EP2547716A1 - Procede de depolymerisation de biomasse lignocellulosique - Google Patents

Procede de depolymerisation de biomasse lignocellulosique

Info

Publication number
EP2547716A1
EP2547716A1 EP11714366A EP11714366A EP2547716A1 EP 2547716 A1 EP2547716 A1 EP 2547716A1 EP 11714366 A EP11714366 A EP 11714366A EP 11714366 A EP11714366 A EP 11714366A EP 2547716 A1 EP2547716 A1 EP 2547716A1
Authority
EP
European Patent Office
Prior art keywords
mixture
lignin
hydroxide
depolymerization
hydroxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11714366A
Other languages
German (de)
English (en)
Inventor
Frédéric GOETTMANN
Philippe Makowski
Denilson Da Silva Perez
Michel Petit-Conil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INSTITUT TECHNOLOGIQUE FCBA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
INSTITUT TECHNOLOGIQUE FCBA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, INSTITUT TECHNOLOGIQUE FCBA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2547716A1 publication Critical patent/EP2547716A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G1/00Lignin; Lignin derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials

Definitions

  • the present invention relates to the field of the production of organic molecules from lignin or lignocellulosic biomass. More specifically, the invention relates to a novel process for the depolymerization / degradation of lignin-containing products under ionothermal conditions.
  • biomass includes all organic materials that can become sources of energy. These come mainly from plants.
  • This biomass mainly consists of carbohydrate biomass such as cereals, sugar beet or sugar cane, oilseed biomass such as oilseed rape or oil palm, and lignocellulosic biomass made up inter alia by wood, green residues in general or straw.
  • the products extracted from the lignocellulosic biomass contain among others an organic polymer called lignin.
  • Lignin is a phenolic macromolecule whose structure is still poorly understood. It is present between the cell walls of many plants (especially wood), to which it confers their properties of rigidity. It is available in black liquors from pulp production (between 100 and 150 million tonnes of lignin are "produced” each year), but can also be directly extracted from wood chips or straw from annual plants. . At present, the lignin extracted in the cellulose manufacturing processes is used for the recovery of reagents during the Kraft process and burned in order to ensure the energy self-sufficiency of the extraction processes.
  • Lignins are polymers of monolignols. There are at least three different types of monomers: coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. While many processes for producing chemical compounds from cellulose enable the production of large-scale chemical compounds, there is currently no economically viable way to produce these chemical compounds from lignocellulosic biomass.
  • One of these processes allows the production of vanillin on an industrial scale by oxidative degradation of lignosulfonic acids.
  • the depolymerization of lignin has also been carried out under reducing conditions with, inter alia, catalysts based on transition metals such as nickel, palladium or platinum, in a dilute aqueous medium and at a pressure of about 140 bar. (2000 psi).
  • catalysts based on transition metals such as nickel, palladium or platinum
  • a pressure of about 140 bar. (2000 psi) is described in US Patent No. 2,220,624.
  • Metal complexes containing transition metals have also been described for their catalytic properties in lignin degradation reactions for example in International Patent Application Publication No. WO 2008/106811.
  • the molecular weight distribution and chemical functionalities of organic products obtained by degradation of lignin is generally very broad.
  • the mixtures obtained often contain a multitude of degradation products and / or products of very similar chemical structure which do not generally allow the easy separation of the various constituents of the mixture.
  • transition metal catalysts that are poison-sensitive, expensive and / or toxic. It is therefore desirable, not only economically but also environmentally, to be able to depolymerize lignin or its derivatives contained in lignocellulosic biomass by a process that does not use transition metals.
  • FIG. 1 represents the chromatogram obtained by GC-MS analysis of a sample of the mixture obtained during the depolymerization of the lignin resulting from resinous purified according to the method of the invention.
  • FIG. 2 represents the chromatogram obtained by GC-MS analysis of a sample of the mixture obtained during the depolymerization of the lignin resulting from the treatment of pine platelets according to the process of the invention.
  • FIG. 3 represents the chromatogram obtained by GC-MS analysis of a sample of the mixture obtained during the depolymerization of the lignin resulting from the processing of cane de EUR according to the method of the invention.
  • FIG. 4 represents the chromatogram obtained by GC-MS analysis of a sample of the mixture obtained during the depolymerization of the lignin resulting from the treatment of the lignin of annual plants according to the method of the invention.
  • FIG. 5 represents the chromatogram obtained by GC-MS analysis of the sample of the mixture obtained during the depolymerization of the lignin resulting from the treatment of a black softwood liquor according to the method of the invention.
  • FIG. 6 represents the chromatogram obtained by GC-MS analysis of a sample of the mixture obtained during the depolymerization of the lignin resulting from the treatment of a lignosulfonate according to the process of the invention.
  • the subject of the invention is a process for the depolymerization of lignin or its derivatives, in particular having the following advantages:
  • reaction temperatures below 250 ° C at atmospheric pressure
  • useful organic molecule is meant a compound resulting from the degradation / depolymerization of lignin or one of its derivatives which is considered sufficiently interesting to require its production / recovery / isolation from the crude reaction mixture.
  • lignin or its derivatives is meant lignin as generally defined in the present technical field, but also any other derivative of lignin (for example lignosulphonates), originating from all known or unknown biomass sources (eg those obtained from softwood or softwood liquor), and in all its forms (eg before or after pre-treatment).
  • lignin as generally defined in the present technical field, but also any other derivative of lignin (for example lignosulphonates), originating from all known or unknown biomass sources (eg those obtained from softwood or softwood liquor), and in all its forms (eg before or after pre-treatment).
  • the invention therefore relates to a process for the depolymerization of lignin or its derivatives, comprising a step of heating lignin or its derivatives in the presence of a hydroxide of general formula M (OH) n or a M (OH) n hydroxide mixture in which formula M is a metal of the alkaline or alkaline earth metal family and n is 1 or 2, wherein the mass ratio of said hydroxide or mixture of hydroxides to lignin or its derivatives is preferably between about 0.5 and about 20.
  • a hydroxide of general formula M (OH) n or a M (OH) n hydroxide mixture in which formula M is a metal of the alkaline or alkaline earth metal family and n is 1 or 2, wherein the mass ratio of said hydroxide or mixture of hydroxides to lignin or its derivatives is preferably between about 0.5 and about 20.
  • the weight ratio of said hydroxide or mixture of hydroxides to lignin or its derivatives is from about 0.5 to about 10.
  • this mass ratio can be greater than 20, that is to say the lignin being in very dilute conditions, without departing from the essence of the present invention but simply at the expense, for example, costs related to the implementation of the method.
  • the step of heating the lignin or its derivatives is advantageously carried out at a temperature between the melting temperature of said hydroxide or mixture of hydroxides and a temperature equal to said melting temperature plus about 150 degrees Celsius, preferably equal to said melting temperature plus about 100 degrees Celsius.
  • the depolymerization process may also contain an additional step of treating the product obtained by said depolymerization.
