EP0073024A2 - Laminated wall of a hollow body and process for manufacturing the same - Google Patents

Laminated wall of a hollow body and process for manufacturing the same Download PDF

Info

Publication number
EP0073024A2
EP0073024A2 EP82107582A EP82107582A EP0073024A2 EP 0073024 A2 EP0073024 A2 EP 0073024A2 EP 82107582 A EP82107582 A EP 82107582A EP 82107582 A EP82107582 A EP 82107582A EP 0073024 A2 EP0073024 A2 EP 0073024A2
Authority
EP
European Patent Office
Prior art keywords
layer
hollow body
wall according
metal
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP82107582A
Other languages
German (de)
French (fr)
Other versions
EP0073024B1 (en
EP0073024A3 (en
Inventor
Werner Dr. Ing. Hüther
Axel Ing. Grad. Rossmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines GmbH
Original Assignee
MTU Motoren und Turbinen Union Muenchen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Motoren und Turbinen Union Muenchen GmbH filed Critical MTU Motoren und Turbinen Union Muenchen GmbH
Publication of EP0073024A2 publication Critical patent/EP0073024A2/en
Publication of EP0073024A3 publication Critical patent/EP0073024A3/en
Application granted granted Critical
Publication of EP0073024B1 publication Critical patent/EP0073024B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/11Thermal or acoustic insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0448Steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • Y10T29/49984Coating and casting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1314Contains fabric, fiber particle, or filament made of glass, ceramic, or sintered, fused, fired, or calcined metal oxide, or metal carbide or other inorganic compound [e.g., fiber glass, mineral fiber, sand, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1317Multilayer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]

Definitions

  • the invention relates to a multi-layer wall according to the preamble of claim 1.
  • the invention further relates to methods for producing the multi-layer wall according to the invention.
  • the object of the invention is to provide a multi-layered wall, which is thermally and mechanically highly resilient and, if desired, has good thermal insulation.
  • the invention consists in that the multilayer hollow body wall is constructed as indicated in the characterizing part of claim 1.
  • the ceramic inner layer mentioned there or its ceramic material is of the type that it can withstand high temperatures and / or large wear or large friction.
  • the holding layer or its fiber-reinforced material is of the type that it gives the wall great strength or strengths of a type other than wear resistance, in particular great tensile strength, preferably for absorbing a pressure of a fluid located in the interior of the hollow body.
  • the relevant tensile forces (they point in the circumferential direction in the case of the hollow body of revolution) are absorbed by reinforcing fibers of this holding layer, which are then under longitudinal fiber tension due to these tensile forces.
  • Such reinforcing fibers are in particular circumferential fibers, ie reinforcing fibers wound or running in the circumferential direction.
  • Reinforcing fibers which cross at an angle to the circumferential direction can also be provided. It is the ceramic inner layer through this holding layer under pressure preload (the relevant compressive forces point in the hollow revolution body in the circumferential direction), so that much higher internal pressures are tolerated than with a hollow body whose wall consists only of ceramic material. The ceramic inner layer is then not subjected to too much tension under internal pressure, which it might not be able to withstand.
  • the compressive stress mentioned can also be made so large that the ceramic inner layer is only under compressive stress at lower internal pressures; It can withstand compressive stress better than tensile stress.
  • this holding layer can have a high modulus of elasticity, an extremely low thermal expansion and a relatively high temperature resistance.
  • the strength of the metal holding layer is often smaller and the thermal expansion there is often greater than in the case of fiber-reinforced materials, which also applies to high-temperature steel as the preferred holding layer metal - see claim 4 can.
  • the insulating ceramic intermediate layer is provided.
  • the ceramic materials of the ceramic inner layer mentioned in claim 3 have high temperature resistance and high wear or abrasion resistance, and - see claim 5 - carbon fiber reinforced graphite for the holding layer has high tensile strength.
  • the materials specified in claim 6 for the intermediate layer are good heat insulation.
  • the fiber-reinforced material (embedding material, matrix) of the holding layer is in particular organic material or metal.
  • the invention is particularly in a diesel engine pre-combustion chamber, an internal combustion engine cylinder liner, a housing or housing part in contact with hot gas, a rolling bearing ring and a plain bearing, for. B. applied to bearing shells of the same, as a hollow body.
  • These devices or parts are thermally and mechanically stressed (in particular by the internal pressure and / or friction mentioned). Furthermore, good thermal insulation is usually desired with them, especially in the case of the above-mentioned pre-combustion chamber and the cylinder liner mentioned to keep the losses of the engine small.
  • the pre-combustion chamber 22 and the cylinder liner 23 are hollow revolution bodies.
  • the pre-combustion chamber 22 is located in a bore of a cylinder head 13 made of steel. It or its waird consists of a heat-resistant, ceramic inner layer 10 made of silicon carbide (SiC), an insulating ceramic layer 11 made of magnesium aluminum silicate (MAS) and a holding layer 12 made of carbon fiber reinforced graphite.
  • SiC silicon carbide
  • MAS magnesium aluminum silicate
  • the ceramic inner layer 10 extends, as seen towards the cylinder liner 23, so that the interior of the pre-combustion chamber 22 first narrows in the shape of a truncated cone, then, in order to form a bulbous combustion chamber 19, widens in the shape of a truncated cone and then contracts like a basin in order to subsequently run cylindrically.
  • the holding layer 12 or thus the pre-combustion chamber 22 is cylindrical on the outside along the two truncated cones, in order then also to contract like a basin and then to run cylindrical.
  • the cylinder head bore mentioned has the same shape and the same dimensions.
  • the pre-combustion chamber 22 is composed of three axially successive parts so that the holding layer 12 can be applied, the part planes being at the collision of the two truncated cones and with the large basin diameter.
  • the ceramic inner layer 10 is produced as a solid part
  • the insulating ceramic intermediate layer 11 is produced by applying a layer of sinterable insulating ceramic powder made of magnesium aluminum silicate (rIAS) to the ceramic inner body 10 by isostatic pressing or by overmolding (injection molding) and sintering this powder layer, and the holding layer 12 produced as a solid part and shrunk onto the insulating ceramic intermediate layer 11.
  • rIAS magnesium aluminum silicate
  • the cylinder liner 23 is a hollow cylinder body and is seated in an engine block 21, to which, not shown, the cylinder head 13 is screwed.
  • the cylinder liner 23 or its wall consists of a heat and wear or abrasion resistant, ceramic inner layer 16 made of silicon carbide (SiC), an insulating ceramic layer 17 made of aluminum titanate (A1Ti0 3 ) and a holding layer 18 made of high-temperature steel.
  • the layers 16 and 17 are manufactured individually as solid parts, and the part 17 is shrunk onto the part 16.
  • the holding layer 18 is then produced by applying a sinterable powder made of high-temperature steel to the part 17 by isostatic pressing or by overmolding (injection molding) and sintering this powder layer.
  • the finished MAS layer is machined so that a SiC tube with a
  • the outer layer is approximately 5 mm thick and is made of MAS
  • This composite body made of ceramic inner and MAS intermediate layer is now wrapped with a 5 mm thick layer of carbon fibers in the circumferential direction and impregnated with resin (phenols, polyimides, polyphenylenes) suitable for residue coking.
  • the resin is coked with the exclusion of oxygen (usually under a protective gas) at temperatures up to 1000 ° C.
  • the impregnation and coking are repeated two to five times, followed by graphitization by heating under protective gas at 2000 ° C.
  • Carbon fiber can also be used with boron carbide coated boron fibers in a matrix of aluminum, with preference as aluminum 6061 F or aluminum 2024 F is used. In this case, heat treatment is carried out at a temperature of 560 ° C under a working pressure of 15 bar.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Acoustics & Sound (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

