate-like shape with an open bottom (a front view as viewed from the front or rear). And a connecting portion (corner portion) between the vertical portions 11 and 11 and the horizontal portion 12 is a curved portion R having a predetermined radius (curvature) and vertical. Each cross-sectional shape of the part 11 and the horizontal part 12 (including the curved part R, of course) is formed into an airfoil.
[0013]
The duct body 1 is attached to the hull stern portion 3 with the center portion of the horizontal portion 12 being externally fitted to the hull stern portion 3 from behind and between the vertical portions 11 and the surface of the hull stern portion 3. A plate-like attachment member 13 is provided in each horizontal direction, and is performed on the hull stern portion 3 from a total of three sides.
[0014]
Further, the mounting posture of each part in the duct body 1, that is, the inclination angle (attack angle, mounting angle) of the chord C in the airfoil duct body 1 with respect to the propeller center line CL (actually a straight line CL ′ parallel thereto). ) Θ is set within a predetermined angle range, for example, about 5 to 15 degrees. The wing itself is positioned such that its bulging side (also referred to as the upper surface of the wing) comes to the inside (propeller side).
[0015]
Further, the shape of the duct body 1 as viewed from the side is that the upper edge 11a of the vertical portion 11 has a vertical leading edge to make the chord length constant, and the lower edge 11b has the leading edge inclined toward the stern side. The chord length is shortened from the top to the bottom. The thickness (blade thickness) at the inclined portion is proportional to the length of the chord. That is, the ratio of the thickness to the chord length is constant.
[0016]
The state of thrust generation when the duct body 1 is attached to the hull stern 3 is shown in the drag distribution diagram of FIG. 4 (however, the inclination angle θ of the chord in this case is 10 degrees). Comparing this FIG. 4 with the drag distribution diagram in the conventional ring-shaped nozzle shown in FIG. 14, the drag generated at the bottom (shown by the hatched lines in FIG. 14) decreases at a considerable rate, and the curve R You can see that the thrust at is increasing. More specifically, it can be seen that the thrust on both curved portions R is increased by arranging the curved portions R on both sides away from the hull in the flow field where more thrust is obtained. That is, it can be seen that the propulsion efficiency is improved. It should be noted that in the curve portion R of the drag distribution diagram of FIG. 4, the abrupt change like a hump is that the chord length does not change continuously (from a certain length to an inclined region). Because).
[0017]
In this manner, the duct body 1 is formed in a gate shape by the vertical portion 11 and the horizontal portion 12 having a cross-sectional shape of an airfoil, that is, the bottom portion of the conventional ring nozzle is eliminated, and the curved portion R is separated from the propeller center line. Since the horizontal portions are provided so as to be separated from each other, the thrust is increased as compared with the conventional ring-shaped nozzle, and thus the propulsion efficiency of the ship can be improved. The size of the duct body 1 is smaller than that of the conventional nozzle. Specifically, the radius of the curved portion R is set to 1/4 of the diameter D of the conventional nozzle, and both The length of the straight line portion connecting the curved portions R is also set to D / 4, and therefore the overall width is set to 3D / 4.
[0018]
In addition, although the attachment member 13 to the hull of the vertical portion 11 of the duct body 1 is provided in the horizontal direction, it may be provided obliquely, for example, as indicated by a virtual line in FIG.
By the way, in the first embodiment, the lower part of the front edge of the duct body 1 is inclined toward the stern side, but the upper part is also inclined toward the stern side as shown in FIG. In this case, the inclination angle α with respect to the upper vertical line is made smaller than the lower inclination angle β. Further, as shown in FIG. 5B, the entire leading edge of the vertical portion 11 may be inclined toward the stern side. Further, as shown in FIG. The length (width of the vertical portion) may be the same over the top and bottom.
[0019]
In addition, when the ratio of the substantial increase in propulsion efficiency of the duct body according to the above embodiment (excluding the attachment portion) is shown, the ratio according to the first embodiment shown in FIG. It is about 12% in the case of (a), about 2% in the case of FIG. 5 (b), and about 17% in the case of FIG. 5 (c).
[0020]
Moreover, in the said 1st Embodiment, although the duct body 11 was formed in the wing | blade shape over the whole, about the horizontal part except a corner part among the horizontal parts 12, it does not necessarily need to be an wing | blade shape. Good.
[0021]
Next, the duct body in the ship which concerns on the 2nd Embodiment of this invention is demonstrated based on FIGS.
In the first embodiment, the duct body is configured in a gate shape. However, the duct body according to the second embodiment is a duct body according to the first embodiment (the duct body shown below). Since the duct body (duct body) has the same configuration, the following description will focus on the auxiliary wing, and the duct body will be simplified. explain.
[0022]
That is, as shown in FIGS. 6 to 9, the duct body 21 according to the second embodiment includes a pair of left and right vertical portions 22 and a horizontal portion 23 that connects the upper ends of the vertical portions 22. In addition, it is formed in a gate shape with the bottom open, and the connecting portion (corner portion) between the vertical portions 22 and 22 and the horizontal portion 23 is a curved portion R having a predetermined radius (curvature), and vertical. A pair of upper and lower plate-like plates are provided on the outer surface of the left and right vertical portions 22 of the duct body 24 and the duct body 24 in which the cross-sectional shapes of the portion 22 and the horizontal portion 23 (including the curved portion R) are wing-shaped. An auxiliary wing (also referred to as a vertical wing) 26 is attached with a predetermined height and spaced apart by a predetermined height via an attachment member 25 and has a horizontal cross-sectional shape of an airfoil.