  • said hydroxide is chosen from lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH) or calcium hydroxide (Ca (OH) 2 ), NaOH and KOH being particularly preferred.
  • the binary hydroxide mixture comprises NaOH and preferably consists of NaOH and KOH.
  • Each hydroxide is present in the ternary mixture in a molar amount of from about 1% to about 50% of the mixture.
  • said hydroxide mixture is an eutectic mixture.
  • eutectic mixing is meant a mixture of at least two products in defined proportions having physico-chemical characteristics essentially identical to those of a single product or “pure body".
  • the eutectic mixture may be binary and therefore consist of a mixture of two products but may also contain more than two products.
  • a mixture of hydroxides called “eutectic” will have a melting temperature substantially equal to its solidification temperature.
  • said hydroxide or hydroxide mixture has a melting point of less than 300 ° C., preferably less than 250 ° C., more preferably less than 200 ° C.
  • the melting temperature of said mixture is about 172 ° C.
  • Such a eutectic mixture is obtained by mixing the above-mentioned 2 hydroxides in a molar ratio substantially equal to 1: 1.
  • temperature ranges are not limited to the above values. Any melting temperature of said hydroxide or mixture of hydroxides making it possible to carry out the process according to the invention under conditions satisfying one or more of the above-mentioned advantages, must be considered as an integral part of the invention. Indeed, the more the process according to the invention will be carried out at low temperature, the more energy saving will be important and therefore the process will be economically viable.
  • the process of the invention can therefore be carried out at a temperature not exceeding about 300 ° C., preferably between about 180 ° C. and about 250 ° C., more preferably between about 200 ° C. and about 250 ° C. vs.
  • the depolymerization reaction is carried out at atmospheric pressure.
  • the reaction can also be carried out at a higher pressure to allow the management of the gases present in the mixture or at a lower pressure so as to facilitate the extraction of one or more compounds of interest.
  • the reaction is generally carried out for a period of time ranging from about 1 hour to about 20 hours, preferably from about 1 hour to about 5 hours.
  • the depolymerization reaction according to the process of the invention is preferably carried out at a reaction temperature of about 200 ° C. for a duration of about 2 hours.
  • no transition metal is used during the implementation of the depolymerization reaction according to the method of the invention.
  • the depolymerization reaction may be carried out with or without agitation. Those skilled in the art will adjust if necessary the stirring speed depending on the reactor used, the nature of the starting materials (lignin or its derivatives and hydroxides), and the volume to be stirred.
  • the method according to the invention may comprise, besides the step of heating lignin or its derivatives as described above, in which the hydroxide or the mixture of hydroxides acts both as a solvent and as a reagent. depolymerization, one or more other steps such as:
  • a treatment step of the product of the depolymerization preferably composed of an acidification step followed by an extraction step.
  • the process may also include a step of separating and / or purifying the products obtained in the depolymerization step.
  • lignin or one or more derivatives thereof of various and varied origin. These products include lignin obtained from softwood, pine or cane de Provence, lignin from annual plants, black softwood liquor, or lignosulphonates which are preferably used in the present process.
  • lignin obtained from softwood, pine or cane de Provence
  • lignin from annual plants black softwood liquor, or lignosulphonates which are preferably used in the present process.
  • the process according to the invention can be applied to any crude, purified or pretreated mixture containing lignin or one or more of its derivatives.
  • the depolymerization process according to the invention can be implemented with a wide variety of lignin-containing substrates without, however, particularly affecting the product mixture quality of the continuous depolymerization (or in other words the ease of purification of the resulting depolymerization product mixture and the conversion rate of the depolymerization reaction).
  • the organic compounds obtained by the process according to the invention are in general aromatic and essentially of the family of phenols, benzoic acids or anisoles.
  • the organic compounds that can be obtained especially in the form of a mixture, mention may be made, for example, of guaiacol, ortho-methoxycresol, homovanillic acid, hydroferrulic acid, vanillic acid, veratric acid and the like. protocatechic acid.
  • the invention relates to a depolymerization product obtained by the depolymerization process according to the invention.
  • a depolymerization product essentially comprising at least one compound chosen from guaiacol, ortho-methoxycresol, homovanillic acid, hydrofluoric acid, vanillic acid, veratric acid and protocatechic acid, for example a mixture of two, three, four, five or six of these compounds.
  • the organic products isolated from the mixture of lignin depolymerization products obtained according to the invention can be used in many industries for many applications. These industries include the cosmetics industry, the food industry, the pharmaceutical industry and the production of polymers.
  • the depolymerization reaction was carried out in an ionothermal medium or "molten salt" in which a eutectic sodium hydroxide / potassium hydroxide (NaOH / KOH) having a melting point of 172 ° C was used.
  • the crucible was taken out of the oven and allowed to cool to room temperature.
  • the set of reagents was then dissolved in 50 ml of distilled water and acidified with 37% hydrochloric acid until the formation of a precipitate (pH ⁇ 2).
  • the organic phase was extracted into a separatory funnel using 3 ⁇ 25 ml of diethyl ether.
  • the organic phases were combined, dried over anhydrous magnesium sulfate MgSO 4, and then filtered through Celite.
  • the organic solvent was removed on a rotary evaporator and HOmg of the mixture was obtained.
  • Example 1 the protocol of Example 1 was reproduced but varying various parameters, such as the nature of the hydroxides used, the moisture content of these hydroxides, the duration and the temperature of the depolymerization reaction.
  • a-Measurements on the hydration of hydroxides as a function of the time spent at 200 ° C. were carried out elsewhere.
  • native is meant the mixture of hydroxides prepared on a benchtop without any particular precautions and containing less than 3% by weight of water
  • dry is meant a mixture of hydroxides prepared from dry hydroxides in a glove box
  • saturated means a mixture of hydroxides containing about 8% by weight of water corresponding to a hydroxide whose moisture content varies very little with time at 200 ° C.
  • the ortho-methoxycresol mass was determined for each example since it was realized that the amount of ortho-methoxycresol obtained is a good indicator of the progress of the depolymerization.
  • the choice of ortho-methoxy-cresol is therefore purely arbitrary and allows, among other things, to follow more easily the evolution of the reaction.
  • Example 13 the experimental conditions used in Example 13 prove to be particularly favorable for obtaining a significant amount of ortho-methoxycresol and thus could be considered as the experimental conditions offering the best performance of the depolymerization reaction.
  • scaling-up is favorable to the depolymerization reaction according to the invention since the relative yield of o-methoxycresol doubles when passing from 250 mg to 1 g of starting material.
  • Example 1 the protocol used in Example 1 was implemented with different types of lignocellulosic biomasses.
  • each example was carried out with 10 g of a mixture NaOH / KOH 1/1 "native" and 500 mg of biomass containing lignin (substrate), maintained at a temperature of 200 ° C for 2 hours.
  • Table 2 summarizes the results obtained with the different biomasses tested.
  • the black liquor used contains a certain quantity of water and that the mass yield can not therefore be determined in this case.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

