EP2554904B1 - Combustion chamber device or thrust chamber device - Google Patents

Combustion chamber device or thrust chamber device Download PDF

Info

Publication number
EP2554904B1
EP2554904B1 EP12179345.9A EP12179345A EP2554904B1 EP 2554904 B1 EP2554904 B1 EP 2554904B1 EP 12179345 A EP12179345 A EP 12179345A EP 2554904 B1 EP2554904 B1 EP 2554904B1
Authority
EP
European Patent Office
Prior art keywords
wall means
chamber device
combustion chamber
fibers
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12179345.9A
Other languages
German (de)
French (fr)
Other versions
EP2554904A3 (en
EP2554904A2 (en
Inventor
Hermann Hald
Markus Ortelt
Dirk Greuel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsches Zentrum fuer Luft und Raumfahrt eV
Original Assignee
Deutsches Zentrum fuer Luft und Raumfahrt eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsches Zentrum fuer Luft und Raumfahrt eV filed Critical Deutsches Zentrum fuer Luft und Raumfahrt eV
Publication of EP2554904A2 publication Critical patent/EP2554904A2/en
Publication of EP2554904A3 publication Critical patent/EP2554904A3/en
Application granted granted Critical
Publication of EP2554904B1 publication Critical patent/EP2554904B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05004Special materials for walls or lining

