EP2470681B1 - Rostfreier martensitischer chromstahl - Google Patents

Rostfreier martensitischer chromstahl Download PDF

Info

Publication number
EP2470681B1
EP2470681B1 EP10751807.8A EP10751807A EP2470681B1 EP 2470681 B1 EP2470681 B1 EP 2470681B1 EP 10751807 A EP10751807 A EP 10751807A EP 2470681 B1 EP2470681 B1 EP 2470681B1
Authority
EP
European Patent Office
Prior art keywords
chromium steel
steel according
chromium
steel
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10751807.8A
Other languages
English (en)
French (fr)
Other versions
EP2470681A1 (de
Inventor
Gisbert Kloss-Ulitzka
Oskar Pacher
Günter Schnabel
Vera Zeitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zapp Precision Metals GmbH
Original Assignee
Stahlwerk Ergste Westig GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stahlwerk Ergste Westig GmbH filed Critical Stahlwerk Ergste Westig GmbH
Priority to PL10751807T priority Critical patent/PL2470681T3/pl
Publication of EP2470681A1 publication Critical patent/EP2470681A1/de
Application granted granted Critical
Publication of EP2470681B1 publication Critical patent/EP2470681B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Definitions

  • the invention relates to a stainless martensitic chromium steel and its use.
  • Such steels are known in large numbers and are suitable depending on their composition for a very different range of uses.
  • German patent specification describes 100 27 049 B4 a martensitic chromium steel with 0.4 to 0.75% carbon, up to 0.7% silicon, up to 0.2% nickel, 0.4 to 1.6% manganese, 0.02 to 0.15% sulfur, 12 to 19% chromium, 0.5 to 1.5% molybdenum, up to 1.5% tungsten, up to 0.1% nitrogen and 0.05 to 0.3% vanadium, titanium and niobium singly or side by side and up to 0.008% boron.
  • This steel has good processability, corrosion resistance and low plastic deformability and high wear and abrasion resistance; it is therefore suitable without a galvanic coating as a material for industrial needles and in particular allows a high sewing speed.
  • the material is not very suitable for use, the characteristic feature of which is a sliding contact metal / metal in the presence of a lubricant film.
  • Crucial here is especially in the case of systems for conveying or compressing fuels or in piston rings and wiper seals and dosing or valve needles for chemical or pharmaceutical mixtures, the stability and the adhesion of the wear-reducing surface layer.
  • stabilization is not possible in various systems, such as with new methanol and ethanol containing fuels.
  • the invention is therefore based on the problem of finding a stainless martensitic chromium steel, which has better wettability due to its chemical affinity and strong adhesion forces and forms a stable lubricant film, which is much more difficult to disturb or displace than conventional steels of this type and consequently causes less wear.
  • the solution to this problem consists in a martensitic chromium steel with 0.40 up to 0.80% carbon 0.20 up to 1.50% silicon 0.15 up to 1.00% nickel 0.30 up to 1.00% manganese 0,015 up to 0.035% sulfur 16 up to 18% Chrome, 1.25 up to 1.50% molybdenum up to 0.8% tungsten 0.04 up to 0.08% nitrogen 0.15 up to 0.20% vanadium, up to 0.05% titanium up to 0.05% niobium 0.001 up to 0.03% aluminum 0.02 up to 0.5% copper up to 0.5% cobalt up to 0.004% Boron, Remaining iron, including impurities caused by melting.
  • the steel contains each individually or side by side 0.55 up to 0.75% Carbon, up to 0.65% Silicon, up to 0.8% manganese at least 0.001% Tungsten.
  • the carbon is austenite and therefore stabilizes the austenitic crystal lattice.
  • carbon together with the carbide formers, also contributes to carbide precipitations, which increase the hardness and abrasion resistance of the steel.
  • carbide precipitations which increase the hardness and abrasion resistance of the steel.
  • the steel therefore contains 0.40 to 0.80%, preferably 0.55 to 0.75% carbon.
  • Silicon serves as a deoxidizer. However, higher contents can lead to the formation of intermetallic phases. On the other hand, silicon is also a ferrite former. The steel therefore contains 0.2 to 1.5% silicon, preferably up to 0.65% silicon.
  • Nickel belongs to the austenite blidners, but the austenite part in the microstructure carries the risk of a deterioration of the wear properties. On the other hand, nickel is also an advantage as part of the crystal lattice with its influence on the c / a ratio of the martensite. The steel therefore contains 0.15 to 1% nickel.
  • Manganese stabilizes the austenite and advantageously shifts the martensite formation to lower temperatures.
  • the maximum level of manganese is therefore 1%, but a minimum content of 0.30% should not be undercut, because manganese simultaneously alters the c / a ratio of the newly formed martensite and advantageously influences the precipitation behavior of the fine precipitates in the austenitic region.
  • the sulfur content is limited to a maximum of 0.035%, since at higher sulfur levels, troublesome sulfidic precipitates may occur.
  • Chromium is required to ensure the corrosion resistance of the steel in combination with its molybdenum content of 1.25 to 1.50%, in particular adequate resistance to pitting corrosion.
  • the chromium content is therefore at least 16%.
  • its content is limited to 18%.
  • the steel contains from 0.001 to 0.8% tungsten, preferably at least 0.001% tungsten, which together with the iron and molybdenum forms mixed carbides, which contribute significantly to the hot strength of the steel and lead to secondary carbide secondary precipitation during tempering.
  • the nitrogen together with the carbon forms carbonitrides, but also worsens the wettability of the steel to hydrocarbon lubricants; the upper content limit for nitrogen is therefore 0.08%.
  • the steel contains vanadium, niobium and titanium as carbide formers with the advantage that they form nucleation nuclei for the formation of chromium carbides even at very high temperatures in view of their high affinity for carbon.
  • the vanadium content is therefore 0.15 to 0.20% at titanium and niobium contents of up to 0.05%.
  • the steel also contains 0.001 to 0.03% aluminum as a deoxidizer, but not more, because higher aluminum contents have an embrittling effect.
  • the maximum copper content is 0.5% and, especially during tempering, leads to fine-grained secondary precipitations, which together with other precipitates improve the wettability of the steel for oils or hydrocarbons.
  • cobalt promotes the formation of ⁇ -carbides and other fine precipitates; it improves the hot strength of the steel in this way. For cost reasons, however, a cobalt content of 0.5% should not be exceeded.
  • the cooling rate should not exceed 50 ° C / sec (heat treatment A), so as not to affect the carbide formation and to prevent part of the reactants from remaining metastable at interstitial sites when the carbides are formed.
  • martensite spontaneously forms below the MS temperature from the cubic body-centered crystal lattice, with the result that the previously formed carbides are incorporated in the martensite, but the stress state of the matrix is lower, the more finely distributed the carbides are. This condition greatly enhances the lubricant or oil wetting of the surface of the steel.
  • the martensite from the austenite transformation has a tetragonal distorted crystal lattice with a ratio of the crystal axes a / c over 1.
  • the martensite formed during the conversion can be influenced by a heat treatment in the temperature range below 550 ° C. following martensite formation in such a way that the martensite Crystal axis ratio s / c reduced, which has an extremely beneficial effect on the material properties.
  • the nucleation is less favorable, so that the chromium carbide can be subject to crystallization inhibition and crystallized later. Associated with this is a coarser grained chromium carbide with an unfavorable distribution in the matrix.
  • coarse MC carbides of niobium, titanium and vanadium may be formed instead of fine primary carbides. Thus, the effect of the aforementioned elements is lost as carbide crystallization nuclei for the chromium carbides.
  • the heat treatment B consists in a starter annealing at 100 to 550 ° C, preferably at least 200 ° C instead and leads to the formation of fine precipitates in the stabilized in the previous heat treatment A in the temperature range of 1100 to 900 ° C martensite.
  • Table I below shows the analyzes of five conventional comparative steels V1 to V5 and three steels E1 to E3 which fall under the invention.
  • Table I shows the analyzes of five conventional comparative steels V1 to V5 and three steels E1 to E3 which fall under the invention.
  • Table I shows the analyzes of five conventional comparative steels V1 to V5 and three steels E1 to E3 which fall under the invention.
  • Table I shows the analyzes of five conventional comparative steels V1 to V5 and three steels E1 to E3 which fall under the invention.
  • Table I shows the analyzes of five conventional comparative steels V1 to V5 and three steels E1 to E3 which fall under the invention.
  • Table I shows the analyzes of five conventional comparative steels V1 to V5 and three steels E1 to E3 which fall under the invention.
  • Table I shows the analyzes of five conventional comparative steels V1 to V5 and three steels E1 to E3 which fall under the invention.
  • Table I shows the analyzes of five
  • Table II below shows the cumulative values for K1 to K3 resulting from the analyzes. ⁇ b> Table II ⁇ / b> K1 K2 K3 0.12 1.35 0.18 0.10 0.93 0.18 0.18 6.96 1.46 0.13 3.80 0.36 0.36 8.53 0.25 0.19 0.32 0.59 0.17 0.17 0.82 0.19 0.43 1.35
  • Austenitizing annealing indicated by A in Table III took place at 1020 ° C or 1050 ° C, followed by rapid cooling at a cooling rate of at least 50 ° C / sec to 800 ° C followed by cooling within 5 min. to 300 ° C and a slow cooling to room temperature.
  • the samples were finally heated according to the test series B to a temperature of 100 to 530 ° C and cooled at a rate of 100 ° C / h to room temperature.
  • the samples were then ground and polished, cleaned in an aqueous ultrasonic bath at 50 ° C, with hot distilled water under the action of ultrasound for another 20 min. freed of detergent residues and then dried.
  • 10 ⁇ l of paraffin oil were then applied to each sample by means of microdosing, and the oil droplets then forming were measured with respect to their width B, as shown schematically in FIG Fig. 1 results.
  • the measurement results found are recorded together with the respective austenitizing temperature in the following Table III. ⁇ b> Table III ⁇ / b> Verse no. Leg.
  • the abrasion and wear resistance was determined by means of a modified "pin on disk” test *, whereby the cylindrical samples were first ground flat, then cleaned, clamped in a holder and then correspondingly Fig. 2 Under a rotating steel shaft with an eccentric carbide ball under load and spring preload dynamically loaded. During the experiment, the contact zone between the sliding hard metal ball and the sample surface was steadily lubricated by the dripping of lubricating oil. At the end of the test period, the average width R of the sliding or wear track was then measured under a microscope at four points offset by ninety degrees from each other, and from these four measured values in each case the mean value R (see Table IV). Fig. 3 ) educated. In this case, a wide wear track or a large R value indicates that the steel ball has penetrated deeper and accordingly with greater width into the samples and that the sample material accordingly has a lower seal strength than those samples with a small wear track width R.
  • the result of a salt spray test can serve as an indicator of the size and distribution of the chromium carbide precipitates.
  • the samples were therefore subjected to 120 hours of corrosion testing as part of a modified salt spray test with a 3% NaCl solution and 5% alcohol.
  • test results are listed in column 7 of Table III .
  • the results of the salt spray test are an indicator of the size and distribution of chromium carbide precipitates.
  • the test results show that the wetting behavior of the inventive martensitic chromium steels for lubricants is significantly better than that of the comparative steels.
  • the good wettability results in less adhesive wear in the presence of lubrication.
  • Not only the chemical composition of the steel is of crucial importance.
  • a significant influence on the wettability is also exerted by a heat treatment of the samples. This is shown by the larger C values and the smaller R values of the samples according to the invention of experiments 9 to 17.
  • the factors K1 and K3 also show that the favorable test results are based on a more favorable precipitation of the carbides and other phases as well as the basic structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Description

