EP2553284A1 - Verfahren zur adaption eines elektrischen widerstandswertes eines magnetlagers und zur sensorlosen positionsermittlung eines im magnetlager gelagerten objekts - Google Patents

Verfahren zur adaption eines elektrischen widerstandswertes eines magnetlagers und zur sensorlosen positionsermittlung eines im magnetlager gelagerten objekts

Info

Publication number
EP2553284A1
EP2553284A1 EP11710444A EP11710444A EP2553284A1 EP 2553284 A1 EP2553284 A1 EP 2553284A1 EP 11710444 A EP11710444 A EP 11710444A EP 11710444 A EP11710444 A EP 11710444A EP 2553284 A1 EP2553284 A1 EP 2553284A1
Authority
EP
European Patent Office
Prior art keywords
phase
inductance
current
magnetic bearing
estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11710444A
Other languages
German (de)
English (en)
French (fr)
Inventor
Tobias Glück
Christian Bachmann
Georg Bachmaier
Dominik Bergmann
Wolfgang KEMMETMÜLLER
Andreas Kugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2553284A1 publication Critical patent/EP2553284A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0446Determination of the actual position of the moving member, e.g. details of sensors
    • F16C32/0448Determination of the actual position of the moving member, e.g. details of sensors by using the electromagnet itself as sensor, e.g. sensorless magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0451Details of controllers, i.e. the units determining the power to be supplied, e.g. comparing elements, feedback arrangements with P.I.D. control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0457Details of the power supply to the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/06Relieving load on bearings using magnetic means

