EP2549113B1 - Rotor magnétique et pompe rotative dotée d'un rotor magnétique - Google Patents

Rotor magnétique et pompe rotative dotée d'un rotor magnétique Download PDF

Info

Publication number
EP2549113B1
EP2549113B1 EP12174213.4A EP12174213A EP2549113B1 EP 2549113 B1 EP2549113 B1 EP 2549113B1 EP 12174213 A EP12174213 A EP 12174213A EP 2549113 B1 EP2549113 B1 EP 2549113B1
Authority
EP
European Patent Office
Prior art keywords
rotor
permanent magnet
accordance
metal
metal jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12174213.4A
Other languages
German (de)
English (en)
Other versions
EP2549113A3 (fr
EP2549113A2 (fr
Inventor
Reto Schöb
Thomas Eberle
Natale Barletta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Levitronix GmbH
Original Assignee
Levitronix GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Levitronix GmbH filed Critical Levitronix GmbH
Priority to EP12174213.4A priority Critical patent/EP2549113B1/fr
Publication of EP2549113A2 publication Critical patent/EP2549113A2/fr
Publication of EP2549113A3 publication Critical patent/EP2549113A3/fr
Application granted granted Critical
Publication of EP2549113B1 publication Critical patent/EP2549113B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/064Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2205Conventional flow pattern
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/14Noble metals, i.e. Ag, Au, platinum group metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/14Noble metals, i.e. Ag, Au, platinum group metals
    • F05D2300/143Platinum group metals, i.e. Os, Ir, Pt, Ru, Rh, Pd
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • F05D2300/432PTFE [PolyTetraFluorEthylene]

