EP2489968A1 - Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft - Google Patents

Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft Download PDF

Info

Publication number
EP2489968A1
EP2489968A1 EP12000697A EP12000697A EP2489968A1 EP 2489968 A1 EP2489968 A1 EP 2489968A1 EP 12000697 A EP12000697 A EP 12000697A EP 12000697 A EP12000697 A EP 12000697A EP 2489968 A1 EP2489968 A1 EP 2489968A1
Authority
EP
European Patent Office
Prior art keywords
pressure column
low
pressure
column
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12000697A
Other languages
English (en)
French (fr)
Inventor
Alexander Dr. Alekseev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to EP12000697A priority Critical patent/EP2489968A1/de
Publication of EP2489968A1 publication Critical patent/EP2489968A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04436Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system
    • F25J3/04454Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using at least a triple pressure main column system a main column system not otherwise provided, e.g. serially coupling of columns or more than three pressure levels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/04054Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04078Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
    • F25J3/0409Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • F25J3/04181Regenerating the adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04375Details relating to the work expansion, e.g. process parameter etc.
    • F25J3/04393Details relating to the work expansion, e.g. process parameter etc. using multiple or multistage gas work expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04854Safety aspects of operation
    • F25J3/0486Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04878Side by side arrangement of multiple vessels in a main column system, wherein the vessels are normally mounted one upon the other or forming different sections of the same column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04872Vertical layout of cold equipments within in the cold box, e.g. columns, heat exchangers etc.
    • F25J3/04884Arrangement of reboiler-condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04963Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipment within or downstream of the fractionation unit(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/10Processes or apparatus using separation by rectification in a quadruple, or more, column or pressure system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/50Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column
    • F25J2200/54Processes or apparatus using separation by rectification using multiple (re-)boiler-condensers at different heights of the column in the low pressure column of a double pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/32Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/62Purifying more than one feed stream in multiple adsorption vessels, e.g. for two feed streams at different pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/60Processes or apparatus using other separation and/or other processing means using adsorption on solid adsorbents, e.g. by temperature-swing adsorption [TSA] at the hot or cold end
    • F25J2205/66Regenerating the adsorption vessel, e.g. kind of reactivation gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/50Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • F25J2240/04Multiple expansion turbines in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film