Es soll eine mehrschichtige Hohlkörperwand geschaffen werden, die thermisch und mechanisch hochbelastbar und, wenn erwünscht, gut wärmeisoliert ist. Die Erfindung besteht darin, daß diese Wand innen eine wärme- und/oder verschleißfeste, keramische Innenschicht und eine diese umgebende, insbesondere unter Vorspannung stehende Halteschicht aus faserverstärktem Kunststoff und gegebenenfalls eine Zwischenschicht aus wärmeisolierendem, keramischem Werkstoff aufweist. Die Wand kann auch diese Innenschicht, diese Zwischenschicht und eine Halteschicht aus Metall aufweisen. Zumindest die Halteschicht wird aufgeschrumpft. Die Halteschicht aus Metall und/oder die Zwischenschicht können bzw. kann aufgesintert werden. Auch durch Sinterschrumpf der Halteschicht ergibt sich die Vorspannung. Durch die Vorspannung ist bei Innendruck die keramische Innenschicht weniger oder nicht auf Umfangszug oder nur auf Umfangsdruck belastet. Anwendung insbesondere bei einer Dieselmotor-Vorbrennkammer oder einer Verbrennungsmotor-Zylinderlaufbuchse.The aim is to create a multi-layer hollow body wall that can withstand high thermal and mechanical loads and, if desired, is well insulated. The invention consists in that this wall has a heat-resistant and / or wear-resistant, ceramic inner layer and a surrounding, in particular prestressed, holding layer made of fiber-reinforced plastic and optionally an intermediate layer made of heat-insulating, ceramic material. The wall can also have this inner layer, this intermediate layer and a holding layer made of metal. At least the holding layer is shrunk on. The holding layer made of metal and / or the intermediate layer can or can be sintered on. The prestressing also results from sintering shrinkage of the holding layer. Due to the prestressing, the ceramic inner layer is less or not loaded on the circumferential tension or only on the circumferential pressure in the case of internal pressure. Application particularly in a diesel engine pre-combustion chamber or an internal combustion engine cylinder liner.

Description

Die Erfindung bezieht sich auf eine mehrschichtige Wand gemäß dem Oberbegriff des Anspruchs 1. Die Erfindung bezieht sich ferner auf Verfahren zur Herstellung der erfindungsgemäßen mehrschichtigen Wand.The invention relates to a multi-layer wall according to the preamble of claim 1. The invention further relates to methods for producing the multi-layer wall according to the invention.

Aufgabe der Erfindung ist es, eine anfanqs genannte mehrschichtige Wand zu schaffen, die thermisch und mechanisch hoch belastbar und, wenn erwünscht, gut wärmeisolierend ist.The object of the invention is to provide a multi-layered wall, which is thermally and mechanically highly resilient and, if desired, has good thermal insulation.

Zur Lösung dieser Aufgabe besteht die Erfindung darin, daß die mehrschichtige Hohlkörperwand wie im Kennzeichen des Anspruchs 1 angegeben aufgebaut ist.To achieve this object, the invention consists in that the multilayer hollow body wall is constructed as indicated in the characterizing part of claim 1.

Die dort genannte keramische Innenschicht bzw. deren keramischer Werkstoff ist also von der Art, daß sie bzw. er große Temperaturen und/oder großen Verschleiß bzw. große Reibung ertragen kann. Die dort genannte Halteschicht bzw. deren faserverstärkter Werkstoff ist von der Art, daß sie bzw. er der Wand große Festigkeit oder Festigkeiten anderer Art als die Verschleißfestigkeit verleiht, insbesondere große Zugfestigkeit, vorzugsweise zur Aufnahme eines Drucks eines im Innenraum des hohlen Körpers befindlichen Fluids. Die betreffenden Zugkräfte (sie weisen beim hohlen Umdrehungskörper in Umfangsrichtung) werden von Verstärkungsfasern dieser Halteschicht aufgenommen, die dann durch diese Zugkräfte unter Faserlängszugspannung stehen. Solche Verstärkungsfasern sind insbesondere Umfangsfasern, d. h. in Umfangsrichtung gewickelte bzw. verlaufende Verstärkungsfasern. Auch schräg zur Umfangsrichtung verlaufende, sich kreuzende Verstärkungsfasern können vorgesehen werden. Es soll die keramische Innenschicht durch diese Halteschicht unter Druckvorspannung (die betreffenden Druckkräfte weisen beim hohlen Umdrehungskörper in Umfangsrichtung) gesetzt sein, so daß wesentlich höhere Innendrücke ertragen werden als bei einem hohlen Körper, dessen Wand nur aus keramischem Werkstoff besteht. Die keramische Innenschicht ist dann also bei Innendruck nicht zu sehr auf Zug belastet, was sie evtl. nicht aushalten würde. Die genannte Druckvorspannung kann auch so groß gemacht werden, daß die keramische Innenschicht bei kleineren Innendrücken nur unter Druckspannung steht; Druckspannung kann sie besser ertragen als Zugspannung. Ferner kann diese Halteschicht einen hohen Elastizitätsmodul, eine äußerst geringe Wärmedehnung und eine relativ große Temperaturbeständigkeit aufweisen. Zur Wärmeisolierung ist die genannte Isolierkeramik-Zwischenschicht zwischen den beiden anderen genannten Schichten vorgesehen. Durch diese Zwischenschicht kann die Wärmeleitung nach außen vermindert werden und somit die Wärme innen gehalten und auch eine überhitzung der Halteschicht und eine Abnahme der Festigkeit der Halteschicht verhindert werden. Dank dieser Zwischenschicht läßt sich die Wand bei thermischer Belastung mit geringer Kühlleistung auf einer für den Werkstoff der Halteschicht erträglichen Temperatur halten.The ceramic inner layer mentioned there or its ceramic material is of the type that it can withstand high temperatures and / or large wear or large friction. The one mentioned there The holding layer or its fiber-reinforced material is of the type that it gives the wall great strength or strengths of a type other than wear resistance, in particular great tensile strength, preferably for absorbing a pressure of a fluid located in the interior of the hollow body. The relevant tensile forces (they point in the circumferential direction in the case of the hollow body of revolution) are absorbed by reinforcing fibers of this holding layer, which are then under longitudinal fiber tension due to these tensile forces. Such reinforcing fibers are in particular circumferential fibers, ie reinforcing fibers wound or running in the circumferential direction. Reinforcing fibers which cross at an angle to the circumferential direction can also be provided. It is the ceramic inner layer through this holding layer under pressure preload (the relevant compressive forces point in the hollow revolution body in the circumferential direction), so that much higher internal pressures are tolerated than with a hollow body whose wall consists only of ceramic material. The ceramic inner layer is then not subjected to too much tension under internal pressure, which it might not be able to withstand. The compressive stress mentioned can also be made so large that the ceramic inner layer is only under compressive stress at lower internal pressures; It can withstand compressive stress better than tensile stress. Furthermore, this holding layer can have a high modulus of elasticity, an extremely low thermal expansion and a relatively high temperature resistance. For thermal insulation, the insulating ceramic intermediate layer is provided between the two other layers mentioned. This intermediate layer can reduce the heat conduction to the outside and thus the heat kept inside and overheating of the holding layer and a decrease in the strength of the holding layer can be prevented. Thanks to this intermediate layer, the wall can be kept at a temperature which is tolerable for the material of the holding layer under thermal load with low cooling capacity.