[0023]
As for the attachment of the duct main body 24 to the hull stern part 3, as in the first embodiment, the central part of the horizontal part 23 is externally fitted to the hull stern part 3 from the rear, A plate-like attachment member 27 is provided in the horizontal direction between the surface of the hull stern portion 3 and is carried out from a total of three sides with respect to the hull stern portion 3.
[0024]
The side view shape of the duct main body 24 is inclined toward the stern side as the front edge of the vertical portion 22 goes downward from above.
Further, the auxiliary wing 26 has a side view shape with a slightly smaller side view shape of the duct body 24, and the swelled side of the wing shape is on the inner side (propeller side) like that of the vertical portion 22. It is attached as follows.
[0025]
When the auxiliary wings 26 are arranged, the front edge of the auxiliary wings 26 is arranged behind the front edge of the duct main body 24 in order to avoid hydrodynamic interference with the duct main body 24 in the ship length direction. The Further, the rear edge of the auxiliary wing 26 is matched with the rear edge of the duct body 24 in order to increase the wing area.
[0026]
Further, the inclination angle θ2 of the auxiliary blade 26 with respect to the propeller center line CL (actually a straight line CL ′ parallel thereto) is larger than the inclination angle θ1 in the vertical portion 22, that is, the duct body 24 and the auxiliary blade 26. The entrance width on the front edge side is wider than the exit width on the rear edge side.
[0027]
The drag distribution in a state where the duct body 21 is attached to the hull stern portion 3 is shown in a graph as shown in FIG. 10 (in this case, the inclination angle θ of the chord is also 10 degrees). When this graph is compared with the graph of FIG. 4 showing the drag distribution in the duct body according to the second embodiment, the thrust generated in the duct body 21 according to the second embodiment is reduced by the auxiliary wing 26. It can be seen that the thrust generated (indicated by the hatched lines in FIG. 10) further increases. In the graph shown in FIG. 10, the thrust generated in the duct main body 24 changes smoothly unlike the increased state (the hump portion) in the curved portion R shown in FIG. This is because the length of the string changes continuously. In FIG. 10, the lower end position ξ2 (−ξ2) of the auxiliary wing is shown with the upper end position of the auxiliary wing being ξ1 (−ξ1).
[0028]
Thus, since the auxiliary wings 26 are vertically attached to both outer surfaces of the portal-shaped duct main body 24, in addition to the increase in thrust by the duct main body 24, thrust is also generated in the auxiliary wing 26. As the body 21, the propulsion efficiency can be further improved.
[0029]
Further, as in the first embodiment, the mounting member 27 for the duct body 24 to the hull is provided in the horizontal direction, but may be provided obliquely, for example, as shown by the phantom line in FIG.
[0030]
By the way, in the said 2nd Embodiment, although the whole front edge of the vertical part 22 of the duct main body 24 was inclined to the stern side so that the lower chord might become short, as shown to Fig.11 (a). In addition, the upper portion 22a may be made vertical, and the auxiliary wing 26 may be similarly inclined with the lower portion 26b inclined toward the stern side, as shown in FIG. 11 (b). The entire leading edge of the auxiliary wing 26 attached to the duct main body 24 shown in the figure may be inclined toward the stern side so that the lower chord is shortened. Further, as shown in FIG. The entire leading edge of the wing 26 may be made vertical, that is, each chord may be the same length vertically.
[0031]
In addition, when the rate of increase in the propulsion efficiency of the duct body according to the second embodiment and the duct body according to the modified example (excluding the attachment portion) is shown, the second embodiment shown in FIG. It is about 23% for the embodiment, about 20% for FIG. 11A, about 22% for FIG. 11B, and about 13% for FIG. 11C.
[0032]
【The invention's effect】
As described above, according to the configuration of the duct body according to the first means of the present invention, the duct body is formed in a gate shape by the vertical portion and the horizontal portion having a cross-sectional shape of an airfoil, that is, a conventional ring shape. Since the bottom of the nozzle body is eliminated, the thrust is increased as compared with the case where a ring-shaped member is provided, and therefore the propulsion efficiency can be improved.
[0033]
In addition, according to the configuration of the duct body according to the second means of the present invention, since the auxiliary wings are attached to both outer surfaces of the portal-shaped duct main body, in addition to the increase in thrust by the duct main body, the thrust force is also applied to the auxiliary wing. Therefore, the propulsion efficiency can be further improved as the duct body.
[Brief description of the drawings]
FIG. 1 is a side view showing a duct body according to a first embodiment of the present invention.
FIG. 2 is a view taken in the direction of arrows AA in FIG.
FIG. 3 is a horizontal sectional view of the duct body.
FIG. 4 is a diagram showing a drag distribution generated in the duct body.
FIG. 5 is a schematic side view showing a modification of the duct body according to the first embodiment.
FIG. 6 is a perspective view showing an appearance of a duct body according to a second embodiment of the present invention.
FIG. 7 is a side view of the duct body.
FIG. 8 is a view taken along arrow BB in FIG.
FIG. 9 is a horizontal sectional view of the duct body.
FIG. 10 is a diagram showing a drag distribution generated in the duct body.
FIG. 11 is a schematic side view showing a modification of the duct body according to the second embodiment.
FIG. 12 is a side view of a nozzle-like duct according to a conventional example.
13 is a view taken along the line CC of FIG.
FIG. 14 is a diagram showing a drag distribution generated in the duct body.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Duct body 2 Propeller 3 Hull stern part 11 Vertical part 12 Horizontal part 13 Curved part 14 Attachment member 21 Duct body 22 Vertical part 23 Horizontal part 24 Duct body 25 Attachment member 26 Auxiliary wing 27 Attachment member