Definitions

  • the invention relates to a magnetic rotor for a rotary pump according to independent claim 1.
  • magnetically mounted rotary pumps have prevailed in the art, in which an impeller is suspended in the interior of a preferably completely closed pump housing by magnetic forces and driven by a rotating field which is generated by a stator often arranged outside the pump housing.
  • Such pumps are particularly advantageous for those applications in which the fluid to be pumped must not be contaminated, for example for conveying biological fluids such as blood or highly pure fluids such as ultrapure water.
  • the WO 2006/039747 discloses a double-sealed pump rotor for such a blood pump.
  • Such rotary pumps are suitable for pumping aggressive liquids that would destroy mechanical bearings in a short time. Therefore, such rotary pumps are particularly preferably used in the semiconductor industry, for example for conveying mechanically aggressive fluids when processing a surface of semiconductor wafers.
  • CMP chemical-mechanical polishing processes
  • a suspension commonly referred to as a slurry
  • a slurry typically consists of very fine solid particles and a liquid on a rotating wafer applied and serves there for polishing or lapping the very fine semiconductor structures.
  • Another example is the application of photoresist to the wafer, or the roughening of surfaces of computer hard disks to prevent sticking of the read / write heads by adhesion forces, for example by van der Waals forces.
  • magnetically levitated rotary pumps are preferably used in practice.
  • highly aggressive chemicals such as sulfuric acid (H 2 SO 4 ), which often have to be provided even at elevated temperatures, eg at 150 ° C to 200 ° C or even higher.
  • phosphoric acid H 3 PO 4
  • H 3 PO 4 phosphoric acid
  • H 3 PO 4 hydrochloric acid
  • HF hydrofluoric acid
  • NO 3 nitric acid
  • NH 4 F 2 ammonium fluoride
  • mixtures such as sulfuric acid and ozone (H 2 SO 4 with O 3 ), sulfuric acid with hydrogen peroxide (H 2 SO 4 with H 2 O 2 ) or, for example, sulfuric acid with hydrofluoric acid and nitric acid (H 2 SO 4 with HF and HNO 3 ) often in use.
  • fluorinated hydrocarbons very often do not form a sufficient barrier to gaseous constituents of the chemicals.
  • an encapsulation made of a fluorinated hydrocarbon has only a very limited barrier effect against ozone (O 3 ), for example in a too pumping mixture of sulfuric acid and ozone (H 2 SO 4 with O 3 ) may be contained in substantial amounts.
  • an encapsulation contains, for example, a metal
  • the acids can be used to dissolve metal ions which, as a component of the fluid to be pumped, can then have an effect on subsequent work processes. This can lead to catastrophic consequences, for example, in applications in the semiconductor industry, since the dissolved metal ions can alter the doping of the semiconductors to be treated in an uncontrolled manner even in very low concentrations in the fluid, thus rendering the semiconductor products completely unusable in the worst case.
  • a rotary pump, in particular canned motor pump which is adequately protected analogously to the inventive rotor against the aforementioned and known from the prior art harmful influences.
  • a sufficient protection against aggressive acids with gaseous components even for use at high temperatures to be created.
  • the invention thus relates to a magnetic rotor for a rotary pump, wherein the rotor for driving a fluid in a pump housing within a stator of the rotary pump is magnetically non-contact drivable and storable, and the rotor is encapsulated by means of an outer encapsulation comprising a fluorinated hydrocarbon.
  • the rotor within the encapsulation comprises a permanent magnet encased in a metal jacket, the metal jacket comprising at least one metal Group of elements consisting of tantalum, niobium, zirconium, titanium, hafnium, gold, platinum, palladium, osmium, iridium, ruthenium and rhodium.
  • the permanent magnet of the rotor of the present invention is thus doubly encapsulated:
  • An inner metal shell encloses the permanent magnet of the rotor substantially completely, more preferably, the permanent magnet is gas-tightly enclosed by the metal shell.
  • the metal shell in turn is inside an outer encapsulation of a fluorinated hydrocarbon.
  • the metal sheath may preferably be completely encased directly by the encapsulation or, depending on requirements, a further material may be provided between the metal sheath and the outer encapsulation, for example to adapt the geometry, mass or other parameters of the rotor to particular requirements.
  • the permanent magnet may also be enclosed directly by the metal sheath or there may be another material between metal sheath and permanent magnet, e.g. serves as a thermal compensation means for compensating different thermal expansions of the metal shell and / or the permanent magnet.
  • a corresponding distance in the form of a gap between the metal shell and the permanent magnet can of course also be provided.