La présente invention concerne un procédé de dépolymérisation de la lignine ou de ses dérivés, comprenant une étape de chauffage de la lignine ou de ses dérivés en présence d'un hydroxyde de formule générale M(OH)n ou un mélange d'hydroxydes M(OH)n dans laquelle formule M est un métal de la famille des alcalins ou alcalino-terreux et n est égal à 1 ou 2, et dans lequel le rapport massique entre ledit hydroxyde ou mélange d'hydroxydes et la lignine ou ses dérivés est compris entre environ 0,5 et environ 20.

Description

Procédé de dépolymérisation de biomasse lignocellulosique
Etat de la technique
La présente invention concerne le domaine de la production de molécules organiques à partir de lignine ou de biomasse lignocellulosique. Plus précisément, l'invention concerne un nouveau procédé de dépolymérisation/dégradation de produits contenant de la lignine en conditions ionothermales.
Avec une raréfaction prévisible des ressources fossiles facilement accessibles, les industries pétrolière et chimique sont amenées à se tourner de plus en plus vers la biomasse, comme source de carbone lié pour la synthèse des molécules dont elles ont besoin.
Dans le domaine de l'énergie, le terme de biomasse regroupe l'ensemble des matières organiques pouvant devenir des sources d'énergie. Celles-ci proviennent essentiellement des plantes.
Cette biomasse est constituée principalement de la biomasse glucidique telle que les céréales, les betteraves sucrières ou les cannes à sucre, de la biomasse oléagineuse telle que le colza ou le palmier à huile, et de la biomasse lignocellulosique constituée entre autres par le bois, les résidus verts en général ou la paille.
Les produits extraits de la biomasse lignocellulosique contiennent entre autres un polymère organique appelé lignine.
La lignine est une macromolécule phénolique dont la structure est encore mal connue. Elle est présente entre les parois cellulaires de nombreuses plantes (en particulier le bois), auxquelles elle confère leurs propriétés de rigidité. Elle est disponible dans les liqueurs noires issues de la production de pâtes à papier (entre 100 et 150 million de tonnes de lignine sont ainsi « produites » chaque année), mais peut également être directement extraite de plaquettes de bois ou de pailles de plantes annuelles. A l'heure actuelle, la lignine extraite dans les procédés de fabrication de cellulose est utilisée pour la récupération des réactifs lors du procédé Kraft et brûlée afin d'assurer l'auto suffisance énergétique des procédés d'extraction.
Les lignines sont des polymères de monolignols. Il existe au moins trois types de monomères différents : l'alcool coumarylique, l'alcool coniférylique et l'alcool sinapylique. Alors que de nombreux procédés de production de composés chimiques à partir de la cellulose permettent la production de composés chimiques à grande échelle industrielle, il n'y a actuellement aucun moyen économiquement viable permettant la production de ces composés chimiques à partir de la biomasse lignocellulosique.
Par exemple, dans l'industrie du papier, environ 50 millions de tonnes de lignine en tant que produits secondaires ou produits de déchets sont produites tous les ans et seulement environ 1 à 2 % sont recyclées et valorisées.
Différents procédés industriels existent déjà permettant la valorisation de la biomasse et en particulier de la biomasse lignocellulosique.
L'un de ces procédés, appelé procédé bisulfite, permet la production de vanilline à l'échelle industrielle par dégradation oxydative des acides lignosulfoniques.
De nombreux procédés permettant la dégradation de la lignine sont connus mais souffrent tous de problèmes limitant leur utilisation à l'échelle industrielle, entre autres, du fait d'une mise en œuvre inadéquate aux exigences de l'industrie et/ou une incompatibilité avec des critères environnementaux de plus en plus stricts.
Parmi ces procédés de l'art antérieur on peut citer un procédé décrit dans le brevet US No. 5,807,952 utilisant une pyrolyse à haute température (entre 400 °C et 600 °C) en phase solide ou en présence d'une faible quantité d'un catalyseur basique tel que l'hydroxyde de potassium.
D'autres types de procédés sont ceux décrits par exemple le brevet US No. 5,959,167 permettant la dépolymérisation de la lignine par voie solvothermale, c'est-à-dire en milieu dilué dans des alcools portés à une température proche de leur point critique (entre 250°C et 310°C), et donc se déroulant à des pressions de l'ordre de 140 bars (2000 psi).
La dépolymérisation de la lignine a également été réalisée en conditions réductrices avec, entre autres, des catalyseurs à base de métaux de transition tels que le nickel, le palladium, ou le platine, en milieu aqueux dilué et sous une pression d'environ 140 bars (2000 psi). Un exemple de ce type de procédé est décrit dans le brevet US No. 2,220,624. Des complexes métalliques contenant des métaux de transition ont aussi été décrits pour leurs propriétés catalytiques dans les réactions de dégradation de la lignine par exemple dans la demande de brevet internationale publiée sous le No. WO 2008/106811.
Les procédés de dégradation de la lignine décrits dans l'art antérieur sont divers et variés et bien qu'utilisant une large gamme de méthodes et de conditions opératoires, ils présentent tous néanmoins des inconvénients similaires.
La distribution en poids moléculaire et en fonctionnalités chimiques des produits organiques obtenus par dégradation de la lignine est généralement très large.
Les mélanges obtenus contiennent souvent une multitude de produits de dégradation et/ou des produits de structure chimique très similaire qui ne permettent généralement pas la séparation aisée des différents constituants du mélange.
Par voie d'incidence, du fait de la multitude de produits générés, la quantité des produits de dégradation pouvant être isolés n'est généralement pas économiquement intéressante.
Il est donc souhaitable d'obtenir un mélange de produits de dégradation de la biomasse lignocellulosique ne comportant qu'un nombre limité de composés permettant leur isolation avec des rendements économiquement viables.
D'autre part, une bonne conversion de la lignine en molécules organiques n'est couramment obtenue qu'au détriment de l'utilisation de conditions expérimentales très dures (en température et pression) et donc coûteuses.