  • Die Erfindung betrifft einen rostfreien martensitischen Chromstahl und dessen Verwendung.
  • Derartige Stähle sind in großer Zahl bekannt und eignen sich je nach ihrer Zusammensetzung für ein sehr unterschiedliches Verwendungsspektrum.
  • So beschreibt beispielsweise die deutsche Patentschrift 100 27 049 B4 einen martensitischen Chromstahl mit 0,4 bis 0,75% Kohlenstoff, bis 0,7% Silizium, bis 0,2% Nickel, 0,4 bis 1,6% Mangan, 0,02 bis 0,15% Schwefel, 12 bis 19% Chrom, 0,5 bis 1,5% Molybdän, bis 1,5% Wolfram, bis 0,1% Stickstoff und 0,05 bis 0,3% Vanadium, Titan und Niob einzeln oder nebeneinander sowie bis 0,008% Bor. Dieser Stahl besitzt eine gute Verarbeitbarkeit, Korrosionsbeständigkeit und geringe plastische Verformbarkeit sowie eine hohe Verschleiß- und Abriebfestigkeit; er eignet sich daher ohne eine galvanische Beschichtung als Werkstoff für Industrienadeln und erlaubt insbesondere eine hohe Nähgeschwindigkeit.
  • Wenig geeignet ist der Werkstoff jedoch für eine Verwendung, deren kennzeichnendes Merkmal ein reibender bzw. gleitender Kontakt Metall/Metall in Anwesenheit eines Schmiermittelfilms ist. Dies gilt insbesondere für Bauteile, die mit Treibstoffen, insbesondere Biokraftstoffen, bei denen es neben anderen Werkstoffeigenschaften sehr wesentlich auf eine gute Schmierfilmbildung bzw. -haftung ankommt, deren Lebensdauer mithin von dem Werkstoffabrieb bei einem Metall/Metall-Reibkontakt wie im Falle von Ventil- und Dosiernadeln sowie Abstreifringen von Kompressoren sehr wesentlich ankommt.
  • Ein derartiger, den Reibungsverschleiß herabsetzender Film erfordert jedoch nicht bei allen Verwendungsfällen ein Schmiermittel wie Öl und Fett, d.h. höhere molekulare Kohlenwasserstoffverbindungen, sondern die Teile können auch wie bei Einspritzsystemen oder Ölabstreifringen von dem Betriebsmittel selbst, beispielsweise Treibstoff, geschmiert werden. Entscheidend ist dabei immer das Entstehen eines verschieißhemmenden Films. Die Praxis verwendet jedenfalls eine Reihe von teils teuren, teils ökologisch bedenklichen Zusatzstoffen wie EP-Additive, Detergenzien, HD-Zusätze, Bleiverbindungen und chlorierte Diphenyle zur Beeinflussung, insbesondere zur Stabilisierung und zum Fixieren der verschleißhemmenden Schicht.
  • Entscheidend dabei ist insbesondere im Falle von Systemen zum Fördern oder Verdichten von Kraftstoffen oder auch bei Kolbenringen und Abstreifdichtungen sowie Dosier- oder Ventilnadeln auch für chemische oder pharmazeutische Gemische die Stabilität und das Haftvermögen der verschleißmindernden Oberflächenschicht. Eine Stabilisierung ist jedoch in verschiedenen Systemen nicht möglich, so beispielsweise bei neuen, Methanol und Äthanol enthaltenden Kraftstoffen.
  • Hinzu kommt, dass der Gesetzgeber in zahlreichen Fällen die Verwendung von Hilfsstoffen und Zusätzen wie beispielsweise bleihaltige Verbindungen aus ökologischen Gründen untersagt.
  • Bei eingehenden Untersuchungen hat sich nun gezeigt, dass der Abrieb bei martensitischen Chromstählen sehr stark von der Benetzbarkeit der Oberfläche beeinflusst wird. So unterliegt ein derartiger Stahl auch bei hoher Festigkeit einem erhöhten Verschleiß, der sich auf eine unzureichende Benetzung der Stahloberfläche durch das Schmier-mittel zurückführen lässt. Unter Krafteinwirkung kann es nämlich zu einem örtlichen Verdrängen des Schmiermittels kommen, diese Gefahr ist insbesondere dort sehr groß, wo mikroskopisch kleine Oberflächenerhebungen unter entsprechend hohem spezifischem Druck stehen. Ursache dafür ist ein Verdrängen der Schmiermittelmoleküle an solchen Erhebungen und Spitzen, die infolge der dynamischen Beanspruchung getrennt und aufgerissen werden. Die Folge eines solchen Adhäsionsverschleißes ist eine erhöhte Rauhigkeit der Metalloberfläche und ein dadurch wiederum erhöhter Verschleiß.
  • Der Erfindung liegt daher das Problem zugrunde, einen rostfreien martensitischen Chromstahl zu finden, der aufgrund seiner chemischen Affinität und starker Adhäsionskräfte eine bessere Benetzbarkeit besitzt und einen stabilen Schmiermittelfilm bildet, der sich weitaus schwieriger stören bzw. verdrängen lässt als bei herkömmlichen Stählen dieser Art und demzufolge einen geringeren Verschleiß bewirkt.
  • Die Lösung dieses Problems besteht in einem martensitischen Chromstahl mit
    0,40 bis 0,80% Kohlenstoff
    0,20 bis 1,50% Silizium
    0,15 bis 1,00% Nickel
    0,30 bis 1,00% Mangan
    0,015 bis 0,035% Schwefel
    16 bis 18% Chrom,
    1,25 bis 1,50% Molybdän
    bis 0,8% Wolfram
    0,04 bis 0,08% Stickstoff
    0,15 bis 0,20% Vanadium,
    bis 0,05% Titan
    bis 0,05% Niob
    0,001 bis 0,03% Aluminium
    0,02 bis 0,5% Kupfer
    bis 0,5% Kobalt
    bis 0,004% Bor,
    Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen.
  • Vorzugsweise enthält der Stahl jeweils einzeln oder auch nebeneinander
    0,55 bis 0,75% Kohlenstoff,
    bis 0,65% Silizium,
    bis 0,8% Mangan
    mindestens 0,001% Wolfram.
  • Die Praxis hat sich bisher an Trockenverschleißversuchen, d.h. an den Ergebnissen von schmiermittelfreien Versuchen orientiert. Es hat sich daher gezeigt, dass der Reibverschleiß bei einem Kontakt auch unter Verwendung eines Schmiermittels erheblich war.