  • the permanent magnet is at the same time, for example, against aggressive liquids such as sulfuric acid (H 2 SO 4 ), even at elevated temperatures, for example at 150 ° C to 200 ° C or even protected at higher temperatures. These are shielded from the permanent magnet by the outer fluorinated hydrocarbon encapsulation. But any existing gaseous component such as ozone, which may also be present in the aggressive liquid chemical, is effectively shielded.
  • aggressive liquids such as sulfuric acid (H 2 SO 4 )
  • the shield possibly Existing gaseous components or ionic constituents of the acid, which are not or only insufficiently retained by the outer encapsulation and diffuse through the outer encapsulation into the interior of the rotor, are prevented at the latest by the metal jacket surrounding the permanent magnet.
  • the service lives of the rotors or the service lives of plant components according to the invention with an outer layer of fluorinated hydrocarbon and an underlying second layer of a metal of the group of elements consisting of tantalum, niobium, zirconium, titanium, hafnium, gold, platinum , Palladium, osmium, iridium, ruthenium and rhodium have been significantly extended by the present invention.
  • the metal shell of the magnetic rotor consists only of at least one metal of the group of elements consisting of tantalum, niobium, zirconium, titanium, hafnium, gold, platinum, palladium, osmium, iridium, ruthenium and rhodium. In one for the practice Particularly preferred embodiment, the metal shell consists essentially only of tantalum.
  • fluorinated hydrocarbons for external encapsulation are fluorinated ethylene-propylene (FEP), ethyltetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), ethylene chlorotrifluoroethylene (ECTFE), polyvinylidene fluoride (PVDF) or a combination of different fluorinated hydrocarbons.
  • FEP fluorinated ethylene-propylene
  • ETFE ethyltetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane
  • ECTFE ethylene chlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • the permanent magnet of the magnetic rotor is usually positively and / or non-positively connected to the metal shell, so that the permanent magnet in the operating state with respect to the rest of the rotor body can not move substantially. This is crucial for safe driving of the rotor, since the external magnetic drive forces naturally act on the permanent magnet of the rotor, causing the rotor to rotate for pumping the fluid.
  • the metal shell is positively and / or non-positively connected to the encapsulation, in particular to the plastic jacket.
  • a recess is particularly advantageously provided, so that the metal shell is weldable without affecting the permanent magnet, which will be explained in more detail below with reference to the drawing.
  • the thermal compensation means is simply a suitably narrow selected gap between the permanent magnet and metal shell, so that a positive and / or frictional connection between the metal shell and the permanent magnet despite the gap is still sufficiently ensured.
  • the invention further relates to a rotary pump with the inventive magnetic rotor.
  • an inner surface of a housing wall of the pump housing may be provided with a plastic barrier of the fluorinated hydrocarbon, wherein between the inner surface of the housing wall and the stator preferably provided a metal barrier, for example in the form of a pot or cylinder is, which includes at least one metal of the group of elements consisting of tantalum, niobium, zirconium, titanium, hafnium, gold, platinum, palladium, osmium, iridium, ruthenium and rhodium, so that the stator in completely analogous function as the permanent magnet in Inside of the rotor is protected against aggressive fluids to be pumped, especially against the above-mentioned acid mixtures with gaseous components optimally.
  • the metal jacket of the rotor and / or the metal barrier towards the stator, in particular of the pump housing consists in a specific embodiment only of at least one metal of the group consisting of tantalum, niobium, zirconium, titanium, hafnium, gold, platinum, palladium, osmium , Iridium, ruthenium and rhodium.
  • the fluorinated hydrocarbon particularly advantageously comprises fluorinated ethylene propylene (FEP), ethyltetrafluoroethylene (ETFE), polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), ethylene chlorotrifluoroethylene (ECTFE), or polyvinylidene fluoride (PVDF), or the encapsulation and / or the plastic barrier at the inner surface of the metal barrier to the stator consists essentially only of at least one of polytetrafluoroethylene, perfluoroalkoxyalkane, ethylene chlorotrifluoroethylene, or polyvinylidene fluoride.
  • FEP fluorinated ethylene propylene
  • ETFE ethyltetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane
  • ECTFE ethylene chlorotrifluoroethylene
  • PVDF polyvinylidene fluoride