Claims (4)

プロペラより船首側の船体船尾部に取り付けられて推進効率の向上を図るためのダクト体であって、
左右一対の鉛直部とこれら鉛直部の上端同士を連結する水平部とから構成されて底部が開放された門型状に形成されるとともに、上記両鉛直部と水平部との連結部分が曲線部にされ、且つ少なくとも上記鉛直部および曲線部の断面形状が翼型にされたことを特徴とする船舶におけるダクト体。
It is a duct body that is attached to the stern part of the hull on the bow side of the propeller to improve the propulsion efficiency,
It is composed of a pair of left and right vertical parts and a horizontal part that connects the upper ends of these vertical parts, and is formed in a gate shape with the bottom part open, and the connecting part between the two vertical parts and the horizontal part is a curved part. And a duct body in a ship, characterized in that at least the vertical section and the curved section have a wing shape.
鉛直部における前後方向の長さが、上方から下方にいくに従って短くなるようにしたことを特徴とする請求項1に記載の船舶におけるダクト体。2. A duct body in a ship according to claim 1, wherein the length of the vertical portion in the front-rear direction is shortened from the top to the bottom. プロペラより船首側の船体船尾部に配置されて推進効率の向上を図るためのダクト体であって、
左右一対の鉛直部とこれら鉛直部の上端同士を連結する水平部とから構成されて底部が開放された門型状に形成されるとともに、上記両鉛直部と水平部との連結部分が曲線部にされ、且つ少なくとも上記鉛直部および曲線部の断面形状が翼型にされたダクト本体と、
このダクト本体における左右の鉛直部の外面に、取付部材を介して所定距離だけ離間された状態で且つ所定高さでもって取り付けられるとともに、水平断面形状が翼型にされた補助翼とから構成されたことを特徴とする船舶におけるダクト体。
A duct body arranged at the stern of the hull on the bow side of the propeller to improve the propulsion efficiency,
It is composed of a pair of left and right vertical parts and a horizontal part that connects the upper ends of these vertical parts, and is formed in a gate shape with the bottom part open, and the connecting part between the two vertical parts and the horizontal part is a curved part. And a duct body in which the cross-sectional shape of at least the vertical part and the curved part is an airfoil,
Attached to the outer surfaces of the left and right vertical portions of the duct body with a predetermined distance through an attachment member and with a predetermined height, and an auxiliary wing having a horizontal cross-sectional shape formed into an airfoil. A duct body in a ship characterized by that.
ダクト本体の鉛直部および補助翼における前後方向の長さが、上方から下方にいくに従って短くなるようにしたことを特徴とする請求項3に記載の船舶におけるダクト体。4. A duct body in a ship according to claim 3, wherein the length of the vertical part of the duct body and the length of the auxiliary wing in the front-rear direction decreases from the top to the bottom.
JP2002296818A 2002-10-10 2002-10-10 Duct bodies in ships Expired - Lifetime JP4079742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002296818A JP4079742B2 (en) 2002-10-10 2002-10-10 Duct bodies in ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002296818A JP4079742B2 (en) 2002-10-10 2002-10-10 Duct bodies in ships