  • Der Kohlenstoff ist Austenitbildner und stabilisiert daher das austenitische Kristallgitter. Gleichzeitig trägt der Kohlenstoff aber auch zusammen mit den Karbidbildnem zu karbidischen Ausscheidungen bei, die eine Steigerung der Härte und Abriebfestigkeit des Stahls bewirken. Um ein grobkörniges und zeilenförmiges Ausscheiden von Chromkabiden zu vermeiden, empfiehlt sich ein Vorabausscheiden anderer Karbide im austenitischen Zustand, die eine bessere Karbidhomogenität bewirken. Der Stahl enthält daher 0,40 bis 0,80%, vorzugsweise 0,55 bis 0,75% Kohlenstoff.
  • Silizium dient als Desoxidationsmittel. Höhere Gehalte können jedoch zum Entstehen intermetallischer Phasen führen. Andererseits ist Silizium jedoch auch ein Ferritbildner. Der Stahl enthält daher 0,2 bis 1,5% Silizium, vorzugsweise bis 0,65% Silizium.
  • Nickel gehört zu den Austenitblidnern, jedoch bringt der Austenitanteil im Gefüge die Gefahr einer Verschlechterung der Verschleißeigenschaften mit sich. Andererseits ist das Nickel jedoch auch als Bestandteil des Kristallgitters mit seinem Einfluss auf das c/a-Verhältnis des Martensits von Vorteil. Der Stahl enthält daher 0,15 bis 1% Nickel.
  • Mangan stabilisiert den Austenit und verschiebt vorteilhafterweise die Martensitbildung zu tieferen Temperaturen. Der Höchstgehalt an Mangan beträgt daher 1%, jedoch sollte ein Mindestgehalt von 0,30% nicht unterschritten werden, weil Mangan gleichzeitig auch das c/a-Verhältnis des frisch entstandenen Martensits verändert und im austenitischen Bereich das Ausscheidungsverhalten der Feinausscheidungen vorteilhaft beeinflusst.
  • Der Schwefelgehalt ist auf höchstens 0,035% begrenzt, da bei höheren Schwefelgehalten störende sulfidische Ausscheidungen entstehen können.
  • Chrom ist erforderlich, um die Korrosionsbeständigkeit des Stahls in Kombination mit dessen Molybdängehalt von 1,25 bis 1,50% zu gewährleisten, insbesondere eine hinreichende Beständigkeit gegen Lochfraßkorrosion. Der Chromgehalt beträgt daher mindestens 16%. Im Hinblick auf die ferritisierende Wirkung des Chroms ist dessen Gehalt jedoch auf 18% begrenzt. Die synergistische Wirkung von Chrom und Molybdän im Hinblick auf die Lochfraßbeständigkeit ist insbesondere dann gewährleistet, wenn die Gehalte an Chrom, Molybdän und Wolfram der folgenden Gleichung genügen: % Cr + 3 % Mo + % W = 19 , 7 bis 23 , 3.
    Figure imgb0001
  • Der Stahl enthält 0,001 bis 0,8% Wolfram, vorzugsweise mindestens 0,001% Wolfram, das zusammen mit dem Eisen und Molybdän Mischkarbide bildet, die zur Warmfestigkeit des Stahls erheblich beitragen und bei einem Anlassglühen zum Entstehen von Sekundärausscheidungen in Form höherer Karbide führen.
  • Der Stickstoff bildet zusammen mit dem Kohlenstoff Karbonitride, verschlechtert jedoch auch die Benetzbarkeit des Stahls für Kohlenwasserstoff-Schmiermittel; die obere Gehaltsgrenze für Stickstoff beträgt daher 0,08%.
  • Der Stahl enthält Vanadium, Niob und Titan als Karbidbildner mit dem Vorteil, dass diese in Anbetracht der hohen Affinität zum Kohlenstoff bereits bei sehr hohen Temperaturen Kristallisationskeime für das Entstehen von Chromkarbiden bilden. Der Vanadiumgehalt beträgt daher 0,15 bis 0,20% bei Titan- und Niobgehalten von jeweils bis 0,05%. Besonders vorteilhaft ist dabei die folgende Wirksumme der Karbidbildner: K 1 = % Nb + % Ti + % V = 0 , 15 bis 0 , 25.
    Figure imgb0002
  • Der Stahl enthält des weiteren 0,001 bis 0,03% Aluminium als Desoxidationsmittel, jedoch nicht mehr, weil höhere Aluminiumgehalte versprödend wirken.
  • Der Kupfergehalt beträgt maximal 0,5% und führt insbesondere bei einem Anlassglühen zu feinstkörnigen Sekundärausscheidungen, die zusammen mit anderen Ausscheidungen die Benetzbarkeit des Stahls für Öle bzw. Kohlenwasserstoffe verbessem.
  • Kobalt schließlich fördert das Entstehen von ε-Karbiden und anderen Feinausscheidungen; es verbessert auf diese Weise die Warmfestigkeit des Stahls. Aus Kostengründen sollte jedoch ein Kobaltgehalt von 0,5% nicht überschritten werden.
  • Da sich die für die Werkstoffeigenschaften entscheidenden Chromkarbide beim Abkühlen unter dem Einfluss von Kristallisationskeimen zu 90% im Temperaturbereich von 1100 bis 900 °C bilden, sollte die Abkühlungsgeschwindigkeit hier 50 °C/sec nicht übersteigen (Wärmebehandlung A), um die Karbidbildung nicht zu beeinträchtigen und zu verhindern, dass ein Teil der Reaktionspartner beim Entstehen der Karbide metastabil auf Zwischengitterplätzen verbleibt. Bei der weiteren Abkühlung bildet sich unterhalb der MS-Temperatur spontan aus dem kubisch raumzentrierten Kristallgitter Martensit mit der Folge, dass die zuvor entstandenen Karbide im Martensit eingelagert werden, der Spannungszustand der Matrix jedoch umso geringer ist, je feiner verteilt die Karbide vorliegen. Dieser Zustand fördert sehr wesentlich die Schmiermittel- bzw. Ölbenetzung der Oberfläche des Stahls.
  • Der Martensit aus der Austenit-Umwandlung besitzt ein tetragonal verzerrtes Kristallgitter mit einem Verhältnis der Kristallachsen a/c über 1. Dabei lässt sich der bei der Umwandlung entstandene Martensit durch eine der Martensitbidlung folgende Wärmebehandlung im Temperaturbereich unter 550 °C dahingehend beeinflussen, dass sich das Kristallachsenverhältnis s/c verringert, was sich außerordentlich vorteilhaft auf die Werkstoffeigenschaften auswirkt. Dieser Vorteil ergibt sich insbesondere, wenn der Gesamtgehalt an Niob, Titan und Vanadium folgender Bedingung genügt: K 1 = % Nb + % Ti + % V = 0 , 15 bis 0 , 25.