  • a drive for the rotary pump of the present invention is advantageously a per se long known bearingless motor, in principle in any embodiment in question, wherein in a particularly preferred embodiment, the stator is configured simultaneously as a bearing and drive stator, and an axial height of the rotor preferred is less than or equal to half the diameter of the rotor, so the rotor is a known so-called pancake.
  • the Fig. 1 shows in schematic representation in section a magnetic rotor 1 according to the present invention.
  • the magnetic rotor 1 according Fig. 1 for a rotary pump 2, as in a specific embodiment based on the Fig. 2 will be discussed below, is for conveying a fluid 3 in a pump housing 4 within a stator 5 of the rotary pump 2 in a conventional manner magnetically non-contact and drivable storable.
  • the rotor 1 is encapsulated by means of an outer encapsulation 6 comprising a fluorinated hydrocarbon, wherein the fluorinated hydrocarbon of the encapsulation 6 comprises, for example, polytetrafluoroethylene, perfluoroalkoxyalkane, ethylene, chlorotrifluoroethylene, or polyvinylidene fluoride.
  • an outer encapsulation 6 comprising a fluorinated hydrocarbon
  • the fluorinated hydrocarbon of the encapsulation 6 comprises, for example, polytetrafluoroethylene, perfluoroalkoxyalkane, ethylene, chlorotrifluoroethylene, or polyvinylid
  • the encapsulation 6 consists only of at least one of the aforementioned fluorinated hydrocarbons.
  • the rotor 1 comprises within the encapsulation 6 a permanent magnet 8 sheathed by the metal sheath 7, the metal sheath 7 comprising at least one metal of the group consisting of tantalum, niobium, zirconium, titanium, hafnium, gold, platinum, palladium, osmium, Iridium, ruthenium and rhodium includes.
  • the metal shell is only tantalum, except impurities.
  • the permanent magnet 8 is positively connected to the metal shell 7, wherein between the permanent magnet 8 and the metal shell 7, a recess 9 is provided in the form of a chamfer on the permanent magnet, so that the metal shell 7 could be welded without affecting the permanent magnet 8 by excessive temperatures in the manufacture of the rotor 1.
  • the metal jacket 7 preferably forms a gas-tight jacket of the permanent magnet 8, which is often ensured in practice by first placing the permanent magnet 8 inside the metal jacket 7 is and then the metal shell 7 gas-tight welded or soldered.
  • a thermal compensation means 10 which is simply a suitable narrow gap between the permanent magnet 8 and metal shell 7 and serves to compensate for different thermal expansion of the metal shell 7 and the permanent magnet 8 here.
  • the Fig. 2 finally shows schematically a section of a known rotary pump 2, which is equipped with a rotor 1 according to the present invention.
  • the rotary pump 2 comprises a pump housing 4 with an inlet 11 for supplying a fluid 3 into the pump housing 4 and an outlet 12 for discharging the fluid 3 from the pump housing 4.
  • the fluid 3 is for example a chemically aggressive acid with a proportion of a gas , for example, sulfuric acid with ozone.
  • a magnetic rotor 1 is mounted without contact magnetically in a known manner in the pump housing 4, wherein the rotor 1 is likewise known to a drive 13, which comprises electrical coils 131 and the stator as essential elements 5, in particular formed by laminated iron, which are in magnetic operative connection with the permanent magnet 8 of the rotor 1.
  • the drive is here in a special embodiment, a so-called known bearingless Motor is, in which the stator 5 is designed simultaneously as a storage and drive stator.
  • Fig. 2 is the rotor 1 to a so-called pancake, wherein preferably an axial height of the rotor 1 is less than or equal to half a diameter of the rotor 1.
  • the invention is not restricted to pancake, but is in principle applicable to all rotor types of any magnetically levitated rotary machines.
  • the rotor 1 is encapsulated by means of an outer encapsulation 6 made of a fluorinated hydrocarbon and within the encapsulation 6 of the sheathed by the metal shell 7 permanent magnet 8 is provided.
  • the metal shell 7 in this case comprises at least one metal of the group of elements consisting of tantalum, niobium, zirconium, titanium, hafnium, gold, platinum, palladium, osmium, iridium, ruthenium and rhodium.
  • a plastic barrier made of the fluorinated hydrocarbon provided on an inner surface 411 of a housing wall 41 of the pump housing 4 is provided, wherein a metal barrier in the form of a pot 400 is provided between the inner surface 411 of the housing wall 41 and the stator 5.
  • the permanent magnet 8 is as in Fig. 1 already described in detail positively and / or non-positively connected to the metal shell 7, wherein a thermal compensation means 10 is provided in the form of a narrow gap between metal shell 7 and permanent magnet 8 to compensate for different thermal expansions of the metal shell 7 and the permanent magnet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Claims (15)