Ausbildungen und Weiterentwicklungen der erfindungsgemäßen Wand sind insbesondere in den Unteransprüchen 2 bis 6 aufgeführt.Training and further developments of the wall according to the invention are listed in particular in subclaims 2 to 6.

Für den Anspruch 2 gilt ebenfalls all das, was über die Wand bzw. ihre drei Schichten im Anschluß an die Angabe der Erfindung, d. h. an den diesbezüglichen Hinweis auf das Kennzeichen des Anspruchs 1 ausführlich ausgeführt ist, nur daß jetzt die metallische Halteschicht bzw. deren Metall von der Art ist, daß sie bzw. das Metall nun der Wand große Festigkeit oder Festigkeiten anderer Art als die Verschleißfestigkeit verleiht, insbesondere große Zugfestigkeit, und nur daß jetzt die genannten Zugkräfte von dieser metallischen Halteschicht aufgenommen werden können und die keramische Innenschicht durch diese metallische Halteschicht unter eine genannte Druckvorspannung gesetzt werden kann. Ferner sind bei der Halteschicht aus Metall die Festigkeit, z.B. die Zugfestigkeit, der Elastizitätsmodul und die Temperaturbeständigkeit öfter kleiner und ist dort die Wärmedehnung öfter größer als bei faserverstärkten Werkstoffen, was auch für hochwarmfesten Stahl als bevorzugtes Halteschicht-Metall- siehe den Anspruch 4 - gelten kann. Insbesondere wegen dieser öfter kleineren Temperaturbeständigkeit und größeren Wärmedehnung ist die Isolierkeramik-Zwischenschicht vorgesehen. Die im Anspruch 3 genannten keramischen Werkstoffe der keramischen Innenschicht weisen hohe Temperaturfestigkeit und hohe Verschleiß- bzw. Abriebfestigkeit auf, und - siehe den Anspruch 5 - kohlenstoffaserverstärkter Graphit, für die Halteschicht, weist große Zugfestigkeit auf. Die im Anspruch 6 angegebenen Werkstoffe für die Zwischenschicht sind gut wärmeisolierend. Der faserverstärkte Werkstoff (Einbettungswerkstoff, Matrix) der Halteschicht ist insbesondere organischer Werkstoff oder Metall.For claim 2, everything that applies to the wall or its three layers following the specification of the invention, ie to the relevant reference to the characterizing part of claim 1, also applies, except that now the metallic holding layer or its Metal is of the type that it or the metal now gives the wall great strength or strengths of a type other than wear resistance, in particular great tensile strength, and only that the aforementioned tensile forces can now be absorbed by this metallic holding layer and the ceramic inner layer can be placed under this compressive prestress by means of this metallic holding layer. Furthermore, the strength of the metal holding layer, for example the tensile strength, the modulus of elasticity and the temperature resistance, is often smaller and the thermal expansion there is often greater than in the case of fiber-reinforced materials, which also applies to high-temperature steel as the preferred holding layer metal - see claim 4 can. In particular because of this often lower temperature resistance and greater thermal expansion, the insulating ceramic intermediate layer is provided. The ceramic materials of the ceramic inner layer mentioned in claim 3 have high temperature resistance and high wear or abrasion resistance, and - see claim 5 - carbon fiber reinforced graphite for the holding layer has high tensile strength. The materials specified in claim 6 for the intermediate layer are good heat insulation. The fiber-reinforced material (embedding material, matrix) of the holding layer is in particular organic material or metal.

Die keramische Innenschicht kann insbesondere dadurch unter eine genannte Druckvorspannung gesetzt werden, daß gemäß dem Anspruch 7 vorgegangen wird. Z.B. werden also die drei Schichten als feste Hohlkörper hergestellt und der Zwischenschicht-Hohlkörper auf den Innenschicht-Hohlkörper und der Halteschicht-Hohlkörper auf den Zwischenschicht-Hohlkörper aufgeschrumpft. Dieses Verfahren ist z.B. zur Herstellung des Rohrs (siehe den Oberbegriff des Anspruchs 1) geeignet. Das Verfahren ist relativ einfach durchzuführen.The ceramic inner layer can, in particular, be placed under a specified compressive stress by proceeding according to claim 7. E.g. the three layers are thus produced as solid hollow bodies and the intermediate layer hollow body is shrunk onto the inner layer hollow body and the holding layer hollow body onto the intermediate layer hollow body. This method is e.g. suitable for producing the tube (see the preamble of claim 1). The procedure is relatively simple to carry out.

Insbesondere bei einem komplizierter geformten hohlen Körper, aber auch z. B. bei einem Rohr, kann bezüglich der Isolierkeramik-Zwischenschicht und der Halteschicht aus Metall wie in den Ansprüchen 8, 10 und 11 angegeben vorgegangen werden. Das im Anspruch 8 genannte Aufbringen der Pulverschicht geschieht insbesondere wie im Anspruch 9 angegeben. Durch Aufsintern des Metalls (Anspruch 10), insbesondere des hochwarmfesten Stahls, auf die Isolierkeramik-Zwischenschicht ergibt sich von selbst eine genannte Druckvorspannung der keramischen Innenschicht, da bei der Abkühlung nach dem Sintern die Schrumpfung des Metalls größer ist als die Schrumpfung der keramischen Innenschicht bzw. des keramischen Innenteils.Especially with a more complex shaped hollow body, but also e.g. B. in a tube, can be proceeded with respect to the insulating ceramic intermediate layer and the holding layer made of metal as specified in claims 8, 10 and 11. The application of the powder layer mentioned in claim 8 takes place in particular as specified in claim 9. Sintering of the metal (claim 10), in particular the high-temperature steel, onto the insulating ceramic intermediate layer results in the compressive prestressing of the ceramic inner layer, since the shrinkage of the metal during cooling after sintering is greater than the shrinkage of the ceramic inner layer or of the ceramic inner part.