Definitions

  • the invention relates to a method according to the preamble of patent claim 1.
  • the distillation column systems of the invention may be designed as two-column systems (for example, as a classic Linde double column system), or as three or more column systems.
  • they may comprise further apparatuses for obtaining highly pure products and / or other air components, in particular noble gases, for example argon recovery and / or krypton-xenon recovery.
  • distillation column in particular under “high-pressure column” and under “low-pressure column”, is understood here to mean an apparatus which has mass transfer elements for the direct countercurrent mass transfer between an ascending gas and a liquid flowing down.
  • the mass transfer elements are formed by exchange trays or packing or by a combination of both.
  • the two high-pressure column head condensers are used to generate liquid reflux from the top gas of the respective high-pressure column and are cooled with bottom liquid of the corresponding low-pressure column or another suitable cooling fluid.
  • Both high-pressure column head capacitors are designed as a condenser-evaporator.
  • Each "condenser-evaporator” has a liquefaction space and an evaporation space, which consist of liquefaction passages or evaporation passages. In the liquefaction space, the condensation of a first fluid flow is performed, in the evaporation space, the evaporation of a second fluid flow.
  • the two fluid streams are in indirect heat exchange. Evaporation and Liquefaction space is formed by groups of passages that are in heat exchange relationship with each other.
  • the "main heat exchanger” is used for cooling feed air against return flows and may be formed from one or more parallel and / or serially connected heat exchanger sections, for example from one or more plate heat exchanger blocks.
  • the "first oxygen-enriched fraction” is usually taken from the bottom of the first high-pressure column; Alternatively, it can also be taken from some practical or theoretical soils higher.
  • the "second oxygen-enriched fraction” is usually taken from the bottom of the second high-pressure column; Alternatively, it can also be taken from some practical or theoretical soils higher.
  • the "third oxygen-enriched fraction” is usually taken from the bottom of the second low-pressure column; Alternatively, it can also be taken from some practical or theoretical soils higher.
  • the invention has for its object to provide a method of the type mentioned above and a corresponding device, which have a particularly low energy consumption.
  • the gaseous oxygen product is preferably delivered with a purity of less than 98%. (These and all other percentages are to be understood molar.) It can be supplied, for example, to the combustion chamber of a power plant in which a carbonaceous fuel is burned (oxyfuel).
  • the discharge pressure is less than 2.0 bar when no pressure increase is made in an oxygen fan or compressor.
  • the third oxygen-enriched fraction which is transferred from the second to the first low-pressure column, has a lower oxygen concentration than the gaseous oxygen product; it is in the range of 40 to 90%.
  • the main heat exchanger is preferably formed by plate heat exchanger blocks. Additionally or alternatively, regenerators for cooling the second feed air stream can be used in the main heat exchanger.
  • a fourth oxygen-enriched fraction is taken off liquid from the lower region of the first high-pressure column and fed to the second low-pressure column.
  • first oxygen-enriched Fraction fed directly into the first low-pressure column
  • second part is introduced as" fourth oxygen-enriched fraction "in the second low-pressure column.
  • the further features of claim 3 allow a further reduction of the operating pressure of the second distillation column system.
  • the regeneration gas for both cleaning devices (which are usually formed by molecular sieve adsorber) is namely taken from the first low-pressure column. Only this must therefore be operated under a pressure sufficient to deliver the regeneration gas after flowing through the purifier to the atmosphere.
  • the top gas of the second low-pressure column can have a lower pressure and, after heating in the main heat exchanger, can be discharged directly to the atmosphere or into an evaporative cooler.
  • the second distillation column system may be formed as a two-capacitor system or multi-capacitor system by the second main capacitor is cooled by means of an intermediate liquid of the second low-pressure column and the second low-pressure column also comprises a sump evaporator, which is designed as a condenser-evaporator and is heated by means of a partial flow of the second feed air stream.
  • a sump evaporator which is designed as a condenser-evaporator and is heated by means of a partial flow of the second feed air stream.
  • another intermediate evaporator can be used between the two condenser evaporators (three-capacitor system).
  • the formulations which refer to "about" the first or second pressure, mean here that the corresponding pressure must be so high that the first or second feed air stream after deduction of the natural pressure losses, which he flows through lines, heat exchangers and the like Apparatus experiences, the first and second high-pressure column reached under the first and second pressure.
  • the invention also relates to a device for the cryogenic separation of air according to claims 5 to 8.
  • atmospheric air (AIR) 1 is compressed in two strands in an air compressor system. It is first brought via a pair of filters 3 from a pair of first air compressor stages 4 to a "second pressure" of 2 to 4 bar (plus pressure losses) and cooled in a pair of first aftercooler 5. Subsequently, the feed air is split into a first partial flow 100 and a second partial flow 200.
  • the first partial flow 100 includes the "first feed air stream” of the claims, but in this embodiment additionally contains a turbine air flow, which will be described in more detail below.
  • the second partial stream 200 forms the "second feed air stream" in the sense of the claims (smaller air fractions, which are used for other purposes, so-called instrument air, are neglected here).
  • first pressure 4.0 to 5.8 bar (plus pressure losses)
  • second aftercooler 7 a direct contact cooler or a combination of aftercooler and direct contact cooler can also be used.
  • a chiller for cooling the cooling water can be used.
  • the air compressor stages which are shown on the right or left in the drawing, are each formed by a single machine (each with a housing and a drive). Overall, the system has two air compressor strands. Alternatively it could be different from FIG. 1 be formed single-stranded. .
  • the first partial flow 101 is pre-cooled under the high pressure in a first direct contact cooler 102 in direct heat exchange with cooling water 103.
  • the pre-cooled first partial flow 104 is purified in a first cleaning device 105, which consists of a pair of switchable molecular sieve adsorber, and then fed via line 106 to the warm end of a main heat exchanger 8. Before it is branched into the first feed air stream 107 and a turbine air stream 9.
  • a first cleaning device 105 which consists of a pair of switchable molecular sieve adsorber
  • the first feed air stream is cooled to about dew point temperature, removed at the cold end of the main heat exchanger 8 via line 108 and fed to the first high pressure column 110 of a first distillation column system 109 which also has a first low pressure column 111 and a "first high pressure column top condenser" 113 is designed as a classic main capacitor of a conventional double column.
  • a first part of the overhead gas of the first high-pressure column 110 is condensed.
  • a second portion 128 of this head gas is warmed in the main heat exchanger and partially withdrawn via lines 129 and 130 as a gaseous medium pressure nitrogen product (MPGAN).
  • MPGAN gaseous medium pressure nitrogen product
  • the liquid nitrogen 114 obtained in the first main condenser 113 is fed to a first part 115 as reflux to the first high-pressure column 110.
  • the remainder 116 is subcooled in a first subcooling countercurrent 117 and fed via line 118 as reflux to the top of the first low pressure column 111.
  • a part 119 can be obtained from liquid nitrogen product (LIN) if needed.
  • the bottoms liquid 120 of the first high pressure column 110 is also subcooled in the subcooling countercurrent 117.
  • a first part 122 of the supercooled bottoms liquid 121 forms a "first oxygen-enriched fraction" and is introduced at a first intermediate point into the first low-pressure column 111.
  • a portion of the vaporized in the evaporation space of the main condenser oxygen is removed as "gaseous oxygen product" 123, heated in the main heat exchanger 8 to about ambient temperature and finally withdrawn via line 124 as the final product (GOX).
  • liquid oxygen is withdrawn from the sump of the first low-pressure column 111 and discharged to at least a portion 136 - optionally after subcooling in the first supercooling countercurrent 117 - as a liquid oxygen product (LOX).
  • LOX liquid oxygen product
  • a small portion 137 of the liquid sump oxygen is removed as purge stream, brought in a pump 138 to supercritical pressure, heated in the main heat exchanger 8 to about ambient temperature and finally combined with the gaseous oxygen product in line 124.
  • the top nitrogen of the first low-pressure column 111 is removed under a pressure of more than 1.3 bar, for example 1.4 to 2.0 bar, as the "first gaseous top product" 125 and after heating in the first supercooling countercurrent 117 and in the main heat exchanger 8 withdrawn warm via line 126 and finally at least temporarily blown off via line 127 into the atmosphere (ATM).
  • ATM atmosphere
  • parts 52, 53 of the warm first gaseous overhead product are used as regeneration gas in both cleaning devices 105, 205, optionally after heating in a common regeneration gas heater 54.
  • the second partial flow 201 of the feed air is pre-cooled below about the second pressure in a second direct contact cooler 202 in direct heat exchange with cooling water 203.
  • the pre-cooled second substream 204 is purified in a second purification device 205, which consists of a pair of reversible molecular sieve adsorber, at about the second pressure and then fed via line 206 to the hot end of a main heat exchanger 8.
  • the second feed air stream is cooled to about dew point temperature, taken at the cold end of the main heat exchanger 8 via line 208 and the second high-pressure column 210 of a second distillation column system 209 fed, which also has a second low-pressure column 211 and a "second high-pressure column head capacitor" 213.
  • the second high-pressure column top condenser 213 is likewise designed here as a classic main condenser of a conventional double column.
  • a first part of the overhead gas of the second high-pressure column 210 is condensed.
  • a second portion 228 of the overhead gas of the second high pressure column 110 is warmed in the main heat exchanger and partially withdrawn via line 230 as gaseous pressure nitrogen product (PGAN).
  • GPN gaseous pressure nitrogen product
  • the liquid nitrogen 214 obtained in the second main condenser 213 is fed to a first part 215 as reflux to the second high-pressure column 210.
  • the remainder 216 is subcooled in a second subcooling countercurrent 217 and fed via line 218 as reflux to the top of the second low pressure column 211.
  • the bottom liquid 220 of the second high-pressure column 210 forms a "second oxygen-enriched fraction" and is subcooled in the subcooling countercurrent 217.
  • the supercooled bottoms liquid 221 is introduced into the second low pressure column 211 at an intermediate location via an optional LOX filter 219 formed by a liquid adsorber.
  • LOX filter 219 formed by a liquid adsorber.
  • a part 229 of the supercooled bottoms liquid 121 from the first high-pressure column 110 is fed in at this intermediate point.
  • the top nitrogen of the second low-pressure column 211 is removed under a pressure of less than 1.3 bar as "second gaseous top product" 225 and after warming in the second supercooling countercurrent 217 and in the main heat exchanger 8 via line 226 warm withdrawn and finally via line 127 without pressure Evaporative cooler 50 fed as a dry gas.
  • the evaporative cooler generates cold cooling water 51, 103, 203 for both direct contact coolers 102, 202.
  • the turbine air flow 9, 10 is supplied from below an intermediate temperature of the main heat exchanger 8 of an air turbine 11, which is coupled to a generator 12, and there relaxed about to the operating pressure of the first low-pressure column 111.
  • the relaxed turbine air stream 13 is fed to the first low-pressure column 11.
  • a portion 131 of the second portion 129 of the overhead gas of the first high-pressure column 110 in a nitrogen turbine 132 which is coupled to a generator 133, working expanded to slightly above atmospheric pressure, fed via line 134 to the main heat exchanger 8 and there mixed with the first gaseous top product 125, 126 from the first low-pressure column 11.