    Figure imgb0003
  • Unterhalb des Werts von 0,15 ist die Keimbildung weniger günstig, so dass das Chromkarbid einer Kristallisationshemmung unterliegen kann und später auskristallisiert. Damit verbunden ist ein gröberkörniges Chromkarbid mit einer ungünstigen Verteilung in der Matrix. Beim Überschreiten des oberen Grenzwerts können anstelle feiner Primärkarbide grobe MC-Karbide des Niobs, Titans und des Vanadiums entstehen. Damit geht die Wirkung der vorerwähnten Elemente als karbidische Kristallisationskeime für die Chromkarbide verloren.
  • Die Wärmebehandlung B besteht dabei in einem Anlaßglühen bei 100 bis 550 °C, vorzugsweise bei mindestens 200 °C statt und führt zum Entstehen von Feinausscheidungen in dem bei der vorausgegangenen Wärmebehandlung A im Temperaturbereich von 1100 bis 900 °C stabilisierten Martensit. In Lösung befindliche Atome wie die des Kupfers und des Kobalts sowie die karbidbildenden Elemente spielen hierbei eine wesentliche Rolle, da sie in die Feinausscheidungen eingehen, die insbesondere mit der gemäß K 2 = 100 x % N - 0 , 03 x % N / C = 0 , 053 bis 0 , 730
    Figure imgb0004
    abgestimmten Matrix die Schmierstoffbenetzung vorteilhaft beeinflussen.
  • Von weiterem Vorteil ist die Einhaltung der Bedingung K 3 = % Ni + % Co % Mn = 0 , 40 bis 3 , 33.
    Figure imgb0005
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und der Zeichnungen des näheren erläutert. In der Zeichnung zeigen:
  • Fig. 1
    in schematischer Darstellung einen Öltropfen auf einer Stahloberfläche,
    Fig. 2
    eine Vorrichtung zum Bestimmen des Abriebverschleißes in schematischer Darstellung und
    Fig. 3
    die Spurbreite R einer Kugelschleifbahn nach Fig. 2 als Maß für die Verschleißfestigkeit.
  • Aus der nachfolgenden Tabelle I sind die Analysen von fünf herkömmlichen Vergleichsstählen V1 bis V5 und dreier unter die Erfindung fallender Stähle E1 bis E3 ersichtlich. Tabelle I
    Leg. %C %N %Ni %Si %Mn %Cr %Mo %W %V %Cu %Co
    V1 0,80 0,12 0,06 0,54 0,34 14,80 0,75 Spur 0,12 0,25 n.n.
    V2 0,58 0,09 0,08 0,71 0,45 15,40 0,45 n.n. 0,10 0,31 n.n.
    V3 0,79 0,25 0,95 0,65 0,65 19,25 0,95 0,25 0,08 0,30 n.n.
    V4 0,71 0,18 0,25 0,61 0,70 20,20 1,05 0,80 0,05 0,28 n.n.
    V5 0,49 0,22 0,30 0,55 1,20 22,40 2,10 0,24 0,30 0,34 n.n.
    E1 0,56 0,06 0,25 0,35 0,44 16,50 1,32 0,12 0,17 0,32 0,01
    E2 0,60 0,05 0,29 0,47 0,45 17,20 1,35 0,40 0,16 0,25 0,08
    E3 0,65 0,07 0,38 0,54 0,37 17,80 1,45 0,72 0,19 0,42 0,12
    n.n. nicht nachweisbar
  • Die nachfolgende Tabelle II gibt die sich aus den Analysen ergebenden Summenwerte für K1 bis K3 wieder. Tabelle II
    K1 K2 K3
    0,12 1,35 0,18
    0,10 0,93 0,18
    0,18 6,96 1,46
    0,13 3,80 0,36
    0,36 8,53 0,25
    0,19 0,32 0,59
    0,17 0,17 0,82
    0,19 0,43 1,35
  • Acht den Stand der Technik betreffende Proben 1 bis 8 und neun unter die Erfindung fallende Proben 9 bis 17 mit den sich aus Tabelle I ergebenden Zusammensetzungen wurden in einem Mittelfrequenzofen unter Schutzgas erschmolzen und in einer Kokille zu Probestäben vergossen sowie 30 min. bei 1200 °C ausgelagert. Danach wurden die Proben zu Stäben geschmiedet, von ihrer Zunderschicht befreit und mittels Hartmetallschneidplatten zu zylindrischen Probestäben abgedreht. Die Probestäbe besaßen einen Durchmesser von 15 mm und wurden verschiedenen Austenitisierungstemperaturen (A) und Anlaßtemperaturen (B) unterworfen, um schließlich die Qualität einer Ölbenetzung und den Abriebverschleiß zu bestimmen.
  • Das in der Tabelle III mit A gekennzeichnete Austenitisierungsglühen fand bei 1020 °C oder 1050 °C statt, gefolgt von einem Schnellabkühlen mit einer Abkühlungsgeschwindigkeit von mindestens 50 °C/sec auf 800 °C und einem sich anschließenden Abkühlen innerhalb von 5 min. auf 300 °C sowie einem langsamen Abkühlen auf Raumtemperatur.
  • Die Proben wurden zudem abschließend entsprechend der Versuchsreihe B auf eine Temperatur von 100 bis 530 °C erwärmt und mit einer Geschwindigkeit von 100 °C/h auf Raumtemperatur abgekühlt.
  • Zur Bestimmung der Benetzbarkeit wurden die Proben sodann geschliffen und poliert, in einem wässrigen Ultraschallbad bei 50 °C gereinigt, mit heißem destillierten Wasser unter Einwirkung von Ultraschall weitere 20 min. von Reinigungsmittelresten befreit und danach getrocknet. Zur Bestimmung der Benetzbarkeitskennzahl B wurden sodann mithilfe einer Mikrodosierung auf jede Probe 10 µl Parafinöl aufgetragen und der sich sodann bildende Öltropfen hinsichtlich seiner Breite B vermessen, wie sich das schematisch aus der Darstellung in Fig. 1 ergibt. Die dabei festgestellten Messergebnisse sind zusammen mit der jeweiligen Austenitisierungstemperatur in der nachfolgenden Tabelle III verzeichnet. Tabelle III
    Vers. Nr. Leg. Wärmebehandlung Benetzung Abrieb Korrosionstest
    A B B R
    1 V1 1050 - 2,10 205 5
    2 V2 1050 - 2,30 195 5
    3 V3 1050 - 1,98 200 3
    4 V3 1020 530 2,00 205 3
    5 V4 1050 530 2,12 190 2
    6 V5 1050 480 2,00 196 1
    7 V5 1050 530 2,21 200 1-2
    8 V1 1050 550 2,50 180 5
    9 E1 1050 530 3,40 132 1
    10 E1 1020 550 3,10 135 1
    11 E1 1050 500 3,50 130 0-1