Definitions

  • the invention relates to a combustion chamber device or thrust chamber device.
  • a combustion chamber comprising an outer jacket and an inner jacket which delimits a combustion chamber and which is fluid-permeable for effusion cooling or transpiration cooling is known, the inner jacket comprising a plurality of disk elements following one another along an axial axis.
  • a nozzle extension for an engine is known, with a nozzle jacket that delimits a flow cross-section which expands from a nozzle extension inlet to a nozzle extension outlet, the nozzle extension inlet being connectable to a combustion chamber outlet of a combustion chamber of an engine, and the nozzle jacket being at least two made of a ceramic fiber composite material has produced, relatively fixed shell elements.
  • a thrust chamber device comprising a shell element made of a ceramic matrix material, which has an inner wall, an outer wall and a plurality of cooling channels, the cooling channels being arranged between the inner wall and the outer wall and wherein fibers are inserted into the ceramic matrix material Reinforcement of the shell element are embedded.
  • a fuel is burned with an oxidizer and a thrust can be generated via combustion gases.
  • a combustion chamber device is a specific example of a thrust chamber device.
  • a thrust can be generated by gases, even if there is no combustion, for example by heating a gas in another way such as nuclear.
  • the invention is based on the object of providing a combustion chamber device with high structural stability and high temperature resistance.
  • a first wall device which delimits a combustion chamber or a thrust chamber with an inner side
  • a second wall device is provided, the inner side of which faces an outer side of the first wall device
  • the first being Wall device is made of a ceramic composite material
  • a cooling channel device for cooling the first wall device with a cooling fluid which comprises at least one cooling channel which is arranged on the first wall device and / or the second wall device and / or between the first wall device and the second wall device or is formed, is provided, wherein fibers of high thermal conductivity are arranged in the first wall device, which are arranged away from the inside in the direction of heat transport and which have a thermal conductivity of at least 100 W / mK, with fiber ends of the fibers of high thermal conductivity ending at or near the inside of the first wall device, wherein the fibers of high thermal conductivity are led from the inside of the first wall device to the at least one channel and wherein fiber ends of the fibers of high thermal conductivity end at
  • a ceramic composite material such as, for example, a carbide-ceramic material or an oxide-ceramic material basically has a high temperature resistance.
  • the material has a relatively low coefficient of thermal expansion in comparison to a metallic material. If the first wall device is correspondingly thick, then it is structurally stable accordingly and a high temperature can be achieved on a hot gas side. As a result, a high temperature gradient can arise over the first wall device. However, this can lead to high thermal stresses with the corresponding material problems.
  • targeted heat conduction paths are provided via fibers of high thermal conductivity arranged in the first heat conduction device. As a result, heat can be effectively decoupled from the inside of the first wall device into the cooling channel device, a cooling fluid such as hydrogen then ensuring regenerative cooling. A high cooling efficiency can thereby be achieved with high structural integrity.
  • the fibers of high thermal conductivity have a thermal conductivity (in particular integral thermal conductivity) of at least 100 W / mK, preferably at least 300 W / mK, and in particular up to over 600 W / mK. This enables effective heat dissipation to be achieved.
  • the fibers of high thermal conductivity are protected in the matrix of the ceramic composite material.
  • Fiber ends of the fibers of high thermal conductivity end at or in the vicinity of the inside of the first wall device. This allows effective heat conduction paths along the corresponding fibers provide. Furthermore, for example, the inside can then be easily abraded and a homogeneous, rough surface can be obtained, which in turn is a good carrier for a coating.
  • the fibers of high thermal conductivity are led from the inside of the first wall device to the at least one channel. This allows heat to be dissipated effectively into a channel in which a cooling fluid flows.
  • Fiber ends of the fibers of high thermal conductivity end at a flow space or in the vicinity of a flow space of the at least one channel. This provides an effective heat conduction path over a fiber.
  • the at least one channel advantageously has a direction of extent which is at least approximately parallel to an axial axis of the first wall device. It is advantageous if a cooling fluid is guided counter to a main flow direction in the combustion chamber or thrust chamber. This enables effective cooling using the countercurrent principle. Furthermore, for example, a cooling fluid, which is then used as fuel, can be preheated.
  • fibers of high thermal conductivity are aligned at least approximately in the radial direction with respect to an axial axis of the first wall device.
  • first wall device has a uniform thickness, a heat conduction path of minimized length can be provided and heat can thereby be dissipated effectively.
  • Not all fibers have to be aligned radially.
  • the majority of the fibers (for example more than 70%) are aligned at least approximately radially.
  • the first wall device is designed in particular as an inner liner.
  • the second wall device surrounds the first wall device.
  • the second wall device is designed in particular as an outer liner.
  • a plurality of cooling channels which are spaced apart in a circumferential direction, are formed on the first wall device in the area of the outside.
  • the cooling channels are thereby integrated into the first wall device, which in particular then has a meandering course on its circumference.
  • cooling channels are arranged so as to be uniformly distributed in the circumferential direction. As a result, uniform cooling can be achieved over the entire surface of the first wall device.
  • a thermal blocking device is arranged between the first wall device and the second wall device, in particular if the second wall device would be in direct thermal contact without a thermal blocking device.
  • the thermal barrier device is made of a material with low thermal conductivity. It can thereby be prevented that a heat conduction path leads from the first wall device directly into the second wall device.
  • the thermal barrier device itself can be made porous, for example, in order to achieve transpiration cooling there via cooling fluid, for example.
  • the thermal barrier device is formed, for example, by a (surface) coating or a tubular element.
  • the thermal blocking device is formed by at least one tubular element. This tubular element can be arranged over the first wall device in order to obtain an effective thermal decoupling from the second wall device.
  • the fibers of high thermal conductivity are C fibers. These fibers are retained in the first wall device, that is, they lie C-paths in the ceramic material from the inside to the outside, which are continuous and uninterrupted.
  • the first wall device has a plurality of segments arranged axially one behind the other. In this way, for example, a rotationally symmetrical combustion chamber can be produced in a simple manner. It is referred to in this context to the EP 1 748 253 A2 referred to, which are expressly referred to.
  • adjacent segments have different fiber orientations in a fiber reinforcement matrix.
  • a first wall device which has a high thermal resistance with low thermal expansion.
  • segments or segment groups are positioned axially braced in the second wall device.
  • a corresponding combustion chamber device can thereby be produced in a simple manner.
  • the first wall device is designed to be at least partially fluid-impermeable. This enables regenerative cooling to be achieved in an effective way.
  • the cooling fluid absorbs heat and dissipates it. With a partial fluid permeability through the provision of corresponding channels or pores, a transpiration cooling effect can be achieved at certain points.
  • cooling fluid films can form locally in the combustion chamber on the first wall device. In this way, for example, the wall friction and the wall heat transfer can be reduced locally.
  • Fluid impermeability can be achieved, for example, in that the first wall device has a fluid-impermeable coating on the outside.
  • a copper coating is provided.
  • the material of the first wall device it is possible for the material of the first wall device to have closed pores or to be pore-free. During the production of the first wall device, it is ensured that it is free of pores or that the pores that have arisen are closed by appropriate impregnation.
  • a volume fraction of fibers of high thermal conductivity of the first wall device reaches at least 30%, in particular at least 40%, in particular at least 50%, preferably at least 60% and preferably at least 65% or at least 70%.
  • a high integral thermal conductivity of, for example, more than 300 W / mK can be achieved through the first wall device.
  • the combustion chamber or thrust chamber is advantageously designed to be rotationally symmetrical to an axial axis. This results in effective flow conditions.
  • the first wall device is made in particular from a carbide-ceramic or oxide-ceramic material or a highly thermally conductive carbon material (such as C / C).
  • the carbide-ceramic material can be, for example, a C-XC or C / C-XC carbide material, where X is a carbide former such as silicon.
  • the second wall device is made from a fiber composite material.
  • the combustion chamber device can thereby be produced with a low weight.
  • the first wall device is coated on the inside.
  • a material with high temperature resistance and the highest possible thermal conductivity is used as the coating material. This avoids "hot spots" with the corresponding material problems.
  • a ceramic material is used. As a result, a higher temperature gradient can be built up over the first wall device in order to ensure effective heat transport.
  • the first wall device is coated on the outside.
  • the first wall device can be made impervious to fluid. It is thereby also possible, if a material of high thermal conductivity, such as a metallic material such as copper, is used as the coating material, to ensure uniform heat distribution on the outside of the first wall device.
  • Cooling fluid Hydrogen or methane, for example, is used as the cooling fluid.
  • the correspondingly preheated cooling fluid can then be used as fuel.
  • a first embodiment of a combustion chamber device which is shown schematically in a sectional view in Figure 1 and is designated there by 10, comprises a combustion chamber designated as a whole by 12.
  • the combustion chamber has a combustion chamber 14.
  • This combustion chamber 14 is designed, in particular, to be rotationally symmetrical to an axial axis 16.
  • a suitable injector device 46, through which fuel and oxidizer can be blown into the combustion chamber 14, is assigned to the combustion chamber 12. Combustion takes place in the combustion chamber 14 to generate the corresponding thrust.
  • the combustion chamber device 10 has a nozzle device 18 which is located in a main flow direction 20 (cf. Figure 4 ) connects to the combustion chamber.
  • the nozzle device 18 has a nozzle chamber 22 which is designed to be rotationally symmetrical with an axis which is coaxial with the axial axis 16.
  • the nozzle device 18 has a cross-sectional constriction 24 in comparison to the cross-section of the combustion chamber 14, which is followed by an enlargement 26. A corresponding thrust is generated via the nozzle device 18 by means of combustion gases produced during the combustion.
  • a combustion chamber device is a special case of a thrust chamber device.
  • a thrust chamber device can generate thrust, although combustion does not necessarily have to take place to generate thrust.
  • gases in a thrust chamber of a thrust chamber device can be heated via nuclear decay processes.
  • the combustion chamber and the thrust chamber are basically of the same design.
  • the combustion chamber 12 comprises a first wall device 28.
  • the first wall device is made of a ceramic composite material (CMC material; Ceramic Matrix Composite Material).
  • the first wall device 28 has an inner side 30 which delimits the combustion chamber 14. It also has an outer side 32 opposite the inner side.
  • the first wall device 28 extends along the axial axis 16. It is designed to be closed along this axial axis 16. In Figure 1 For reasons of illustration, three segment groups 34a, 34b, 34c are shown as not connected. In fact, the individual segment groups are connected to one another so that the first wall device 28 forms an inner liner (inner shell) for the combustion chamber 14.
  • the segment groups can be permanently connected to one another, for example by gluing or ceramic joining, or they can be releasably connected to one another; for example, they can be clamped using an axial clamping pressure.
  • the combustion chamber device 10 comprises a second wall device 36, which is designed to be closed and surrounds the first wall device 28.
  • the second wall device 36 has an inner side 38 which faces the outer side 32 of the first wall device 28. It also has an outer side 40 opposite the inner side 38.
  • the second wall device 36 is an outer liner (outer shell) of the combustion chamber device 10.
  • the combustion chamber 12 with the first wall device 28 is arranged in the second wall device 36, which is designed to be closed.
  • the first wall device 28 sits between an end face 42 of the nozzle device 18 and an end face 44 of an injector device 46.
  • the injector device 46 is in turn held by a flange 48 which is fixed to the second wall device 36 via connecting elements 50 such as bolts or the like.
  • the end faces 42 and 44 are designed in particular as annular surfaces. The first wall device 28 sits axially clamped between these.
  • the material of the first wall device 28 has a lower (in particular significantly lower) modulus of elasticity in the axial direction compared to a radial direction 52 perpendicular thereto.
  • a type of axial “spring effect” can thereby be achieved and the first wall device 28 can be pretensioned axially between the end faces 42 and 44.
  • the first wall device 28 can thereby be pushed in loosely and a mechanical decoupling from the second wall device can also be achieved.
  • a cooling channel device designated as a whole with 54 which comprises one or more cooling channels 56 through which a cooling channel fluid can flow past the outside 32 of the first wall device 28 in order to achieve regenerative cooling of the first wall device 28.
  • the cooling channel 56 or the cooling channels 56 are formed as recesses on the second wall device 36 on its inner side 38 or formed between the first wall device 28 and the second wall device 36 and run along the outer side 32 along the first wall device 28.
  • a corresponding cooling channel 56 is oriented at least approximately parallel to the axial axis 16.
  • a plurality of spaced apart cooling channels 56 can be provided, which are arranged distributed circumferentially around the first wall device 28 and are in particular arranged evenly distributed. It is also possible for a cooling channel 56 to be provided which annularly surrounds the first wall device 28.
  • the first wall device 28 comprises a plurality of segments 58 which are arranged one behind the other in the axial direction 16 and which are in particular ring segments. Adjacent segments 58 are connected to one another and, in particular, are connected to one another in one piece. Several segments 58 can be connected to form segment groups 34a, 34b, 34c, whereby adjacent segment groups 34a, 34b or 34b, 34c are in turn connected to one another and in particular are connected to one another in one piece.
  • segments 58 or then a segment group 34a etc. are produced from ceramic composite material by first producing layers 60 of a precursor material.
  • the layers 60 comprise fiber scrims (or fiber fabrics or fiber knitted fabrics 62) with, for example, fibers oriented perpendicular to one another.
  • 0 ° / 90 ° fiber scrims 62 are indicated.
  • Adjacent layers 60 have different fiber orientations. For example, the fiber orientation in relation to adjacent layers is ⁇ 45 °. This is in Figure 2 (b) indicated.
  • a fiber scrim 64 adjacent to the fiber scrim 64 is also a 0 ° / 90 ° fiber scrim, with a ⁇ 45 ° alignment.
  • the layers 60 can be oriented at any desired angles to one another.
  • the individual fibers within a layer 60 can be oriented at any angles to one another.
  • Such a stack 66 ( Figure 2 (a) ) is infiltrated with a carbon precursor material and in particular a resin material or the fiber scrims 62 are already provided with such a carbon precursor material (prepreg scrims).
  • a precursor segment group 68 is then cut out from such a stack 66 after the carbon precursor material has hardened. The cutting out can take place before a pyrolysis of the stack 66 or after the pyrolysis. If the cutting is carried out before pyrolysis, then the precursor segment group 68 is a resin fiber fabric body (or resin fiber fabric body, resin fiber fabric body, etc.). If the cutting is done after pyrolysis, then the precursor segment group body is a carbon body.
  • ceramization takes place by means of the LSI process (Liquid Silicon Infiltration), in which liquid silicon is supplied to the porous carbon body. This liquid silicon reacts with carbon to form silicon carbide.
  • a carbide-ceramic C / C-SiC body is then produced if the fibers of the fiber scrim 62, 64 were carbon fibers and in which a precursor polymer plastic matrix was converted into carbon.
  • Alternative ceramization processes such as CVI, LPI, etc. usually result in a C-SiC material. In such ceramization processes, the carbon fibers only react marginally with the silicon.
  • Shrinkage usually occurs during pyrolysis. It is therefore advantageous if the pyrolysis is carried out on the stack 66 and then the precursor segment group body 68 is produced.
  • the first wall device 38 can thus be produced from one piece or several segment groups 34a, 34b, 34c are produced.
  • Various precursor segment group bodies can also be produced, which are then joined to one another during ceramization or, for example, also glued.
  • the segment groups 34a, 34b, 34c or precursor segment group bodies 68 can also only be axially clamped against one another by means of external bracing if the centering is ensured.
  • Figure 3 (a) a section from the combustion chamber 12 is shown.
  • Figure 3 (b) a section of the first wall device is shown schematically. Different segments 58 have different fiber orientations (cf. Figure 2 (b) ).
  • fibers 70 of high thermal conductivity are arranged in the first wall device 28.
  • the Thermal conductivity (integral) is at least 100 W / mK and preferably at least 300 W / mK. For example, it can also reach 1000 W / mK or more.
  • the fibers 70 of high thermal conductivity are oriented away from the combustion chamber 14 (or thrust chamber) in a heat transport direction 72.
  • the fibers 70 of high thermal conductivity are, for example, C fibers. They are retained as fibers in the first wall device 28.
  • the C-fibers are retained during pyrolysis. Oxidation protection for operational use can, if necessary, be achieved by ceramization with carbide former, or by introducing additional oxidic fiber components or matrix components.
  • the fibers 70 of high thermal conductivity run from the inside 30 to the outside 32 in a cooling channel 56.
  • a corresponding fiber 70 ends with a corresponding fiber end on the inside 30 and with the opposite fiber end in a flow space 74 of the corresponding channel 56.
  • the corresponding fiber ends can end directly at the inside 30 or outside 32, or a corresponding coating can also be present there, as will be explained in more detail below.
  • Fibers 70 of high thermal conductivity are oriented transversely and, in particular, perpendicular to the axial axis 16. Fibers 70 of high thermal conductivity are in particular oriented radially (that is, parallel to radial direction 52). In particular, most of the fibers 70 of high thermal conductivity are oriented in at least approximately a radial direction.
  • the radial direction 52 is a direction in which the distance between the inside 30 and the outside 32 is the smallest.
  • Fibers 70 of high thermal conductivity can also be provided which are not oriented in the radial direction.
  • fibers 70 of high thermal conductivity in the first wall device 28 are at least 30%, preferably at least 40% and particularly preferably at least 50% and preferably at least 55%, or at least 60%, or at least 65%. In one embodiment, the volume fraction is approximately 70%.
  • heat can be dissipated in a targeted manner in the heat transport direction 72 from the inside 38 into the cooling channel device 54. This in turn allows the combustion chamber 12 or thrust chamber to be regeneratively cooled in an effective manner.
  • the corresponding wall material in order to prevent overheating of the first wall device 28, the corresponding wall material must have a high temperature resistance and must have a high thermal conductivity.
  • a high local temperature gradient usually means that there are high thermal voltages, which in turn leads to material problems (in particular Material fatigue).
  • a ceramic composite material has, on the one hand, high temperature resistance and low thermal expansion. The combination of high temperature resistance, high thermal conductivity and low thermal brittleness enables high temperature gradients across the wall profile from the hot gas side to the cooling channel 56. High temperature gradients also enable a certain and necessary heat flow into the first wall device 28 with already lower thermal conductivities and greater wall thicknesses than for example with metallic wall structures.
  • fibers 70 of high thermal conductivity to provide defined heat transport paths and thus to increase the integral thermal conductivity, a high cooling efficiency is obtained with great structural integrity.
  • the first wall device 28 is designed to be fluid-tight. This can be achieved in a number of ways.
  • the first wall device 28 has a fluid-impermeable coating on the outside 82.
  • the material of the first wall device 28 it is possible for the material of the first wall device 28 to have closed pores or to be pore-free. If there are pores, they can be closed by an appropriate impregnation. During ceramization, for example, it can also be ensured that the ceramic material is pore-free or has closed pores.
  • the first wall device 28 is partially permeable between the combustion chamber 14 (or thrust chamber) and the cooling duct device 54.
  • cooling fluid which is in particular fuel such as hydrogen
  • a certain proportion of perspiration can take place through the first wall device 28 in certain areas.
  • a film of cooling fluid can form on the inside 30 of the first wall device 28 in specific areas.
  • Such a film reduces wall friction, for example, and thereby reduces throttling losses.
  • an additional cooling effect can also take place via transpiration cooling.
  • the inside 30 and the outside 32 can be easily ground and also coated, since the fiber ends end at the inside 30 and the outside 32. This prevents the fibers from splaying out.
  • a grinding surface then has a homogeneous roughness. This in turn allows coatings to be applied with good adhesion. For example, sputter layers, plasma coatings, electroplated coatings, etc. can then be produced.
  • the exterior 32 is coated with a coating 76, as in FIG Figure 3 (c) indicated, provided.
  • the coating 76 is made in particular from a metallic material and extends over the entire outer side 32.
  • a fluid-tight design of the first wall device 28 is thereby achieved.
  • the coating 76 made of a metallic material of high thermal conductivity such as copper, it is achieved that a homogeneous temperature distribution is formed on the outside 32 of the first wall device 28. This in turn prevents local peak loads on the material of the first wall device 28.
  • the inside 30 can be coated with a coating 78 (cf. Figure 3 (c) ) be provided.
  • This coating is preferably made from a material with high heat transfer to the first wall device 28.
  • it is made of a ceramic material (carbide ceramic or oxide ceramic).
  • a ceramic material is silicon carbide, for example.
  • the fibers 70 in the first wall device 28 are effectively protected in a matrix, the ceramic composite material.
  • the first wall device 28 can be made of a carbide ceramic material, for example.
  • it can also be made from an oxide ceramic material.
  • the combustion chamber device works as follows: The combustion chamber device 10 is explained in an example in which combustion takes place in the combustion chamber 14. Hydrogen and oxidizer are coupled into combustion chamber 14 via injector device 46. A main flow direction 20 in the combustion chamber 14 is parallel to the axial axis 16 (cf. Figure 4 ). For example, in a combustion chamber area 80 ( Figure 1 ), the flow is subsonic, i.e. there is a subsonic flow. A supersonic flow area 82 is present in the areas 24, 26 of the nozzle device 18.
  • Cooling fluid in particular hydrogen
  • the cooling fluid absorbs heat, which is provided via the first wall device 28, and is preheated in the process.
  • the preheated cooling fluid is then, if it is fuel, injected into the combustion chamber 14 via the injector device 46.
  • the cooling fluid is, for example, hydrogen and in particular liquid hydrogen. Heat is effectively dissipated from the inside 30 to the outside 32 of the first wall device 28 via the fibers 70 of high thermal conductivity.
  • the direction of flow 84 can also be designed in the opposite direction.
  • the preheated fuel is still used to operate turbo pumps by means of enthalpy output before injection at an injector, i.e. fuel that is assigned to a combustion chamber or thrust chamber in the corresponding (regenerative) cooling channel device is, has been heated up, transfers the enthalpy taken up when flowing through a turbine to this before the Fuel is injected into the combustion chamber in an injection head.
  • a turbo pump is then operated with the fuel during the expander cycle.
  • a flow direction of the cooling fluid can be parallel to the main flow direction of a hot gas flow in the combustion chamber (co-flow) or opposite (counter-flow).
  • a first wall device 88 which delimits the combustion chamber 90 in a rotationally symmetrical manner around the axial axis 16 (the same reference numerals are used for the same elements as in the combustion chamber 12).
  • the first wall device is made of a ceramic composite material. It has an inner side 92, which delimits the combustion chamber, and an outer side 94. In the area of the outer side 94, cooling channels 96 of the cooling channel device 54 are formed in the first wall device 88. The cooling channels 96 are arranged circumferentially on the outside 94.
  • Adjacent cooling channels 96a, 96b are spaced apart from one another in the circumferential direction with a web 98 in between.
  • the cooling channels 96 are arranged uniformly distributed around the circumference of the first wall device 88 on the outside 94.
  • the cooling channels 96 are integrated into the first wall device 88.
  • the first wall device 88 is thus designed in a corresponding meandering shape on the outside 94.
  • a coating can be provided on the inside 92 and / or the outside 94.
  • the cooling channels 96 are oriented parallel to the axial axis 16.
  • a thermal blocking device 100 can be provided. This is arranged around the outside 94 of the first wall device 88.
  • the thermal blocking device allows a high heat input into a second wall means surrounding the first wall means 88 prevent. (Such a high heat input can in principle take place via the webs 98.)
  • the thermal blocking device 100 is located between an outside of the webs 98 and the second wall device as an outer liner.
  • the thermal blocking device 100 is formed, for example, by a tubular element 102 which is pushed over the first wall device 84.
  • the thermal barrier device 100 provides a thermal insulation layer. It is made, for example, of a poorly thermally conductive fiber-ceramic material, for example based on aluminum oxide.
  • this thermal barrier device has a certain open porosity. This thermal barrier device 100 can then be saturated with “cold” cooling fluid and additionally cooled.
  • combustion chamber 86 functions as described above.
  • the combustion chamber device according to the invention is, for example, part of a propulsion device of a missile and in particular of a rocket.

Description

Die Erfindung betrifft eine Brennkammervorrichtung oder Schubkammervorrichtung.The invention relates to a combustion chamber device or thrust chamber device.

Aus der EP 1 748 253 A2 ist eine Brennkammer, umfassend einen Außenmantel und einen Innenmantel, welcher einen Brennraum begrenzt und welcher zur Effusionskühlung oder Transpirationskühlung fluiddurchlässig ist, bekannt, wobei der Innenmantel eine Mehrzahl von längs einer axialen Achse aufeinander folgenden Scheibenelementen umfasst.From the EP 1 748 253 A2 a combustion chamber comprising an outer jacket and an inner jacket which delimits a combustion chamber and which is fluid-permeable for effusion cooling or transpiration cooling is known, the inner jacket comprising a plurality of disk elements following one another along an axial axis.