Die Erfindung wird insbesondere bei einer Dieselmotor-Vorbrennkammer, einer Verbrennungsmotor-Zylinderlaufbuchse, einem heißgasberührten Gehäuse oder Gehäuseteil, einem Wälzlagerring und einem Gleitlager, z. B. bei Lagerschalen desselben, als genanntem hohlem Körper angewendet. Diese Einrichtungen bzw. Teile sind thermisch und mechanisch (insbesondere durch genannten Innendruck und/ oder Reibung) erheblich belastet. Ferner ist bei ihnen meist eine gute Wärmeisolation erwünscht, insbesondere bei der genannten Vorbrennkammer und der genannten Zylinderlaufbuchse zur Kleinhaltung der Verluste des Motors.The invention is particularly in a diesel engine pre-combustion chamber, an internal combustion engine cylinder liner, a housing or housing part in contact with hot gas, a rolling bearing ring and a plain bearing, for. B. applied to bearing shells of the same, as a hollow body. These devices or parts are thermally and mechanically stressed (in particular by the internal pressure and / or friction mentioned). Furthermore, good thermal insulation is usually desired with them, especially in the case of the above-mentioned pre-combustion chamber and the cylinder liner mentioned to keep the losses of the engine small.

In der Zeichnung sind zwei Ausführungsbeispiele der erfindungsgemäßen mehrschichtigen Wand bei einer Vorbrennkammer und einer Zylinderlaufbuchse eines Dieselmotors in einem Längsschnitt dargestellt.In the drawing, two exemplary embodiments of the multi-layer wall according to the invention in a pre-combustion chamber and a cylinder liner of a diesel engine are shown in a longitudinal section.

Die Vorbrennkammer 22 und die Zylinderlaufbuchse 23 sind hohle Umdrehungskörper. Die Vorbrennkammer 22 befindet sich in einer Bohrung eines Zylinderkopfs 13 aus Stahl. Sie bzw. ihre Waird besteht aus einer wärmefesten, keramischen Innenschicht 10 aus Siliziumkarbid (SiC), einer Isolierkeramik-Schicht 11 aus Magnesiumaluminiumsilikat (MAS) und einer Halteschicht 12 aus kohlenstoffaserverstärktem Graphit. Die keramische Innenschicht 10 verläuft, zur Zylinderlaufbuchse 23 hin gesehen, so, daß der Innenraum der Vorbrennkammer 22 sich zuerst kegelstumpfförmig verengt, anschließend, zur Bildung eines bauchigen Brennraums 19 sich kegelstumpfförmig erweitert und dann beckenartig zusammenzieht, um daran anschließend zylindrisch zu verlaufen. Die Halteschicht 12 bzw. also die Vorbrennkammer 22 ist außen längs den beiden Kegelstümpfen zylindrisch, um sich dann ebenfalls beckenartig zusammenzuziehen und dann zylindrisch zu verlaufen. Die genannte Zylinderkopfbohrung hat die gleiche Form und die gleichen Abmessungen.The pre-combustion chamber 22 and the cylinder liner 23 are hollow revolution bodies. The pre-combustion chamber 22 is located in a bore of a cylinder head 13 made of steel. It or its waird consists of a heat-resistant, ceramic inner layer 10 made of silicon carbide (SiC), an insulating ceramic layer 11 made of magnesium aluminum silicate (MAS) and a holding layer 12 made of carbon fiber reinforced graphite. The ceramic inner layer 10 extends, as seen towards the cylinder liner 23, so that the interior of the pre-combustion chamber 22 first narrows in the shape of a truncated cone, then, in order to form a bulbous combustion chamber 19, widens in the shape of a truncated cone and then contracts like a basin in order to subsequently run cylindrically. The holding layer 12 or thus the pre-combustion chamber 22 is cylindrical on the outside along the two truncated cones, in order then also to contract like a basin and then to run cylindrical. The cylinder head bore mentioned has the same shape and the same dimensions.

Die Vorbrennkammer 22 ist, damit die Halteschicht 12 aufgebracht werden kann, aus drei axial aufeinanderfolgenden Teilen zusammengesetzt, wobei die Teilebenen beim Zusammenstoß der beiden Kegelstümpfe und beim großen Beckendurchmesser liegen. Jeweils wird die keramische Innenschicht 10 als festes Teil hergestellt, die Isolierkeramik-Zwischenschicht 11 durch Aufbringen einer Schicht sinterfähigen Isolierkeramikpulvers aus Magnesiumaluminiumsilikat (rIAS) auf den keramischen Innenkörper 10 durch isostatisches Pressen oder durch Umspritzen (Spritzguß) und Sintern dieser Pulverschicht hergestellt und die Halteschicht 12 als festes Teil hergestellt und auf die Isolierkeramik-Zwischenschicht 11 aufgeschrumpft.The pre-combustion chamber 22 is composed of three axially successive parts so that the holding layer 12 can be applied, the part planes being at the collision of the two truncated cones and with the large basin diameter. In each case, the ceramic inner layer 10 is produced as a solid part, the insulating ceramic intermediate layer 11 is produced by applying a layer of sinterable insulating ceramic powder made of magnesium aluminum silicate (rIAS) to the ceramic inner body 10 by isostatic pressing or by overmolding (injection molding) and sintering this powder layer, and the holding layer 12 produced as a solid part and shrunk onto the insulating ceramic intermediate layer 11.

Ein Einsatzstück 14 drückt die drei Vorbrennkammer-Teile in der Zylinderkopfbohrung mittels nicht dargestellter, das Einsatzstück 14 mit dem Zylinderkopf 13 verbindender, achsparalleler Schrauben gegeneinander und gegen das Becken des Zylinderkopfs 13. Der Ausströmzylinder der Vorbrennkammer 22 ragt etwas in den Brennraum 20 des Motorzylinders hinein, weist dort auf dem Umfang gleichmäßig verteilt angeordnete, etwa radiale Ausströmkanäle 15 auf und geht mit seinen drei Schichten 10 bis 12 in eine also ebenfalls dreischichtige, ihn abschließende Stirnwand über.An insert 14 presses the three pre-combustion chamber parts in the cylinder head bore by means of not shown the insert 14 with the cylinder head 13 connecting, axially parallel screws against each other and against the basin of the cylinder head 13. The outflow cylinder of the pre-combustion chamber 22 protrudes somewhat into the combustion chamber 20 of the engine cylinder, there has approximately radial outflow channels 15 arranged evenly distributed on the circumference and merges with its three layers 10 to 12 into a three-layer end wall that closes it.

Die Zylinderlaufbuchse 23 ist ein Hohlzylinderkörper und sitzt in einem Motorblock 21, mit dem, was nicht dargestellt ist, der Zylinderkopf 13 verschraubt ist. Die Zylinderlaufbuchse 23 bzw. ihre Wand besteht aus einer wärme- und verschleiß- bzw. abriebfesten, keramischen Innenschicht 16 aus Siliziumkarbid (SiC), einer Isolierkeramik-Schicht 17 aus Aluminiumtitanat (A1Ti03) und einer Halteschicht 18 aus hochwarmfesten Stahl. Die Schichten 16 und 17 werden einzeln als feste Teile hergestellt, und das Teil 17 wird auf das Teil 16 aufgeschrumpft. Die Halteschicht 18 wird dann durch Aufbringen eines sinterfähigen Pulvers aus hochwarmfesten Stahl auf das Teil 17 durch isostatischen Pressen oder durch Umspritzen (Spritzguß) und Sintern dieser Pulverschicht hergestellt.The cylinder liner 23 is a hollow cylinder body and is seated in an engine block 21, to which, not shown, the cylinder head 13 is screwed. The cylinder liner 23 or its wall consists of a heat and wear or abrasion resistant, ceramic inner layer 16 made of silicon carbide (SiC), an insulating ceramic layer 17 made of aluminum titanate (A1Ti0 3 ) and a holding layer 18 made of high-temperature steel. The layers 16 and 17 are manufactured individually as solid parts, and the part 17 is shrunk onto the part 16. The holding layer 18 is then produced by applying a sinterable powder made of high-temperature steel to the part 17 by isostatic pressing or by overmolding (injection molding) and sintering this powder layer.