Definitions

  • the invention relates to the sensorless orientation for a magnetic bearing. Such magnetic storage is used for
  • the main advantage of a magnetic bearing over a conventional storage, for example, with a ball bearing, consists in the greatest degree of frictionlessness. This is particularly with regard to wear a pre ⁇ part.
  • a storage of rapidly rotating rotors is only thus possible.
  • One difficulty with electromagnetic bearings is that an electronic control of the position of the object to be stored is essential. To the determination of the Po ⁇ sition of the object is in principle quite necessary to the electromagnet.
  • the direct determination of the speed at which a change in position is made can take place.
  • the determination of the position is directly ei ⁇ nem position sensor.
  • the use of a position sensor is associated with certain disadvantages.
  • a position sensor raises additional costs for the installation of the sensor, a certain construction ⁇ space is required and the sensor, if it fails, may be responsible for a failure of the entire magnetic bearing system.
  • an electromagnet When considering conventional magnetic bearings, an electromagnet exerts an attractive force on a floating body. This attraction act disruptive forces such as against the Ge ⁇ weight force of the floating body. It creates a balance of power at a certain distance. In Festge ⁇ convincedem current, the attractive force increases as the body approaches the electromagnet. It decreases as the body moves away from the electromagnet.
  • the magnetic bearing is unstable due to the physical properties and must therefore be regulated.
  • the information about the Be ⁇ wegungs the floating body relates ⁇ example, a controller of a position sensor. If there is a sensorless magnetic bearing, an external sensor is not required. Since a regulation is necessary even when sensorless magnetic bearing, for this purpose the necessary Positionsinformati ⁇ on is obtained by the air gap dependent properties of the electromagnets.
  • FIG. 1 shows a schematic diagram of a magnetic bearing 10.
  • a unidirectional bearing with an electromagnet 200 is considered.
  • a pole 210 of the electromagnet 200, together with the object 100 to be stored, forms an air gap 20 whose length l changes as a function of the position r of the object 100.
  • the inductance L of the magnetic bearing 10 is calculated in the form of the equation
  • the inductance of the system is indirectly proportional to the distance of the object 100 from the poles of the electromagnet 200.
  • This essential property forms the basis for many estimation and observation algorithms for determining the position of the object 100.
  • the prior art references [2, 3, 4] should be mentioned.
  • For sensorless operation of a magnetic levitation system there are a variety of tools whose essential approaches and advantages or disadvantages, for example.
  • the inventive method for adapting a value ei ⁇ nes electrical resistance of a magnetic bearing comprises the following steps:
  • the resistance adaptation consists of a low-pass filter and an I-controller.
  • the inductance error AL is determined by means of an I-controller d - 1 -
  • the inventive method for sensorless position detection of an object mounted in a magnetic bearing relative to the magnetic bearing, in particular relative to an electromagnet of the magnetic bearing comprises the following steps:
  • a velocity of the object is also calculated from the estimated inductance values llf, ll.
  • respective current initial condition i ⁇ 0 determined and a Stromendbe conditions ⁇ i N _ tj.
  • the position estimate considered in this invention is based on the identification of the current inductance value L (r) with the aid of which the current position r of the object to be stored can be recalculated.
  • no additional measurement signal such as a sinusoidal, is fed into the control of Spu ⁇ le, but it is carried out directly with a pulse width modulated voltage control.
  • the estimation algorithm developed in this invention essentially consists of a least-squares estimator for determining the inductance in the individual PWM phases, ie in the charging and discharging phases. As shown below, this least-squares estimator can be further divided into two sub-tasks, resulting in a highly effi ⁇ cient implementation. Furthermore, a model-based calculation of the position and / or speed of the object to be stored can be used.
  • FIG. 1 shows a schematic diagram of a magnetic bearing, showing an electrical equivalent circuit diagram of a mag netic levitation system and an associated Dia ⁇ gram with charging and discharging the coil, shows the charging and discharging the coil current i at pulse width modulated voltage supply PWM.
  • the magnetic co-energy is defined
  • FIG. 1 To briefly illustrate the problem solved in this invention, the electrical equivalent circuit diagram of a simple magnetic bearing is shown in FIG.
  • R is the effective electrical resistance of the coil and the leads
  • ⁇ PWM is the applied pulse width modulated voltage
  • T D P r W, M M are the two phases
  • Period of the pulse width modulated voltage and with 0 ⁇ ⁇ 1 denotes the duty cycle, ⁇ therefore indicates the ratio of the durations of the first and the second phase. This results in about a current waveform as shown in the right side of Figure 2.
  • the task of the position estimation is to estimate a value of the inductance in the first step from the measurements of the current and the voltage and to determine the position r from this.
  • the particular difficulty is to realize this as independently as possible from the other influencing factors.
  • Least-squares estimator / estimator according to the principle of least squares
  • the Indukt foundeds based on the law of induction, the electric dynamics, illustrating by means of a time discretization equidistant as in Figure 3 so sto is ⁇ rides that a linear least-squares method for the recursive determination of the inductance can be applied.
  • FIG. 3 shows the time profile of the current i in the first and in the second phase.
  • the least-squares method can be established in the form of a Multiratenver- proceedings so that's calculated to be determined entries of the so-called regres- sors with a small sample ⁇ time T and then select the Reg- tion, ie the determination of the partial inductances and the start and end conditions of the current, with a much larger sampling time T r , which is generally an integer multiple of the period of the PWM, can be made.