Aus der DE 10 2008 020 198 A1 ist eine Düsenerweiterung für ein Triebwerk bekannt, mit einem Düsenmantel, der einen Strömungsquerschnitt begrenzt, welcher sich von einem Düsenerweiterungseingang hin zu einem Düsenerweiterungsausgang erweitert, wobei der Düsenerweiterungseingang mit einem Brennkammerausgang einer Brennkammer eines Triebwerks verbindbar ist und wobei der Düsenmantel mindestens zwei aus einem keramischen Faserverbundwerkstoff hergestellte, relativ zueinander fixierte Schalenelemente aufweist.From the DE 10 2008 020 198 A1 A nozzle extension for an engine is known, with a nozzle jacket that delimits a flow cross-section which expands from a nozzle extension inlet to a nozzle extension outlet, the nozzle extension inlet being connectable to a combustion chamber outlet of a combustion chamber of an engine, and the nozzle jacket being at least two made of a ceramic fiber composite material has produced, relatively fixed shell elements.

Aus der US 2003/175453 A1 ist eine Schubkammervorrichtung bekannt, umfassend ein aus einem keramischen Matrixmaterial hergestelltes Schalenelement, welches eine innere Wandung, eine äußere Wandung und eine Mehrzahl von Kühlkanälen aufweist, wobei die Kühlkanäle zwischen der inneren Wandung und der äußeren Wandung angeordnet sind und wobei in das keramische Matrixmaterial Fasern zur Verstärkung des Schalenelements eingebettet sind.From the US 2003/175453 A1 a thrust chamber device is known, comprising a shell element made of a ceramic matrix material, which has an inner wall, an outer wall and a plurality of cooling channels, the cooling channels being arranged between the inner wall and the outer wall and wherein fibers are inserted into the ceramic matrix material Reinforcement of the shell element are embedded.

In einer Brennkammervorrichtung wird ein Brennstoff mit einem Oxidator verbrannt und über Verbrennungsgase lässt sich ein Schub erzeugen. Eine Brennkammervorrichtung ist ein spezielles Beispiel für eine Schubkammervorrichtung. Ein Schub lässt sich über Gase erzeugen, auch wenn keine Verbrennung stattfindet, indem beispielsweise ein Gas auf andere Weise wie nuklear erhitzt wird.In a combustion chamber device, a fuel is burned with an oxidizer and a thrust can be generated via combustion gases. A combustion chamber device is a specific example of a thrust chamber device. A thrust can be generated by gases, even if there is no combustion, for example by heating a gas in another way such as nuclear.

Der Erfindung liegt die Aufgabe zugrunde, eine Brennkammervorrichtung mit hoher struktureller Stabilität und hoher Temperaturbeständigkeit bereitzustellen.The invention is based on the object of providing a combustion chamber device with high structural stability and high temperature resistance.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass eine erste Wandeinrichtung vorgesehen ist, welche mit einer Innenseite einen Brennraum oder einen Schubraum begrenzt, und eine zweite Wandeinrichtung vorgesehen ist, welche mit der Innenseite einer Außenseite der ersten Wandeinrichtung zugewandt ist, vorgesehen ist, wobei die erste Wandeinrichtung aus einem keramischen Verbundwerkstoff hergestellt ist, und eine Kühlkanaleinrichtung zur Kühlung der ersten Wandeinrichtung mit einem Kühlfluid, welche mindestens einen Kühlkanal umfasst, welcher an der ersten Wandeinrichtung und/oder der zweiten Wandeinrichtung und/oder zwischen der ersten Wandeinrichtung und der zweiten Wandeinrichtung angeordnet oder gebildet ist, vorgesehen ist, wobei in der ersten Wandeinrichtung Fasern hoher Wärmeleitfähigkeit angeordnet sind, welche in Wärmetransportrichtung von der Innenseite weg angeordnet sind und welche eine Wärmeleitfähigkeit von mindestens 100 W/mK aufweisen, wobei Faserenden der Fasern hoher Wärmeleitfähigkeit an oder in der Nähe der Innenseite der ersten Wandeinrichtung enden, wobei die Fasern hoher Wärmeleitfähigkeit von der Innenseite der ersten Wandeinrichtung zu dem mindestens einen Kanal geführt sind und wobei Faserenden der Fasern hoher Wärmeleitfähigkeit an einem Strömungsraum oder in der Nähe eines Strömungsraums des mindestens einen Kanals enden.According to the invention, this object is achieved in that a first wall device is provided, which delimits a combustion chamber or a thrust chamber with an inner side, and a second wall device is provided, the inner side of which faces an outer side of the first wall device, the first being Wall device is made of a ceramic composite material, and a cooling channel device for cooling the first wall device with a cooling fluid, which comprises at least one cooling channel which is arranged on the first wall device and / or the second wall device and / or between the first wall device and the second wall device or is formed, is provided, wherein fibers of high thermal conductivity are arranged in the first wall device, which are arranged away from the inside in the direction of heat transport and which have a thermal conductivity of at least 100 W / mK, with fiber ends of the fibers of high thermal conductivity ending at or near the inside of the first wall device, wherein the fibers of high thermal conductivity are led from the inside of the first wall device to the at least one channel and wherein fiber ends of the fibers of high thermal conductivity end at a flow space or in the vicinity of a flow space of the at least one channel.

Ein keramischer Verbundwerkstoff wie beispielsweise ein carbidkeramisches Material oder oxidkeramisches Material weist grundsätzlich eine hohe Temperaturbeständigkeit auf. Das Material weist insbesondere im Vergleich zu einem metallischen Material einen relativ geringen thermischen Ausdehnungskoeffizienten auf. Wenn die erste Wandeinrichtung entsprechend dick ist, dann ist sie entsprechend strukturell stabil und es lässt sich eine hohe Temperatur an einer Heißgasseite erreichen. Dadurch kann über die erste Wandeinrichtung ein hoher Temperaturgradient entstehen. Dies kann aber zu hohen thermischen Spannungen mit den entsprechenden Materialproblemen führen. Erfindungsgemäß ist es vorgesehen, dass gezielte Wärmeleitpfade über in der ersten Wärmeleiteinrichtung angeordnete Fasern hoher Wärmeleitfähigkeit bereitgestellt sind. Dadurch lässt sich auf effektive Weise von der Innenseite der ersten Wandeinrichtung Wärme in die Kühlkanaleinrichtung abkoppeln, wobei ein Kühlfluid wie beispielsweise Wasserstoff dann für eine regenerative Kühlung sorgt. Es lässt sich dadurch bei hoher struktureller Integrität eine hohe Kühleffizienz erreichen.A ceramic composite material such as, for example, a carbide-ceramic material or an oxide-ceramic material basically has a high temperature resistance. The material has a relatively low coefficient of thermal expansion in comparison to a metallic material. If the first wall device is correspondingly thick, then it is structurally stable accordingly and a high temperature can be achieved on a hot gas side. As a result, a high temperature gradient can arise over the first wall device. However, this can lead to high thermal stresses with the corresponding material problems. According to the invention, it is provided that targeted heat conduction paths are provided via fibers of high thermal conductivity arranged in the first heat conduction device. As a result, heat can be effectively decoupled from the inside of the first wall device into the cooling channel device, a cooling fluid such as hydrogen then ensuring regenerative cooling. A high cooling efficiency can thereby be achieved with high structural integrity.

Die Fasern hoher Wärmeleitfähigkeit weisen eine Wärmeleitfähigkeit (insbesondere integrale Wärmeleitfähigkeit) von mindestens 100 W/mK, vorzugsweise mindestens 300 W/mk, und insbesondere bis über 600 W/mK auf. Dadurch lässt sich eine effektive Wärmeableitung erreichen.The fibers of high thermal conductivity have a thermal conductivity (in particular integral thermal conductivity) of at least 100 W / mK, preferably at least 300 W / mK, and in particular up to over 600 W / mK. This enables effective heat dissipation to be achieved.

Die Fasern hoher Wärmeleitfähigkeit sind in der Matrix des keramischen Verbundwerkstoffs geschützt angeordnet.The fibers of high thermal conductivity are protected in the matrix of the ceramic composite material.

Faserenden der Fasern hoher Wärmeleitfähigkeit enden an oder in der Nähe der Innenseite der ersten Wandeinrichtung. Es lassen sich dadurch effektive Wärmeleitungspfade entlang der entsprechenden Fasern bereitstellen. Weiterhin lässt sich beispielsweise die Innenseite dann gut abschleifen und es lässt sich eine homogene raue Oberfläche erhalten, welche wiederum ein guter Träger für eine Beschichtung ist.Fiber ends of the fibers of high thermal conductivity end at or in the vicinity of the inside of the first wall device. This allows effective heat conduction paths along the corresponding fibers provide. Furthermore, for example, the inside can then be easily abraded and a homogeneous, rough surface can be obtained, which in turn is a good carrier for a coating.

Die Fasern hoher Wärmeleitfähigkeit sind von der Innenseite der ersten Wandeinrichtung zu dem mindestens einen Kanal geführt. Dadurch lässt sich effektiv Wärme in einen Kanal ableiten, in dem ein Kühlfluid strömt.The fibers of high thermal conductivity are led from the inside of the first wall device to the at least one channel. This allows heat to be dissipated effectively into a channel in which a cooling fluid flows.

Faserenden der Fasern hoher Wärmeleitfähigkeit enden an einem Strömungsraum oder in der Nähe eines Strömungsraums des mindestens einen Kanals. Dadurch wird ein effektiver Wärmeleitungspfad über eine Faser bereitgestellt.Fiber ends of the fibers of high thermal conductivity end at a flow space or in the vicinity of a flow space of the at least one channel. This provides an effective heat conduction path over a fiber.

Günstigerweise weist der mindestens eine Kanal eine Erstreckungsrichtung auf, welche mindestens näherungsweise parallel zu einer axialen Achse der ersten Wandeinrichtung ist. Es ist dabei vorteilhaft, wenn ein Kühlfluid entgegen einer Hauptströmungsrichtung in dem Brennraum oder Schubraum geführt ist. Dadurch lässt sich eine effektive Kühlung im Gegenstromprinzip erreichen. Ferner lässt sich beispielsweise ein Kühlfluid, welches dann als Brennstoff verwendet wird, vorwärmen.The at least one channel advantageously has a direction of extent which is at least approximately parallel to an axial axis of the first wall device. It is advantageous if a cooling fluid is guided counter to a main flow direction in the combustion chamber or thrust chamber. This enables effective cooling using the countercurrent principle. Furthermore, for example, a cooling fluid, which is then used as fuel, can be preheated.

Bei einer Ausführungsform ist es vorgesehen, dass Fasern hoher Wärmeleitfähigkeit mindestens näherungsweise in radialer Richtung bezogen auf eine axiale Achse der ersten Wandeinrichtung ausgerichtet sind. Dadurch lässt sich, wenn die erste Wandeinrichtung eine gleichmäßige Dicke aufweist, ein Wärmeleitungspfad minimierter Länge bereitstellen und dadurch lässt sich effektiv Wärme abführen. Es müssen dabei nicht alle Fasern radial ausgerichtet sein. Es ist insbesondere vorgesehen, dass die überwiegende Anzahl der Fasern (beispielsweise mehr als 70 %) mindestens näherungsweise radial ausgerichtet sind.In one embodiment it is provided that fibers of high thermal conductivity are aligned at least approximately in the radial direction with respect to an axial axis of the first wall device. As a result, if the first wall device has a uniform thickness, a heat conduction path of minimized length can be provided and heat can thereby be dissipated effectively. Not all fibers have to be aligned radially. In particular, it is provided that the majority of the fibers (for example more than 70%) are aligned at least approximately radially.

Die erste Wandeinrichtung ist insbesondere als Innenliner ausgebildet. Die zweite Wandeinrichtung umgibt die erste Wandeinrichtung. Die zweite Wandeinrichtung ist insbesondere als Außenliner ausgebildet.The first wall device is designed in particular as an inner liner. The second wall device surrounds the first wall device. The second wall device is designed in particular as an outer liner.

Bei einer Ausführungsform sind an der ersten Wandeinrichtung im Bereich der Außenseite eine Mehrzahl von Kühlkanälen gebildet, welche in einer Umfangsrichtung beabstandet sind. Die Kühlkanäle sind dadurch in die erste Wandeinrichtung integriert, welche insbesondere dann an ihrem Umfang einen mäanderförmigen Verlauf hat.In one embodiment, a plurality of cooling channels, which are spaced apart in a circumferential direction, are formed on the first wall device in the area of the outside. The cooling channels are thereby integrated into the first wall device, which in particular then has a meandering course on its circumference.

Es ist günstig, wenn die Kühlkanäle in der Umfangsrichtung gleichmäßig verteilt angeordnet sind. Dadurch lässt sich eine gleichmäßige Kühlung über die gesamte Oberfläche der ersten Wandeinrichtung erreichen.It is favorable if the cooling channels are arranged so as to be uniformly distributed in the circumferential direction. As a result, uniform cooling can be achieved over the entire surface of the first wall device.