  • both main capacitors 113, 213 are designed as liquid bath evaporators, that is to say they are formed by heat exchanger blocks which are immersed in a bath of bottom liquid of the corresponding low pressure column 111, 211, this liquid being thrown over the evaporation passages by the thermosiphon effect.
  • the warm turbine may be formed by the air turbine 11 and the cold turbine by the nitrogen turbine 132.
  • the exit stream 134 of the nitrogen turbine 132 can be warmed in separate passages of the main heat exchanger 8 and blown off into the atmosphere or mixed with the stream 225/226.
  • the embodiment of FIG. 2 differs therefrom in that the second main condenser (the "second high pressure column head condenser") 213 is formed as a falling film evaporator and that in the second distillation column system, the high pressure column 210 and the low pressure column 211 are arranged side by side instead of one above the other. From the bottom of the second low pressure column 211, the entire bottoms liquid via line 423 and a pump 435 is removed liquid. A first part thereof is led to the first low-pressure column 111 as a "third oxygen-enriched fraction" 436. The remaining bottom liquid 437 is conducted into the evaporation space of the second main condenser 213 and partially evaporated there.
  • the second main condenser the "second high pressure column head condenser”
  • the partially vaporized fraction 438 is returned to the bottom of the second low-pressure column 211.
  • the pump 435 thus fulfills two functions, namely the lifting of the third oxygen-enriched fraction 436 to the second intermediate point of the first low-pressure column 111 and ensuring the circulation in the falling-film evaporator 213.
  • second high-pressure column 210 and second low-pressure column 211 are generally particularly favorable.
  • the two columns can be analogous to FIG. 1 be arranged one above the other as a conventional double column with falling-film evaporator 213 therebetween.
  • FIG. 3 similar FIG. 2 However, here the entire bottom liquid 423, 537 of the second low pressure column 211 is introduced by means of the pump 435 in the evaporation space of the falling film evaporator 213.
  • the partially vaporized fraction flowing out of the falling film evaporator is subjected to phase separation in a separator 539.
  • the gas portion 538 is returned to the second low-pressure column, the liquid portion 540 is guided by means of another pump 541 as a "third oxygen-enriched fraction" 436 to the first low-pressure column 111.
  • the average temperature difference in the second high-pressure column top condenser 213 and thus the operating pressure in the second high-pressure column 210 and the energy consumption during compression of the second feed air stream 208 are reduced.
  • FIG. 4 corresponds largely FIG. 3 , Here, however, the columns and the main condenser of the second distillation column system are stacked in an unusual manner.
  • the second high-pressure column 210 is not arranged as in a conventional double column below, but above the second low-pressure column 211; the turn designed as a falling film evaporator second high-pressure column head capacitor sits at the top.
  • the procedural advantage of the procedure of FIG. 3 can be achieved without a second pump 541; the third oxygen-enriched fraction 436, by virtue of its hydrostatic potential, flows by itself to the second intermediate point of the first low-pressure column 111.
  • the procedure of FIG. 5 has a divided low-pressure column 611, 612 in the second distillation column system. This contains a total of three condenser-evaporator 213, 614, 615th
  • the section 611 of the second low-pressure column corresponds to the upper section (slightly below the feeds of the oxygen-enriched liquids) of the second low-pressure column 211 in FIG FIG. 4 , He is in FIG. 5 analogous to FIG. 4 arranged below the second high-pressure column 210.
  • the remaining part 612 of the second low-pressure column is located above the second high-pressure column 210 and contains the three condenser-evaporators 213, 614, 615, all of which are designed as falling-film evaporators.
  • the top one represents the high pressure column top condenser but here not with bottoms liquid, but with an intermediate liquid 616 of the second low-pressure column 611, 612 operated, which is raised by a pump 617.
  • the second intermediate evaporator 614 is used for partial evaporation of a second, oxygen-rich intermediate liquid of the second low-pressure column; the condenser-evaporator 615 represents the sump evaporator of the second low-pressure column 611, 612. Both are heated by means of a heating air flow 609, which is introduced together with the second feed air stream 208 via line 608.
  • the heating air stream 620, 622 flows through first the bottom evaporator 615 and then the intermediate evaporator 614. Liquid recovered in the condenser-evaporators 615, 614 or the fraction remaining in vapor form are passed via the lines 621 and 623 to the second high-pressure column 210 and there at suitable intermediate points fed.
  • the second distillation column system of the FIG. 4 with only one liquid pump.
  • the third oxygen-enriched fraction 236 alone can flow from the second low-pressure column 612 into the first low-pressure column 111 due to the hydrostatic potential.
  • FIG. 6 shows a second distillation column system 210, 611, 612, the procedurally with that of FIG. 5 is identical.
  • the section 611 of the second low-pressure column is arranged next to the two other column sections 210, 612.
  • the pump 617 must thereby overcome a smaller height difference; however, another pump 235 for the third oxygen-enriched fraction 223, 236 is needed regularly.
  • FIGS. 7 and 8th differ solely by the Figures 5 or 6, that an intermediate portion 812 is not disposed below, but above the second high-pressure column 210.
  • the second intermediate evaporator 614 is omitted.
  • a small portion of the liquid nitrogen (118 in FIG. 1 ) from the first main capacitor (113 in FIG. 1 ) on the Head of the second low-pressure column 211 and the portion 611 of the second low-pressure column are abandoned.
  • FIG. 9 shows one opposite FIG. 1 modified air compressor system that can be used in the invention.
  • This consists of two air compressor strands 3a / 4a / 5a and 3b / 4b / 5b with different final pressure.
  • the illustrated on the left strand 3a / 4a / 5a is formed by a machine with a housing and a drive, the right represented by another machine with a housing and a drive.
  • the compressor symbols 4, 4a, 4b, 6 can each stand for one or more compressor stages, optionally with appropriate intermediate cooling.
  • the two distillation column systems are not shown in detail (box 800).
  • the portion 131 of the head gas of the first high-pressure column is work-expanded in two parallel nitrogen turbines 732a, 732b, of which the first 732a as in FIG. 1 is coupled to a generator 133.
  • the second nitrogen turbine 732b drives a cold compressor 733 in which a part 706, 707 of the feed air 206 compressed to the second pressure is recompressed to the first pressure.
  • the cold-compressed air portion 708 is then combined with the remaining high-pressure air 106. As a result, energy is saved on the inlet side air compressor system.
  • FIG. 10 shown air compressor system (analog FIG. 1 ) can also the air compressor system of FIG. 9 be used.
  • FIG. 11 similar FIG. 10 However, here another air stream 906, 907, 908 is passed through the cold compressor 733. This represents a part of the high-pressure air flow 106 from the air compressor system and is further compressed in the cold compressor 733 well beyond the first pressure to then serve as a turbine stream 9. As a result, the cooling capacity of the air turbine 11 increases.
  • FIG. 12 will be like in FIG. 10 a portion 706, 707, 708 of the second partial flow of the feed air, which is below the lower second pressure, post-compressed in the cold compressor 733.
  • the main heat exchanger is constructed of two physically separate and parallel sections 8a and 8b, each consisting of one or more heat exchanger blocks.
  • second gaseous top product 226 from the second low-pressure column (not shown here) into two partial streams 726, 727 branches, which are passed through the main heat exchanger sections 8a and 8b.
  • the warm stream 728 is blown off into the atmosphere (ATM). Power 727/728 serves as equalizing current.
  • the turbine stream 9 are recompressed in the cold compressor.
  • FIG. 13 As a compensating flow for the two main heat exchanger sections 8a, 8b is in FIG. 13 a portion 506 of the partial air flow 106 is used, which is below the higher first pressure. Alternatively, could also be in FIG. 13 analogous to FIG. 11 the turbine stream 9 are recompressed in the cold compressor.
  • FIG. 14 becomes different from FIG. 13 the purge stream 137, which is pressurized by the pump 138, is vaporized (or pseudo-vaporized if the pressure is supercritical) in a separate third main heat exchanger section 8c in indirect heat exchange with at least a portion 508, 509 of the cold recompressed air stream 708 and warmed up.
  • the turbine stream 9 are recompressed in the cold compressor.
  • FIG. 15 has a fourth separate main heat exchanger section 8d, in which the air 707 to be cold-compressed is cooled upstream of the cold compressor 733 against the exhaust gas 734b of the nitrogen turbine 732b.
  • the heated turbine exhaust gas 735b is then no longer introduced into the main heat exchanger section 8b, in contrast to the exhaust gas 734a of the generator-braked nitrogen turbine 732a.
  • FIG. 15 could also be in FIG. 15 analogous to FIG. 11 the turbine stream 9 are recompressed in the cold compressor.
  • the main heat exchanger section 8a may also be formed by a pair of regenerators instead of the otherwise conventional plate heat exchanger blocks.
  • the Figures 16 and 17 show two concrete examples of this, their heat exchanger and turbine circuits otherwise on FIG. 12 based.
  • One regenerator of the regenerator pair 88 heats a partial flow 726 of the "second gaseous overhead" 226 from the second low pressure column while the other cools the airflow 206 which is below the lower second pressure.
  • FIG. 17 differs from FIG. 16 in that the regenerator 88 is also used for cleaning the second air part 204, 206 by freezing water and carbon dioxide. This is sufficient for a single-stranded cleaning device 105, which is operated at about the first pressure.
  • the LOX filter 219 above becomes FIG. 1 has been described as optional, mandatory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Das Verfahren und die Vorrichtung dienen zur Tieftemperaturzerlegung von Luft in einem Destilliersystem, das eine erstes Destilliersäulen-System (109) und ein zweites Destilliersäulen-System (209) aufweist, wobei das erste Destilliersäulen-System (109) eine erste Hochdrucksäule (110), eine erste Niederdrucksäule (111) und einen ersten Hochdrucksäulen-Kopfkondensator (113) aufweist, der als Kondensator-Verdampfer ausgebildet ist, und das das zweite Zwei-Säulen-System eine zweite Hochdrucksäule (210), eine zweite Niederdrucksäule (211) und einen zweiten Hochdrucksäulen-Kopfkondensator (213) aufweist, der als Kondensator-Verdampfer ausgebildet ist. Ein erster und ein zweiter Einsatzluftstrom (100, 104, 106, 108; 200, 204, 206, 208) werden in einem Hauptwärmetauscher (8) abgekühlt. Der erste Einsatzluftstrom (108) wird unter einem ersten Druck in die erste Hochdrucksäule (110) eingeleitet. Der zweite Einsatzluftstrom (208) wird unter einem zweiten Druck, der niedriger ist als der erste Druck, in die zweite Hochdrucksäule (210) eingeleitet. Eine erste sauerstoffangereicherte Fraktion (120, 121, 123) wird flüssig aus dem unteren Bereichs der ersten Hochdrucksäule (110) entnommen und der ersten Niederdrucksäule (111) an einer ersten Zwischenstelle zugeleitet. Eine zweite sauerstoffangereicherte Fraktion (220, 221) wird flüssig aus dem unteren Bereich der zweiten Hochdrucksäule (210) entnommen und der zweiten Niederdrucksäule (211) zugeleitet. Eine dritte sauerstoffangereicherte Fraktion (223, 236) wird aus dem unteren Bereich der zweiten Niederdrucksäule (211) entnommen und der ersten Niederdrucksäule (111) an einer zweiten Zwischenstelle zugeleitet, die unterhalb der ersten Zwischenstelle angeordnet ist. Der ersten Niederdrucksäule (111) wird ein erstes gasförmiges Kopfprodukt (125, 126) entnommen und im Hauptwärmetauscher (8) angewärmt. Der zweiten Niederdrucksäule (211) wird ein zweites gasförmiges Kopfprodukt (225, 226) entnommen und im Hauptwärmetauscher (8) angewärmt. Der ersten Niederdrucksäule (111) wird ein gasförmiges Sauerstoffprodukt (123, 124) entnommen und als Endprodukt (GOX) abgezogen. Die dritte sauerstoffangereicherte Fraktion (223, 236) wird in flüssigem Zustand aus dem unteren Bereich der zweiten Niederdrucksäule (211) entnommen und in flüssigem Zustand in die ersten Niederdrucksäule (111) eingeleitet. Die erste und die zweite Kopffraktion (125; 225) werden in getrennten Passagen des Hauptwärmetauschers (8) angewärmt.