Il est donc également souhaitable de pouvoir dépolymériser la lignine en molécules organiques « utiles » en mettant en œuvre des conditions expérimentales plus douces, préférablement sous pression atmosphérique et des températures inférieures à 300°C, permettant de ce fait, d'une part, de réduire les coûts de façon significative, et d'autre part, une application industrielle du procédé plus aisée ne nécessitant pas l'utilisation d'autoclaves par exemple.
Il est à noter également que la plupart des procédés connus permettant la dégradation de la lignine emploient des catalyseurs à base de métaux de transition qui sont sensibles à l'empoisonnement, coûteux et/ou toxiques. II est donc désirable, non seulement sur le plan économique mais aussi sur le plan environnemental, de pouvoir dépolymériser la lignine ou ses dérivés contenus dans la biomasse lignocellulosique par un procédé n'utilisant pas de métaux de transition.
Par conséquent, un procédé combinant au moins un des avantages précités, et préférentiellement tous les avantages précités, serait très avantageux dans la mesure où il permettrait de produire des molécules organiques préférentiellement aromatiques à partir de la lignine ou de ses dérivés plus aisément, de façon moins coûteuse et plus respectueuse de l'environnement
Description des figures
La Figure 1 représente le chromatogramme obtenu par analyse GC-MS d'un échantillon du mélange obtenu lors de la dépolymérisation de la lignine issue de résineux purifiée selon le procédé de l'invention.
La Figure 2 représente le chromatogramme obtenu par analyse GC-MS d'un échantillon du mélange obtenu lors de la dépolymérisation de la lignine issue du traitement de plaquettes de pin selon le procédé de l'invention.
La Figure 3 représente le chromatogramme obtenu par analyse GC-MS d'un échantillon du mélange obtenu lors de la dépolymérisation de la lignine issue du traitement de la canne de Provence selon le procédé de l'invention.
La Figure 4 représente le chromatogramme obtenu par analyse GC-MS d'un échantillon du mélange obtenu lors de la dépolymérisation de la lignine issue du traitement de la lignine de plantes annuelles selon le procédé de l'invention.
La Figure 5 représente le chromatogramme obtenu par analyse GC-MS de l'échantillon du mélange obtenu lors de la dépolymérisation de la lignine issue du traitement d'une liqueur noire de résineux selon le procédé de l'invention. La Figure 6 représente le chromatogramme obtenu par analyse GC-MS d'un échantillon du mélange obtenu lors de la dépolymérisation de la lignine issue du traitement d'un lignosulfonate selon le procédé de l'invention.
Description de l'invention
L'invention a pour objet un procédé de dépolymérisation de la lignine ou de ses dérivés ayant notamment les avantages suivants :
l'utilisation de conditions expérimentales relativement douces, préférablement des températures de réaction inférieures à 250 °C à pression atmosphérique permettant notamment de diminuer les coûts de production et de simplifier la mise en œuvre du procédé,
l'obtention d'un nombre de produits de dégradation relativement limité ce qui permet, entre autres, de faciliter l'isolation des molécules organiques « utiles »,
une flexibilité du procédé au niveau des sources de substrat pouvant être utilisées en tant que produit de départ, une propreté élevée et purification aisée des mélanges bruts de produits de dégradation,
une bonne reproductibilité en ce qui concerne la nature des molécules organiques formées par le procédé quelle que soit la source de lignine utilisée,
l'absence de catalyseur à base de métaux de transition ce qui permet notamment de respecter les normes environnementales imposées aux industries qui deviennent de plus en plus astreignantes. Par « molécule organique utile » on entend un composé issu de la dégradation/dépolymérisation de la lignine ou de l'un de ses dérivés qui est jugé suffisamment intéressant pour nécessiter sa production/valorisation/isolation à partir du mélange réactionnel brut.
Par « lignine ou ses dérivés » on entend la lignine telle que généralement définie dans le présent domaine technique, mais aussi tout autre dérivé de la lignine (par exemple les lignosulfonates), provenant de toutes sources de biomasse connues ou non (par exemple celles obtenues à partir de bois de résineux, ou de liqueur noire de résineux), et sous toutes ses formes (par exemple avant ou après pré-traitement).
Selon un premier aspect, l'invention concerne donc un procédé de dépolymérisation de la lignine ou de ses dérivés, comprenant une étape de chauffage de la lignine ou de ses dérivés en présence d'un hydroxyde de formule générale M(OH)n ou un mélange d'hydroxydes M(OH)n dans laquelle formule M est un métal de la famille des alcalins ou alcalino- terreux et n est égal à 1 ou 2, dans lequel le rapport massique entre ledit hydroxyde ou mélange d'hydroxydes et la lignine ou ses dérivés est préférentiellement compris entre environ 0,5 et environ 20.
De manière encore plus préférée, le rapport massique entre ledit hydroxyde ou mélange d'hydroxydes et la lignine ou ses dérivés est compris entre environ 0,5 et environ 10.
Bien entendu, ce rapport massique peut être supérieur à 20, c'est- à-dire la lignine se trouvant en conditions très diluées, sans se départir de l'essence de la présente invention mais simplement au détriment, par exemple, des coûts liés à la mise en œuvre du procédé.
L'étape de chauffage de la lignine ou de ses dérivés est avantageusement mise en œuvre à une température comprise entre la température de fusion dudit hydroxyde ou mélange d'hydroxydes et une température égale à ladite température de fusion plus environ 150 degrés Celsius, de préférence égale à ladite température de fusion plus environ 100 degrés Celsius.
Le procédé de dépolymérisation peut également contenir une étape supplémentaire de traitement du produit obtenu par ladite dépolymérisation.
Préférentiellement, ledit hydroxyde est choisi parmi l'hydroxyde de lithium (LiOH), l'hydroxyde de sodium (NaOH), l'hydroxyde de potassium (KOH) ou l'hydroxyde de calcium (Ca(OH)2), NaOH et KOH étant particulièrement préférés.
Lorsqu'on utilise un mélange d'hydroxydes, celui-ci comprend avantageusement NaOH. Il est possible d'utiliser un mélange de deux hydroxydes ; on parlera alors de mélange binaire. Le rapport molaire entre les hydroxydes du mélange binaire est généralement compris entre environ 5/95 et environ 95/5, par exemple entre environ 20/80 et environ 80/20, entre environ 30/70 et environ 70/30, ou encore entre environ 40/60 et environ 60/40. Avantageusement, le mélange binaire d'hydroxydes comprend NaOH et de préférence est constitué de NaOH et KOH.