Es kann vorgesehen sein, dass zwischen der ersten Wandeinrichtung und der zweiten Wandeinrichtung eine thermische Sperreinrichtung angeordnet ist, insbesondere wenn die zweite Wandeinrichtung ohne thermische Sperreinrichtung in direktem thermischen Kontakt stehen würde. Die thermische Sperreinrichtung ist aus einem Material mit niedriger Wärmeleitfähigkeit hergestellt. Es lässt sich dadurch verhindern, dass ein Wärmeleitpfad von der ersten Wandeinrichtung direkt in die zweite Wandeinrichtung führt. Die thermische Sperreinrichtung selber kann beispielsweise porös ausgebildet sein, um über Kühlfluid beispielsweise eine Transpirationskühlung dort zu erreichen. Die thermische Sperreinrichtung ist beispielsweise durch eine (Flächen-)Beschichtung oder ein Rohrelement gebildet.It can be provided that a thermal blocking device is arranged between the first wall device and the second wall device, in particular if the second wall device would be in direct thermal contact without a thermal blocking device. The thermal barrier device is made of a material with low thermal conductivity. It can thereby be prevented that a heat conduction path leads from the first wall device directly into the second wall device. The thermal barrier device itself can be made porous, for example, in order to achieve transpiration cooling there via cooling fluid, for example. The thermal barrier device is formed, for example, by a (surface) coating or a tubular element.

Bei einer Ausführungsform ist die thermische Sperreinrichtung durch mindestens ein Rohrelement gebildet. Dieses Rohrelement lässt sich über die erste Wandeinrichtung anordnen, um so eine effektive thermische Entkopplung von der zweiten Wandeinrichtung zu erhalten.In one embodiment, the thermal blocking device is formed by at least one tubular element. This tubular element can be arranged over the first wall device in order to obtain an effective thermal decoupling from the second wall device.

Beispielsweise sind die Fasern hoher Wärmeleitfähigkeit C-Fasern. Diese Fasern sind dabei in der ersten Wandeinrichtung erhalten, das heißt es liegen C-Pfade im keramischen Material von der Innenseite zu der Außenseite vor, welche durchgehend und ununterbrochen sind.For example, the fibers of high thermal conductivity are C fibers. These fibers are retained in the first wall device, that is, they lie C-paths in the ceramic material from the inside to the outside, which are continuous and uninterrupted.

Bei einer fertigungstechnisch günstigen Ausführungsform weist die erste Wandeinrichtung eine Mehrzahl von axial hintereinander angeordneten Segmenten auf. Dadurch lässt sich beispielsweise ein rotationssymmetrischer Brennraum auf einfache Weise herstellen. Es wird in diesem Zusammenhang auf die EP 1 748 253 A2 verwiesen, auf die ausdrücklich Bezug genommen wird.In an embodiment which is advantageous in terms of production technology, the first wall device has a plurality of segments arranged axially one behind the other. In this way, for example, a rotationally symmetrical combustion chamber can be produced in a simple manner. It is referred to in this context to the EP 1 748 253 A2 referred to, which are expressly referred to.

Insbesondere weisen benachbarte Segmente unterschiedliche Faserorientierungen in einer Faserverstärkungsmatrix auf. Dadurch lässt sich eine erste Wandeinrichtung bereitstellen, welche eine hohe thermische Beständigkeit mit geringer thermischer Ausdehnung aufweist.In particular, adjacent segments have different fiber orientations in a fiber reinforcement matrix. In this way, a first wall device can be provided which has a high thermal resistance with low thermal expansion.

Beispielsweise sind Segmente oder Segmentgruppen axial verspannt in der zweiten Wandeinrichtung positioniert. Dadurch lässt sich auf einfache Weise eine entsprechende Brennkammervorrichtung herstellen.For example, segments or segment groups are positioned axially braced in the second wall device. A corresponding combustion chamber device can thereby be produced in a simple manner.

Ganz besonders vorteilhaft ist es, wenn die erste Wandeinrichtung mindestens teilweise fluidundurchlässig ausgebildet ist. Dadurch lässt sich auf effektive Weise eine regenerative Kühlung erreichen. Das Kühlfluid nimmt Wärme auf und führt diese ab. Bei einer teilweisen Fluiddurchlässigkeit durch Vorsehen von entsprechenden Kanälen bzw. Poren kann an bestimmten Stellen ein Transpirationskühlungseffekt erreicht werden. Es ist beispielsweise auch möglich, dass lokal sich Kühlfluidfilme in dem Brennraum an der ersten Wandeinrichtung ausbilden können. Dadurch kann beispielsweise lokal die Wandreibung und der Wandwärmeübergang herabgesetzt werden.It is particularly advantageous if the first wall device is designed to be at least partially fluid-impermeable. This enables regenerative cooling to be achieved in an effective way. The cooling fluid absorbs heat and dissipates it. With a partial fluid permeability through the provision of corresponding channels or pores, a transpiration cooling effect can be achieved at certain points. For example, it is also possible that cooling fluid films can form locally in the combustion chamber on the first wall device. In this way, for example, the wall friction and the wall heat transfer can be reduced locally.

Eine Fluidundurchlässigkeit lässt sich beispielsweise dadurch erreichen, dass die erste Wandeinrichtung an der Außenseite eine fluidundurchlässige Beschichtung aufweist. Beispielsweise ist eine Kupferbeschichtung vorgesehen. Alternativ oder zusätzlich ist es möglich, dass der Werkstoff der ersten Wandeinrichtung geschlossene Poren aufweist oder porenfrei ist. Bei der Herstellung der ersten Wandeinrichtung wird dafür gesorgt, dass diese porenfrei ist bzw. entstandene Poren werden durch entsprechende Imprägnierung geschlossen.Fluid impermeability can be achieved, for example, in that the first wall device has a fluid-impermeable coating on the outside. For example, a copper coating is provided. Alternatively or additionally, it is possible for the material of the first wall device to have closed pores or to be pore-free. During the production of the first wall device, it is ensured that it is free of pores or that the pores that have arisen are closed by appropriate impregnation.

Ganz besonders vorteilhaft ist es, wenn ein Volumenanteil von Fasern hoher Wärmeleitfähigkeit der ersten Wandeinrichtung mindestens 30 %, insbesondere mindestens 40 %, insbesondere mindestens 50 %, vorzugsweise mindestens 60 % und vorzugsweise mindestens 65 % oder mindestens 70 % erreicht. Dadurch lässt sich eine hohe integrale Wärmeleitfähigkeit von beispielsweise mehr als 300 W/mK durch die erste Wandeinrichtung erreichen.It is particularly advantageous if a volume fraction of fibers of high thermal conductivity of the first wall device reaches at least 30%, in particular at least 40%, in particular at least 50%, preferably at least 60% and preferably at least 65% or at least 70%. As a result, a high integral thermal conductivity of, for example, more than 300 W / mK can be achieved through the first wall device.

Günstigerweise ist der Brennraum oder Schubraum rotationssymmetrisch zu einer axialen Achse ausgebildet. Dadurch ergeben sich effektive Strömungsverhältnisse.The combustion chamber or thrust chamber is advantageously designed to be rotationally symmetrical to an axial axis. This results in effective flow conditions.

Die erste Wandeinrichtung ist insbesondere aus einem carbidkeramischen oder oxidkeramischen Material oder hochwärmeleitfähigen Kohlenstoffwerkstoff (wie C/C) hergestellt. Bei dem carbidkeramischen Material kann es sich beispielsweise um ein C-XC- bzw. C/C-XC-Carbidmaterial handeln, wobei X ein Carbidbildner wie Silizium ist.The first wall device is made in particular from a carbide-ceramic or oxide-ceramic material or a highly thermally conductive carbon material (such as C / C). The carbide-ceramic material can be, for example, a C-XC or C / C-XC carbide material, where X is a carbide former such as silicon.

Bei einer Ausführungsform ist es vorgesehen, dass die zweite Wandeinrichtung aus einem Faserverbundwerkstoff hergestellt ist. Die Brennkammervorrichtung lässt sich dadurch mit geringem Gewicht herstellen.In one embodiment it is provided that the second wall device is made from a fiber composite material. The combustion chamber device can thereby be produced with a low weight.

Es kann günstig sein, wenn die erste Wandeinrichtung an der Innenseite beschichtet ist. Als Beschichtungsmaterial wird ein Material mit hoher Temperaturbeständigkeit und möglichst hoher thermischer Leitfähigkeit verwendet. Dadurch werden "hot spots" mit den entsprechenden Materialproblemen vermieden. Insbesondere wird ein Keramikmaterial verwendet. Dadurch lässt sich ein höherer Temperaturgradient über die erste Wandeinrichtung aufbauen, um für einen effektiven Wärmetransport zu sorgen.It can be favorable if the first wall device is coated on the inside. A material with high temperature resistance and the highest possible thermal conductivity is used as the coating material. This avoids "hot spots" with the corresponding material problems. In particular, a ceramic material is used. As a result, a higher temperature gradient can be built up over the first wall device in order to ensure effective heat transport.

Es kann ferner günstig sein, wenn die erste Wandeinrichtung an der Außenseite beschichtet ist. Dadurch kann zum einen eine Fluidundurchlässigkeit der ersten Wandeinrichtung erreicht werden. Es ist dadurch auch möglich, wenn als Beschichtungsmaterial ein Material hoher Wärmeleitfähigkeit wie ein metallisches Material wie beispielsweise Kupfer verwendet wird, für eine gleichmäßige Wärmeverteilung an der Außenseite der ersten Wandeinrichtung zu sorgen.It can also be favorable if the first wall device is coated on the outside. In this way, on the one hand, the first wall device can be made impervious to fluid. It is thereby also possible, if a material of high thermal conductivity, such as a metallic material such as copper, is used as the coating material, to ensure uniform heat distribution on the outside of the first wall device.

Als Kühlfluid wird beispielsweise Wasserstoff oder Methan verwendet. Das entsprechend vorgewärmte Kühlfluid kann dann als Brennstoff eingesetzt werden.Hydrogen or methane, for example, is used as the cooling fluid. The correspondingly preheated cooling fluid can then be used as fuel.

Die nachfolgende Beschreibung bevorzugter Ausführungsformen dient im Zusammenhang mit den Zeichnungen der näheren Erläuterung der Erfindung. Es zeigen:

Figur 1
eine schematische Schnittansicht eines Ausführungsbeispiels einer erfindungsgemäßen Brennkammervorrichtung beziehungsweise Schubkammervorrichtung;
Figur 2
eine schematische Darstellung einer Segmentgruppe einer ersten Wandeinrichtung (Figur 2(c)) und eines Herstellungsverfahrens;
Figur 3
einen Ausschnitt aus einer ersten Wandeinrichtung und zweiten Wandeinrichtung (Figur 3(a)) und eine vergrößerte Schnittdarstellung eines Ausschnitts aus der ersten Wandeinrichtung (Figur 3(c));
Figur 4
eine schematische Darstellung eines Teils der ersten Wandeinrichtung und der zweiten Wandeinrichtung mit Strömungsverlauf;
Figur 5
eine Draufsicht auf ein weiteres Ausführungsbeispiel einer ersten Wandeinrichtung.
The following description of preferred embodiments is used in conjunction with the drawings to explain the invention in greater detail. Show it:
Figure 1
a schematic sectional view of an embodiment of a combustion chamber device or thrust chamber device according to the invention;
Figure 2
a schematic representation of a segment group of a first wall device ( Figure 2 (c) ) and a manufacturing process;
Figure 3
a section of a first wall device and a second wall device ( Figure 3 (a) ) and an enlarged sectional view of a detail from the first wall device ( Figure 3 (c) );
Figure 4
a schematic representation of a part of the first wall device and the second wall device with flow course;
Figure 5
a plan view of a further embodiment of a first wall device.

Ein erstes Ausführungsbeispiel einer erfindungsgemäßen Brennkammervorrichtung, welches in einer Schnittdarstellung schematisch in Figur 1 gezeigt und dort mit 10 bezeichnet ist, umfasst eine als Ganzes mit 12 bezeichnete Brennkammer. Die Brennkammer weist dabei einen Brennraum 14 auf. Dieser Brennraum 14 ist insbesondere rotationssymmetrisch zu einer axialen Achse 16 ausgebildet ist. Der Brennkammer 12 ist eine geeignete Injektoreinrichtung 46 zugeordnet, durch welche Brennstoff und Oxidator in den Brennraum 14 einblasbar sind. In dem Brennraum 14 erfolgt eine Verbrennung zur entsprechenden Schuberzeugung.A first embodiment of a combustion chamber device according to the invention, which is shown schematically in a sectional view in Figure 1 and is designated there by 10, comprises a combustion chamber designated as a whole by 12. The combustion chamber has a combustion chamber 14. This combustion chamber 14 is designed, in particular, to be rotationally symmetrical to an axial axis 16. A suitable injector device 46, through which fuel and oxidizer can be blown into the combustion chamber 14, is assigned to the combustion chamber 12. Combustion takes place in the combustion chamber 14 to generate the corresponding thrust.