  • equation (7) can be expressed in the form
  • L (r) are negligible over a PWM period, i.
  • the above calculations can be split between a fast calculation on a fixed point processor and a slow calculation on a floating point processor.
  • L is the mean value of L (t) to be estimated. If one continues to carry the mean currents over a Sectionperio ⁇ de
  • the mean inductance to be estimated is calculated accordingly
  • the speed w is often required.
  • this is determined by approximating the estimated position f.
  • this approach has the disadvantage that measurement noise is very noisy
  • the computation can be divided into a mathematically very simple part, which must be calculated with a fast sampling time, and a complex part, which can be determined with a much shorter sampling time. This represents, in particular with regard to a cost-effective implementation, a substantial advantage over conventional methods.
  • the electrical resistance required for the sensorless state estimation of the magnetic bearing is adapted on the basis of the resistance- dependent, estimated inductance error.
  • L n is the mean of L n (t) to be estimated. If one continues to carry the average energy values over a partial period
  • a resistance adaptation is proposed, which is based on the fact that the estimation of an inkorrek ⁇ ten resistance value in the estimated inductance error
  • Equation (41) directly proportional to the resistance error 5R is.
  • the change in resistance caused by the heating of the electromagnet is much slower than that
  • the resistor adaptation thus consists of a low-pass filter and an I-controller.
  • the resistance adaptation consisting of
  • Equations (44) and (45) based on the inductance error of the least-squares-based position estimate ensures that the resistance error 5R is regulated to zero so as to estimate the real resistance value.
  • T LF and ⁇ ⁇ are positive setting parameters .
  • equations (44) and (45) are time discretized. However, the discretization is not clear. In the simplest case we replace the continuous differentiation by the forward difference quotient (Euler forward method). From this one obtains a so-called difference equation. With the help of which can in equidistant time steps from the previous
  • Estimate a new one can be calculated.
  • the Estimated Resistance value is passed to the position estimate, which computes a new estimate of the inductances and yields a new estimate of the inductance error. This iteration is performed in each sampling from ⁇ .
  • the method does not require additional hardware outlay for the reconstruction of the state variables, since inherent measuring effects are caused utilized by the pulse-width-modulated driving of ⁇ . Only a current and voltage measurement must be available. If the algorithm is combined with an observer, then it is possible to algorithmically separate the entire system from an systems theory viewpoint into an electrical and mechanical subsystem and, moreover, to use the full model information of the overall system for obtaining the state.
  • the separate treatment of the charging and discharging process for the life-squares estimation of the inductances offers the possibility of reducing the influence of the integrator drift due to the discretization of the law of induction.
  • the transient disturbance behavior of the non-ideal electrical switching elements of the inverter during switching on and off and the influence of eddy currents in the software implementation can be excluded.
  • the computational effort can be substantially reduced.
  • the computation of the regressors can be done in integer arithmetic cost-effectively on programmable integrated circuit
  • Circuits e.g., FPGA
  • FPGA field-programmable gate array
  • the Posi ⁇ tion regulator which is usually made of a compensation of non-linearities and a stabilizing proportional integral-differential controller is conventionally le- diglich returned to the estimated position and formed in the Diffe ⁇ ential portion of the controller a speed-proportional signal.
  • the noise of the position estimate affects and limits the achievable control quality and robustness against model uncertainties of the controller. If, as in the developed estimation methods, in addition, a speed estimate available, it can also returned and an increase in control quality and robustness are targeting it ⁇ .
  • the mechanical part of the model Intelsys ⁇ tems can be incorporated into the state estimation with a nonlinear model-based Beboachterford.
  • a filtering for noise suppression of the determined from the least-squares estimator Position and speed-dtechniks since it is possible and on the other hand, by receiving a Stördorfnansatzes in the model equations a force acting from the outside ⁇ SEN load power estimated.
  • the observer-based filtering does not involve a phase shift.
  • the invention enables a separate estimation of the inductance of the charging and discharging phase with the aid of least-squares estimation, wherein a separation into a fast but mathematically simple part and a slow mathematically more complex part can take place.
  • the influence of the speed of the object to be stored and a change in the pulse width of the voltage can be eliminated by a suitable correction.
  • the speed of the object to be stored can be determined directly without time differentiation of the position from the estimated values of the inductance and further auxiliary quantities.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
EP11710444A 2010-04-01 2011-03-08 Verfahren zur adaption eines elektrischen widerstandswertes eines magnetlagers und zur sensorlosen positionsermittlung eines im magnetlager gelagerten objekts Withdrawn EP2553284A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010013682.4A DE102010013682B4 (de) 2010-04-01 2010-04-01 Verfahren zur Adaption eines Widerstandswertes eines Elektromagneten eines Magnetlagers und zur sensorlosen Positionsermittlung eines in einem magnetischen Lager gelagerten Objekts unter Berücksichtigung des adaptierten Widerstandswertes
PCT/EP2011/053423 WO2011120764A1 (de) 2010-04-01 2011-03-08 Verfahren zur adaption eines elektrischen widerstandswertes eines magnetlagers und zur sensorlosen positionsermittlung eines im magnetlager gelagerten objekts