    12 E2 1050 480 3,70 125 0-1
    13 E2 1050 500 3,40 134 1
    14 E2 1050 530 3,35 130 1
    15 E3 1050 450 3,60 135 1
    16 E3 1050 430 4,00 115 1
    17 E3 1050 400 3,70 125 1
  • Die Abrieb- bzw. Verschleißfestigkeit wurde mit Hilfe eines modifizierten "Pin on Disk-Versuchs* bestimmt. Dabei wurden die zylindrischen Proben zunächst plangeschliffen, danach gereinigt, in eine Halterung eingespannt und sodann entsprechend Fig. 2 unter einer rotierenden Stahlwelle mit einer exzentrischen Hartmetallkugel unter Druck und Federvorspannung dynamisch belastet. Während des Versuchs wurde die Kontaktzone zwischen der gleitenden Hartmetallkugel und der Probenoberfläche durch Auftropfen von Schmieröl stetig geschmiert. Nach Beendigung der Versuchszeit wurde sodann die mittlere Breite R der Gleit- bzw. Verschleißspur unter einem Mikroskop an jeweils vier um neunzig Grad gegeneinander versetzten Stellen ausgemessen und aus diesen vier Messwerten jeweils der aus der Tabelle IV ersichtliche Mittelwert R (Fig. 3) gebildet. Dabei gibt eine breite Verschleißspur bzw. ein großer R-Wert einen Hinweis darauf, dass sich die Stahlkugel tiefer und demgemäß mit größerer Breite in die Proben eingefressen hat und das Probenmaterial demgemäß eine geringere Verschließfestigkeit besitzt als bei jenen Proben mit kleiner Verschleißspurbreite R.
  • Die Ergebnisse sind eindeutig; die unter die Erfindung fallenden Proben 9 bis 17 besitzen eine deutlich bessere Verschleißfestigkeit als die Proben 1 bis 8 aus herkömmlichen Stählen. Die Bedeutung des K2-Wertes für eine weitere Verbesserung der Verschleißfestigkeit ergibt sich dabei aus einem Vergleich der Daten aus der nachfolgenden Tabelle IV mit den entsprechenden Daten der Spalte 6 von Tabelle III. Tabelle IV
    K2
    1,35
    0,93
    6,96
    6,96
    3,80
    8,53
    8,53
    1,35
    0,32
    0,32
    0,32
    0,17
    0,17
    0,17
    0,43
    0,43
    0,43
  • Da viele kleine Chromkarbidausscheidungen hinsichtlich der Korrosionsbeständigkeit wirkungsvoller sind als wenige grobe Ausscheidungen, kann das Ergebnis eines Salzsprühtests als Indikator für die Größe und die Verteilung der Chromkarbidausscheidungen dienen. Die Proben wurden daher 120 Stunden einem Korrosionsversuch im Rahmen eines modifizierten Salzsprühtests mit einer 3%-NaCl-Lösung und 5% Alkohol unterworfen.
  • Die Versuchsergebnisse sind in Spalte 7 der Tabelle III zusammengestellt.
  • Es ist allgemein bekannt, dass martensitische Chromstähle je nach der Größe und Dichte der Chromkarbidausscheidungen in chloridische Lösungen einer starken Lochfraßkorrosion unterliegen. Die Daten der Spalte 7 der Tabelle III bestätigen das für die herkömmlichen Vergleichsstähle 1 bis 8 im Vergleich mit den unter die Erfindung fallenden Stählen 9 bis 17.
  • Je nach Breite der Zone einer Chromverarmung kommt es zum Entstehen von Lochfraßkorrosion, woraus sich die Erkenntnis gibt, dass eine Vielzahl kleiner Chromkarbidausscheidungen hinsichtlich der Lochfraßkorrosion günstiger ist als eine geringere Anzahl großer Ausscheidungen. Insofern eignen sich die Ergebnisse des Salzsprühtest als Indikator für die Größe und die Verteilung der Chromkarbidausscheidungen.
  • Die Ergebnisse der Korrosionsversuche gemäß Tabelle III letzte Spalte wurden nach einer Güteskala von 0 bis 5 bewertet, wobei 0 für keinerlei Roststellen steht und 5 mindestens fünf Roststellen indiziert. Die Ergebnisse des Salzsprühtests sind in Tabelle III, letzte Spalte zusammengestellt.
  • Insgesamt zeigen die Versuchsergebnisse, dass sich das Benetzungsverhalten der erfindungsgemäßen martensitischen Chromstähle für Schmiermittel deutlich besser ist als das der Vergleichsstähle. Die gute Benetzbarkeit führt zu einem geringeren Adhäsionsverschleiß in Anwesenheit einer Schmierung. Dabei ist nicht nur die chemische Zusammensetzung des Stahls von entscheidender Bedeutung. Einen wesentlichen Einfluss auf die Benetzbarkeit übt auch eine Wärmebehandlung der Proben aus. Dies zeigt sich an den größeren C-Werten und den kleineren R-Werten der erfindungsgemäßen Proben der Versuche 9 bis 17.
  • Maßgebend für die bessere Verschleißbeständigkeit R der erfindungsgemäßen Proben dürfte in erster Linie die Zusammensetzung des Stahls sein, wohin zu die zweistufige Wärmebehandlung zur Beeinflussung der Ausscheidungen kommt Insoweit bedingt nicht nur die spezielle Zusammensetzung des Stahls, sondern auch dessen Ausscheidungen im Gefüge die Materialeigenschaften. Dabei ist zu beachten, dass sich die Benetzbarkeit des Stahls für ein Schmiermittel besonders durch die Wärmebehandlungen A und B verbessern lässt. Das lässt den Schluss zu, dass die kohlenstoffhaltigen Feinausscheidungen im Martensit für die Schmiermittelbenetzung günstiger sind als stickstoffmodifizierte Karbonitride und eine stickstoffhaltige Matrix. Maßgebend ist somit der niedrige Stickstoffgehalt der Legierung ebenso wie der Faktor K2. Das belegen insbesondere die Vergleichsstähle V3 mit 0,25% Stickstoff und auch V5 mit 0,22% Stickstoff im Gegensatz zu den unter die Erfindung fallenden Stähle E1 bis E3 mit nur 0,05 bis 0,07% Stickstoff.
  • Schließlich zeigen auch die Faktoren K1 und K3, dass die günstigen Versuchsergebnisse auf einer günstigeren Ausscheidung der Karbide und anderer Phasen sowie dem Grundgefüge basieren.