Die Brennkammervorrichtung 10 weist eine Düseneinrichtung 18 auf, welche sich in einer Hauptströmungsrichtung 20 (vergleiche Figur 4) an den Brennraum anschließt. Die Düseneinrichtung 18 weist einen Düsenraum 22 auf, welcher rotationssymmetrisch ausgebildet ist mit einer Achse, welche koaxial zur axialen Achse 16 ist.The combustion chamber device 10 has a nozzle device 18 which is located in a main flow direction 20 (cf. Figure 4 ) connects to the combustion chamber. The nozzle device 18 has a nozzle chamber 22 which is designed to be rotationally symmetrical with an axis which is coaxial with the axial axis 16.

Die Düseneinrichtung 18 hat eine Querschnittsverengung 24 im Vergleich zu dem Querschnitt des Brennraums 14, an welchen sich eine Erweiterung 26 anschließt. Über die Düseneinrichtung 18 wird ein entsprechender Schub mittels von bei der Verbrennung entstandenen Verbrennungsgasen erzeugt.The nozzle device 18 has a cross-sectional constriction 24 in comparison to the cross-section of the combustion chamber 14, which is followed by an enlargement 26. A corresponding thrust is generated via the nozzle device 18 by means of combustion gases produced during the combustion.

Eine Brennkammervorrichtung ist ein Sonderfall einer Schubkammervorrichtung. Über eine Schubkammervorrichtung lässt sich ein Schub erzeugen, wobei zur Schuberzeugung nicht unbedingt eine Verbrennung stattfinden muss. Beispielsweise können Gase in einer Schubkammer einer Schubkammervorrichtung über nukleare Zerfallsprozesse erhitzt werden.A combustion chamber device is a special case of a thrust chamber device. A thrust chamber device can generate thrust, although combustion does not necessarily have to take place to generate thrust. For example, gases in a thrust chamber of a thrust chamber device can be heated via nuclear decay processes.

Bei der erfindungsgemäßen Lösung sind Brennkammer und Schubkammer grundsätzlich gleich ausgebildet.In the solution according to the invention, the combustion chamber and the thrust chamber are basically of the same design.

Die Brennkammer 12 umfasst eine erste Wandeinrichtung 28. Die erste Wandeinrichtung ist aus einem keramischen Verbundwerkstoff (CMC-Werkstoff; Ceramic Matrix Composite-Werkstoff) hergestellt. Die erste Wandeinrichtung 28 weist dabei eine Innenseite 30 auf, welche den Brennraum 14 begrenzt. Sie weist weiterhin eine der Innenseite gegenüberliegende Außenseite 32 auf.The combustion chamber 12 comprises a first wall device 28. The first wall device is made of a ceramic composite material (CMC material; Ceramic Matrix Composite Material). The first wall device 28 has an inner side 30 which delimits the combustion chamber 14. It also has an outer side 32 opposite the inner side.

Die erste Wandeinrichtung 28 erstreckt sich längs der axialen Achse 16. Sie ist dabei längs dieser axialen Achse 16 geschlossen ausgebildet. In Figur 1 sind aus darstellerischen Gründen drei Segmentgruppen 34a, 34b, 34c als nicht verbunden gezeigt. Tatsächlich sind die einzelnen Segmentgruppen miteinander verbunden, sodass die erste Wandeinrichtung 28 einen Innenliner (Innenhülle) für den Brennraum 14 bildet.The first wall device 28 extends along the axial axis 16. It is designed to be closed along this axial axis 16. In Figure 1 For reasons of illustration, three segment groups 34a, 34b, 34c are shown as not connected. In fact, the individual segment groups are connected to one another so that the first wall device 28 forms an inner liner (inner shell) for the combustion chamber 14.

Die Segmentgruppen können unlösbar beispielsweise durch Verklebung oder keramisches Fügen miteinander verbunden sein oder sie können lösbar miteinander verbunden sein; beispielsweise können sie über einen axialen Verspanndruck geklemmt sein.The segment groups can be permanently connected to one another, for example by gluing or ceramic joining, or they can be releasably connected to one another; for example, they can be clamped using an axial clamping pressure.

Die Brennkammervorrichtung 10 umfasst eine zweite Wandeinrichtung 36, welche geschlossen ausgebildet ist und die erste Wandeinrichtung 28 umgibt. Die zweite Wandeinrichtung 36 hat eine Innenseite 38, welche der Außenseite 32 der ersten Wandeinrichtung 28 zugewandt ist. Ferner hat sie eine der Innenseite 38 gegenüberliegende Außenseite 40. Die zweite Wandeinrichtung 36 ist ein Außenliner (Außenhülle) der Brennkammervorrichtung 10. Die Brennkammer 12 mit der ersten Wandeinrichtung 28 ist in der zweiten Wandeinrichtung 36, welche geschlossen ausgebildet ist, angeordnet.The combustion chamber device 10 comprises a second wall device 36, which is designed to be closed and surrounds the first wall device 28. The second wall device 36 has an inner side 38 which faces the outer side 32 of the first wall device 28. It also has an outer side 40 opposite the inner side 38. The second wall device 36 is an outer liner (outer shell) of the combustion chamber device 10. The combustion chamber 12 with the first wall device 28 is arranged in the second wall device 36, which is designed to be closed.

Die erste Wandeinrichtung 28 sitzt bei einem Ausführungsbeispiel zwischen einer Stirnseite 42 der Düseneinrichtung 18 und einer Stirnseite 44 einer Injektoreinrichtung 46. Die Injektoreinrichtung 46 ist wiederum durch einen Flansch 48 gehalten, welcher über Verbindungselemente 50 wie Bolzen oder dergleichen an der zweiten Wandeinrichtung 36 fixiert ist. Die Stirnseiten 42 und 44 sind insbesondere als Ringflächen ausgebildet. Zwischen diesen sitzt die erste Wandeinrichtung 28 axial verklemmt.In one embodiment, the first wall device 28 sits between an end face 42 of the nozzle device 18 and an end face 44 of an injector device 46. The injector device 46 is in turn held by a flange 48 which is fixed to the second wall device 36 via connecting elements 50 such as bolts or the like. The end faces 42 and 44 are designed in particular as annular surfaces. The first wall device 28 sits axially clamped between these.

Das Material der ersten Wandeinrichtung 28 weist in axialer Richtung einen geringeren (insbesondere wesentlich geringeren) E-Modul auf im Vergleich zu einer radialen Richtung 52 senkrecht dazu. Dadurch lässt sich eine Art von axialer "Federwirkung" erreichen und die erste Wandeinrichtung 28 lässt sich axial zwischen den Stirnseiten 42 und 44 vorspannen. Die erste Wandeinrichtung 28 lässt sich dadurch lose einschieben und es lässt sich auch eine mechanische Entkopplung von der zweiten Wandeinrichtung erreichen.The material of the first wall device 28 has a lower (in particular significantly lower) modulus of elasticity in the axial direction compared to a radial direction 52 perpendicular thereto. A type of axial “spring effect” can thereby be achieved and the first wall device 28 can be pretensioned axially between the end faces 42 and 44. The first wall device 28 can thereby be pushed in loosely and a mechanical decoupling from the second wall device can also be achieved.

Bei dem in Figur 1 gezeigten Ausführungsbeispiel ist eine als Ganzes mit 54 bezeichnete Kühlkanaleinrichtung vorgesehen, welche einen oder mehrere Kühlkanäle 56 umfasst, durch die ein Kühlkanalfluid an der Außenseite 32 der ersten Wandeinrichtung 28 vorbeiströmbar ist, um eine regenerative Kühlung der ersten Wandeinrichtung 28 zu erreichen.The in Figure 1 In the embodiment shown, a cooling channel device designated as a whole with 54 is provided which comprises one or more cooling channels 56 through which a cooling channel fluid can flow past the outside 32 of the first wall device 28 in order to achieve regenerative cooling of the first wall device 28.

Der Kühlkanal 56 oder die Kühlkanäle 56 sind als Ausnehmungen an der zweiten Wandeinrichtung 36 an deren Innenseite 38 gebildet oder zwischen der ersten Wandeinrichtung 28 und der zweiten Wandeinrichtung 36 gebildet und laufen längs der Außenseite 32 an der ersten Wandeinrichtung 28 entlang. Ein entsprechender Kühlkanal 56 ist mindestens näherungsweise parallel zur axialen Achse 16 orientiert.The cooling channel 56 or the cooling channels 56 are formed as recesses on the second wall device 36 on its inner side 38 or formed between the first wall device 28 and the second wall device 36 and run along the outer side 32 along the first wall device 28. A corresponding cooling channel 56 is oriented at least approximately parallel to the axial axis 16.

Es können dabei mehrere beabstandete Kühlkanäle 56 vorgesehen sein, welche umfänglich um die erste Wandeinrichtung 28 verteilt angeordnet sind und insbesondere gleichmäßig verteilt angeordnet sind. Es ist auch möglich, dass ein Kühlkanal 56 vorgesehen ist, welcher ringförmig die erste Wandeinrichtung 28 umgibt.A plurality of spaced apart cooling channels 56 can be provided, which are arranged distributed circumferentially around the first wall device 28 and are in particular arranged evenly distributed. It is also possible for a cooling channel 56 to be provided which annularly surrounds the first wall device 28.

Bei einem Ausführungsbeispiel umfasst die erste Wandeinrichtung 28 eine Mehrzahl von in der axialen Richtung 16 hintereinander angeordneten Segmenten 58, welche insbesondere Ringsegmente sind. Benachbarte Segmente 58 sind miteinander verbunden und insbesondere einstückig miteinander verbunden. Es können dabei mehrere Segmente 58 zu Segmentgruppen 34a, 34b, 34c verbunden sein, wobei benachbarte Segmentgruppen 34a, 34b bzw. 34b, 34c wiederum miteinander verbunden sind und insbesondere einstückig miteinander verbunden sind.In one embodiment, the first wall device 28 comprises a plurality of segments 58 which are arranged one behind the other in the axial direction 16 and which are in particular ring segments. Adjacent segments 58 are connected to one another and, in particular, are connected to one another in one piece. Several segments 58 can be connected to form segment groups 34a, 34b, 34c, whereby adjacent segment groups 34a, 34b or 34b, 34c are in turn connected to one another and in particular are connected to one another in one piece.

Bei einem Ausführungsbeispiel, welches in der Figur 2 schematisch angedeutet ist, werden Segmente 58 bzw. dann eine Segmentgruppe 34a usw. aus keramischem Verbundmaterial hergestellt, indem zunächst Lagen 60 eines Vorläufermaterials hergestellt sind. Die Lagen 60 umfassen dabei Fasergelege (bzw. Fasergewebe oder Fasergewirke 62) mit beispielsweise senkrecht zu einander orientierten Fasern. In Figur 2(b) sind 0°/90°-Fasergelege 62 angedeutet. Benachbarte Lagen 60 weisen dabei eine unterschiedliche Faserorientierung auf. Beispielsweise beträgt die Faserorientierung bezogen auf benachbarte Lagen ±45°. Dies ist in Figur 2(b) angedeutet. Ein zu dem Fasergelege benachbartes Fasergelege 64 ist ebenfalls ein 0°/90°-Fasergelege, wobei eine ±45°-Ausrichtung vorliegt.In one embodiment, which is shown in the Figure 2 is indicated schematically, segments 58 or then a segment group 34a etc. are produced from ceramic composite material by first producing layers 60 of a precursor material. The layers 60 comprise fiber scrims (or fiber fabrics or fiber knitted fabrics 62) with, for example, fibers oriented perpendicular to one another. In Figure 2 (b) 0 ° / 90 ° fiber scrims 62 are indicated. Adjacent layers 60 have different fiber orientations. For example, the fiber orientation in relation to adjacent layers is ± 45 °. This is in Figure 2 (b) indicated. A fiber scrim 64 adjacent to the fiber scrim 64 is also a 0 ° / 90 ° fiber scrim, with a ± 45 ° alignment.

Grundsätzlich können die Lagen 60 in beliebigen Winkeln zueinander orientiert sein. Die einzelnen Fasern innerhalb einer Lage 60 können in beliebigen Winkeln zueinander orientiert sein.In principle, the layers 60 can be oriented at any desired angles to one another. The individual fibers within a layer 60 can be oriented at any angles to one another.