Description

  • Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1.
  • Verfahren und Vorrichtungen zur Tieftemperaturzerlegung von Luft sind zum Beispiel aus Hausen/Linde, Tieftemperaturtechnik, 2. Auflage 1985, Kapitel 4 (Seiten 281 bis 337) bekannt.
  • Die Destilliersäulen-Systeme der Erfindung können als Zwei-Säulen-Systeme (zum Beispiel als klassisches Linde-Doppelsäulensystem), oder auch als Drei- oder Mehr-Säulen-Systeme ausgebildet sein. Sie können zusätzlich zu den Kolonnen zur Stickstoff-Sauerstoff-Trennung weitere Vorrichtungen zur Gewinnung hochreiner Produkte und/oder anderer Luftkomponenten, insbesondere von Edelgasen aufweisen, beispielsweise eine Argongewinnung und/oder eine Krypton-Xenon-Gewinnung.
  • Unter "Destilliersäule", insbesondere unter "Hochdrucksäule" und unter "Niederdrucksäule", wird hier ein Apparat verstanden, der Stoffaustauschelemente für den direkten Gegenstrom-Stoffaustausch zwischen einem aufsteigenden Gas und einem einer herabfließenden Flüssigkeit aufweist. Die Stoffaustauschelemente werden durch Austauschböden oder Packung oder durch eine Kombination aus beidem gebildet.
  • Die beiden Hochdrucksäulen-Kopfkondensatoren dienen zur Erzeugung von flüssigem Rücklauf aus dem Kopfgas der jeweiligen Hochdrucksäule und werden mit Sumpfflüssigkeit der entsprechenden Niederdrucksäule oder einem anderen geeigneten Kühlfluid gekühlt. Beide Hochdrucksäulen-Kopfkondensatoren sind als Kondensator-Verdampfer ausgebildet. Jeder "Kondensator-Verdampfer" weist einen Verflüssigungsraum und einen Verdampfungsraum auf, die aus Verflüssigungspassagen beziehungsweise Verdampfungspassagen bestehen. In dem Verflüssigungsraum wird die Kondensation eines ersten Fluidstroms durchgeführt, in dem Verdampfungsraum die Verdampfung eines zweiten Fluidstroms. Die beiden Fluidströme stehen dabei in indirektem Wärmeaustausch. Verdampfungs- und Verflüssigungsraum werden durch Gruppen von Passagen gebildet, die untereinander in Wärmeaustauschbeziehung stehen.
  • Der "Hauptwärmetauscher" dient zur Abkühlung von Einsatzluft gegen Rückströme und kann aus einem oder mehreren parallel und/oder seriell verbundenen Wärmetauscherabschnitten gebildet sein, zum Beispiel aus einem oder mehreren Plattenwärmetauscher-Blöcken.
  • Die "erste sauerstoffangereicherte Fraktion" wird in der Regel am Sumpf der ersten Hochdrucksäule entnommen; alternativ kann sie auch einige praktische oder theoretische Böden höher entnommen werden. Die "zweite sauerstoffangereicherte Fraktion" wird in der Regel am Sumpf der zweiten Hochdrucksäule entnommen; alternativ kann sie auch einige praktische oder theoretische Böden höher entnommen werden. Die "dritte sauerstoffangereicherte Fraktion" wird in der Regel am Sumpf der zweiten Niederdrucksäule entnommen; alternativ kann sie auch einige praktische oder theoretische Böden höher entnommen werden.
  • Ein Verfahren der eingangs genannten Art ist aus US 4254629 (Figur 2) bekannt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art und eine entsprechende Vorrichtung anzugeben, die einen besonders niedrigen Energieverbrauch aufweisen.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
  • Zunächst erscheint es widersinnig, die dritte sauerstoffangereicherte Fraktion nicht wie bisher bekannt in gasförmigem Zustand, sondern in flüssigem Zustand von der zweiten Niederdrucksäule in die erste Niederdrucksäule überzuleiten. Im Regelfall muss nämlich eine Pumpe eingesetzt werden, um die Flüssigkeit entsprechend anzuheben; alternativ müsste zusätzlicher Aufwand in eine Säulenanordnung gesteckt werden, in welcher ein hydrostatisches Potenzial den Flüssigkeitstransport antreibt.
  • Auch die Anwärmung der beiden Niederdrucksäulen-Kopfprodukte in getrennten Passagen benötigt zusätzlichen apparativen Aufwand, der zunächst unnötig erscheint, da beide Ströme regelmäßig stickstoffangereicherte Restströme vergleichbarer Zusammensetzung darstellen.
  • Im Rahmen der Erfindung hat sich jedoch herausgestellt, dass dadurch eine Kombination dieser beiden Maßnahmen, die jeweils für sich kontraproduktiv erscheinen, eine Entkopplung der Drücke der beiden Niederdrucksäulen möglich ist und damit das zweite Destilliersäulen-System unter einem besonders niedrigen Druck betrieben werden kann. Dadurch wird Energie bei Verdichten des zweiten Einsatzluftstroms eingespart, und zwar überraschenderweise so viel, dass der oben erwähnte zusätzliche Aufwand gerechtfertigt ist.
  • Bei der Erfindung wird das gasförmige Sauerstoffprodukt vorzugsweise mit einer Reinheit von weniger als 98 % abgegeben. (Diese sowie alle weiteren Prozentangaben sind molar zu verstehen.) Es kann beispielsweise an die Brennkammer eines Kraftwerks geliefert werden, in der ein kohlenstoffhaltiger Brennstoff verbrannt wird (Oxyfuel). Der Abgabedruck beträgt weniger als 2,0 bar, wenn keine Druckerhöhung in einem Sauerstoffgebläse oder -verdichter vorgenommen wird.
  • Die dritte sauerstoffangereicherte Fraktion, die von der zweiten in die erste Niederdrucksäule übergeleitet wird, weist eine geringere Sauerstoffkonzentration als das gasförmige Sauerstoffprodukt auf; sie liegt im Bereich von 40 bis 90 %.
  • Der Hauptwärmetauscher wird vorzugsweise durch Plattenwärmetauscher-Blöcke gebildet. Zusätzlich oder alternativ können im Hauptwärmetauscher Regeneratoren zur Abkühlung des zweiten Einsatzluftstroms verwendet werden.
  • Bei der Erfindung werden beispielsweise 40 bis 60 % der Einsatzluft in das erste Destilliersäulen-System eingespeist, der Rest in das zweite Destilliersäulen-System.
  • Gemäß einem weiteren Aspekt wird eine vierte sauerstoffangereicherte Fraktion flüssig aus dem unteren Bereich der ersten Hochdrucksäule entnommen und der zweiten Niederdrucksäule zugeleitet wird. Dadurch werden besonders günstige Rücklaufverhältnisse in beiden Kolonnen erreicht, was eine besonders effiziente Rektifikation ermöglicht. In der Praxis wird beispielsweise nur ein erster Teil der Sumpfflüssigkeit der ersten Hochdrucksäule als "erste sauerstoffangereicherte Fraktion" direkt in die erste Niederdrucksäule eingespeist; ein zweiter Teil wird als "vierte sauerstoffangereicherte Fraktion" in die zweite Niederdrucksäule eingeleitet.
  • Die weiteren Merkmale des Patentanspruchs 3 erlauben eine weitere Absenkung des Betriebsdrucks des zweiten Destilliersäulen-Systems. Das Regeneriergas für beide Reinigungsvorrichtungen (die in der Regel durch Molekularsieb-Adsorber gebildet werden) wird nämlich aus der ersten Niederdrucksäule entnommen. Nur diese muss deshalb unter einem Druck betrieben werden, der ausreicht, um das Regeneriergas nach Durchströmen der Reinigungsvorrichtung an die Atmosphäre abzugeben. Das Kopfgas der zweiten Niederdrucksäule kann demgegenüber einen niedrigeren Druck aufweisen und nach dem Anwärmen im Hauptwärmetauscher unmittelbar an die Atmosphäre oder in einen Verdünstungskühler abgegeben werden.
  • Das zweite Destilliersäulen-System kann als Zwei-Kondensatoren-System oder Mehr-Kondensatoren-System ausgebildet sein, indem der zweite Hauptkondensator mittels einer Zwischenflüssigkeit der zweiten Niederdrucksäule gekühlt wird und die zweite Niederdrucksäule außerdem einen Sumpfverdampfer aufweist, der als Kondensator-Verdampfer ausgebildet ist und mittels eines Teilstroms des zweiten Einsatzluftstroms beheizt wird. Zusätzlich kann ein weiterer Zwischenverdampfer zwischen den beiden Kondensator-Verdampfern eingesetzt werden (Drei-Kondensatoren-System).
  • Die Formulierungen, die sich auf "etwa" den ersten beziehungsweise zweiten Druck beziehen, bedeuten hier, dass der entsprechende Druck so hoch sein muss, dass der erste beziehungsweise zweite Einsatzluftstrom nach Abzug der natürlichen Druckverluste, die er beim Durchströmen von Leitungen, Wärmetauschern und ähnlichen Apparaten erfährt, die erste beziehungsweise zweite Hochdrucksäule unter dem ersten beziehungsweise zweiten Druck erreicht.
  • Die Erfindung betrifft außerdem eine Vorrichtung zur Tieftemperaturzerlegung von Luft gemäß den Patentansprüchen 5 bis 8.
  • Die Erfindung sowie weitere Einzelheiten der Erfindung werden im Folgenden anhand von in den Zeichnungen schematisch dargestellten Ausführungsbeispielen näher erläutert. Hierbei zeigen:
  • Figur 1
    ein erstes Ausführungsbeispiel der Erfindung mit zwei Doppelsäulen, die jeweils einen Flüssigkeitsbadverdampfer als Hochdrucksäulen-Kopfkondensator aufweisen,
    Figuren 2 bis 4
    ähnliche Systeme, bei denen der zweite Hochdrucksäulen-Kopfkondensator als Fallfilmverdampfer ausgebildet ist,
    Figuren 5 bis 8
    weitere Ausführungsbeispiele mit weiteren Kondensatoren im zweiten Destilliersäulen-System,
    Figur 9a und 9b
    zwei gegenüber Figur 1 abgewandelte Luftverdichter-Systeme und
    Figuren 10 bis 17
    weitere Ausführungsformen der Erfindung.
  • In Figur 1 wird atmosphärische Luft (AIR) 1 in einem Luftverdichter-System in zwei Strängen verdichtet. Dabei wird sie zunächst über ein Paar von Filtern 3 von einem Paar erster Luftverdichterstufen 4 auf einen "zweiten Druck" von 2 bis 4 bar (plus Druckverlusten) gebracht und in einem Paar erster Nachkühler 5 abgekühlt. Anschließend wird die Einsatzluft auf einen ersten Teilstrom 100 und einen zweiten Teilstrom 200 aufgeteilt. Der erste Teilstrom 100 umfasst den "ersten Einsatzluftstrom" der Patentansprüche, enthält aber in diesem Ausführungsbeispiel zusätzlich einen Turbinenluftstrom, der weiter unten näher beschrieben wird. Der zweite Teilstrom 200 bildet den "zweiten Einsatzluftstrom" im Sinne der Ansprüche (kleinere Luftanteile, die für andere Zwecke benutzt werden, so genannte Instrumentenluft, werden hier vernachlässigt). Er wird ebenfalls zweisträngig in einem Paar zweiter Luftverdichterstufen 6 auf einen "ersten Druck" von 4,0 bis 5,8 bar (plus Druckverlusten) gebracht und in einem Paar zweiter Nachkühler 7 abgekühlt. Anstelle eines Nachkühlers kann auch ein Direktkontaktkühler oder eine Kombination aus Nachkühler und Direktkontaktkühler verwendet werden. Gegebenenfalls kann auch eine Kältemaschine zum Kühlen des Kühlwassers eingesetzt werden.