Publications (1)

Publication Number Publication Date
EP2553284A1 true EP2553284A1 (de) 2013-02-06

Family

ID=44454554

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11710444A Withdrawn EP2553284A1 (de) 2010-04-01 2011-03-08 Verfahren zur adaption eines elektrischen widerstandswertes eines magnetlagers und zur sensorlosen positionsermittlung eines im magnetlager gelagerten objekts

Country Status (7)

Country Link
US (1) US8970079B2 (ja)
EP (1) EP2553284A1 (ja)
JP (1) JP5661914B2 (ja)
KR (1) KR101824749B1 (ja)
CN (1) CN102812262B (ja)
DE (1) DE102010013682B4 (ja)
WO (1) WO2011120764A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986289B1 (fr) * 2012-01-31 2014-12-12 Converteam Technology Ltd Palier magnetique actif a auto-detection de position comportant des moyens d'estimation d'une inductance, et procede d'asservissement du signal d'entree d'un tel palier
CN103728883B (zh) * 2014-01-14 2016-02-03 渤海大学 无位置传感器主动控制型磁悬浮***的控制方法
FR3107795B1 (fr) * 2020-03-02 2023-06-09 Skf Magnetic Mechatronics Système de commande d’au moins un palier magnétique actif équipant une machine tournante comprenant un rotor et un stator, et procédé correspondant.
CN111811387B (zh) * 2020-06-30 2021-11-26 中国电子科技集团公司第十六研究所 一种旋转状态下的轴承内外圈之间电阻的测量装置
CN112211909B (zh) * 2020-10-10 2021-11-30 珠海格力电器股份有限公司 磁轴承的电流控制方法、装置及***

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676809B2 (ja) * 1991-07-05 1994-09-28 株式会社荏原製作所 磁気軸受装置
US5666013A (en) * 1992-12-07 1997-09-09 Seiko Seiki Kabushiki Kaisha Magnetic bearing
JP3220303B2 (ja) * 1993-09-01 2001-10-22 株式会社荏原製作所 磁気軸受装置
JPH1182511A (ja) * 1997-09-02 1999-03-26 Yoshinori Kamiya 磁気軸受装置
JP3701115B2 (ja) * 1998-02-12 2005-09-28 株式会社荏原製作所 磁気軸受制御装置
JP2002089559A (ja) * 2000-09-12 2002-03-27 Ebara Corp 磁気軸受装置
JP4476694B2 (ja) * 2003-06-25 2010-06-09 株式会社荏原製作所 磁気軸受装置および磁気軸受装置を備えた流体機械
JP4213017B2 (ja) * 2003-11-10 2009-01-21 株式会社石川製作所 磁性体移動目標の相対位置検出方法
EP1903228B1 (en) 2005-07-05 2015-11-04 Ebara Corporation Magnetic bearing device and magnetic bearing method
JP2007198476A (ja) 2006-01-25 2007-08-09 Toyota Motor Corp 油圧制御装置
JP5118329B2 (ja) 2006-11-10 2013-01-16 中国電力株式会社 緊線方法及びそれに用いるバーニア金具
CN100476225C (zh) * 2007-01-10 2009-04-08 北京航空航天大学 一种基于涡流效应的磁轴承动态电流刚度确定方法
JP5077059B2 (ja) * 2008-05-13 2012-11-21 株式会社明電舎 磁気軸受装置
DE102008064380B4 (de) 2008-12-22 2016-05-25 Siemens Aktiengesellschaft Verfahren zur sensorlosen Zustandsschätzung von magnetischen Schwebesystemen, insbesondere Magnetlagern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011120764A1 *