  1. Un rotor magnétique pour une pompe rotative (2), dans lequel le rotor peut être entraîné et monté magnétiquement sans contact dans un boîtier de pompe (4) à l'intérieur d'un stator (5) de la pompe rotative (2) pour convoyer un fluide (3), et le rotor est encapsulé par une encapsulation externe (6) comprenant un hydrocarbure fluoré, caractérisé en ce que le rotor comprend à l'intérieur de l'encapsulation (6) un aimant permanent (8) gainé dans une gaine métallique (7), dans lequel la gaine métallique (7) comprend au moins un métal du groupe des éléments consistant en tantale, niobium, zircon, titane, hafnium, or, platine, palladium, osmium, iridium, ruthénium et rhodium.
  2. Un rotor magnétique selon la revendication 1, dans lequel la gaine métallique (7) consiste en au moins un métal du groupe des éléments consistant en tantale, niobium, zircon, titane, hafnium, or, platine, palladium, osmium, iridium, ruthénium et rhodium.
  3. Un rotor magnétique selon l'une des revendications 1 ou 2, dans lequel l'hydrocarbure fluoré de l'encapsulation (6) comprend de l'éthylène propylène fluoré, de l'éthylène tétrafluoroéthylène, du polytétrafluoroéthylène, du perfluoroalcoxyalcane, de l'éthylène chlorotrifluoroéthylène ou du fluorure de polyvinylidène, ou l'encapsulation (6) consiste de préférence en au moins une substance parmi le polytétrafluoroéthylène, le perfluoroalkoxylalcane, l'éthylène chlorotrifluoroéthylène ou le polyfluorure de vinylidène.
  4. Un rotor magnétique selon l'une des revendications précédentes, dans lequel l'aimant permanent (8) est connecté par forme et / ou par adhérence à la gaine métallique (7).
  5. Un rotor magnétique selon l'une des revendications précédentes, dans lequel la gaine métallique (7) est connecté par forme et / ou par adhérence à l'encapsulation (6).
  6. Un rotor magnétique selon l'une des revendications précédentes, dans lequel un évidement (9) est prévu entre l'aimant permanent (8) et la gaine métallique (7) de telle sorte que la gaine métallique (7) peut être soudée sans affecter l'aimant permanent (8).
  7. Un rotor magnétique selon l'une des revendications précédentes, dans lequel un moyen de compensation thermique (10) est prévu pour compenser les différentes dilatations thermiques de la gaine métallique (7) et / ou de l'aimant permanent (8).
  8. Une pompe rotative, comprenant un boîtier de pompe (4) avec une entrée (11) pour fournir un fluide (3) dans le boîtier de pompe (4) et une sortie (12) pour décharger le fluide (3) du boîtier de pompe (4), dans lequel un rotor magnétique (1) est monté magnétiquement sans contact dans le boîtier de pompe (4) à l'intérieur d'un stator (5) pour convoyer le fluide (3) et le rotor (1) est relié de manière opérationnelle à un entraînement (13), caractérisé par un rotor selon la revendication 1.
  9. Une pompe rotative selon la revendication 8, dans laquelle une surface intérieure (411) d'une paroi de boîtier (41) du boîtier de pompe (4) est pourvue d'une barrière plastique au ledit hydrocarbure fluoré et une barrière métallique est prévue de préférence entre la surface intérieure (411) de la paroi du boîtier (41) et le stator (5), laquelle barrière métallique comprend au moins un métal du groupe des éléments consistant en tantale, niobium, zircon, titane, hafnium, or, platine, palladium, osmium, iridium, ruthénium et rhodium.
  10. Une pompe rotative selon l'une des revendications 8 ou 9, dans laquelle la gaine métallique (7) du rotor (1) et / ou la barrière métallique consiste en au moins un métal du groupe des éléments consistant en tantale, niobium, zircon, titane, hafnium, or, platine, palladium, osmium, iridium, ruthénium et rhodium.
  11. Une pompe rotative selon l'une des revendications 8 à 10, dans laquelle l'hydrocarbure fluoré comprend de l'éthylène propylène fluoré, de l'éthylène tétrafluoroéthylène, du polytétrafluoroéthylène, du perfluoroalcoxyalcane, de l'éthylène chlorotrifluoroéthylène ou du fluorure de polyvinylidène, ou l'encapsulation (6) et / ou la barrière plastique à la surface intérieure (411) consiste de préférence en au moins une substance parmi le polytétrafluoroéthylène, le perfluoroalkoxylalcane, l'éthylène chlorotrifluoroéthylène ou le polyfluorure de vinylidène.
  12. Une pompe rotative selon l'une des revendications 8 à 11, dans laquelle l'aimant permanent (8) est connecté par forme et / ou par adhérence à la gaine métallique (7) et / ou dans laquelle la gaine métallique (7) est connecté par forme et / ou par adhérence à l'encapsulation (6).
  13. Une pompe rotative selon l'une des revendications 8 à 12, dans laquelle un évidement (9) est prévu entre l'aimant permanent (8) et la gaine métallique (7) de telle sorte que la gaine métallique (7) peut être soudée sans affecter l'aimant permanent (8).
  14. Une pompe rotative selon l'une des revendications 8 à 13, dans laquelle un moyen de compensation thermique (10) est prévu pour compenser les différentes dilatations thermiques de la gaine métallique (7) et / ou de l'aimant permanent (8).
  15. Une pompe rotative selon l'une des revendications 8 à 14, dans laquelle l'entraînement est un moteur sans palier, et le stator (5) est de préférence conçu comme stator de palier et stator d'entraînement, dans laquelle de préférence, une hauteur axiale du rotor (1) est inférieure ou égale à un demi-diamètre du rotor (1).
EP12174213.4A 2011-07-20 2012-06-28 Rotor magnétique et pompe rotative dotée d'un rotor magnétique Active EP2549113B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12174213.4A EP2549113B1 (fr) 2011-07-20 2012-06-28 Rotor magnétique et pompe rotative dotée d'un rotor magnétique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11174669 2011-07-20
EP12174213.4A EP2549113B1 (fr) 2011-07-20 2012-06-28 Rotor magnétique et pompe rotative dotée d'un rotor magnétique