  • Die Luftverdichterstufen, die rechts beziehungsweise links in der Zeichnung dargestellt sind, werden jeweils durch eine einzige Maschine gebildet (mit je einem Gehäuse und je einem Antrieb). Insgesamt weist das System zwei Luftverdichter-Stränge auf. Alternativ könnte es abweichend von Figur 1 einsträngig ausgebildet sein. ,
  • Der erste Teilstrom 101 wird unter dem hohen Druck in einem ersten Direktkontaktkühler 102 in direktem Wärmeaustausch mit Kühlwasser 103 vorgekühlt.
  • Der vorgekühlte erste Teilstrom 104 wird in einer ersten Reinigungsvorrichtung 105, die aus einem Paar umschaltbarer Molekularsieb-Adsorber besteht, gereinigt und anschließend über Leitung 106 dem warmen Ende eines Hauptwärmetauschers 8 zugeleitet. Vorher wird er in den ersten Einsatzluftstrom 107 und einen Turbinenluftstrom 9 verzweigt.
  • Der erste Einsatzluftstrom wird auf etwa Taupunktstemperatur abgekühlt, am kalten Ende des Hauptwärmetauschers 8 über Leitung 108 entnommen und der ersten Hochdrucksäule 110 eines ersten Destilliersäulen-Systems 109 zugeleitet, das außerdem eine erste Niederdrucksäule 111 und einen "ersten Hochdrucksäulen-Kopfkondensator" 113 aufweist, der als klassischer Hauptkondensator einer konventionellen Doppelsäule ausgebildet ist.
  • In dem Hauptkondensator 113 wird ein erster Teil des Kopfgases der ersten Hochdrucksäule 110 kondensiert. Ein zweiter Teil 128 dieses Kopfgases wird im Hauptwärmetauscher angewärmt und teilweise über die Leitungen 129 und 130 als gasförmiges Mitteldruck-Stickstoffprodukt (MPGAN) abgezogen.
  • Der in dem ersten Hauptkondensator 113 gewonnene flüssige Stickstoff 114 wird zu einem ersten Teil 115 als Rücklauf auf die erste Hochdrucksäule 110 aufgegeben. Der Rest 116 wird in einem ersten Unterkühlungs-Gegenströmer 117 unterkühlt und über Leitung 118 als Rücklauf auf den Kopf der ersten Niederdrucksäule 111 aufgegeben. Ein Teil 119 kann bei Bedarf aus Flüssigstickstoffprodukt (LIN) gewonnen werden.
  • Die Sumpfflüssigkeit 120 der ersten Hochdrucksäule 110 wird ebenfalls im Unterkühlungs-Gegenströmer 117 unterkühlt. Ein erster Teil 122 der unterkühlten Sumpfflüssigkeit 121 bildet eine "erste sauerstoffangereicherte Fraktion" und wird an einer ersten Zwischenstelle in die erste Niederdrucksäule 111 eingeleitet. Unmittelbar am ersten Hauptkondensator 113 wird ein Teil des in dem Verdampfungsraum des Hauptkondensators verdampften Sauerstoffs als "gasförmiges Sauerstoffprodukt" 123 entnommen, im Hauptwärmetauscher 8 auf etwa Umgebungstemperatur erwärmt und schließlich über Leitung 124 als Endprodukt (GOX) abgezogen. Über Leitung 135 wird flüssiger Sauerstoff aus dem Sumpf der ersten Niederdrucksäule 111 abgezogen und mindestens zu einem Teil 136 - gegebenenfalls nach Unterkühlung im ersten Unterkühlungs-Gegenströmer 117 - als Flüssigsauerstoffprodukt (LOX) abgeführt.
  • Alternativ oder zusätzlich wird ein kleiner Teil 137 des flüssigen Sumpfsauerstoffs als Spülstrom entnommen, in einer Pumpe 138 auf überkritischen Druck gebracht, im Hauptwärmetauscher 8 auf etwa Umgebungstemperatur angewärmt und schließlich mit dem gasförmigen Sauerstoffprodukt in Leitung 124 vereinigt.
  • Der Kopfstickstoff der ersten Niederdrucksäule 111 wird unter einem Druck von mehr als 1,3 bar, zum Beispiel 1,4 bis 2,0 bar, als "erstes gasförmiges Kopfprodukt" 125 entnommen und nach Anwärmung im ersten Unterkühlungs-Gegenströmer 117 und im Hauptwärmetauscher 8 über Leitung 126 warm abgezogen und schließlich mindestens zeitweise über Leitung 127 in die Atmosphäre (ATM) abgeblasen. Mindestens zeitweise werden Teile 52, 53 des warmen ersten gasförmigen Kopfprodukts als Regeneriergas in beiden Reinigungsvorrichtungen 105, 205 eingesetzt, gegebenenfalls nach Erwärmung in einem gemeinsamen Regeneriergaserhitzer 54.
  • Der zweite Teilstrom 201 der Einsatzluft wird unter etwa dem zweiten Druck in einem zweiten Direktkontaktkühler 202 in direktem Wärmeaustausch mit Kühlwasser 203 vorgekühlt. Der vorgekühlte zweite Teilstrom 204 wird in einer zweiten Reinigungsvorrichtung 205, die aus einem Paar umschaltbarer Molekularsieb-Adsorber besteht, unter etwa dem zweiten Druck gereinigt und anschließend über Leitung 206 dem warmen Ende eines Hauptwärmetauschers 8 zugeleitet. Dort wird der zweite Einsatzluftstrom auf etwa Taupunktstemperatur abgekühlt, am kalten Ende des Hauptwärmetauschers 8 über Leitung 208 entnommen und der zweiten Hochdrucksäule 210 eines zweiten Destilliersäulen-Systems 209 zugeleitet, das außerdem eine zweite Niederdrucksäule 211 und einen "zweiten Hochdrucksäulen-Kopfkondensator" 213 aufweist. Der zweite Hochdrucksäulen-Kopfkondensator 213 ist hier ebenfalls als klassischer Hauptkondensator einer konventionellen Doppelsäule ausgebildet.
  • In dem zweiten Hauptkondensator 213 wird ein erster Teil des Kopfgases der zweiten Hochdrucksäule 210 kondensiert. Ein zweiter Teil 228 der Kopfgases der zweiten Hochdrucksäule 110 wird im Hauptwärmetauscher angewärmt und teilweise über die Leitung 230 als gasförmiges Druck-Stickstoffprodukt (PGAN) abgezogen.
  • Der in dem zweiten Hauptkondensator 213 gewonnene flüssige Stickstoff 214 wird zu einem ersten Teil 215 als Rücklauf auf die zweite Hochdrucksäule 210 aufgegeben.
  • Der Rest 216 wird in einem zweiten Unterkühlungs-Gegenströmer 217 unterkühlt und über Leitung 218 als Rücklauf auf den Kopf der zweiten Niederdrucksäule 211 aufgegeben.
  • Die Sumpfflüssigkeit 220 der zweiten Hochdrucksäule 210 bildet eine "zweite sauerstoffangereicherte Fraktion" und wird im Unterkühlungs-Gegenströmer 217 unterkühlt. Die unterkühlte Sumpfflüssigkeit 221 wird über ein fakultatives LOX-Filter 219, das durch einen Flüssigadsorber gebildet wird, an einer Zwischenstelle in die zweite Niederdrucksäule 211 eingeleitet. An dieser Zwischenstelle wird außerdem ein Teil 229 der unterkühlten Sumpfflüssigkeit 121 aus der ersten Hochdrucksäule 110 zugespeist.
  • Aus dem Sumpf der zweiten Niederdrucksäule 211 beziehungsweise dem Flüssigkeitsbad des zweiten Hauptkondensators 213 wird ein "dritte sauerstoffangereicherte Fraktion" 223, 236 flüssig entnommen und mittels einer Flüssigpumpe 235 zu einer zweiten Zwischenstelle der ersten Niederdrucksäule 111 geführt.
  • Der Kopfstickstoff der zweiten Niederdrucksäule 211 wird unter einem Druck von weniger als 1,3 bar als "zweites gasförmiges Kopfprodukt" 225 entnommen und nach Anwärmung im zweiten Unterkühlungs-Gegenströmer 217 und im Hauptwärmetauscher 8 über Leitung 226 warm abgezogen und schließlich über Leitung 127 drucklos einem Verdunstungskühler 50 als trockenes Gas zugeleitet. Der Verdunstungskühler erzeugt kaltes Kühlwasser 51, 103, 203 für beide Direktkontaktkühler 102, 202.
  • Kälte wird in dem Verfahren durch arbeitsleistende Entspannung zweier Prozessströme in Expansionsturbinen erzeugt. Der Turbinenluftstrom 9, 10 wird von unter einer Zwischentemperatur des Hauptwärmetauschers 8 einer Luftturbine 11, die mit einem Generator 12 gekoppelt ist, zugeführt und dort etwa auf den Betriebsdruck der ersten Niederdrucksäule 111 entspannt. Der entspannte Turbinenluftstrom 13 wird der ersten Niederdrucksäule 11 zugeführt. Außerdem wird ein Teil 131 des zweiten Teils 129 des Kopfgases der ersten Hochdrucksäule 110 in einer Stickstoffturbine 132, die mit einem Generator 133 gekoppelt ist, arbeitsleistend auf etwas über Atmosphärendruck entspannt, über Leitung 134 dem Hauptwärmetauscher 8 zugeführt und dort mit dem ersten gasförmigen Kopfprodukt 125, 126 aus der ersten Niederdrucksäule 11 vermischt.
  • Im Ausführungsbeispiel der Figur 1 sind beide Hauptkondensatoren 113, 213 als Flüssigkeitsbadverdampfer ausgebildet, das heißt sie werden durch Wärmetauscherblöcke gebildet, die in ein Bad aus Sumpfflüssigkeit der entsprechenden Niederdrucksäule 111, 211 eingetaucht sind, wobei diese Flüssigkeit durch den Thermosiphoneffekt durch die Verdampfungspassagen umgeworfen wird.
  • In einem abweichenden Ausführungsbeispiel kann die warme Turbine durch die Luftturbine 11 und die kalte Turbine durch die Stickstoffturbine 132 gebildet werden. Es gibt außerdem zwei weitere Varianten für den Austrittsstrom 134 der Stickstoffturbine 132; er kann in separaten Passagen des Hauptwärmetauschers 8 angewärmt und in die Atmosphäre abgeblasen oder mit dem Strom 225/226 vermischt werden.
  • Die Ausführungsform von Figur 2 unterscheidet sich hiervon dadurch, dass der zweite Hauptkondensator (der "zweite Hochdrucksäulen-Kopfkondensator") 213 als Fallfilmverdampfer ausgebildet ist und dass im zweiten Destilliersäulen-System die Hochdrucksäule 210 und die Niederdrucksäule 211 nebeneinander statt übereinander angeordnet sind. Vom Sumpf der zweiten Niederdrucksäule 211 wird die gesamte Sumpfflüssigkeit über Leitung 423 und eine Pumpe 435 flüssig entnommen. Ein erster Teil davon wird als "dritte sauerstoffangereicherte Fraktion" 436 zur ersten Niederdrucksäule 111 geführt. Die restliche Sumpfflüssigkeit 437 wird in den Verdampfungsraum des zweiten Hauptkondensators 213 geleitet und dort partiell verdampft. Die partiell verdampfte Fraktion 438 wird zum Sumpf der zweiten Niederdrucksäule 211 zurückgeleitet. Die Pumpe 435 erfüllt damit zwei Funktionen, nämlich das Anheben der dritten sauerstoffangereicherten Fraktion 436 zur zweiten Zwischenstelle der ersten Niederdrucksäule 111 und das Sicherstellen des Umlaufs im Fallfilmverdampfer 213.
  • Bei der Variante mit Fallfilmverdampfer ist die Nebeneinander-Anordnung von zweiter Hochdrucksäule 210 und zweiter Niederdrucksäule 211 im Allgemeinen besonders günstig. Alternativ können die beiden Säulen jedoch analog zu Figur 1 übereinander angeordnet sein als konventionelle Doppelsäule mit dazwischen liegendem Fallfilmverdampfer 213.