Claims (13)

  1. Rostfreier martensitischer Chromstahl mit 0,4 bis 0,8% Kohlenstoff 0,2 bis 1,5% Silizium 0,15 bis 1,0% Nickel 0,3 bis 1,00% Mangan 0,015 bis 0,035% Schwefel 16 bis 18% Chrom 1,25 bis 1,50% Molybdän bis 0,8% Wolfram 0,04 bis 0,08% Stickstoff 0,15 bis 0,20% Vanadium bis 0,05% Titan bis 0,05% Niob 0,001 bis 0,03% Aluminium 0,02 bis 0,5% Kupfer bis 0,5% Kobalt bis 0,040% Bor,
    Rest Eisen einschließlich erschmelzungsbedingter Verunreinigungen.
  2. Chromstahl nach Anspruch 1, der einzeln oder nebeneinander 0,55 bis 0,75% Kohlenstoff bis 0,65% Silizium bis 0,8% Mangan mindestens 0,001 % Wolfram
    enthält.
  3. Chromstahl nach Anspruch 1 oder 2 mit einem Gesamtgehalt an Chrom, Molybdän und Wolfram von % Cr + 3 % Mo + % W = 19 , 7 bis 23 , 3.
    Figure imgb0006
  4. Chromstahl nach einem der Ansprüche 1 bis 3, der der Abstimmungsregel K 1 = % Nb + % Ti + % V = 0 , 15 bis 0 , 25 %
    Figure imgb0007
    genügt.
  5. Chromstahl nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass er der Abstimmungsregel K 2 = 100 x % N - 0 , 03 % x % N / % C = 0 , 053 bis 0 , 730
    Figure imgb0008