II est également possible d'utiliser un mélange de trois hydroxydes ; on parlera alors de mélange ternaire. Chaque hydroxyde est présent dans le mélange ternaire en une quantité molaire pouvant représenter d'environ 1% à environ 50% du mélange.
De façon préférentielle, ledit mélange d'hydroxydes est un mélange eutectique.
Par « mélange eutectique » on entend un mélange d'au moins deux produits dans des proportions définies possédant des caractéristiques physico-chimiques essentiellement identiques à celles d'un produit seul ou « corps pur ». Le mélange eutectique peut être binaire et donc être constitué d'un mélange de deux produits mais peut aussi comporter plus de deux produits. Dans le cas présent, un mélange d'hydroxydes dit « eutectique » aura une température de fusion essentiellement égale à sa température de solidification.
Avantageusement, ledit hydroxyde ou mélange d'hydroxydes a une température de fusion inférieure à 300 °C, de préférence inférieure à 250 °C, de préférence encore inférieure à 200 °C. On notera que dans le cas d'un mélange binaire eutectique comprenant de l'hydroxyde de sodium et de l'hydroxyde de potassium, la température de fusion dudit mélange est environ égale à 172 °C. Un tel mélange eutectique est obtenu en mélangeant les 2 hydroxydes précités dans un rapport molaire substantiellement égal à 1: 1.
Il est également important de noter que les plages de valeurs de températures ne sont pas limitées aux valeurs précitées. Toute température de fusion dudit hydroxyde ou mélange d'hydroxydes permettant de mettre en œuvre le procédé selon l'invention dans des conditions satisfaisant un ou plusieurs des avantages précités, doit être considérée comme faisant partie intégrale de l'invention. En effet, plus le procédé selon l'invention s'effectuera à basse température, plus l'économie d'énergie sera importante et donc plus le procédé sera économiquement viable. Le procédé de l'invention peut donc être mis en œuvre à une température ne dépassant pas environ 300 °C, de préférence comprise entre environ 180°C et environ 250 °C, de préférence encore comprise entre environ 200 °C et environ 250 °C.
Avantageusement, la réaction de dépolymérisation s'effectue à pression atmosphérique. Cependant, la réaction peut aussi s'effectuer à une pression plus élevée pour permettre la gestion des gaz présents dans le mélange ou à une pression plus faible de manière à faciliter l'extraction d'un ou plusieurs composés d'intérêt.
La réaction est généralement mise en œuvre pendant une durée comprise entre environ 1 h et environ 20 h, de préférence entre environ 1 h et environ 5 h.
À titre indicatif, la réaction de dépolymérisation selon le procédé de l'invention est préférentiellement effectuée à une température de réaction d'environ 200 °C, pendant une durée d'environ 2 h.
Selon un aspect essentiel de l'invention, aucun métal de transition n'est utilisé lors de la mise en œuvre de la réaction de dépolymérisation selon le procédé de l'invention.
La réaction de dépolymérisation peut être mise en œuvre avec ou sans agitation. L'homme du métier ajustera le cas échéant la vitesse d'agitation en fonction du réacteur utilisé, de la nature des produits de départ (lignine ou ses dérivés et hydroxydes), et du volume à agiter.
Le procédé selon l'invention peut comprendre, outre l'étape de chauffage de la lignine ou de ses dérivés telle que décrite ci-dessus, dans laquelle l'hydroxyde ou le mélange d'hydroxydes agit à la fois comme un solvant et un réactif de dépolymérisation, une ou plusieurs autres étapes telles que :
une étape préalable de chauffage de l'hydroxyde ou du mélange d'hydroxydes dans un récipient adapté jusqu'à liquéfaction,
- une étape de traitement du produit de la dépolymérisation, composée de préférence d'une étape d'acidification suivie d'une étape d'extraction.
Le procédé peut également comporter une étape de séparation et/ou de purification des produits obtenus dans l'étape de dépolymérisation. Dans le procédé selon l'invention il est possible d'utiliser de la lignine ou un ou plusieurs dérivés de celle-ci d'origine diverse et variée. Parmi ces produits on peut citer la lignine obtenue à partir de bois de résineux, de plaquette de pin ou de canne de Provence, la lignine de plantes annuelles, la liqueur noire de résineux, ou les lignosulfonates qui sont préférentiellement utilisés dans le présent procédé. Bien entendu, l'homme du métier comprendra que le procédé selon l'invention peut s'appliquer à tout mélange brut, purifié ou prétraité, contenant de la lignine ou un ou plusieurs de ses dérivés.
Comme il a été évoqué précédemment, contre toute attente, il a été trouvé de façon tout à fait surprenante que le procédé de dépolymérisation selon l'invention peut être mis en œuvre avec une grande variété de substrats contenant de la lignine sans pour autant affecter particulièrement la qualité du mélange de produits de la dépolymérisation continue (ou en d'autres termes la facilité de purification du mélange de produits de dépolymérisation obtenu et le taux de conversion de la réaction de dépolymérisation).
D'autre part, on notera que les composés organiques obtenus par le procédé selon l'invention sont en général aromatiques et essentiellement de la famille des phénols, des acides benzoïques ou des anisoles. Parmi les composés organiques pouvant être obtenus, notamment sous forme de mélange, on peut citer par exemple le guaïacol, l'ortho-méthoxycrésol, l'acide homovanillique, l'acide hydroférulique, l'acide vanillique, l'acide vératrique et l'acide protocatéchique.
Ainsi, selon un autre aspect, l'invention concerne un produit de dépolymérisation obtenu par le procédé de dépolymérisation selon l'invention. Il est notamment possible d'obtenir un produit de dépolymérisation comprenant essentiellement au moins un composé choisi parmi le guaïacol, l'ortho-méthoxycrésol, l'acide homovanillique, l'acide hydroférulique, l'acide vanillique, l'acide vératrique et l'acide protocatéchique, par exemple un mélange de deux, trois, quatre, cinq ou six de ces composés.
Les produits organiques isolés à partir du mélange de produits de dépolymérisation de la lignine obtenu selon l'invention peuvent être utilisés dans de nombreuses industries pour de nombreuses applications. Parmi ces industries on peut citer l'industrie cosmétique, l'industrie agroalimentaire, l'industrie pharmaceutique et la production de polymères.
L'invention sera mieux comprise à l'aide des exemples ci-après, donnés à titre purement illustratif.
Exemple 1 : Réaction de dépolymérisation selon l'invention