  • Figur 3 ähnelt Figur 2, allerdings wird hier die gesamte Sumpfflüssigkeit 423, 537 der zweiten Niederdrucksäule 211 mittels der Pumpe 435 in den Verdampfungsraum des Fallfilmverdampfers 213 eingeführt. Die partiell verdampfte Fraktion, die aus dem Fallfilmverdampfer strömt, wird einer Phasentrennung in einem Abscheider 539 unterworfen. Der Gasanteil 538 wird in die zweite Niederdrucksäule zurückgeleitet, der Flüssiganteil 540 wird mittels einer weiteren Pumpe 541 als "dritte sauerstoffangereicherte Fraktion" 436 zur ersten Niederdrucksäule 111 geführt. Durch diese Verfahrensweise verringert sich die mittlere Temperaturdifferenz im zweiten Hochdrucksäulen-Kopfkondensator 213 und damit der Betriebsdruck in der zweiten Hochdrucksäule 210 sowie der Energieverbrauch beim Verdichten des zweiten Einsatzluftstroms 208.
  • Figur 4 entspricht weitgehend Figur 3. Hier sind jedoch die Säulen und der Hauptkondensator des zweiten Destilliersäulen-Systems in einer ungewöhnlichen Weise übereinander angeordnet. Die zweite Hochdrucksäule 210 ist nicht wie bei einer konventionellen Doppelsäule unterhalb, sondern oberhalb der zweiten Niederdrucksäule 211 angeordnet; der wiederum als Fallfilmverdampfer ausgebildete zweite Hochdrucksäulen-Kopfkondensator sitzt ganz oben. Dadurch kann der verfahrenstechnische Vorteil der Verfahrensweise der Figur 3 ohne eine zweite Pumpe 541 erreicht werden; die dritte sauerstoffangereicherte Fraktion 436 strömt vielmehr kraft ihres hydrostatischen Potenzials von selbst zur zweiten Zwischenstelle der ersten Niederdrucksäule 111.
  • Das Verfahren der Figur 5 weist eine geteilte Niederdrucksäule 611, 612 im zweiten Destilliersäulen-System auf. Diese enthält insgesamt drei Kondensator-Verdampfer 213, 614, 615.
  • Der Abschnitt 611 der zweiten Niederdrucksäule entspricht dem oberen Abschnitt (bis etwas unterhalb der Zuspeisungen der sauerstoffangereicherten Flüssigkeiten) der zweiten Niederdrucksäule 211 in Figur 4. Er ist in Figur 5 analog zu Figur 4 unterhalb der zweiten Hochdrucksäule 210 angeordnet. Der restliche Teil 612 der zweiten Niederdrucksäule befindet sich oberhalb der zweiten Hochdrucksäule 210 und enthält die drei Kondensator-Verdampfer 213, 614, 615, die alle als Fallfilmverdampfer ausgebildet sind. Der oberste stellt den Hochdrucksäulen-Kopfkondensator dar, wird aber hier nicht mit Sumpfflüssigkeit, sondern mit einer Zwischenflüssigkeit 616 der zweiten Niederdrucksäule 611, 612 betrieben, die von einer Pumpe 617 angehoben wird. Über Leitung 618 strömt in der Gegenrichtung Dampf aus dem Niederdrucksäulenteil 612 in den Teil 611 zurück. Der zweite Zwischenverdampfer 614 dient zur Teilverdampfung einer zweiten, sauerstoffreicheren Zwischenflüssigkeit der zweiten Niederdrucksäule; der Kondensator-Verdampfer 615 stellt den Sumpfverdampfer der zweiten Niederdrucksäule 611, 612 dar. Beheizt werden beide mittels eines Heizluftstroms 609, der gemeinsam mit dem zweiten Einsatzluftstrom 208 über Leitung 608 herangeführt wird. Der Heizluftstrom 620, 622 durchströmt dabei zunächst den Sumpfverdampfer 615 und anschließend den Zwischenverdampfer 614. In den Kondensator-Verdampfern 615, 614 gewonnene Flüssigkeit beziehungsweise der letztlich dampfförmig verbliebene Anteil werden über die Leitungen 621 und 623 zur zweiten Hochdrucksäule 210 geleitet und dort an geeigneten Zwischenstellen eingespeist.
  • Trotz der drei Fallfilmverdampfer kommt das zweite Destilliersäulen-System der Figur 4 mit nur einer Flüssigkeitspumpe aus. Insbesondere kann die dritte sauerstoffangereicherte Fraktion 236 allein aufgrund des hydrostatischen Potenzials von der zweiten Niederdrucksäule 612 in die erste Niederdrucksäule 111 fließen.
  • Figur 6 zeigt ein zweites Destilliersäulen-System 210, 611, 612, das verfahrenstechnisch mit demjenigen von Figur 5 identisch ist. Hier ist allerdings der Abschnitt 611 der zweiten Niederdrucksäule neben den beiden anderen Säulenabschnitten 210, 612 angeordnet. Die Pumpe 617 muss dadurch einen geringeren Höhenunterschied überwinden; allerdings wird regelmäßig eine weitere Pumpe 235 für die dritte sauerstoffangereicherte Fraktion 223, 236 benötigt.
  • Die Figuren 7 und 8 unterscheiden sich ausschließlich dadurch von den Figuren 5 beziehungsweise 6, dass ein Zwischenabschnitt 812 nicht unterhalb, sondern oberhalb der zweiten Hochdrucksäule 210 angeordnet ist.
  • In einer Variante der Figuren 5 bis 8 wird der zweite Zwischenverdampfer 614 weggelassen. In Kombination damit oder unabhängig davon kann bei jedem der in den Zeichnungen dargestellten Ausführungsbeispiele ein kleiner Teil des flüssigen Stickstoffs (118 in Figur 1) aus dem ersten Hauptkondensator (113 in Figur 1) auf den Kopf der zweiten Niederdrucksäule 211 beziehungsweise des Abschnitts 611 der zweiten Niederdrucksäule aufgegeben werden.
  • Figur 9 zeigt ein gegenüber Figur 1 abgewandeltes Luftverdichter-System, das bei der Erfindung angewendet werden kann. Dieses besteht hier aus zwei Luftverdichtersträngen 3a/4a/5a bzw. 3b/4b/5b mit unterschiedlichem Enddruck. Der links dargestellte Strang 3a/4a/5a wird durch eine Maschine mit einem Gehäuse und einem Antrieb gebildet, der recht dargestellte durch eine weitere Maschine mit einem Gehäuse und einem Antrieb. Die Verdichtersymbole 4,4a, 4b, 6 können jeweils für einen oder mehrere Verdichterstufen stehen, gegebenenfalls mit entsprechender Zwischenkühlung.
  • In Figur 10 sind die beiden Destilliersäulen-Systeme nicht im Detail dargestellt (Kasten 800). Hier wird der Teil 131 des Kopfgases der ersten Hochdrucksäule in zwei parallelen Stickstoffturbinen 732a, 732b arbeitsleistend entspannt, von denen die erste 732a wie in Figur 1 mit einem Generator 133 gekoppelt ist. Die zweite Stickstoffturbine 732b treibt einen Kaltverdichter 733 an, in dem ein Teil 706, 707 der auf den zweiten Druck verdichteten Einsatzluft 206 auf den ersten Druck nachverdichtet wird. Der kaltverdichtete Luftteil 708 wird anschließend mit der übrigen Hochdruckluft 106 vereinigt. Hierdurch wird Energie am eintrittsseitigen Luftverdichter-System eingespart.
  • Anstelle des in Figur 10 gezeigten Luftverdichter-Systems (analog Figur 1) kann auch das Luftverdichter-System der Figur 9 eingesetzt werden.
  • Figur 11 ähnelt Figur 10, allerdings wird hier ein anderer Luftstrom 906, 907, 908 durch den Kaltverdichter 733 geleitet. Dieser stellt einen Teil des Hochdruckluftstroms 106 vom Luftverdichter-System dar und wird in dem Kaltverdichter 733 deutlich über den ersten Druck hinaus weiterverdichtet um anschließend als Turbinenstrom 9 zu dienen. Dadurch steigt die Kälteleistung der Luftturbine 11.
  • In Figur 12 wird wie in Figur 10 ein Teil 706, 707, 708 des zweiten Teilstroms der Einsatzluft, der unter dem niedrigeren zweiten Druck steht, im Kaltverdichter 733 nachverdichtet. Abweichend von Figur 10 ist der Hauptwärmetauscher aus zwei physikalisch getrennten und parallel geschalteten Abschnitten 8a und 8b aufgebaut, die jeweils aus einem oder mehreren Wärmetauscherblöcken bestehen. Hier wird das "zweite gasförmige Kopfprodukt" 226 aus der zweiten Niederdrucksäule (hier nicht dargestellt) in zwei Teilströme 726, 727 verzweigt, die durch die Hauptwärmetauscher-Abschnitte 8a beziehungsweise 8b geleitet werden. Der warme Strom 728 wird in die Atmosphäre (ATM) abgeblasen. Strom 727/728 dient als Ausgleichsstrom. Alternativ könnte analog zu Figur 11 der Turbinenstrom 9 im Kaltverdichter nachverdichtet werden.
  • Als Ausgleichsstrom für die beiden Hauptwärmetauscher-Abschnitte 8a, 8b wird in Figur 13 ein Teil 506 des Luftteilstroms 106 verwendet, der unter dem höheren ersten Druck steht. Alternativ könnte auch in Figur 13 analog zu Figur 11 der Turbinenstrom 9 im Kaltverdichter nachverdichtet werden.
  • In Figur 14 wird abweichend von Figur 13 der Spülstrom 137, der mittels der Pumpe 138 auf Druck gebracht wird, in einem separaten dritten Hauptwärmetauscher-Abschnitt 8c in indirektem Wärmeaustausch mit mindestens einem Teil 508, 509 des kalt nachverdichteten Luftstroms 708 verdampft (beziehungsweise pseudo-verdampft, falls der Druck überkritisch ist) und angewärmt. Alternativ könnte auch in Figur 14 analog zu Figur 11 der Turbinenstrom 9 im Kaltverdichter nachverdichtet werden.
  • Das Ausführungsbeispiel der Figur 15 weist einen vierten separaten Hauptwärmetauscher-Abschnitt 8d auf, in dem die kalt zu verdichtende Luft 707 stromaufwärts des Kaltverdichters 733 gegen das Abgas 734b der Stickstoffturbine 732b abgekühlt wird. Das angewärmte Turbinenabgas 735b wird dann nicht mehr in den Hauptwärmetauscher-Abschnitt 8b eingeleitet, im Gegensatz zum Abgas 734a der generatorgebremsten Stickstoffturbine 732a. Alternativ könnte auch in Figur 15 analog zu Figur 11 der Turbinenstrom 9 im Kaltverdichter nachverdichtet werden.
  • In den Varianten der Figuren 12 bis 15 kann der Hauptwärmetauscher-Abschnitt 8a auch durch ein Paar von Regeneratoren gebildet werden anstelle der ansonsten üblichen Plattenwärmetauscher-Blöcke. Die Figuren 16 und 17 zeigen zwei konkrete Beispiele hierzu, deren Wärmeaustauscher- und Turbinen-Schaltungen ansonsten auf Figur 12 beruhen. Ein Regenerator des Regeneratoren-Paars 88 wärmt einen Teilstrom 726 des "zweiten gasförmigen Kopfprodukts" 226 aus der zweiten Niederdrucksäule an, während der andere den Luftstrom 206, der unter dem niedrigeren zweiten Druck steht, abkühlt.
  • Figur 17 unterscheidet sich von Figur 16 dadurch, dass der Regenerator 88 auch zur Reinigung des zweiten Luftteils 204, 206 eingesetzt wird, indem Wasser und Kohlendioxid ausgefroren werden. Hierdurch reicht eine einsträngige Reinigungsvorrichtung 105 aus, die unter etwa dem ersten Druck betrieben wird. Im Falle der Figur 18 wird das LOX-Filter 219, das oben zu Figur 1 als fakultativ beschrieben worden ist, verbindlich benötigt.
  • Anstelle des in den Figuren 16 und 17 gezeigten Luftverdichter-Systems (analog Figur 1) kann auch das Luftverdichter-System der Figur 9 eingesetzt werden.