    genügt.
  6. Chromstahl nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass er der Abstimmungsregel K 3 = % Ni + % Co / % Mn = 0 , 40 bis 3 , 33 %
    Figure imgb0009

    genügt.
  7. Chromstahl nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass er bei 1020 bis 1050°C austenitisierend geglüht, anschießend mit einer Abkühlungsgeschwindigkeit von mindestens 50 °C/sec. auf 800 °C schnell abgekühlt sowie alsdann einem fünfminütigem Abkühlen auf 300 °C mit anschließendern Luftabkühlen bei Raumtemperatur unterworfen worden ist.
  8. Chromstahl nach Anspruch 7, der auf 100 bis 530 °C wiedererwärmt sowie anschließend mit einer Geschwindigkeit von 100 °C/h auf Raumtemperatur langsam abgekühlt worden ist.
  9. Verwendung eines Chromstahls nach einem der Ansprüche 1 bis 8 als lochfraßbeständiger Werkstoff.
  10. Verwendung eines Chromstahls nach einem der Ansprüche 1 bis 8 als gegen Reibungsverschleiß beständiger Werkstoff.
  11. Verwendung nach Anspruch 9 oder 10 mit einem Schmiermittelfilm.
  12. Verwendung nach Anspruch 11 in einem Gleitkontakt Metall/Metall mit einer Schmiermittel-Zwischenschicht.
  13. Verwendung eines Chromstahls nach einem der Ansprüche 1 bis 7 als Werkstoff zum Herstellen von Ventilstiften, Steuer- und Dosiernadeln, Führungshülsen, Funktionskomponenten von Kraftstoff-Einspritzsystemen, Kolbehringe für Plunger und Motoren sowie Dicht- und Abstreifringe für Kompressoren.
EP10751807.8A 2009-08-24 2010-08-18 Rostfreier martensitischer chromstahl Active EP2470681B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10751807T PL2470681T3 (pl) 2009-08-24 2010-08-18 Nierdzewna martenzytyczna stal chromowa

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009038382A DE102009038382A1 (de) 2009-08-24 2009-08-24 Rostfreier martensitischer Chromstahl
PCT/EP2010/005067 WO2011023326A1 (de) 2009-08-24 2010-08-18 Rostfreier martensitischer chromstahl

Publications (2)

Publication Number Publication Date
EP2470681A1 EP2470681A1 (de) 2012-07-04
EP2470681B1 true EP2470681B1 (de) 2013-11-20

Family

ID=42937637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10751807.8A Active EP2470681B1 (de) 2009-08-24 2010-08-18 Rostfreier martensitischer chromstahl

Country Status (5)