Nachfolgend wird beispielhaft ein erfindungsgemäßes Verfahren zur Herstellung einer Zylinderlaufbuchse aus SiC/MAS und Nimonic 90R angegeben. Zunächst wird ein Keramikrohr aus drucklos gesintertem SiC mit den Maßen Innendurchmesser 70 mm, Außendurchmesser 80 mm und Länge 100 mm hergestellt. Dieses Rohr wird durch Kaltisostatpressen mit einer solchen Glaspulverschicht umgeben, die durch Wärmebehandlung in eine MAS-Schicht überführbar ist. Die Herstellung eines solchen Glaspulvers wird beschrieben in "Properties of Cordierit Glass-Ceramics Produced by Sintering and Crystallization of Glass Powder" by Claes I. Helgesson in Science of Ceramics Vol. 8 1979, Seiten 347 bis 361, veröffentlicht von The British Ceramic Society. Die fertige MAS-Schicht wird spanabhebend bearbeitet, so daß ein SiC-Rohr mit einer Außenschicht von ca. 5 mm Dicke aus MAS entsteht. Dieser Verbundkörper aus keramischer Innen- und MAS-Zwischenschicht wird nun mit einer 5 mm dicken Schicht aus Kohlenstoffasern in Umfangsrichtung gewickelt und mit zur rückstandsreichen Verkokung geeignetem Harz (Phenole, Polyimide, Polyphenylene) imprägniert. Das Harz wird unter Sauerstoffabschluß (üblicherweise unter Schutzgas) bei Temperaturen bis 1000 °C verkokt. Das Imprägnieren und Verkoken wird zwei bis fünf mal wiederholt. Anschließend erfolgt eine Graphitierung durch Erhitzen unter Schutzgas auf 2000 °C während einer Dauer von 10 Stunden. Anstelle der Kohlefaser können auch mit Borkarbid beschichtete Borfasern zur Anwendung kommen in einer Matrix von Aluminium, wobei vorzugsweise Aluminium 6061 F oder Aluminium 2024 F verwendet wird. In diesem Fall erfolgt eine Wärmebehandlung bei einer Temperatur von 560 °C unter einem Arbeitsdruck von 15 bar.A method according to the invention for producing a cylinder liner from SiC / MAS and Nimonic 90 R is given below by way of example. First, a ceramic tube made of pressure-free sintered SiC with the dimensions inner diameter 70 mm, outer diameter 80 mm and length 100 mm is produced. This tube is surrounded by cold isostat presses with a glass powder layer which can be converted into a MAS layer by heat treatment. The production of such a glass powder is described in "Properties of Cordierite Glass-Ceramics Produced by Sintering and Crystallization of Glass Powder "by Claes I. Helgesson in Science of Ceramics Vol. 8 1979, pages 347 to 361, published by The British Ceramic Society. The finished MAS layer is machined so that a SiC tube with a The outer layer is approximately 5 mm thick and is made of MAS This composite body made of ceramic inner and MAS intermediate layer is now wrapped with a 5 mm thick layer of carbon fibers in the circumferential direction and impregnated with resin (phenols, polyimides, polyphenylenes) suitable for residue coking. The resin is coked with the exclusion of oxygen (usually under a protective gas) at temperatures up to 1000 ° C. The impregnation and coking are repeated two to five times, followed by graphitization by heating under protective gas at 2000 ° C. for a period of 10 hours Carbon fiber can also be used with boron carbide coated boron fibers in a matrix of aluminum, with preference as aluminum 6061 F or aluminum 2024 F is used. In this case, heat treatment is carried out at a temperature of 560 ° C under a working pressure of 15 bar.

Anstelle einer faserverstärkten Halteschicht kann eine solche aus Metall aufgebracht werden. Die äußere Halteschicht besteht aus wärmebeständigem Stahl wie z. B. X 10 CrNiTi 1810, Inconel 718Roder C 263 oder Nimonic 90R. Die Verbindung der äußeren Halteschicht mit dem aus Innenschicht und Zwischenschicht bestehenden Verbundkörper erfolgt vorzugsweise durch Schrumpfen, indem ein Rohr aus Nimonic 90 mit einem Außendurchmesser von 100 mm, Innendurchmesser 90,4 mm 1 50 µm, Länge 100 mm hergestellt wird, auf 600 °C erhitzt wird und auf den Verbundkörper aufgeschoben wird. Beim Abkühlen erfolgt dann die Schrumpfverbindung.Instead of a fiber-reinforced holding layer, one made of metal can be applied. The outer holding layer consists of heat-resistant steel such as. B. X 10 CrNiTi 1810, Inconel 718 R or C 263 or Nimonic 90 R. The connection of the outer support layer having the group consisting of inner layer and intermediate layer composite body is preferably carried out by shrinking by a tube made of Nimonic 90 mm with an outer diameter of 100, inner diameter 90.4 mm 1 50 .mu.m, length 100 mm is prepared, at 600 ° C is heated and is pushed onto the composite body. The shrink connection then takes place on cooling.

Ein weiteres Beispiel für die Anwendung des erfindungsgemäßen Verfahrens zur Herstellung einer Vorbrennkammer läuft wie folgt ab: Es wird ein Innenteil der Vorbrennkammer aus drucklos gesintertem Si3N4 hergestellt. Danach wird eine MAS-Schicht als Zwischenschicht aufgebracht wie in dem erst beschriebenen Verfahrensbeispiel. Zur Herstellung der äußeren Halteschicht wird eine Pulverschicht aus Udimet 700R-pulver (Korngröße ≤45 µm) durch kaltisostatisches Pressen bei 2000 bar auf die MAS-Schicht aufgebracht. Danach erfolgt eine mechanische Bearbeitung der noch grünen Schicht auf eine Wandstärke von 6 mm. Dieser mechanischen Bearbeitung schließt sich Sintern durch Erhitzen des gesamten Körpers auf 1200 °C unter Schutzgas während einer Dauer von 4 Stunden an. Dabei beträgt die Aufheizgeschwindigkeit 5 °C pro Minute.Another example of the use of the method according to the invention for producing a pre-combustion chamber proceeds as follows: An inner part of the pre-combustion chamber is produced from pressurelessly sintered Si 3 N 4 . A MAS layer is then applied as an intermediate layer, as in the process example just described. To produce the outer holding layer, a powder layer of Udimet 700 R powder (grain size ≤45 µm) is applied to the MAS layer by cold isostatic pressing at 2000 bar. The green layer is then mechanically processed to a wall thickness of 6 mm. This mechanical processing is followed by sintering by heating the entire body to 1200 ° C under a protective gas for a period of 4 hours. The heating rate is 5 ° C per minute.