Es werden dabei mehrere Lagen 60 aufgebaut. Dies kann beispielsweise in einer Form erfolgen. Ein solcher Stapel 66 (Figur 2(a)) wird mit einem Kohlenstoff-Precursormaterial und insbesondere einem Harzmaterial infiltriert bzw. die Fasergelege 62 sind bereits mit einem solchen Kohlenstoff-Precursormaterial versehen (Prepreg-Gelege). Aus einem solchen Stapel 66 wird dann nach Aushärtung des Kohlenstoffprecursor-Materials eine Vorläufer-Segmentgruppe 68 ausgeschnitten. Das Ausschneiden kann dabei vor einer Pyrolyse des Stapels 66 oder nach der Pyrolyse erfolgen. Wenn das Ausschneiden vor der Pyrolyse erfolgt, dann ist die Vorläufer-Segmentgruppe 68 ein Harz-Fasergelegekörper (beziehungsweise Harz-Fasergewebekörper, Harz-Fasergewirkekörper usw.). Wenn das Ausschneiden nach der Pyrolyse erfolgt, dann ist der Vorläufer-Segmentgruppe-Körper ein Kohlenstoffkörper.Several layers 60 are built up. This can be done in a form, for example. Such a stack 66 ( Figure 2 (a) ) is infiltrated with a carbon precursor material and in particular a resin material or the fiber scrims 62 are already provided with such a carbon precursor material (prepreg scrims). A precursor segment group 68 is then cut out from such a stack 66 after the carbon precursor material has hardened. The cutting out can take place before a pyrolysis of the stack 66 or after the pyrolysis. If the cutting is carried out before pyrolysis, then the precursor segment group 68 is a resin fiber fabric body (or resin fiber fabric body, resin fiber fabric body, etc.). If the cutting is done after pyrolysis, then the precursor segment group body is a carbon body.

Der entsprechende Kohlenstoffkörper nach der Pyrolyse wird dann keramisiert. Beispielsweise erfolgt eine Keramisierung mittels des LSI-Verfahrens (Liquid Silicon Infiltration), bei dem dem porösen Kohlenstoffkörper flüssiges Silizium zugeführt wird. Dieses flüssige Silizium reagiert mit Kohlenstoff zu Siliziumkarbid. Es entsteht dann ein carbidkeramischer C/C-SiC-Körper, wenn die Fasern der Fasergelege 62, 64 Kohlenstofffasern waren und bei denen eine Vorläuferpolymer-Kunststoffmatrix in Kohlenstoff umgewandelt wurde. Bei alternativen Keramisierungsverfahren, wie beispielsweise CVI, LPI usw. entsteht in der Regel ein C-SiC-Werkstoff. Bei solchen Keramisierungsverfahren reagieren die Kohlenstofffasern nur marginal mit dem Silicium.The corresponding carbon body after pyrolysis is then ceramized. For example, ceramization takes place by means of the LSI process (Liquid Silicon Infiltration), in which liquid silicon is supplied to the porous carbon body. This liquid silicon reacts with carbon to form silicon carbide. A carbide-ceramic C / C-SiC body is then produced if the fibers of the fiber scrim 62, 64 were carbon fibers and in which a precursor polymer plastic matrix was converted into carbon. Alternative ceramization processes, such as CVI, LPI, etc. usually result in a C-SiC material. In such ceramization processes, the carbon fibers only react marginally with the silicon.

Anstatt Silizium kann auch ein anderer Carbidbildner verwendet werden.Instead of silicon, another carbide former can also be used.

Üblicherweise tritt bei der Pyrolyse eine Schrumpfung auf. Es ist deshalb vorteilhaft, wenn die Pyrolyse an dem Stapel 66 durchgeführt wird und dann der Vorläufer-Segmentgruppen-Körper 68 hergestellt wird.Shrinkage usually occurs during pyrolysis. It is therefore advantageous if the pyrolysis is carried out on the stack 66 and then the precursor segment group body 68 is produced.

Es lässt sich so die erste Wandeinrichtung 38 aus einem Stück herstellen oder es werden mehrere Segmentgruppen 34a, 34b, 34c hergestellt. Es können auch verschiedene Vorläufer-Segmentgruppen-Körper hergestellt werden, welche dann beispielsweise bei der Keramisierung miteinander gefügt oder beispielsweise auch geklebt werden. Die Segmentgruppen 34a, 34b, 34c beziehungsweise Vorläufer-Segmentgruppen-Körper 68 können bei gewährleisteter Zentrierung auch nur durch äußere Verspannung axial gegeneinander geklemmt werden.The first wall device 38 can thus be produced from one piece or several segment groups 34a, 34b, 34c are produced. Various precursor segment group bodies can also be produced, which are then joined to one another during ceramization or, for example, also glued. The segment groups 34a, 34b, 34c or precursor segment group bodies 68 can also only be axially clamped against one another by means of external bracing if the centering is ensured.

In Figur 3(a) ist ein Ausschnitt aus der Brennkammer 12 gezeigt. In Figur 3(b) ist ein Ausschnitt aus der ersten Wandeinrichtung schematisch gezeigt. Unterschiedliche Segmente 58 haben unterschiedliche Faserorientierungen (vergleiche Figur 2(b)).In Figure 3 (a) a section from the combustion chamber 12 is shown. In Figure 3 (b) a section of the first wall device is shown schematically. Different segments 58 have different fiber orientations (cf. Figure 2 (b) ).

Erfindungsgemäß ist es nun vorgesehen, dass in der ersten Wandeinrichtung 28 Fasern 70 hoher Wärmeleitfähigkeit angeordnet sind. Die Wärmeleitfähigkeit (integral) beträgt dabei mindestens 100 W/mK und vorzugsweise mindestens 300 W/mK. Sie kann beispielsweise auch 1000 W/mK oder mehr erreichen. Die Fasern 70 hoher Wärmeleitfähigkeit sind dabei in einer Wärmetransportrichtung 72 von dem Brennraum 14 (bzw. Schubraum) weg ausgerichtet.According to the invention it is now provided that fibers 70 of high thermal conductivity are arranged in the first wall device 28. The Thermal conductivity (integral) is at least 100 W / mK and preferably at least 300 W / mK. For example, it can also reach 1000 W / mK or more. The fibers 70 of high thermal conductivity are oriented away from the combustion chamber 14 (or thrust chamber) in a heat transport direction 72.

Die Fasern 70 hoher Wärmeleitfähigkeit sind beispielsweise C-Fasern. Sie sind dabei als Fasern in der ersten Wandeinrichtung 28 erhalten. Die C-Fasern bleiben bei der Pyrolyse erhalten. Ein Oxidationsschutz für den Betriebseinsatz kann bei Bedarf durch Keramisierung mit Carbidbildner erreicht werden, oder durch Einbringen zusätzlicher oxidischer Faserkomponenten beziehungsweise Matrixkomponenten.The fibers 70 of high thermal conductivity are, for example, C fibers. They are retained as fibers in the first wall device 28. The C-fibers are retained during pyrolysis. Oxidation protection for operational use can, if necessary, be achieved by ceramization with carbide former, or by introducing additional oxidic fiber components or matrix components.

Die Fasern 70 hoher Wärmeleitfähigkeit verlaufen von der Innenseite 30 zu der Außenseite 32 in einen Kühlkanal 56. Eine entsprechende Faser 70 endet mit einem entsprechenden Faserende an der Innenseite 30 und mit dem gegenüberliegenden Faserende in einem Strömungsraum 74 des entsprechenden Kanals 56. Die entsprechenden Faserenden können dabei direkt an der Innenseite 30 bzw. Außenseite 32 enden oder es kann dort noch eine entsprechende Beschichtung vorhanden sein, wie untenstehend noch näher erläutert wird.The fibers 70 of high thermal conductivity run from the inside 30 to the outside 32 in a cooling channel 56. A corresponding fiber 70 ends with a corresponding fiber end on the inside 30 and with the opposite fiber end in a flow space 74 of the corresponding channel 56. The corresponding fiber ends can end directly at the inside 30 or outside 32, or a corresponding coating can also be present there, as will be explained in more detail below.

Fasern 70 hoher Wärmeleitfähigkeit (insbesondere alle oder die meisten Fasern 70 hoher Wärmeleitfähigkeit) sind quer und insbesondere senkrecht zu der axialen Achse 16 orientiert. Fasern 70 hoher Wärmeleitfähigkeit sind insbesondere radial (das heißt parallel zur radialen Richtung 52) orientiert. Insbesondere sind die meisten der Fasern 70 hoher Wärmeleitfähigkeit in mindestens näherungsweise radialer Richtung orientiert. Die radiale Richtung 52 ist eine Richtung, in welcher der Abstand zwischen der Innenseite 30 und der Außenseite 32 am kleinsten ist.Fibers 70 of high thermal conductivity (in particular all or most of the fibers 70 of high thermal conductivity) are oriented transversely and, in particular, perpendicular to the axial axis 16. Fibers 70 of high thermal conductivity are in particular oriented radially (that is, parallel to radial direction 52). In particular, most of the fibers 70 of high thermal conductivity are oriented in at least approximately a radial direction. The radial direction 52 is a direction in which the distance between the inside 30 and the outside 32 is the smallest.

Es können auch Fasern 70 hoher Wärmeleitfähigkeit vorgesehen sein, welche nicht in radialer Richtung orientiert sind.Fibers 70 of high thermal conductivity can also be provided which are not oriented in the radial direction.

Es ist insbesondere vorgesehen, dass Fasern 70 hoher Wärmeleitfähigkeit in der ersten Wandeinrichtung 28 mindestens 30 %, vorzugsweise mindestens 40 % und insbesondere vorzugsweise mindestens 50 % und vorzugsweise mindestens 55 %, oder mindestens 60 %, oder mindestens 65 % beträgt. Bei einer Ausführungsform beträgt der Volumenanteil ca. 70 %.In particular, it is provided that fibers 70 of high thermal conductivity in the first wall device 28 are at least 30%, preferably at least 40% and particularly preferably at least 50% and preferably at least 55%, or at least 60%, or at least 65%. In one embodiment, the volume fraction is approximately 70%.

Durch die Fasern 70 hoher Wärmeleitfähigkeit lässt sich in der Wärmetransportrichtung 72 gezielt Wärme von der Innenseite 38 in die Kühlkanaleinrichtung 54 abführen. Dadurch wiederum lässt sich auf effektive Weise die Brennkammer 12 bzw. Schubkammer regenerativ kühlen.Due to the fibers 70 of high thermal conductivity, heat can be dissipated in a targeted manner in the heat transport direction 72 from the inside 38 into the cooling channel device 54. This in turn allows the combustion chamber 12 or thrust chamber to be regeneratively cooled in an effective manner.

Grundsätzlich ist es so, dass, um eine Überhitzung der ersten Wandeinrichtung 28 zu verhindern, das entsprechende Wandmaterial eine hohe Temperaturbeständigkeit aufweisen muss und eine hohe Wärmeleitfähigkeit aufweisen muss. Je stabiler und damit vor allem je dicker die erste Wandeinrichtung 28 ist, desto höher ist die Temperatur an einer Heißgasseite, das heißt an der Innenseite 30. Ein hoher lokaler Temperaturgradient bedeutet in der Regel, dass hohe Thermospannungen vorliegen, was wiederum zu Materialproblemen (insbesondere Materialermüdung) führen kann. Ein keramischer Verbundwerkstoff weist einerseits eine hohe Temperaturbeständigkeit auf und eine geringe thermische Ausdehnung. Die Kombination aus hoher Temperaturbeständigkeit, hoher Wärmeleitfähigkeit und geringer thermischer Sprödigkeit ermöglicht hohe Temperaturgradienten über das Wandprofil hinweg von der Heißgasseite bis zu dem Kühlkanal 56. Hohe Temperaturgradienten ermöglichen zudem einen bestimmten und notwendigen Wärmeabfluss in die erste Wandeinrichtung 28 bei bereits geringeren Wärmeleitfähigkeiten und größeren Wandstärken als beispielsweise bei metallischen Wandstrukturen.Basically, in order to prevent overheating of the first wall device 28, the corresponding wall material must have a high temperature resistance and must have a high thermal conductivity. The more stable and, above all, the thicker the first wall device 28, the higher the temperature on a hot gas side, i.e. on the inside 30. A high local temperature gradient usually means that there are high thermal voltages, which in turn leads to material problems (in particular Material fatigue). A ceramic composite material has, on the one hand, high temperature resistance and low thermal expansion. The combination of high temperature resistance, high thermal conductivity and low thermal brittleness enables high temperature gradients across the wall profile from the hot gas side to the cooling channel 56. High temperature gradients also enable a certain and necessary heat flow into the first wall device 28 with already lower thermal conductivities and greater wall thicknesses than for example with metallic wall structures.

Durch das Vorsehen von Fasern 70 hoher Wärmeleitfähigkeit zur Bereitstellung definierter Wärmetransportpfade und damit zur Erhöhung der integralen Wärmeleitfähigkeit, erhält man bei großer struktureller Integrität eine hohe Kühleffizienz.By providing fibers 70 of high thermal conductivity to provide defined heat transport paths and thus to increase the integral thermal conductivity, a high cooling efficiency is obtained with great structural integrity.