Claims (8)

  1. Verfahren zur Tieftemperaturzerlegung von Luft in einem Destilliersystem, das eine erstes Destilliersäulen-System (109) und ein zweites Destilliersäulen-System (209) aufweist, wobei das erste Destilliersäulen-System (109) eine erste Hochdrucksäule (110), eine erste Niederdrucksäule (111) und einen ersten Hochdrucksäulen-Kopfkondensator (113) aufweist, der als Kondensator-Verdampfer ausgebildet ist, und das das zweite Zwei-Säulen-System eine zweite Hochdrucksäule (210), eine zweite Niederdrucksäule (211) und einen zweiten Hochdrucksäulen-Kopfkondensator (213) aufweist, der als Kondensator-Verdampfer ausgebildet ist, und wobei
    - ein erster und ein zweiter Einsatzluftstrom (100, 104, 106, 108; 200, 204, 206, 208) in einem Hauptwärmetauscher (8) abgekühlt werden,
    - der erste Einsatzluftstrom (108) unter einem ersten Druck in die erste Hochdrucksäule (110) eingeleitet wird,
    - der zweite Einsatzluftstrom (208) unter einem zweiten Druck, der niedriger ist als der erste Druck, in die zweite Hochdrucksäule (210) eingeleitet wird,
    - eine erste sauerstoffangereicherte Fraktion (120, 121, 123) flüssig aus dem unteren Bereich der ersten Hochdrucksäule (110) entnommen und der ersten Niederdrucksäule (111) an einer ersten Zwischenstelle zugeleitet wird,
    - eine zweite sauerstoffangereicherte Fraktion (220, 221) flüssig aus dem unteren Bereich der zweiten Hochdrucksäule (210) entnommen und der zweiten Niederdrucksäule (211) zugeleitet wird,
    - eine dritte sauerstoffangereicherte Fraktion (223, 236) aus dem unteren Bereich der zweiten Niederdrucksäule (211) entnommen und der ersten Niederdrucksäule (111) an einer zweiten Zwischenstelle zugeleitet wird, die unterhalb der ersten Zwischenstelle angeordnet ist,
    - der ersten Niederdrucksäule (111) ein erstes gasförmiges Kopfprodukt (125, 126) entnommen und im Hauptwärmetauscher (8) angewärmt wird,
    - der zweiten Niederdrucksäule (211) ein zweites gasförmiges Kopfprodukt (225, 226) entnommen und im Hauptwärmetauscher (8) angewärmt wird,
    - der ersten Niederdrucksäule (111) ein gasförmiges Sauerstoffprodukt (123, 124) entnommen und als Endprodukt (GOX) abgezogen wird,
    dadurch gekennzeichnet, dass
    - die dritte sauerstoffangereicherte Fraktion (223, 236) in flüssigem Zustand aus dem unteren Bereich der zweiten Niederdrucksäule (211) entnommen und in flüssigem Zustand in die ersten Niederdrucksäule (111) eingeleitet wird,
    - die erste und die zweite Kopffraktion (125; 225) in getrennten Passagen des Hauptwärmetauschers (8) angewärmt werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine vierte sauerstoffangereicherte Fraktion (229) flüssig aus dem unteren Bereich der ersten Hochdrucksäule (110) entnommen und der zweiten Niederdrucksäule (211) zugeleitet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste Einsatzluftstrom (100, 101) in einem Luftverdichter-System (2) auf etwa den ersten Druck verdichtet wird und der zweite Einsatzluftstrom (200) in dem Luftverdichter-System nur auf etwa den zweiten Druck verdichtet wird, wobei der erste Einsatzluftstrom (101,104) einer ersten Reinigungsvorrichtung (105) zugeleitet wird, die unter etwa dem ersten Druck betrieben wird, und der zweite Einsatzluftstrom (200, 204) einer zweiten Reinigungsvorrichtung (205) zugeleitet wird, die unter etwa dem zweiten Druck betrieben wird, und wobei die erste und die zweite Reinigungsvorrichtung (105, 205) mittels eines Regeneriergases (52) regeneriert werden, das aus der ersten Niederdrucksäule (111) entnommen wird und insbesondere durch mindestens einen Teil des Kopfgases (125, 126) der ersten Niederdrucksäule (111) gebildet wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der zweite Hauptkondensator (213) mittels einer Zwischenflüssigkeit (616) der zweiten Niederdrucksäule (611/612) gekühlt wird und die zweite Niederdrucksäule (611/612) außerdem einen Sumpfverdampfer (615) aufweist, der als Kondensator-Verdampfer ausgebildet ist und mittels eines Teilstroms (620) des zweiten Einsatzluftstroms (608) beheizt wird.
  5. Vorrichtung zur Tieftemperaturzerlegung von Luft
    - mit einem Destilliersystem, das eine erstes Destilliersäulen-System (109) und ein zweites Destilliersäulen-System (209) aufweist, wobei das erste Destilliersäulen-System (109) eine erste Hochdrucksäule (110), eine erste Niederdrucksäule (111) und einen ersten Hochdrucksäulen-Kopfkondensator (113) aufweist, der als Kondensator-Verdampfer ausgebildet ist, und das das zweite Zwei-Säulen-System eine zweite Hochdrucksäule (210), eine zweite Niederdrucksäule (211) und einen zweiten Hochdrucksäulen-Kopfkondensator (213) aufweist, der als Kondensator-Verdampfer ausgebildet ist,
    - mit einem Hauptwärmetauscher zur Abkühlung eines ersten und eines zweiten Einsatzluftstroms (100, 104, 106, 108; 200, 204, 206, 208)
    - mit Mitteln zum Einleiten des ersten Einsatzluftstroms (108) unter einem ersten Druck in die erste Hochdrucksäule (110),
    - mit Mitteln zum Einleiten des zweiten Einsatzluftstroms (208) unter einem zweiten Druck, der niedriger ist als der erste Druck, in die zweite Hochdrucksäule (210),
    - mit Mitteln zum Entnehmen einer ersten sauerstoffangereicherte Fraktion (120, 121, 123) in flüssigem Zustand aus dem unteren Bereich der ersten Hochdrucksäule (110) und zum Einleiten der ersten sauerstoffangereicherten Fraktion (120, 121, 123) in die erste Niederdrucksäule (111) an einer ersten Zwischenstelle,
    - mit Mitteln zum Entnehmen einer zweiten sauerstoffangereicherten Fraktion (220, 221) in flüssigem Zustand aus dem unteren Bereich der zweiten Hochdrucksäule (210) und zum Einleiten der zweiten sauerstoffangereicherten Fraktion (220, 221) in die zweite Niederdrucksäule (211),
    - mit Mitteln zum Entnehmen einer dritten sauerstoffangereicherten Fraktion (223, 236) aus dem unteren Bereich der zweiten Niederdrucksäule (211) und zum Einleiten der dritten sauerstoffangereicherten Fraktion (223, 236) in die erste Niederdrucksäule (111) an einer zweiten Zwischenstelle, die unterhalb der ersten Zwischenstelle angeordnet ist,
    - mit Mitteln zum Entnehmen eines ersten gasförmigen Kopfprodukts (125; 126) aus der ersten Niederdrucksäule (111) und zum Einleiten ersten gasförmigen Kopfprodukts (125, 126) in den Hauptwärmetauscher (8),
    - mit Mitteln zum Entnehmen eines zweiten gasförmigen Kopfprodukts (225, 226) aus der zweiten Niederdrucksäule (211) und zum Einleiten des zweiten gasförmigen Kopfprodukts (225, 226) in Hauptwärmetauscher (8),
    - mit Mitteln zum Entnehmen eines gasförmigen Sauerstoffprodukts (123, 124) aus der ersten Niederdrucksäule (111) und zum Abziehen des gasförmigen Sauerstoffprodukts (123, 124) als Endprodukt (GOX),
    dadurch gekennzeichnet, dass
    - die Mittel zum Entnehmen der dritten sauerstoffangereicherten Fraktion (223, 236) aus dem unteren Bereich der zweiten Niederdrucksäule (211) als Flüssigentnahmemittel ausgebildet sind und
    - der Hauptwärmetauscher (8) getrennten Passagen für die erste und die zweite Kopffraktion (125; 225) aufweist.
  6. Vorrichtung nach Anspruch 5, gekennzeichnet durch Mittel zum Einleiten einer flüssigen vierten sauerstoffangereicherten Fraktion (229) aus dem unteren Bereich der ersten Hochdrucksäule (110) in die zweite Niederdrucksäule (211).
  7. Vorrichtung nach Anspruch 5 oder 6, gekennzeichnet durch
    - ein Luftverdichter-System (2) zum Verdichten des ersten Einsatzluftstroms (100, 101) auf etwa den ersten Druck und zum Verdichten des zweiten Einsatzluftstroms (200) nur auf etwa den zweiten Druck,
    - mit Mitteln zum Einleiten des verdichteten ersten Einsatzluftstroms (101,104) in eine erste Reinigungsvorrichtung (105) unter etwa dem ersten Druck,
    - mit Mitteln zum Einleiten des verdichteten zweiten Einsatzluftstroms (200, 204) in eine zweite Reinigungsvorrichtung (205) unter etwa dem zweiten Druck und
    - mit Mitteln zum Einleiten eines mittels eines Regeneriergases (52), das aus der ersten Niederdrucksäule (111) entnommen wird und insbesondere durch mindestens einen Teil des Kopfgases (125, 126) der ersten Niederdrucksäule (111) gebildet wird, in die erste und die zweite Reinigungsvorrichtung (105, 205).
  8. Vorrichtung nach einem der Ansprüche 5 bis 7, gekennzeichnet durch Mittel zum Einleiten einer Zwischenflüssigkeit (616) der zweiten Niederdrucksäule (611/612) in den zweiten Hauptkondensator (213), durch einen Sumpfverdampfer (615), der als Kondensator-Verdampfer ausgebildet ist, und durch Mittel zum Einleiten eines Teilstroms (620) des zweiten Einsatzluftstroms (608) in den Sumpfverdampfer (615).
EP12000697A 2011-02-17 2012-02-02 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft Withdrawn EP2489968A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12000697A EP2489968A1 (de) 2011-02-17 2012-02-02 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11001320 2011-02-17
EP12000697A EP2489968A1 (de) 2011-02-17 2012-02-02 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Publications (1)