Also Published As

Publication number Publication date
US8970079B2 (en) 2015-03-03
KR20130019409A (ko) 2013-02-26
DE102010013682B4 (de) 2020-06-10
CN102812262A (zh) 2012-12-05
JP5661914B2 (ja) 2015-01-28
DE102010013682A1 (de) 2011-10-06
WO2011120764A1 (de) 2011-10-06
US20130062982A1 (en) 2013-03-14
JP2013527898A (ja) 2013-07-04
KR101824749B1 (ko) 2018-02-01
CN102812262B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
DE102008064380B4 (de) Verfahren zur sensorlosen Zustandsschätzung von magnetischen Schwebesystemen, insbesondere Magnetlagern
EP2553284A1 (de) Verfahren zur adaption eines elektrischen widerstandswertes eines magnetlagers und zur sensorlosen positionsermittlung eines im magnetlager gelagerten objekts
AT513189B1 (de) Verfahren zur Ermittlung eines regelungstechnischen Beobachters für den SoC
DE19834548B4 (de) Verfahren zur Bewegungssteuerung für einen Anker eines elektromagnetischen Aktuators
WO2009141030A2 (de) Ventiltriebvorrichtung
CH664632A5 (de) Schaltungsanordnung zur kompensation von schwankungen des uebertragungsfaktors eines magnetfeldsensors.
WO1999016650A1 (de) Verfahren zum aufbringen definierter betätigungskräfte
EP2061672B1 (de) Verfahren und anordnung zum messen eines spalts
EP2502086A1 (de) Verfahren und vorrichtung zur fehlerkompensierten strommessung eines elektrischen akkumulators
EP1659683B1 (de) Verfahren zum Ermitteln eines durch mechanische Kommutierung eines Gleichstrommotors entstehenden Wechselanteils eines Stroms und Vorrichtung hierfür
EP3703246B1 (de) Vorrichtung und verfahren zur erfassung der wicklungstemperatur
EP3867655A1 (de) Verfahren zum bestimmen eines schaltzustands eines ventils und elektromagnetventilanordnung
EP1879288B1 (de) Drehwinkelbestimmung eines Elektromotors
EP2951598B1 (de) Verfahren zur rechnergestützten ermittlung der impedanz eines elektrischen energienetzes
EP2340544A1 (de) Verfahren zur positionserfassung des magnetankers eines elektromagnetischen aktuators
EP0075794B1 (de) Verfahren zur Nachbildung des Maschinenflusses einer Drehfeldmaschine und Schaltungsanordnung zur Durchführung des Verfahrens
DE102009029896A1 (de) Verfahren mindestens zur Bestimmung der Läuferposition von rotierenden oder linearen Synchronmaschinen
DE102007052365A1 (de) Verfahren und Vorrichtung zur Positionserfassung der Rotorwelle einer permanenterregten Synchronmaschine
EP3724610A1 (de) Verfahren zum betreiben eines magnetisch-induktiven durchflussmessgeräts und magnetisch-induktives durchflussmessgerät
DE102017212777A1 (de) Steuergerät und Verfahren zur simultanen Echtzeit-Schätzung eines Ohm'schen Widerstands und des Spannungsmessfehlers
DE102018103831A1 (de) Verfahren und Vorrichtung zur adaptiven rotororientierten Regelung und Drehmomentschätzung einer permanentmagneterregten Synchronmaschine auf Basis von Schätzungen des magnetischen Flusses im stationären Zustand
DE60201327T2 (de) Verfahren zum Abschätzen der Position und Geschwindigkeit eines Ankers in einem elektromagnetischen Aktor zur Steuerung eines Motorventils
EP3544173B1 (de) Verfahren und vorrichtung zum ermitteln einer läuferlage eines läufers einer elektronisch kommutierten elektrischen maschine
DE102010003422A1 (de) Verfahren und Vorrichtung zum Betreiben eines Energiespeichers
EP3296755B1 (de) Ermittlung von lastgrössen im laufenden betrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120813

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUGI, ANDREAS

Inventor name: BACHMANN, CHRISTIAN

Inventor name: GLUECK, TOBIAS

Inventor name: BERGMANN, DOMINIK

Inventor name: KEMMETMUELLER, WOLFGANG

Inventor name: BACHMAIER, GEORG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160901

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20161117

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170116

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170527