Es ist grundsätzlich vorgesehen, dass die erste Wandeinrichtung 28 fluiddicht ausgebildet ist. Dies lässt sich auf unterschiedliche Arten und Weisen erreichen. Bei einer Ausführungsform weist die erste Wandeinrichtung 28 an der Außenseite 82 eine fluidundurchlässige Beschichtung auf. Alternativ oder zusätzlich ist es möglich, dass der Werkstoff der ersten Wandeinrichtung 28 geschlossene Poren aufweist, oder porenfrei ist. Falls Poren vorhanden sind, dann lassen sich diese durch eine entsprechende Imprägnierung schließen. Es kann beispielsweise auch bei der Keramisierung dafür gesorgt werden, dass der keramische Werkstoff porenfrei ist bzw. geschlossene Poren aufweist.It is basically provided that the first wall device 28 is designed to be fluid-tight. This can be achieved in a number of ways. In one embodiment, the first wall device 28 has a fluid-impermeable coating on the outside 82. Alternatively or additionally, it is possible for the material of the first wall device 28 to have closed pores or to be pore-free. If there are pores, they can be closed by an appropriate impregnation. During ceramization, for example, it can also be ensured that the ceramic material is pore-free or has closed pores.

Es kann vorgesehen sein, dass die erste Wandeinrichtung 28 partiell durchlässig ist zwischen dem Brennraum 14 (bzw. Schubraum) und der Kühlkanaleinrichtung 54. Dadurch kann Kühlfluid, welches insbesondere Brennstoff wie Wasserstoff ist, durch die erste Wandeinrichtung hindurch in den Brennraum 14 gelangen. Dadurch kann ein bestimmter Anteil einer Transpiration durch die erste Wandeinrichtung 28 in bestimmten Bereichen erfolgen. Dadurch wiederum kann eine Transpirationskühlung an diesen bestimmten Bereichen erfolgen und es kann sich beispielsweise ein Film an Kühlfluid an der Innenseite 30 der ersten Wandeinrichtung 28 in bestimmten Bereichen ausbilden. Ein solcher Film reduziert beispielsweise die Wandreibung und verringert dadurch Drosselverluste. Es kann, wie erläutert, auch eine zusätzliche Kühlwirkung über Transpirationskühlung erfolgen.It can be provided that the first wall device 28 is partially permeable between the combustion chamber 14 (or thrust chamber) and the cooling duct device 54. As a result, cooling fluid, which is in particular fuel such as hydrogen, can pass through the first wall device into the combustion chamber 14. As a result, a certain proportion of perspiration can take place through the first wall device 28 in certain areas. This in turn allows perspiration cooling to take place in these specific areas and, for example, a film of cooling fluid can form on the inside 30 of the first wall device 28 in specific areas. Such a film reduces wall friction, for example, and thereby reduces throttling losses. As explained, an additional cooling effect can also take place via transpiration cooling.

Die Innenseite 30 und die Außenseite 32 lassen sich gut schleifen und auch beschichten, da Faserenden an der Innenseite 30 und der Außenseite 32 enden. Dadurch kann es nicht zum Aufspleißen von Fasern kommen. Eine Schleiffläche besitzt dann eine homogene Rauhigkeit. Dadurch wiederum lassen sich Beschichtungen gut haftend aufbringen. Beispielsweise lassen sich dann Sputter-Schichten, Plasmabeschichtungen, Galvanikbeschichtungen usw. herstellen.The inside 30 and the outside 32 can be easily ground and also coated, since the fiber ends end at the inside 30 and the outside 32. This prevents the fibers from splaying out. A grinding surface then has a homogeneous roughness. This in turn allows coatings to be applied with good adhesion. For example, sputter layers, plasma coatings, electroplated coatings, etc. can then be produced.

Bei einem Ausführungsbeispiel ist die Außenseite 32 mit einer Beschichtung 76, wie in Figur 3(c) angedeutet, versehen. Die Beschichtung 76 ist insbesondere aus einem metallischen Material hergestellt und erstreckt sich über die gesamte Außenseite 32.In one embodiment, the exterior 32 is coated with a coating 76, as in FIG Figure 3 (c) indicated, provided. The coating 76 is made in particular from a metallic material and extends over the entire outer side 32.

Dadurch wird eine fluiddichte Ausbildung der ersten Wandeinrichtung 28 erreicht.A fluid-tight design of the first wall device 28 is thereby achieved.

Durch das Vorsehen der Beschichtung 76 aus einem metallischen Material hoher Wärmeleitfähigkeit wie Kupfer wird erreicht, dass sich eine homogene Temperaturverteilung auf der Außenseite 32 der ersten Wandeinrichtung 28 ausbildet. Dadurch wiederum werden lokale Spitzenbelastungen des Materials der ersten Wandeinrichtung 28 verhindert.By providing the coating 76 made of a metallic material of high thermal conductivity such as copper, it is achieved that a homogeneous temperature distribution is formed on the outside 32 of the first wall device 28. This in turn prevents local peak loads on the material of the first wall device 28.

Die Innenseite 30 kann mit einer Beschichtung 78 (vergleiche Figur 3(c)) versehen sein. Diese Beschichtung ist vorzugsweise aus einem Material mit hohem Wärmeübergang zur ersten Wandeinrichtung 28 hergestellt. Insbesondere ist sie aus einem keramischen Material (carbidkeramisch oder oxidkeramisch) hergestellt. Ein mögliches Material ist beispielsweise Siliziumcarbid. Durch Verwendung eines solchen Materials, welches eine hohe Temperaturbeständigkeit aufweist, kann ein höherer Temperaturgradient zwischen der Innenseite 30 und der Außenseite 32 erreicht werden. Ein solcher höherer Gradient wiederum sorgt für einen effektiven Wärmetransport und dadurch für eine effektive Kühlwirkung.The inside 30 can be coated with a coating 78 (cf. Figure 3 (c) ) be provided. This coating is preferably made from a material with high heat transfer to the first wall device 28. In particular, it is made of a ceramic material (carbide ceramic or oxide ceramic). One possible material is silicon carbide, for example. By using such a material, which has a high temperature resistance, a higher temperature gradient can be achieved between the inside 30 and the outside 32. Such a higher gradient in turn ensures effective heat transport and thus an effective cooling effect.

Die Fasern 70 in der ersten Wandeinrichtung 28 sind effektiv geschützt in einer Matrix, dem keramischen Verbundwerkstoff, geschützt angeordnet.The fibers 70 in the first wall device 28 are effectively protected in a matrix, the ceramic composite material.

Wie oben erwähnt, kann die erste Wandeinrichtung 28 beispielsweise aus einem carbidkeramischen Material hergestellt sein. Sie kann beispielsweise auch aus einem oxidkeramischen Material hergestellt sein.As mentioned above, the first wall device 28 can be made of a carbide ceramic material, for example. For example, it can also be made from an oxide ceramic material.

Die Brennkammervorrichtung funktioniert wie folgt:
Die Brennkammervorrichtung 10 wird in einem Beispiel erläutert, bei dem in dem Brennraum 14 eine Verbrennung stattfindet. Wasserstoff und Oxidator werden über die Injektoreinrichtung 46 in den Brennraum 14 eingekoppelt. Eine Hauptströmungsrichtung 20 in dem Brennraum 14 ist dabei parallel zur axialen Achse 16 (vergleiche Figur 4). Beispielsweise ist in einem Brennraumbereich 80 (Figur 1), die Strömung subsonisch, das heißt es liegt eine Unterschallströmung vor. An der Düseneinrichtung 18 liegt an den Bereichen 24, 26 ein Überschallströmungsbereich 82 vor.
The combustion chamber device works as follows:
The combustion chamber device 10 is explained in an example in which combustion takes place in the combustion chamber 14. Hydrogen and oxidizer are coupled into combustion chamber 14 via injector device 46. A main flow direction 20 in the combustion chamber 14 is parallel to the axial axis 16 (cf. Figure 4 ). For example, in a combustion chamber area 80 ( Figure 1 ), the flow is subsonic, i.e. there is a subsonic flow. A supersonic flow area 82 is present in the areas 24, 26 of the nozzle device 18.

Kühlfluid, insbesondere Wasserstoff, wird durch den oder die Kühlkanäle 56 in einer Strömungsrichtung 84 durchgeführt, welche entgegen der Hauptströmungsrichtung 20 in dem Brennraum 14 ist. Das Kühlfluid nimmt Wärme auf, welche über die erste Wandeinrichtung 28 bereitgestellt wird, und wird dabei vorgewärmt. Das vorgewärmte Kühlfluid wird dann, wenn es Brennstoff ist, über die Injektoreinrichtung 46 in den Brennraum 14 eingespritzt. Das Kühlfluid ist beispielsweise Wasserstoff und insbesondere flüssiger Wasserstoff. Über die Fasern 70 hoher Wärmeleitfähigkeit wird effektiv Wärme von der Innenseite 30 zu der Außenseite 32 der ersten Wandeinrichtung 28 abgeführt.Cooling fluid, in particular hydrogen, is passed through the cooling channel or channels 56 in a flow direction 84 which is opposite to the main flow direction 20 in the combustion chamber 14. The cooling fluid absorbs heat, which is provided via the first wall device 28, and is preheated in the process. The preheated cooling fluid is then, if it is fuel, injected into the combustion chamber 14 via the injector device 46. The cooling fluid is, for example, hydrogen and in particular liquid hydrogen. Heat is effectively dissipated from the inside 30 to the outside 32 of the first wall device 28 via the fibers 70 of high thermal conductivity.

Die Strömungsrichtung 84 kann auch in umgekehrter Richtung ausgeführt sein.The direction of flow 84 can also be designed in the opposite direction.

Beispielsweise bei einem Expander-Zyklus eines europäischen VINCI-Oberstufentriebwerks wird der vorgewärmte Brennstoff vor der Einspritzung an einem Injektor noch mittels Enthalpieabgabe zum Betrieb von Turbopumpen verwendet, das heißt Brennstoff, welcher in der entsprechenden (Regenerativ-)Kühlkanaleinrichtung, welcher einer Brennkammer beziehungsweise Schubkammer zugeordnet ist, aufgeheizt wurde, gibt die dabei aufgenommene Enthalpie beim Durchströmen einer Turbine an diese ab, bevor der Brennstoff in einem Einspritzkopf in den Brennraum injiziert wird. Mit dem Brennstoff wird dann beim Expander-Zyklus auch eine Turbopumpe betrieben. Eine Strömungsrichtung des Kühlfluids kann dabei parallel zur Hauptströmungsrichtung einer Heißgasströmung im Brennraum sein (Co-Flow) oder entgegengesetzt (Counter-Flow).For example, in an expander cycle of a European VINCI upper stage engine, the preheated fuel is still used to operate turbo pumps by means of enthalpy output before injection at an injector, i.e. fuel that is assigned to a combustion chamber or thrust chamber in the corresponding (regenerative) cooling channel device is, has been heated up, transfers the enthalpy taken up when flowing through a turbine to this before the Fuel is injected into the combustion chamber in an injection head. A turbo pump is then operated with the fuel during the expander cycle. A flow direction of the cooling fluid can be parallel to the main flow direction of a hot gas flow in the combustion chamber (co-flow) or opposite (counter-flow).

Bei einer weiteren Ausführungsform einer Brennkammer 86, welche in Figur 5 in einem Querschnitt schematisch gezeigt und dort mit 86 bezeichnet ist, ist eine erste Wandeinrichtung 88 vorgesehen, welche einen um die axiale Achse 16 (für gleiche Elemente wie bei der Brennkammer 12 werden gleiche Bezugszeichen verwendet) rotationssymmetrisch den Brennraum 90 begrenzt. Die erste Wandeinrichtung ist aus einem keramischen Verbundmaterial hergestellt. Sie hat eine Innenseite 92, welche den Brennraum begrenzt, und eine Außenseite 94. Im Bereich der Außenseite 94 sind in der ersten Wandeinrichtung 88 Kühlkanäle 96 der Kühlkanaleinrichtung 54 gebildet. Die Kühlkanäle 96 sind dabei umfänglich an der Außenseite 94 angeordnet. Benachbarte Kühlkanäle 96a, 96b sind in Umfangsrichtung beabstandet zueinander mit einem dazwischen liegenden Steg 98. Insbesondere sind die Kühlkanäle 96 gleichmäßig verteilt um den Umfang der ersten Wandeinrichtung 88 an der Außenseite 94 angeordnet.In a further embodiment of a combustion chamber 86, which is shown in FIG Figure 5 Shown schematically in a cross section and denoted there by 86, a first wall device 88 is provided which delimits the combustion chamber 90 in a rotationally symmetrical manner around the axial axis 16 (the same reference numerals are used for the same elements as in the combustion chamber 12). The first wall device is made of a ceramic composite material. It has an inner side 92, which delimits the combustion chamber, and an outer side 94. In the area of the outer side 94, cooling channels 96 of the cooling channel device 54 are formed in the first wall device 88. The cooling channels 96 are arranged circumferentially on the outside 94. Adjacent cooling channels 96a, 96b are spaced apart from one another in the circumferential direction with a web 98 in between. In particular, the cooling channels 96 are arranged uniformly distributed around the circumference of the first wall device 88 on the outside 94.

Bei diesem Ausführungsbeispiel sind die Kühlkanäle 96 in die erste Wandeinrichtung 88 integriert. Die erste Wandeinrichtung 88 ist dadurch an der Außenseite 94 entsprechend mäanderförmig ausgebildet.In this exemplary embodiment, the cooling channels 96 are integrated into the first wall device 88. The first wall device 88 is thus designed in a corresponding meandering shape on the outside 94.