Dans cet exemple, on a utilisé une lignine commerciale produite à partir de bois de résineux commercialisée par la société AIdrich. Cette lignine se présente sous la forme d'une fine poudre marron.
La réaction de dépolymérisation a été réalisée en milieu ionothermal ou « sels fondus » dans lequel un eutectique hydroxyde de sodium/hydroxyde de potassium (NaOH/KOH) dont le point de fusion est de 172°C a été utilisé.
Le protocole ainsi que les conditions opératoires utilisés dans cet exemple particulier sont décrits comme suit :
Dans un réacteur en téflon d'une contenance d'environ 30mL, on a placé 10g d'un mélange NaOH/KOH (4.28g/5.72g équivalent à un rapport molaire de 1:1) préalablement broyé et mélangé. Le creuset a été chauffé à 200°C dans un four à moufle pendant une heure jusqu'à liquéfaction du mélange, lg de lignine commerciale produite à partir de bois de résineux (AIdrich) a alors été ajouté à chaud dans le sel fondu sous agitation. Le mélange a ensuite été chauffé pendant 2 heures sans agitation.
A la fin du temps de réaction, le creuset a été sorti du four et on l'a laissé refroidir jusqu'à température ambiante. L'ensemble des réactifs a été ensuite dissous dans 50mL d'eau distillée et acidifié à l'aide d'acide chlorhydrique concentré à 37% jusqu'à la formation d'un précipité (pH<2).
On a procédé à l'extraction de la phase organique dans une ampoule à décanter à l'aide de 3x25mL d'éther diéthylique. Les phases organiques ont été réunies, séchées sur sulfate de magnésium MgSO anhydre, puis filtrées sur célite. Le solvant organique a été éliminé à l'évaporateur rotatif et HOmg de mélange ont été obtenus.
Ce mélange a ensuite été repris dans 5mL d'une solution de toluène (0,05M, comme étalon interne) dans l'éther diéthylique et a été analysé en chromatographie en phase gazeuse couplée à un spectromètre de masse (le chromatogramme correspondant est présenté en Figure 1 incluant l'attribution des principaux produits observés). Après analyse, le mélange obtenu a été également distillé au four à boules à pression atmosphérique permettant l'obtention de 20mg d'une fraction obtenue entre 220 et 250°C constituée d'o-méthoxycrésol pur.
Exemples 2 à 21 : Variation des conditions réactionnelles
Dans les exemples suivants le protocole de l'exemple 1 a été reproduit mais en faisant varier différents paramètres, tels que la nature des hydroxydes utilisés, le taux d'humidité de ces hydroxydes, la durée et la température de la réaction de dépolymérisation.
Les différents produits de réaction ont été traités de la même façon que celle décrite dans l'exemple 1. Les conditions réactionnelles et les résultats obtenus sont résumés dans le tableau 1 suivant.
Tableau 1
NaOH/ OH
9 5 200 2 250 Saturé 0,60
1/1
NaOH/KOH
10 5 200 4 250 Saturé 0,49
1/1
NaOH/KOH
11 5 200 0,5 250 Sec 0,72
1/1
NaOH/KOH
12 5 200 1 250 Sec 0,62
1/1
NaOH/KOH
13 5 200 2 250 Sec 0,84
1/1
a- Des mesures sur l'hydratation des hydroxydes en fonction du temps passé à 200°C ont été réalisées par ailleurs. Par Natif on entend le mélange d'hydroxydes préparé sur paillasse sans précaution particulière et contenant moins de 3% massique d'eau ; par sec on entend un mélange d'hydroxydes préparé à partir d'hydroxydes sec en boîte à gants ; par saturé on entend un mélange d'hydroxydes contenant environ 8% massique d'eau correspondant à un hydroxyde dont le taux d'humidité varie très peu avec le temps à 200°C.
b- Masses déterminées par GC-MS en utilisant le toluène comme référence interne, c- Le produit principal détecté est l'acide protocatéchique
d- Pourcentage massique de Ca( 0H)2 par rapport au mélange NaOH/KOH
On pourra noter que les chromatogrammes GC-MS obtenus pour les exemples 2 à 21 indiquent de façon qualitative que les mêmes produits de dépolymérisation ont été formés que dans les conditions utilisées dans l'exemple 1.
Comme l'indique le tableau 1, la masse d'ortho-méthoxycrésol a été déterminée pour chaque exemple étant donné qu'il a été réalisé que la quantité d'ortho-méthoxycrésol obtenue est un bon indicateur de l'avancement de la dépolymérisation. Le choix de l'ortho-méthoxycrésol est donc purement arbitraire et permet, entre autres, de suivre plus facilement l'évolution de la réaction.
Il est à noter également que les quantités mesurées sont inférieures à celle obtenues par distillation dans l'exemple i. Les masses indiquées étant extrapolées à partir des résultats GC-MS semblent donc être inférieures aux masses « réelles » qui seraient issues d'une purification par distillation.
Au vu des résultats obtenus et résumés dans le tableau 1, on pourra noter que la nature des hydroxydes utilisés ainsi que leur taux d'humidité semblent n'influer que faiblement sur la quantité d'o- méthoxycrésol formé.
Néanmoins, les conditions expérimentales utilisées dans l'exemple 13 s'avèrent être particulièrement favorables pour l'obtention d'une quantité significative d'ortho-méthoxycrésol et donc pourraient être considérées comme les conditions expérimentales offrant le meilleur rendement de la réaction de dépolymérisation.
On pourra finalement noter que le « scaling-up » est favorable à la réaction de dépolymérisation selon l'invention puisque le rendement relatif en o-méthoxycrésol double quand on passe de 250mg à lg de produit de départ.
Enfin, on pourra constater que pour des temps de réaction plus longs on obtient l'acide protocatéchique de façon très sélective avec un très bon rendement. En effet dans l'exemple 6, on a isolé 330mg de produit organosoluble dont la majorité est l'acide protocatéchique.
Exemples 22 à 26 : Variation de la source contenant la lignine
Dans les exemples suivants, le protocole utilisé dans l'exemple 1 a été mis en œuvre avec différents types de biomasses lignocellulosiques.
De façon générale, chaque exemple a été réalisé avec 10g d'un mélange NaOH/KOH 1/1 « natif » et 500mg de biomasse contenant de la lignine (substrat), maintenus à une température de 200°C pendant 2h. Le tableau 2 suivant récapitule les résultats obtenus avec les différentes biomasses testées. Tableau 2
a - Masses déterminées par GC-MS en utilisant le toluène comme référence interne, b - On obtient une majorité d'acide p-hydroxybenzoïque
c- il est à noter que la liqueur noire utilisée contient une quantité certaine d'eau et que le rendement massique ne peut donc pas être déterminé dans ce cas.
On notera que les rendements et la pureté des produits obtenus sont meilleurs lorsque de la biomasse brute est mise en œuvre (exemples 22 et 23, figure 2 et 3 respectivement).