Publications (3)

Publication Number Publication Date
EP2549113A2 EP2549113A2 (fr) 2013-01-23
EP2549113A3 EP2549113A3 (fr) 2017-07-26
EP2549113B1 true EP2549113B1 (fr) 2018-10-24

Family

ID=46354096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12174213.4A Active EP2549113B1 (fr) 2011-07-20 2012-06-28 Rotor magnétique et pompe rotative dotée d'un rotor magnétique

Country Status (6)

Country Link
US (1) US20130022481A1 (fr)
EP (1) EP2549113B1 (fr)
JP (1) JP2013024239A (fr)
KR (1) KR20130011940A (fr)
CN (1) CN102891553A (fr)
TW (1) TWI588370B (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9926933B2 (en) 2013-06-20 2018-03-27 Luraco, Inc. Bearing and shaft assembly for jet assemblies
US10302088B2 (en) 2013-06-20 2019-05-28 Luraco, Inc. Pump having a contactless, fluid sensor for dispensing a fluid to a setting
FR3011887B1 (fr) * 2013-10-14 2018-03-09 Pompes Salmson Pompe de circulation de fluide a moteur synchrone a rotor noye
US10177627B2 (en) 2015-08-06 2019-01-08 Massachusetts Institute Of Technology Homopolar, flux-biased hysteresis bearingless motor
CN105641762A (zh) * 2016-03-14 2016-06-08 正仁(北京)医疗仪器有限公司 体外非植入式磁悬浮心室辅助离心血泵
EP3241608B1 (fr) * 2016-05-02 2020-04-08 Levitronix GmbH Dispositif de melange et dispositif jetable pour un tel dispositif de melange
DE102016214700A1 (de) 2016-08-08 2018-02-08 Efficient Energy Gmbh Elektrischer Scheibenläufer mit einem Druckreduzierer für den Motorspalt
DE102016214696A1 (de) 2016-08-08 2018-02-08 Efficient Energy Gmbh Elektrischer Scheibenmotor mit Medientrennung im Motorspalt
DE102016224071A1 (de) 2016-12-02 2018-06-07 Efficient Energy Gmbh Mehrteiliger stator für einen elektromotor, verfahren zum herstellen eines mehrteiligen stators, elektromotor und wärmepumpe
DE102016224070A1 (de) 2016-12-02 2018-06-07 Efficient Energy Gmbh Scheibenläufermotor mit nuten
DE102017205729B4 (de) 2017-04-04 2022-03-03 Efficient Energy Gmbh Stator für einen Elektromotor mit Kühlrohr
DE102017206759A1 (de) 2017-04-21 2018-10-25 Efficient Energy Gmbh Rotor für einen elektromotor mit speziell geformtem rückschlusselement und verfahren zur herstellung
DE102017206762A1 (de) 2017-04-21 2018-10-25 Efficient Energy Gmbh Rotor für einen elektromotor mit wärmeabschirmender beschichtung und verfahren zur herstellung
EP3425204B1 (fr) * 2017-07-04 2021-04-14 Levitronix GmbH Rotor magnétique et machine comprenant un tel rotor
GB2565592A (en) * 2017-08-18 2019-02-20 Cooltera Ltd A cooling unit
DE102017214869A1 (de) 2017-08-24 2019-02-28 Efficient Energy Gmbh Elektromotor mit verschiedenen Sternpunkten
CN107519549A (zh) * 2017-09-30 2017-12-29 清华大学天津高端装备研究院 一种新型单自由度磁悬浮离心式叶轮
US10833570B2 (en) 2017-12-22 2020-11-10 Massachusetts Institute Of Technology Homopolar bearingless slice motors
US10278894B1 (en) 2018-02-05 2019-05-07 Luraco, Inc. Jet assembly having a friction-reducing member
EP3900159A1 (fr) 2018-12-20 2021-10-27 Efficient Energy GmbH Moteur électrique à différents points neutres
JP2020128745A (ja) 2019-02-01 2020-08-27 ホワイト ナイト フルイド ハンドリング インコーポレーテッドWhite Knight Fluid Handling Inc. ロータを支承し、当該ロータを磁気的に軸線方向に位置決めするための磁石を有するポンプ、及びこれに関連する方法
EP3795836A1 (fr) * 2019-09-18 2021-03-24 Levitronix GmbH Pompe centrifuge et carter de pompe
EP3865709B1 (fr) * 2020-02-13 2023-11-22 Levitronix GmbH Dispositif de pompe, dispositif jetable et procédé de fonctionnement d'un dispositif de pompe
CN112653272A (zh) * 2020-12-11 2021-04-13 清华大学 一种航空涡轮发动机的压气机与启发一体化电机集成
JP2022168834A (ja) * 2021-04-26 2022-11-08 レヴィトロニクス ゲーエムベーハー 電磁回転駆動装置、遠心ポンプ、及びポンプ・ユニット