Claims (11)

1. Mehrschichtige Wand eines hohlen Körpers, insbesondere Umdrehungskörpers, z. B. eines Rohrs oder Gehäuses, dadurch gekennzeichnet, daß diese Wand auf der Belastungsseite, d. h. innen, eine wärme- und/oder verschleißfeste, keramische Innenschicht (10), eine äußere Halteschicht (12) aus faserverstärktem Werkstoff oder Metall und eine Zwischenschicht (11) aus wärmeisolierendem, keramischem Werkstoff zwischen diesen Schichten (10, 12) aufweist, wobei die Zwischenschicht auf die Innenschicht aufgeschrumpft oder aufgesintert ist.1. Multi-layer wall of a hollow body, in particular revolution body, for. B. a tube or housing, characterized in that this wall on the loading side, d. H. inside, a heat and / or wear-resistant, ceramic inner layer (10), an outer holding layer (12) made of fiber-reinforced material or metal and an intermediate layer (11) made of heat-insulating, ceramic material between these layers (10, 12), the Intermediate layer is shrunk or sintered onto the inner layer. 2. Mehrschichtige Hohlkörperwand nach Anspruch 1, dadurch gekennzeichnet, daß die Halteschicht (12) auf den aus Innen- und Zwischenschicht (10, 11) bestehenden Verbundkörper eine Druckvorspannung ausübt.2. Multi-layer hollow body wall according to claim 1, characterized in that the holding layer (12) exerts a compressive prestress on the composite body consisting of inner and intermediate layer (10, 11). 3. Mehrschichtige Hohlkörperwand nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Werkstoff der genannten keramischen Innenschicht (10, 16) Siliziumkarbid (SiC) oder Siliziumnitrid (Si3N4) ist.3. Multi-layer hollow body wall according to claim 1 or 2, characterized in that the material of said ceramic inner layer (10, 16) is silicon carbide (SiC) or silicon nitride (Si 3 N 4 ). 4. Mehrschichtige Hohlkörperwand nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß das Metall hochwarmfester Stahl ist.4. Multi-layer hollow body wall according to claims 1 to 3, characterized in that the metal is high-temperature steel. 5. Mehrschichtige Hohlkörperwand nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß der faserverstärkte Werkstoff kohlenstoffaserverstärkter Graphit ist.5. Multi-layer hollow body wall according to claims 1 to 4, characterized in that the fiber-reinforced material is carbon fiber-reinforced graphite. 6. Mehrschichtige Hohlkörperwand nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der wärmeisolierende, keramische Werkstoff Lithiumaluminiumsilikat (LAS), Magnesiumaluminiumsilikat (MAS), Aluminiumtitanat (A1Ti03) oder pyrolytisches Bornitrid (BN) ist.6. Multi-layer hollow body wall according to at least one of claims 1 to 5, characterized in that the heat-insulating, ceramic material is lithium aluminum silicate (LAS), magnesium aluminum silicate (MAS), aluminum titanate (A1Ti0 3 ) or pyrolytic boron nitride (BN). 7. Verfahren zur Herstellung der mehrschichtigen Wand nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die genannte Halteschicht (12, 17) auf den aus Innen- und Zwischenschicht bestehenden Verbundkörper aufgeschrumpft wird.7. The method for producing the multilayer wall according to at least one of claims 1 to 6, characterized in that said holding layer (12, 17) is shrunk onto the composite body consisting of the inner and intermediate layer. 8. Verfahren zur Herstellung der mehrschichtigen Wand nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Isolierkeramik-Zwischenschicht (11) durch Aufbringen einer Schicht aus sinterfähigem Isolierkeramikpulver und Sintern derselben hergestellt wird.8. A method for producing the multilayer wall according to at least one of claims 1 to 6, characterized in that the insulating ceramic intermediate layer (11) is produced by applying a layer of sinterable insulating ceramic powder and sintering the same. 9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Pulverschicht durch isostatisches Pressen oder durch Umspritzen (Spritzguß) aufgebracht wird.9. The method according to claim 8, characterized in that the powder layer is applied by isostatic pressing or by extrusion coating (injection molding). 10.Verfahren zur Herstellung der mehrschichtigen Wand nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Halteschicht aus Metall durch Umgießen mit dem Metall in einer Gußform hergestellt werden.10.The method for producing the multilayer wall according to at least one of claims 1 to 9, characterized characterized in that the holding layer made of metal by casting with the metal in a mold. 11. Verfahren zur Herstellung der mehrschichtigen Wand nach Anspruch 8 oder 9 , dadurch gekennzeichnet, daß die äußere Halteschicht aus Metall durch Aufbringen einer Schicht aus sinterfähigem Metallpulver auf den aus Innen- und Zwischenschicht bestehenden Verbundkörper und Sintern des Pulvers hergestellt wird.11. A method for producing the multilayer wall according to claim 8 or 9, characterized in that the outer holding layer made of metal is produced by applying a layer of sinterable metal powder to the composite body consisting of the inner and intermediate layer and sintering the powder.
EP82107582A 1981-08-21 1982-08-19 Laminated wall of a hollow body and process for manufacturing the same Expired EP0073024B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3133209A DE3133209C2 (en) 1981-08-21 1981-08-21 Hollow composite body, in particular body of revolution and method for its production
DE3133209 1981-08-21

Publications (3)

Publication Number Publication Date
EP0073024A2 true EP0073024A2 (en) 1983-03-02
EP0073024A3 EP0073024A3 (en) 1985-10-16
EP0073024B1 EP0073024B1 (en) 1987-05-20

Family

ID=6139854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82107582A Expired EP0073024B1 (en) 1981-08-21 1982-08-19 Laminated wall of a hollow body and process for manufacturing the same

Country Status (3)

Country Link
US (1) US4511612A (en)
EP (1) EP0073024B1 (en)
DE (2) DE3133209C2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2549823A1 (en) * 1983-07-28 1985-02-01 Mtu Muenchen Gmbh PROCESS FOR MANUFACTURING REFRACTORY CERAMIC, AND STRUCTURAL PIECES OF CERAMIC, PARTICULARLY OBTAINED BY THIS PROCESS
EP0219614A1 (en) * 1985-10-04 1987-04-29 Gesenkschmiede Schneider Gmbh Use of hollow bodies with a laminated structure
EP0430419A1 (en) * 1989-10-31 1991-06-05 Isuzu Motors Limited Heat-insulating engine with swirl chamber
EP3617469A1 (en) * 2018-08-28 2020-03-04 ISOLITE GmbH Sintered metal blanket
CN111960827A (en) * 2020-08-27 2020-11-20 哈尔滨工业大学 Multi-element BCN-series high-entropy ceramic powder and preparation method thereof