Claims

REVENDICATIONS
Procédé de dépolymérisation de la lignine ou de ses dérivés, comprenant une étape de chauffage de la lignine ou de ses dérivés en présence d'un hydroxyde de formule générale M(OH)n ou d'un mélange d'hydroxydes M(OH)n dans laquelle formule M est un métal de la famille des alcalins ou alcalino-terreux et n est égal à 1 ou 2,
dans lequel le rapport massique entre ledit hydroxyde ou mélange d'hydroxydes et la lignine ou ses dérivés est compris entre environ 0,5 et environ 20, de préférence entre environ 0,5 et environ 10, et
dans lequel l'étape de chauffage est mise en uvre à une température comprise entre la température de fusion dudit hydroxyde ou mélange d'hydroxydes et une température égale à ladite température de fusion plus environ 150 degrés Celsius.
Procédé selon la revendication 1, dans lequel l'étape de chauffage est mise en œuvre à une température comprise entre la température de fusion dudit hydroxyde ou mélange d'hydroxydes et une température égale à ladite température de fusion plus environ 100 degrés Celsius.
Procédé selon la revendication 1 ou 2, comprenant une étape supplémentaire de traitement du produit de ladite dépolymérisation.
Procédé selon l'une quelconque des revendications 1 à 3, dans lequel ledit hydroxyde est choisi parmi LiOH, NaOH, OH ou Ca(OH)2.
Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le chauffage est réalisé en présence d'un mélange d'hydroxydes comprenant NaOH. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel ledit mélange d'hydroxydes est un mélange constitué de NaOH et KOH.
Procédé selon l'une quelconque des revendications 1 à 6, dans lequel ledit mélange d'hydroxydes est un mélange eutectique.
Procédé selon l'une quelconque des revendications 1 à 7, dans lequel ledit hydroxyde ou mélange d'hydroxydes a une température de fusion inférieure à 300 °C, de préférence inférieure à 250 °C, de préférence encore inférieure à 200 °C.
Procédé selon l'une quelconque des revendications 1 à 8, dans lequel la réaction de dépolymérisation s'effectue à pression atmosphérique.
Procédé selon l'une quelconque des revendications 1 à 9, dans lequel la lignine ou ses dérivés est choisie parmi la lignine obtenue à partir de bois de résineux, de plaquette de pin ou de canne de Provence, la lignine de plantes annuelles, la liqueur noire de résineux, ou les lignosulfonates.
Produit de dépolymérisation susceptible d'être obtenu par le procédé selon l'une quelconque des revendications 1 à 10.
EP11714366A 2010-03-18 2011-03-17 Procede de depolymerisation de biomasse lignocellulosique Withdrawn EP2547716A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051928A FR2957599B1 (fr) 2010-03-18 2010-03-18 Procede de depolymerisation de biomasse lignocellulosique
PCT/FR2011/050537 WO2011114058A1 (fr) 2010-03-18 2011-03-17 Procede de depolymerisation de biomasse lignocellulosique

Publications (1)

Publication Number Publication Date
EP2547716A1 true EP2547716A1 (fr) 2013-01-23

Family

ID=42953722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11714366A Withdrawn EP2547716A1 (fr) 2010-03-18 2011-03-17 Procede de depolymerisation de biomasse lignocellulosique

Country Status (10)

Country Link
US (1) US20130066116A1 (fr)
EP (1) EP2547716A1 (fr)
JP (1) JP2013522281A (fr)
KR (1) KR20130062269A (fr)
CN (1) CN102939322A (fr)
BR (1) BR112012023480A2 (fr)
CA (1) CA2792519A1 (fr)
FR (1) FR2957599B1 (fr)
RU (1) RU2012142159A (fr)
WO (1) WO2011114058A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897716B (zh) * 2012-12-25 2016-03-16 中国科学院大连化学物理研究所 一种利用葡萄糖制取液体燃料的方法
CN103897717B (zh) * 2012-12-25 2016-02-10 中国科学院大连化学物理研究所 一种利用纤维素制取液体燃料的方法
US10059650B2 (en) * 2013-06-14 2018-08-28 Yale University Systems and methods for the depolymerization of a biopolymer
ES2539651B1 (es) 2013-11-22 2016-01-12 Universidad Del Pais Vasco - Euskal Herriko Unibertsitatea (Upv/Ehu) Nuevo procedimiento de despolimerizacion de la lignina
JP6343967B2 (ja) * 2014-03-06 2018-06-20 王子ホールディングス株式会社 フェルラ酸を製造する方法
EP3177583A4 (fr) * 2014-08-08 2018-03-14 NDSU Research Foundation Nouveaux monomères dérivés de biomasse
CN105669381A (zh) * 2016-03-21 2016-06-15 北京化工大学 一种利用固体碱催化剂催化解聚木质素的方法
BR112019012493B1 (pt) * 2016-12-21 2023-10-31 Teknologian Tutkimuskeskus Vtt Oy Método para produzir lignina reativa
SG11201906938WA (en) * 2017-01-30 2019-08-27 Medibeacon Inc Method for non-invasive monitoring of fluorescent tracer agent with diffuse reflection corrections
CA3056914A1 (fr) * 2017-03-22 2018-09-27 Ren Fuel K2B Ab Production en continu d'hydrocarbures de qualite carburant par hydrotraitement de lignine fonctionnalisee
CN107337585B (zh) * 2017-07-21 2020-06-05 陕西科技大学 一种木质素微波解聚制备单酚类化合物的方法
CN109467716B (zh) * 2018-11-06 2021-02-02 安徽理工大学 一种木质素的改性方法及木质素基环氧树脂的制备方法
KR102422678B1 (ko) * 2020-03-17 2022-07-19 한경대학교 산학협력단 염기 촉매를 이용한 바이오매스 유래 리그닌으로부터 바이오 오일을 생산하는 방법
KR102613061B1 (ko) * 2021-08-24 2023-12-12 한국에너지기술연구원 함산소 화합물의 수소첨가 탈산소 반응용 촉매 및 이를 이용하여 바이오매스로부터 바이오나프타를 제조하는 방법
CN115475657A (zh) * 2022-09-24 2022-12-16 曲阜师范大学 多功能聚合离子液体固体碱在高效催化木质素转化为单环芳香族类化合物中的应用