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3647324A (en) * 1969-12-18 1972-03-07 Edson Howard Rafferty Electrically driven pumps capable of use as heart pumps
JPS6073900U (ja) * 1983-10-27 1985-05-24 松下電器産業株式会社 軸方向空隙型モ−タポンプ
JP2544825B2 (ja) * 1989-06-05 1996-10-16 株式会社荏原製作所 マグネツトポンプ
DE69013761T2 (de) * 1989-06-05 1995-03-16 Ebara Corp Magnetpumpe.
JPH0751957B2 (ja) * 1990-05-15 1995-06-05 株式会社荏原製作所 マグネツトポンプ
CN1228140A (zh) * 1996-05-03 1999-09-08 犹他大学 电磁悬浮与旋转的离心泵设备及方法
AUPO902797A0 (en) * 1997-09-05 1997-10-02 Cortronix Pty Ltd A rotary blood pump with hydrodynamically suspended impeller
DE59712162D1 (de) * 1997-09-04 2005-02-17 Levitronix Llc Waltham Zentrifugalpumpe
JPH11148482A (ja) * 1997-11-12 1999-06-02 Seikow Chemical Engineering & Machinery Ltd マグネットカップリングの樹脂被覆インナーマグネット
US5928131A (en) * 1997-11-26 1999-07-27 Vascor, Inc. Magnetically suspended fluid pump and control system
JPH11159492A (ja) * 1997-12-01 1999-06-15 Seikow Chemical Engineering & Machinery Ltd マグネットカップリングのインナーマグネット構造
US6793744B1 (en) * 2000-11-15 2004-09-21 Research Institute Of Industrial Science & Technology Martenstic stainless steel having high mechanical strength and corrosion
JP3877211B2 (ja) * 2003-03-20 2007-02-07 株式会社イワキ マグネットポンプにおけるリアケーシングの製造方法
WO2005028872A2 (fr) * 2003-09-18 2005-03-31 Myrakelle, Llc Pompe a sang rotative
WO2006039747A2 (fr) * 2004-10-11 2006-04-20 Ventracor Limited Pompe sanguine amelioree
US20060127253A1 (en) * 2004-12-10 2006-06-15 Ekberg Andrew M Inner drive for magnetic drive pump
US8177703B2 (en) * 2005-06-06 2012-05-15 The Cleveland Clinic Foundation Blood pump
JP2007170199A (ja) * 2005-12-19 2007-07-05 Matsushita Electric Works Ltd ポンプ
JP4702195B2 (ja) * 2006-06-23 2011-06-15 アイシン精機株式会社 車両用駆動装置
CN101016906A (zh) * 2006-12-11 2007-08-15 江苏大学 永磁悬浮轴承离心泵
CN201228655Y (zh) * 2008-07-14 2009-04-29 邵长青 磁悬浮变压器油泵
EP2273124B1 (fr) * 2009-07-06 2015-02-25 Levitronix GmbH Pompe centrifuge et procédé d'équilibrage de la poussée axiale dans une pompe centrifuge
JP5446974B2 (ja) * 2009-08-04 2014-03-19 株式会社ジェイテクト トランスミッション用電動ポンプユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
KR20130011940A (ko) 2013-01-30
CN102891553A (zh) 2013-01-23
TWI588370B (zh) 2017-06-21
US20130022481A1 (en) 2013-01-24
TW201323728A (zh) 2013-06-16
EP2549113A3 (fr) 2017-07-26
JP2013024239A (ja) 2013-02-04
EP2549113A2 (fr) 2013-01-23