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3311865C1 (en) * 1983-03-31 1984-11-08 Seilstorfer GmbH & Co Metallurgische Verfahrenstechnik KG, 8012 Ottobrunn Process for powder-metallurgical production of a hot working tool mould
DE3412633A1 (en) * 1984-04-04 1985-11-28 Gesenkschmiede Schneider Gmbh, 7080 Aalen Hollow body for use in different conditions
WO1987001978A1 (en) * 1984-04-04 1987-04-09 Gesenkschmiede Schneider Gmbh Multi-layer hollow body, process for its production and its application
JPS60212614A (en) * 1984-04-06 1985-10-24 Ngk Spark Plug Co Ltd Sub-chamber for internal-combustion engine
US4616611A (en) * 1984-10-16 1986-10-14 Ngk Insulators, Ltd. Precombustion chamber construction of internal combustion engine
DE3444406A1 (en) * 1984-12-05 1986-06-05 Kolbenschmidt AG, 7107 Neckarsulm CASTED COMPONENTS FOR INTERNAL COMBUSTION ENGINES WITH PEGED-IN REINFORCEMENT BODIES, AND METHOD FOR PRODUCING THE CONNECTION BETWEEN THE COMPONENTS AND THE REINFORCEMENT BODIES
US4738227A (en) * 1986-02-21 1988-04-19 Adiabatics, Inc. Thermal ignition combustion system
JPS62289385A (en) * 1986-06-09 1987-12-16 Ngk Insulators Ltd Ceramic-metal bonded body
US4742805A (en) * 1986-08-14 1988-05-10 Sanshin Kogyo Kabushiki Kaisha Internal combustion engine
FR2614321A1 (en) * 1987-04-27 1988-10-28 Europ Propulsion CARTRIDGE OF COMPOSITE MATERIALS FOR A DEVICE FOR THE PRODUCTION OF MONOCRYSTALS.
JP2718071B2 (en) * 1988-07-21 1998-02-25 いすゞ自動車株式会社 Sub-chamber insulated engine
JPH0299718A (en) * 1988-10-07 1990-04-11 Mitsubishi Motors Corp Combustion chamber structure of direct injection diesel engine
DE3837293A1 (en) * 1988-11-03 1990-05-17 Emitec Emissionstechnologie CONNECTED HOLLOW BODY
US5664327A (en) * 1988-11-03 1997-09-09 Emitec Gesellschaft Fur Emissionstechnologie Gmbh Method for producing a hollow composite members
US4993382A (en) * 1989-02-22 1991-02-19 Kabushiki Kaisha Riken Insert for an indirect injection diesel engine
DE69003730T2 (en) * 1989-04-26 1994-01-27 Isuzu Ceramics Res Inst Heat-insulated four-stroke internal combustion engine with antechambers.
JPH0357818A (en) * 1989-07-27 1991-03-13 Isuzu Motors Ltd Heat insulating structure of subchamber
JP2628919B2 (en) * 1989-10-31 1997-07-09 川崎重工業株式会社 Abrasive type water jet nozzle and method of manufacturing the same
JPH0467947A (en) * 1990-07-09 1992-03-03 Nissan Motor Co Ltd Laminate type composite component
US5306565A (en) * 1990-09-18 1994-04-26 Norton Company High temperature ceramic composite
DE4332971A1 (en) * 1993-09-28 1995-03-30 Fischer Artur Werke Gmbh Process for the production of interlocking parts
US5687787A (en) * 1995-08-16 1997-11-18 Northrop Grumman Corporation Fiber reinforced ceramic matrix composite internal combustion engine exhaust manifold
DE19635971C2 (en) * 1996-09-05 2003-08-21 Porextherm Daemmstoffe Gmbh Thermal insulation molded body and method for its production
US5915351A (en) * 1997-02-24 1999-06-29 Chrysler Corporation Insulated precombustion chamber
US6960741B2 (en) * 2002-08-26 2005-11-01 Lexmark International, Inc. Large area alumina ceramic heater
US8365700B2 (en) * 2008-01-07 2013-02-05 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
WO2011025512A1 (en) * 2009-08-27 2011-03-03 Mcallister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
US8413634B2 (en) * 2008-01-07 2013-04-09 Mcalister Technologies, Llc Integrated fuel injector igniters with conductive cable assemblies
US8387599B2 (en) 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
US7628137B1 (en) * 2008-01-07 2009-12-08 Mcalister Roy E Multifuel storage, metering and ignition system
US8225768B2 (en) * 2008-01-07 2012-07-24 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
WO2011034655A2 (en) * 2009-08-27 2011-03-24 Mcalister Technologies, Llc Ceramic insulator and methods of use and manufacture thereof
US8561598B2 (en) * 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
US8074625B2 (en) 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
DE102008057160A1 (en) * 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh A method of replacing an inner disk member of an integrally bladed disk
US8267063B2 (en) 2009-08-27 2012-09-18 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
KR20120086375A (en) 2009-12-07 2012-08-02 맥알리스터 테크놀로지즈 엘엘씨 Adaptive control system for fuel injectors and igniters
CN102906403B (en) 2009-12-07 2015-08-26 麦卡利斯特技术有限责任公司 For the adaptive control systems of fuel injector and igniter
KR101245398B1 (en) 2010-02-13 2013-03-19 맥알리스터 테크놀로지즈 엘엘씨 Fuel injector assemblies having acoustical force modifiers and associated methods of use and manufacture
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
WO2011100717A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Methods and systems for adaptively cooling combustion chambers in engines
US8528519B2 (en) 2010-10-27 2013-09-10 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8091528B2 (en) 2010-12-06 2012-01-10 Mcalister Technologies, Llc Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture
US8820275B2 (en) 2011-02-14 2014-09-02 Mcalister Technologies, Llc Torque multiplier engines
CN103890343B (en) 2011-08-12 2015-07-15 麦卡利斯特技术有限责任公司 Systems and methods for improved engine cooling and energy generation
WO2013025626A1 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Acoustically actuated flow valve assembly including a plurality of reed valves
GB2505871A (en) * 2012-07-20 2014-03-19 Williams Grand Prix Eng Flame or heat resistant material comprising ceramic and carbon layers
US8851047B2 (en) 2012-08-13 2014-10-07 Mcallister Technologies, Llc Injector-igniters with variable gap electrode
US9169814B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Systems, methods, and devices with enhanced lorentz thrust
US8752524B2 (en) 2012-11-02 2014-06-17 Mcalister Technologies, Llc Fuel injection systems with enhanced thrust
US9169821B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Fuel injection systems with enhanced corona burst
US9115325B2 (en) 2012-11-12 2015-08-25 Mcalister Technologies, Llc Systems and methods for utilizing alcohol fuels
US9200561B2 (en) 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US20140131466A1 (en) 2012-11-12 2014-05-15 Advanced Green Innovations, LLC Hydraulic displacement amplifiers for fuel injectors
US9309846B2 (en) 2012-11-12 2016-04-12 Mcalister Technologies, Llc Motion modifiers for fuel injection systems
US8800527B2 (en) 2012-11-19 2014-08-12 Mcalister Technologies, Llc Method and apparatus for providing adaptive swirl injection and ignition
US9194337B2 (en) 2013-03-14 2015-11-24 Advanced Green Innovations, LLC High pressure direct injected gaseous fuel system and retrofit kit incorporating the same
US9562500B2 (en) 2013-03-15 2017-02-07 Mcalister Technologies, Llc Injector-igniter with fuel characterization
US8820293B1 (en) 2013-03-15 2014-09-02 Mcalister Technologies, Llc Injector-igniter with thermochemical regeneration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416012A (en) * 1977-07-07 1979-02-06 Ngk Spark Plug Co Ltd Cyclinder head for internal combustion engine with precombustion chamber
JPS5557615A (en) * 1978-10-24 1980-04-28 Toyota Motor Corp Structure of vortex chamber of internal combustion engine
JPS5564116A (en) * 1978-11-06 1980-05-14 Toyota Motor Corp Structure of swirl chamber of internal combustion engine
GB2055965A (en) * 1979-08-02 1981-03-11 Tokyo Shibaura Electric Co I c engine pre-combustion chamber cup