Publication Number Publication Date
EP2489968A1 true EP2489968A1 (de) 2012-08-22

Family

ID=44279232

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12000697A Withdrawn EP2489968A1 (de) 2011-02-17 2012-02-02 Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Country Status (1)

Country Link
EP (1) EP2489968A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767787A1 (de) 2013-02-19 2014-08-20 Linde Aktiengesellschaft Verfahren zur Erzeugung von gasförmigem Sauerstoff durch Tieftemperaturzerlegung von Luft
WO2015003785A1 (de) 2013-07-09 2015-01-15 Linde Aktiengesellschaft Verfahren und vorrichtung zur erzeugung eines verdichteten gasstroms und verfahren und vorrichtung zur tieftemperatur-zerlegung von luft
FR3013105A1 (fr) * 2013-11-14 2015-05-15 Air Liquide Procede et appareil de separation d’air par distillation cryogenique
DE102016006714A1 (de) 2016-06-01 2017-12-07 Linde Aktiengesellschaft Mehrsäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung
US10794630B2 (en) 2017-08-03 2020-10-06 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for separating air by cryogenic distillation
WO2023051946A1 (de) * 2021-09-29 2023-04-06 Linde Gmbh Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1784120A (en) * 1926-10-23 1930-12-09 Air Reduction Separation of the constituents of gaseous mixtures
US4254629A (en) 1979-05-17 1981-03-10 Union Carbide Corporation Cryogenic system for producing low-purity oxygen
DE3709588A1 (de) * 1986-04-02 1987-10-08 Voest Alpine Ag Vorrichtung zur zerlegung von gasen mittels koaxial ineinander angeordneter rektifikationskolonnen
EP0342436A2 (de) * 1988-05-20 1989-11-23 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft
US5571309A (en) * 1995-07-28 1996-11-05 The Boc Group, Inc. Adsorption process
DE19725821A1 (de) * 1997-06-18 1998-06-04 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1784120A (en) * 1926-10-23 1930-12-09 Air Reduction Separation of the constituents of gaseous mixtures
US4254629A (en) 1979-05-17 1981-03-10 Union Carbide Corporation Cryogenic system for producing low-purity oxygen
DE3709588A1 (de) * 1986-04-02 1987-10-08 Voest Alpine Ag Vorrichtung zur zerlegung von gasen mittels koaxial ineinander angeordneter rektifikationskolonnen
EP0342436A2 (de) * 1988-05-20 1989-11-23 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft
US5571309A (en) * 1995-07-28 1996-11-05 The Boc Group, Inc. Adsorption process
DE19725821A1 (de) * 1997-06-18 1998-06-04 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAUSEN; LINDE: "Tieftemperaturtechnik", 1985, pages: 281 - 337

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2767787A1 (de) 2013-02-19 2014-08-20 Linde Aktiengesellschaft Verfahren zur Erzeugung von gasförmigem Sauerstoff durch Tieftemperaturzerlegung von Luft
DE102013002835A1 (de) 2013-02-19 2014-08-21 Linde Aktiengesellschaft Verfahren zur Erzeugung von gasförmigem Sauerstoff durch Tieftemperaturzerlegung von Luft
WO2015003785A1 (de) 2013-07-09 2015-01-15 Linde Aktiengesellschaft Verfahren und vorrichtung zur erzeugung eines verdichteten gasstroms und verfahren und vorrichtung zur tieftemperatur-zerlegung von luft
FR3013105A1 (fr) * 2013-11-14 2015-05-15 Air Liquide Procede et appareil de separation d’air par distillation cryogenique
WO2015071578A2 (fr) 2013-11-14 2015-05-21 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de séparation d'air par distillation cryogénique
WO2015071578A3 (fr) * 2013-11-14 2015-12-03 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil de séparation d'air par distillation cryogénique
US10605523B2 (en) 2013-11-14 2020-03-31 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for separating air by cryogenic distillation
DE102016006714A1 (de) 2016-06-01 2017-12-07 Linde Aktiengesellschaft Mehrsäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung
US10794630B2 (en) 2017-08-03 2020-10-06 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and device for separating air by cryogenic distillation
US10866024B2 (en) 2017-08-03 2020-12-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Device and method for separating air by cryogenic distillation
WO2023051946A1 (de) * 2021-09-29 2023-04-06 Linde Gmbh Verfahren zur tieftemperaturzerlegung von luft und luftzerlegungsanlage

Similar Documents

Publication Publication Date Title
EP1067345B1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP1243882B1 (de) Argongewinnung mit einem Drei-Säulen-System zur Luftzerlegung und einer Rohargonsäule
EP2236964B1 (de) Verfahren und Vorrichtung zur Tieftemperatur-Luftzerlegung
EP1994344A1 (de) Vefahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2015012A2 (de) Verfahren zur Tieftemperaturzerlegung von Luft
DE10139727A1 (de) Verfahren und Vorrichtung zur Gewinnung eines Druckprodukts durch Tieftemperaturzerlegung von Luft
EP2026024A1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
EP2489968A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE10013073A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
EP2520886A1 (de) Verfahren und Vorrichtung zur Erzeugung eines gasförmigen Sauerstoff-Druckprodukts durch Tieftemperaturzerlegung von Luft
EP3133361A1 (de) Destillationssäulen-system und anlage zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
WO2020169257A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2012019753A2 (de) Verfahren und vorrichtung zur gewinnung von drucksauerstoff und druckstickstoff durch tieftemperaturzerlegung von luft
EP2963369B1 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
EP2767787A1 (de) Verfahren zur Erzeugung von gasförmigem Sauerstoff durch Tieftemperaturzerlegung von Luft
EP4065910A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2016146246A1 (de) Anlage zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
WO2017108187A1 (de) Verfahren und vorrichtung zur erzeugung von reinem stickstoff und reinem sauerstoff durch tieftemperaturzerlegung von luft
EP2551619A1 (de) Verfahren und Vorrichtung zur Gewinnung von Druckstickstoff und Drucksauerstoff durch Tieftemperaturzerlegung von Luft
WO2020244801A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
WO2011110301A2 (de) Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
DE102007042462A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO2020187449A1 (de) Verfahren und anlage zur tieftemperaturzerlegung von luft
EP2963371B1 (de) Verfahren und vorrichtung zur gewinnung eines druckgasprodukts durch tieftemperaturzerlegung von luft
EP2865978A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft und Tieftemperatur-Luftzerlegungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121227

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150901