Publications (2)

Publication Number Publication Date
JP2004130908A JP2004130908A (en) 2004-04-30
JP4079742B2 true JP4079742B2 (en) 2008-04-23

Family

ID=32286675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002296818A Expired - Lifetime JP4079742B2 (en) 2002-10-10 2002-10-10 Duct bodies in ships

Country Status (1)

Country Link
JP (1) JP4079742B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5132140B2 (en) * 2006-11-30 2013-01-30 株式会社アイ・エイチ・アイ マリンユナイテッド Ship duct equipment
JP5025247B2 (en) * 2006-12-13 2012-09-12 ユニバーサル造船株式会社 Ship duct and ship with ship duct
JP4717857B2 (en) * 2007-06-14 2011-07-06 住友重機械マリンエンジニアリング株式会社 Ship duct and ship
DE202008006069U1 (en) 2008-03-10 2008-07-17 Becker Marine Systems Gmbh & Co. Kg Device for reducing the power requirement of a ship
KR101429416B1 (en) * 2008-12-24 2014-08-25 스미도모쥬기가이 마린 엔지니어링 가부시키가이샤 Duct for ship and ship
KR101516839B1 (en) 2010-12-07 2015-05-04 현대중공업 주식회사 Duct Structure for Ship
DE202011000439U1 (en) * 2011-02-25 2012-08-21 Becker Marine Systems Gmbh & Co. Kg Pre-nozzle for a propulsion system of a watercraft to improve energy efficiency
JP6138680B2 (en) * 2013-12-27 2017-05-31 三菱重工業株式会社 Duct equipment
JP6241905B2 (en) * 2015-08-31 2017-12-06 国立研究開発法人 海上・港湾・航空技術研究所 Stern shape with stern duct and ship
JP6811629B2 (en) * 2017-01-27 2021-01-13 三菱重工業株式会社 Duct equipment and ships

Also Published As

Publication number Publication date
JP2004130908A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
JP4939269B2 (en) Stern horizontal duct and ship
JP6160804B2 (en) Two-rudder system and ship equipped with two-rudder system
JPH09175488A (en) Ship with stern duct
JP4079742B2 (en) Duct bodies in ships
EP0527270A1 (en) Ship rudder
KR101728395B1 (en) Watercraft with wing shaped air pressure steps
JP2014073815A5 (en)
JP3245000B2 (en) Ship
KR20210006354A (en) Ships with low wind pressure resistance
JP5868805B2 (en) Enlargement ship
CN105730604A (en) Catamaran
JP3477564B2 (en) Bilge vortex energy recovery system for ships
JP3790270B2 (en) Ship's bow material duct with wings
JP5558048B2 (en) Marine composite energy-saving propulsion device and single-axle-two-steer ship
US5231947A (en) Ship's rudder
JP2002178993A (en) Rudder for ship
KR102531811B1 (en) Stern geometry and vessel with stern duct
JP3668884B2 (en) Energy saving-ship
JPH08133172A (en) Stern shape for twin skeg ship type
US20110197798A1 (en) Sailboard step design with less ventilation and increased speed
JP4363795B2 (en) High lift twin rudder system for ships
JP6188256B1 (en) Ship rudder
JP4116009B2 (en) Split stern fin structure
JP4380975B2 (en) Ship
JP2008189197A (en) Stern form

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4079742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term