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2220624A (en) 1939-07-15 1940-11-05 Henry A Wallace Process for the hydrogenation of lignin and waste pulp liquors and the products thereof
US2379889A (en) * 1942-06-20 1945-07-10 Masonite Corp Etherification of lignins and ligninlike material
US2453213A (en) * 1945-05-10 1948-11-09 Tlmber Engineering Company Process of treating lignin residues
US2683706A (en) * 1950-05-31 1954-07-13 Inst Internat Financier Method for the preparation of fusible lignin resins
US3432402A (en) * 1967-01-19 1969-03-11 Arizona Chem Recovery of turpentine from black liquor
SE436888B (sv) * 1980-09-02 1985-01-28 Eka Ab Bindemedel innehallande alkalibehandlat klorlignin samt sett att framstella detsamma
JPS6479127A (en) * 1987-09-21 1989-03-24 Jgc Corp Production of phenols from lignin
AU3717795A (en) 1994-09-19 1996-04-09 Midwest Research Institute Process for producing phenolic compounds from lignins
DE69726320T2 (de) * 1997-08-14 2004-10-21 Takashi Watanabe Chemisches verfahren zur depolymerisation von lignin
US5959167A (en) 1997-08-25 1999-09-28 The University Of Utah Research Foundation Process for conversion of lignin to reformulated hydrocarbon gasoline
TWI327594B (en) * 2002-10-30 2010-07-21 Suntory Holdings Ltd Process goods of plants or treated products thereof , manufacturing method thereof , processing goods of ingesta , beer and plant
JP2006076979A (ja) * 2004-09-13 2006-03-23 Yusaku Sakata 木チップを原料とするフェノール誘導体の製造方法
JP4316536B2 (ja) * 2005-06-07 2009-08-19 独立行政法人科学技術振興機構 リグニン誘導体の分離及び回収方法
CH702124B1 (de) 2007-03-02 2011-05-13 Eth Zuerich Verfahren zum Abbau von Lignin.
CN101619227B (zh) * 2008-06-30 2013-04-03 淮北中润生物能源技术开发有限公司 纤维素生物质的直接液化方法
CA2735396C (fr) * 2008-09-08 2016-09-06 Basf Se Procede de production integree de cellulose et de matiere reutilisable de faible poids moleculaire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011114058A1 *

Also Published As

Publication number Publication date
CA2792519A1 (fr) 2011-09-22
JP2013522281A (ja) 2013-06-13
CN102939322A (zh) 2013-02-20
BR112012023480A2 (pt) 2016-05-24
US20130066116A1 (en) 2013-03-14
RU2012142159A (ru) 2014-04-27
KR20130062269A (ko) 2013-06-12
FR2957599B1 (fr) 2014-01-10
WO2011114058A1 (fr) 2011-09-22
FR2957599A1 (fr) 2011-09-23

Similar Documents

Publication Publication Date Title
WO2011114058A1 (fr) Procede de depolymerisation de biomasse lignocellulosique
EP3074569B1 (fr) Procédé de dépolymérisation de la lignine par des laccases
EP4284896A1 (fr) Procede de purification d&#39;une huile de pyrolyse en vue de sa valorisation par vapocraquage
EP3142988B1 (fr) Procédé de préparation d&#39;un matériau composite carboné
EP2804951A1 (fr) Procede de pretraitement de la biomasse lignocellulosique avec un sel inorganique hydrate comprenant une etape d&#39;hydrolyse acide preliminaire
WO2013011206A1 (fr) Procédé flexible de transformation de biomasse lignocellulosique avec etape de purification
CA1210209A (fr) Procede pour delignifier le bois et autres produits lignocellulosiques
FR2669636A1 (fr) Procede de fabrication de furane 2,5-dicarboxaldehyde.
WO2000031213A1 (fr) Procede de recuperation de phenols a faible poids moleculaire, de furfural, d&#39;alcool furfurylique et/ou de cellulose ou de residus a forte teneur en cellulose
WO2013011207A1 (fr) Procédé flexible de transformation de biomasse lignocellulosique en hydrocarbures en présence d&#39;un acide.
FR2967164A1 (fr) Procede de preparation de compositions a base de polypentosides
FR3071837B1 (fr) Derive de lignine chimiquement stable et procede pour sa preparation
WO2023203120A1 (fr) Procede d&#39;optimisation de la production de furfural lors de vapocraquage de biomasse lignocellulosique
FR2988094A1 (fr) Procede pour la preparation de compositions a base de polyglucosides d&#39;alkyle a partir de biomasse lignocellulosique
CA2877668C (fr) Procede de preparation d&#39;esters de l&#39;acide levulinique
WO2011107712A1 (fr) Procédé d&#39;obtention de compositions de biosolvants par estérification et compositions de biosolvants obtenues
EP2791097B1 (fr) Synthese a hauts rendements de p-(benzyloxy)calix[6,7,8]arenes
JP2018039964A (ja) リグニン含有バイオマス固形燃料
FR3046790A1 (fr) Procede de transformation en milieu aqueux des glucides presents dans une biomasse en des levulinates d’alkyles
JP2024047987A (ja) リグニン由来の有用成分の製造方法
FR2983853A1 (fr) Synthese a hauts rendements de p(benzyloxy)calix[6,7,8] arenes
AU1538300A (en) Process for the recovery of low molecular weight phenols, furfural, furfuryl alcohol and/or cellulose or cellulose-rich residues
EP0089077A2 (fr) Procédé de traitement de matériaux ligno-cellulosiques
FR2660656A1 (fr) Procede pour l&#39;isolement de l&#39;indole et agent formant un complexe d&#39;inclusion a utiliser dans ce procede.
CH572523A5 (en) Sugar recovery from sulphite waste liquors - by calcium (hydr)oxide treatment and solvent extraction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120917

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151001