An der Innenseite 92 und/oder der Außenseite 94 kann dabei wie oben beschrieben eine Beschichtung vorgesehen sein.As described above, a coating can be provided on the inside 92 and / or the outside 94.

Die Kühlkanäle 96 sind dabei parallel zur axialen Achse 16 orientiert.The cooling channels 96 are oriented parallel to the axial axis 16.

Insbesondere kann eine thermische Sperreinrichtung 100 vorgesehen sein. Dieses ist um die Außenseite 94 der ersten Wandeinrichtung 88 angeordnet. Durch die thermische Sperreinrichtung lässt sich ein hoher Wärmeeintrag in eine zweite Wandeinrichtung, welche die erste Wandeinrichtung 88 umgibt, verhindern. (Über die Stege 98 kann grundsätzlich ein solcher hoher Wärmeeintrag erfolgen.) Die thermische Sperreinrichtung 100 liegt zwischen einer Außenseite der Stege 98 und der zweiten Wandeinrichtung als Außenliner. Die thermische Sperreinrichtung 100 ist beispielsweise durch ein Rohrelement 102 gebildet, welches über die erste Wandeinrichtung 84 übergeschoben ist.In particular, a thermal blocking device 100 can be provided. This is arranged around the outside 94 of the first wall device 88. The thermal blocking device allows a high heat input into a second wall means surrounding the first wall means 88 prevent. (Such a high heat input can in principle take place via the webs 98.) The thermal blocking device 100 is located between an outside of the webs 98 and the second wall device as an outer liner. The thermal blocking device 100 is formed, for example, by a tubular element 102 which is pushed over the first wall device 84.

Die thermische Sperreinrichtung 100 stellt eine thermische Isolationsschicht bereit. Sie ist beispielsweise aus einem schlecht Wärme leitenden faserkeramischen Material beispielsweise auf Aluminiumoxidbasis hergestellt.The thermal barrier device 100 provides a thermal insulation layer. It is made, for example, of a poorly thermally conductive fiber-ceramic material, for example based on aluminum oxide.

Es kann dabei vorgesehen sein, dass diese thermische Sperreinrichtung eine gewisse offene Porosität aufweist. Dann lässt sich diese thermische Sperreinrichtung 100 durch "kaltes" Kühlfluid sättigen und zusätzlich kühlen.It can be provided that this thermal barrier device has a certain open porosity. This thermal barrier device 100 can then be saturated with “cold” cooling fluid and additionally cooled.

Ansonsten funktioniert die Brennkammer 86 wie oben beschrieben.Otherwise, the combustion chamber 86 functions as described above.

Die erfindungsgemäße Brennkammervorrichtung ist beispielsweise Teil einer Antriebsvorrichtung eines Flugkörpers und insbesondere einer Rakete.The combustion chamber device according to the invention is, for example, part of a propulsion device of a missile and in particular of a rocket.

BezugszeichenlisteList of reference symbols

1010
BrennkammervorrichtungCombustion chamber device
1212
BrennkammerCombustion chamber
1414th
BrennraumCombustion chamber
1616
Axiale AchseAxial axis
1818th
DüseneinrichtungNozzle device
2020th
(Haupt-)Strömungsrichtung(Main) flow direction
2222nd
DüsenraumNozzle space
2424
QuerschnittsverengungCross-sectional constriction
2626th
Erweiterungextension
2828
Erste WandeinrichtungFirst wall installation
3030th
Innenseiteinside
3232
AußenseiteOutside
34a, b, c34a, b, c
SegmentgruppeSegment group
3636
Zweite WandeinrichtungSecond wall arrangement
3838
Innenseiteinside
4040
AußenseiteOutside
4242
StirnseiteFace
4444
StirnseiteFace
4646
InjektoreinrichtungInjector device
4848
Flanschflange
5050
VerbindungselementConnecting element
5252
Radiale RichtungRadial direction
5454
KühlkanaleinrichtungCooling duct device
5656
KühlkanalCooling duct
5858
SegmenteSegments
6060
LagenLocations
6262
FasergelegeFiber scrim
6464
FasergelegeFiber scrim
6666
Stapelstack
6868
Vorläufer-Segmentgruppen-KörperPrecursor segment group bodies
7070
Faserfiber
7272
WärmetransportrichtungHeat transport direction
7474
StrömungsraumFlow space
7676
BeschichtungCoating
7878
BeschichtungCoating
8080
BrennraumbereichCombustion chamber area
8282
ÜberschallströmungsbereichSupersonic flow area
8484
StrömungsrichtungDirection of flow
8686
BrennkammerCombustion chamber
8888
Erste WandeinrichtungFirst wall installation
9090
BrennraumCombustion chamber
9292
Innenseiteinside
9494
AußenseiteOutside
9696
KühlkanalCooling duct
96a, b, c96a, b, c
KühlkanalCooling duct
9898
Stegweb
100100
Thermische SperreinrichtungThermal locking device
102102
RohrelementTubular element

Claims (13)

  1. Combustion chamber device or thrust chamber device, comprising a first wall means (28; 88), which with an inner side (30; 92) delimits a combustion space (14; 90) or a thrust space, and a second wall means (36), which faces with an inner side (38) toward an outer side (32; 94) of the first wall means (28; 88), wherein the first wall means (28; 88) is made of a ceramic composite material, and a cooling channel means (54) for cooling the first wall means (28; 88) with a cooling fluid, which comprises at least one cooling channel (56; 96) that is arranged or formed on the first wall means (84) and/or the second wall means (36) and/or between the first wall means and the second wall means, wherein arranged in the first wall means (28) are fibers (70) with a high heat conductivity, which are arranged away from the inner side (30; 92) in the direction of heat transport (72) and which have a heat conductivity of at least 100 W/mK, wherein fiber ends of the fibers (70) with a high heat conductivity end at or near the inner side (30; 92) of the first wall means (28; 88), wherein the fibers (70) with a high heat conductivity are guided from the inner side (30; 92) of the first wall means to the at least one channel (56; 96), characterized in that fiber ends of the fibers (70) with a high heat conductivity end at a flow space (74) or near a flow space (74) of the at least one channel (56; 96).
  2. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that the at least one channel (56; 96) has a direction of extent, which is at least approximately parallel to an axial axis (16) of the first wall means (28; 88).
  3. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that the fibers (70) with a high heat conductivity are oriented at least approximately in a radial direction (52) in relation to an axial axis (16) of the first wall means (28; 88).
  4. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that the first wall means (28; 88) is configured as an inner liner, and/or in that the second wall means (36) surrounds the first wall means (28; 88), and/or in that the second wall means (88) is configured as an outer liner.
  5. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that formed on the first wall means (88) in the region of the outer side (94) are a plurality of cooling channels (96), which are spaced at a distance from each other in a circumferential direction, and in particular in that the cooling channels (96) are arranged distributed uniformly in the circumferential direction.
  6. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that arranged between the first wall means (88) and the second wall means is a thermal barrier means (100), and in particular in that the thermal barrier means (100) is formed by at least one pipe element (102).
  7. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that the fibers (70) with a high heat conductivity comprise C-fibers.
  8. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that the first wall means (28; 88) has a plurality of segments (58) arranged axially one behind the other, and in particular in that adjacent segments (58) have different or the same fiber orientations of a fiber reinforcement matrix, and in particular in that segments (58) or segment groups (34a, 34b, 34c) are seated axially braced in the second wall means (36).
  9. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that the first wall means (28; 88) is configured to be at least partially fluid-impermeable, and in particular in that the first wall means (28; 88) has a fluid-impermeable coating (76) on the outer side (32), and in particular in that the material of the first wall means (28; 88) has closed pores or is pore-free.
  10. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that a volume fraction of the fibers (70) with a high heat conductivity in the first wall means is at least 30%, in particular at least 40% and in particular at least 50%, in particular at least 60% and in particular at least 70%.
  11. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that the combustion space (14) or thrust space is configured rotationally symmetrical to an axial axis (16).
  12. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that the first wall means (28; 88) is made of a carbide ceramic or oxide ceramic material or highly heat-conductive carbon material, and/or in that the second wall means (36) is made of a fiber composite material.
  13. Combustion chamber device or thrust chamber device in accordance with any one of the preceding Claims, characterized in that the first wall means (28; 88) is coated on the inner side (30; 92), and/or in that the first wall means (28; 88) is coated on the outer side (32).
EP12179345.9A 2011-08-04 2012-08-06 Combustion chamber device or thrust chamber device Active EP2554904B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011052413A DE102011052413A1 (en) 2011-08-04 2011-08-04 Combustion chamber device or thrust chamber device

Publications (3)

Publication Number Publication Date
EP2554904A2 EP2554904A2 (en) 2013-02-06
EP2554904A3 EP2554904A3 (en) 2017-12-20
EP2554904B1 true EP2554904B1 (en) 2020-09-23

Family

ID=47002558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12179345.9A Active EP2554904B1 (en) 2011-08-04 2012-08-06 Combustion chamber device or thrust chamber device

Country Status (2)

Country Link
EP (1) EP2554904B1 (en)
DE (1) DE102011052413A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114459057B (en) * 2022-01-18 2023-03-24 中国航发四川燃气涡轮研究院 Ceramic-based flame tube connecting structure and gas turbine engine combustor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008020198A1 (en) * 2008-04-15 2009-10-22 Astrium Gmbh Nozzle extension for rocket engine, has nozzle cover provided with two shell elements made of ceramic fiber reinforced composite material, where shell elements are fixed relative to each other

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780157A (en) * 1994-06-06 1998-07-14 Ultramet Composite structure
DE19730674A1 (en) * 1997-07-17 1999-01-21 Deutsch Zentr Luft & Raumfahrt Combustion chamber and method of manufacturing a combustion chamber
US6783824B2 (en) * 2001-01-25 2004-08-31 Hyper-Therm High-Temperature Composites, Inc. Actively-cooled fiber-reinforced ceramic matrix composite rocket propulsion thrust chamber and method of producing the same
DE102005036137A1 (en) 2005-07-26 2007-02-01 Deutsches Zentrum für Luft- und Raumfahrt e.V. Combustion chamber and method for producing a combustion chamber
DE102005059502A1 (en) * 2005-12-06 2007-06-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. hot chamber
DE102009028470B4 (en) * 2009-08-12 2011-07-28 Deutsches Zentrum für Luft- und Raumfahrt e.V., 51147 absorber device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008020198A1 (en) * 2008-04-15 2009-10-22 Astrium Gmbh Nozzle extension for rocket engine, has nozzle cover provided with two shell elements made of ceramic fiber reinforced composite material, where shell elements are fixed relative to each other

Also Published As

Publication number Publication date
DE102011052413A1 (en) 2013-02-07
EP2554904A3 (en) 2017-12-20
EP2554904A2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
EP0927299B1 (en) Combustion chamber and method for producing a combustion chamber
DE69916240T2 (en) HEAT EXCHANGER OF COMPOSITE MATERIAL AND ITS MANUFACTURING PROCESS
DE60224691T2 (en) CERAMIC HYBRID MATERIAL OF CERAMIC INSULATING AND CONSTRUCTION LAYERS
EP1748253B1 (en) Combustion chamber and method for producing a combustion chamber
EP0913373B1 (en) Ceramic composite reinforced with carbon fibers
DE102011050757B4 (en) Combustion chamber flame tube cooling system
DE19804232C2 (en) Combustion chamber for high-performance engines and nozzles
EP1032791A1 (en) Combustion chamber and method for cooling a combustion chamber with vapour
WO2007128837A1 (en) Pressure-resistant body that is supplied with fluid
EP0073024A2 (en) Laminated wall of a hollow body and process for manufacturing the same
EP2554904B1 (en) Combustion chamber device or thrust chamber device
DE102006060857B4 (en) CMC combustion chamber lining in double-layer construction
DE102010043336B4 (en) combustion chamber device
DE102004029029B4 (en) Injection head
EP2148045A1 (en) Casing section for a gas turbine
EP2227629B1 (en) Combustion chamber device
DE102008020198B4 (en) Nozzle extension for an engine and method for producing and cooling a nozzle extension
Cavalier et al. Composites in aerospace industry
DE102014100345B4 (en) Method for producing a thrust chamber device, thrust chamber device and rocket engine
WO2018167204A1 (en) Thrust chamber device and method for operating a thrust chamber device
DE10230231A1 (en) Multi-layer composite
DE102017129321A1 (en) Combustion chamber device, vehicle
EP1387993A1 (en) Through-flow cylinder
WO2007144231A1 (en) Machine with uncooled rotor body and cooled rotor winding and associated holding and/or support device
WO1999004213A1 (en) Heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F23M 5/08 20060101ALI20171115BHEP

Ipc: F23R 3/00 20060101AFI20171115BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180618

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20191008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200420

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012016364

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1316764

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012016364

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

26N No opposition filed

Effective date: 20210624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210806

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210806

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1316764

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120806

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230711

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923