Similar Documents

Publication Publication Date Title
EP2549113B1 (fr) Rotor magnétique et pompe rotative dotée d'un rotor magnétique
EP3425204B1 (fr) Rotor magnétique et machine comprenant un tel rotor
DE69810130T2 (de) Rotationspumpe mit tauchrotor
EP1284415B1 (fr) Dispositif et méthode de détermination de la viscosité d'un fluide
DE102018102592B4 (de) Substratbearbeitungsvorrichtung und Vorrichtung zum Herstellen einer integrierten Schaltungsvorrichtung
DE69013761T2 (de) Magnetpumpe.
EP0159464B1 (fr) Pompe à vide moléculaire
EP2372749B1 (fr) Dispositif de traitement pour le traitement d'une surface d'un corps
EP3163086A1 (fr) Unité d'entraînement de pompes destinée à transporter un fluide de processus
EP3190607B1 (fr) Dispositif et procédé pour traiter une surface de tranche de semi-conducteur à l'aide d'un fluide contenant de l'ozone
DE2128265A1 (de) Kreiselpumpe fuer korrosive fluessigkeiten
DE602004001534T2 (de) Ölfilm - Wellendichtung
EP2990656B1 (fr) Pompe à vide
EP4083431A1 (fr) Entraînement rotatif électromagnétique, pompe centrifuge et ensemble pompe
EP2910791A1 (fr) Pompe à vide
EP4084304A1 (fr) Entraînement rotatif électromagnétique, pompe centrifuge et ensemble pompe
DE112016004378T5 (de) Verbessertes dichtungssystem für drehbare wellen
DE3036026C2 (de) Verfahren zur Oberflächenmodifizierung von technischen Gummiartikeln
DE102010022340A1 (de) Fluiddynamisches Lager
EP1013294A1 (fr) Pompe à flux diagonal
DE202006005011U1 (de) Stromzuführung für eine Rohrkathode
EP1422772A2 (fr) Batterie de stockage à circulation d'electrolyte
EP2582983A1 (fr) Pompe centrifuge double flux
EP3026269B1 (fr) Pompe rotative pour liquides cryogéniques
DE202014100814U1 (de) Vorrichtung zur nasschemischen Behandlung von Objekten, insbesondere von flachen, insbesondere scheibenförmigen Gegenständen wie Halbleiterscheiben, Substraten oder dergleichen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/048 20060101ALI20170622BHEP

Ipc: F04D 13/06 20060101AFI20170622BHEP

Ipc: F04D 29/22 20060101ALI20170622BHEP

Ipc: F04D 29/02 20060101ALI20170622BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180126

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180705

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: INTELLECTUAL PROPERTY SERVICES GMBH, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1056992

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012013667

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190124

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190224

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012013667

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120628

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181024

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230627

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240619

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240619

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240620

Year of fee payment: 13