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE864173C (en) * 1950-03-06 1953-01-22 Porsche Konstruktionen G M B H Injection internal combustion engine with a combustion chamber cast into the cylinder head as a special component and a method for producing the same
US3960995A (en) * 1970-05-13 1976-06-01 Kourkene Jacques P Method for prestressing a body of ceramic material
BE789580A (en) * 1971-10-02 1973-02-01 Lucas Industries Ltd CERAMIC BEARINGS
US3931438A (en) * 1971-11-08 1976-01-06 Corning Glass Works Differential densification strengthening of glass-ceramics
JPS56150190A (en) * 1980-01-16 1981-11-20 Agency Of Ind Science & Technol Preparation of composite material by thermite reaction
US4341826A (en) * 1980-02-13 1982-07-27 United Technologies Corporation Internal combustion engine and composite parts formed from silicon carbide fiber-reinforced ceramic or glass matrices
US4324843A (en) * 1980-02-13 1982-04-13 United Technologies Corporation Continuous length silicon carbide fiber reinforced ceramic composites
US4346556A (en) * 1980-05-12 1982-08-31 General Motors Corporation Insulating engine exhaust port liner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5416012A (en) * 1977-07-07 1979-02-06 Ngk Spark Plug Co Ltd Cyclinder head for internal combustion engine with precombustion chamber
JPS5557615A (en) * 1978-10-24 1980-04-28 Toyota Motor Corp Structure of vortex chamber of internal combustion engine
JPS5564116A (en) * 1978-11-06 1980-05-14 Toyota Motor Corp Structure of swirl chamber of internal combustion engine
GB2055965A (en) * 1979-08-02 1981-03-11 Tokyo Shibaura Electric Co I c engine pre-combustion chamber cup

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, Band 3, Nr. 39 (M-54), 31. März 1979; & JP-A-54 016 012 (NIPPON TOKUSHU TOKYO K.K.) 06.02.1979 *
PATENTS ABSTRACTS OF JAPAN, Band 4, Nr. 105 (M-23)[587], 26. Juli 1980, Seite 92 M 23; & JP-A-55 064 116 (TOYOTA JIDOSHA KOGYO K.K.) 14.05.1980 *
PATENTS ABSTRACTS OF JAPAN, Band 4, Nr. 99 (M-21)[581], 16. Juli 1980, Seite M 21; & JP-A-55 057 615 (TOYOTA JIDOSHA KOGYO K.K.) 28.04.1980 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2549823A1 (en) * 1983-07-28 1985-02-01 Mtu Muenchen Gmbh PROCESS FOR MANUFACTURING REFRACTORY CERAMIC, AND STRUCTURAL PIECES OF CERAMIC, PARTICULARLY OBTAINED BY THIS PROCESS
GB2143812A (en) * 1983-07-28 1985-02-20 Mtu Muenchen Gmbh Manufacture of ceramics
EP0219614A1 (en) * 1985-10-04 1987-04-29 Gesenkschmiede Schneider Gmbh Use of hollow bodies with a laminated structure
EP0430419A1 (en) * 1989-10-31 1991-06-05 Isuzu Motors Limited Heat-insulating engine with swirl chamber
EP3617469A1 (en) * 2018-08-28 2020-03-04 ISOLITE GmbH Sintered metal blanket
WO2020043422A1 (en) * 2018-08-28 2020-03-05 Isolite Gmbh Sintered metal blanket
CN111960827A (en) * 2020-08-27 2020-11-20 哈尔滨工业大学 Multi-element BCN-series high-entropy ceramic powder and preparation method thereof
CN111960827B (en) * 2020-08-27 2022-08-02 哈尔滨工业大学 Multi-element BCN-series high-entropy ceramic powder and preparation method thereof

Also Published As

Publication number Publication date
DE3276360D1 (en) 1987-06-25
DE3133209C2 (en) 1985-04-25
EP0073024B1 (en) 1987-05-20
US4511612A (en) 1985-04-16
DE3133209A1 (en) 1983-03-10
EP0073024A3 (en) 1985-10-16

Similar Documents

Publication Publication Date Title
EP0073024B1 (en) Laminated wall of a hollow body and process for manufacturing the same
EP0788468B1 (en) Method of manufacturing a friction element
DE4438456C2 (en) Friction unit
US6216585B1 (en) Carbon-carbon engine components and method of fabrication
EP1054765A1 (en) Method for producing a fibre composite
WO1999004156A1 (en) Combustion chamber and method for producing a combustion chamber
EP0129266B1 (en) An aluminium alloy cast piston for an internal-combustion engine
DE19719634C1 (en) Brake unit with a ceramic brake disk bolted to a hub
EP1323686B1 (en) Method of production of hollow bodies out of fibre reinforced ceramic materials
EP0292777B1 (en) Method for manufacture of a ceramic coated metallic component
DE102005036137A1 (en) Combustion chamber and method for producing a combustion chamber
DE10014418A1 (en) Fiber-reinforced structural component
DE3307115C2 (en) Cylinder head of a piston engine
EP1547992B1 (en) Process for producing a fibre reinforced composite material and the fibre reinforced composite material
DE10234400B3 (en) Process for the production of hollow bodies from fiber-reinforced ceramic materials, hollow bodies and their use
EP0431649B1 (en) Method for manufacturing a double-walled pipe, especially for exhaust devices of internal combustion engines provided with catalyst.
EP0941926A2 (en) Movable construction components for a thermomechanically stressed assembly and method for their production
DE3406479A1 (en) Piston for internal-combustion engines and method for manufacturing the piston
WO2018234244A1 (en) Piston ring, use of a piston ring and method for producing a piston ring
EP1378652A2 (en) Multi-layer sandwich material
DE2938018A1 (en) Ceramic IC engine piston - has carbon fibre reinforced carbon ring shrunk on near top to produce compression stress in piston
DE19962831C2 (en) telescope
US6350396B1 (en) Method for fabricating carbon-carbon articles
DE102021129747A1 (en) Fiber ceramic nozzle, use of a fiber ceramic nozzle and method of manufacturing a fiber ceramic nozzle
DE3705903A1 (en) Method for the production of castings from metallic material with an embedded lining for cavities, ducts and hollows

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19851213

17Q First examination report despatched

Effective date: 19861022

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 3276360

Country of ref document: DE

Date of ref document: 19870625

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870831

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890503

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 82107582.7

Effective date: 19890510