Country Link
EP (1) EP2470681B1 (de)
DE (1) DE102009038382A1 (de)
ES (1) ES2446716T3 (de)
PL (1) PL2470681T3 (de)
WO (1) WO2011023326A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011102293A1 (de) 2011-02-24 2012-08-30 Stahlwerk Ergste Westig Gmbh Verwendung eines Chromstahls mit martensitischem Gefüge und karbidischen Einschlüssen
DE102017003965B4 (de) * 2017-04-25 2019-12-12 Zapp Precision Metals Gmbh Martensitischer Chromstahl, Stahlfolie, perforierte und/oder gelochte Komponente aus einer Stahlfolie, Verfahren zum Herstellen einer Stahlfolie
CN115109891B (zh) * 2022-07-14 2022-12-20 中北大学 一种高碳高铬含氮马氏体不锈钢及其碳化物细化方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE404029B (sv) * 1968-05-31 1978-09-18 Uddeholms Ab Forfarande for framstellning av emnen for tunna eggverktyg av herdat stal
US3990892A (en) * 1972-03-28 1976-11-09 Kabushiki Kaisha Fujikoshi Wear resistant and heat resistant alloy steels
AT401387B (de) * 1994-06-29 1996-08-26 Boehler Ybbstalwerke Korrosionsbeständige legierung und verfahren zur herstellung korrosionsbeständiger schneidwaren
DE19808276C2 (de) * 1998-02-27 2003-12-24 Stahlwerk Ergste Westig Gmbh Stahllegierung für Gleitelemente
JP2000337389A (ja) * 1999-03-19 2000-12-05 Nsk Ltd 転がり軸受
DE10027049B4 (de) 2000-01-17 2004-09-16 Stahlwerk Ergste Westig Gmbh Verwendung einer Chrom-Stahllegierung
DE102004051629B4 (de) * 2004-10-23 2006-08-24 Stahlwerk Ergste Westig Gmbh Rostfreier martensitischer Chromstahl
JP2008291307A (ja) * 2007-05-24 2008-12-04 Daido Steel Co Ltd 金型の製造方法、金型用鋼材の製造方法、及び、金型用鋼材を用いた金型の製造方法
DE102007025758A1 (de) * 2007-06-01 2008-12-04 Mahle International Gmbh Dichtring

Also Published As

Publication number Publication date
PL2470681T3 (pl) 2014-05-30
ES2446716T3 (es) 2014-03-10
WO2011023326A1 (de) 2011-03-03
DE102009038382A8 (de) 2011-06-01
EP2470681A1 (de) 2012-07-04
DE102009038382A1 (de) 2011-03-03

Similar Documents

Publication Publication Date Title
AT502397B1 (de) Legierung für wälzlager
DE60214456T2 (de) Martensitischer rostfreier Stahl mit hoher Härte und guter Korrosionsbeständigkeit
DE69604341T2 (de) Martensitischer. rostfreier stahl mit guter beständigkeit gegen lochfrasskorrosion und mit hoher härte
DE69718784T2 (de) Stahl mit hervorragender verarbeitbarkeit und damit hegestelltes bauteil
DE69423930T2 (de) Martensitisches rostfreies Stahl mit verbesserter Bearbeitbarkeit
DE60215655T2 (de) Martensitischer nichtrostender stahl
EP3228724A1 (de) Verfahren zur einstellung der wärmeleitfähigkeit eines stahls, werkzeugstahl, insbesondere warmarbeitsstahl, und stahlgegenstand
DE2040308A1 (de) Austenitischer rostfreier Stahl
DE112019006482T5 (de) Karbonitrierte lagerkomponente
DE2447137B2 (de) Gegen gruebchenkorrosion bestaendige stahllegierung
EP1233080B1 (de) Stahl für Kunststofformen und Verfahren zur Wärmebehandlung desselben
EP2470681B1 (de) Rostfreier martensitischer chromstahl
DE60030175T2 (de) Automatenlegierung
DE112019006504T5 (de) Stahlmaterial als ausgangsmaterial für karbonitrierte lagerkomponente
AT410550B (de) Reaktionsträger werkstoff mit erhöhter härte für thermisch beanspruchte bauteile
DE112008003146T5 (de) Stahl für eine Induktionshärtung mit einer hervorragenden Kaltverarbeitungsfähigkeit, Rollglied, das aus einem derartigen Stahl ausgebildet ist, und Bewegungsführungsvorrichtung, die ein derartiges Rollglied verwendet
DE60011115T2 (de) Stahlmaterial, dessen verwendung und herstellung
DE69509723T2 (de) Eine verbesserte Stahlzusammensetzung für Lager und deren Herstellungsverfahren
EP3061838B1 (de) Blankes bainitisches langprodukt und verfahren zu dessen herstellung
DE69909940T2 (de) Teile aus martensitischem rostfreiem Stahl und Verfahren zu ihrer Herstellung
EP4211279A1 (de) Warmgewalztes stahlflachprodukt und verfahren zur herstellung eines warmgewalzten stahlflachprodukts
EP3781719B1 (de) Kupfer-zink-nickel-mangan-legierung
EP1471160B1 (de) Kaltarbeitsstahl-Gegenstand
DE60100730T2 (de) Austenitischer stahl
EP1445339B1 (de) Legierung und Gegenstand mit hoher Warmfestigkeit und hoher thermischer Stabilität

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120320

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130918

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 641717

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010005436

Country of ref document: DE

Effective date: 20140116

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2446716

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140310

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131120

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ZAPP PRECISION METALS GMBH

Effective date: 20140409

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140320

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ZAPP PRECISION METALS GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ZAPP PRECISION METALS GMBH, DE

Free format text: FORMER OWNER: STAHLWERK ERGSTE WESTIG GMBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005436

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

26N No opposition filed

Effective date: 20140821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010005436

Country of ref document: DE

Representative=s name: KOENIG SZYNKA TILMANN VON RENESSE PATENTANWAEL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005436

Country of ref document: DE

Effective date: 20140821

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010005436

Country of ref document: DE

Owner name: ZAPP PRECISION METALS GMBH, DE

Free format text: FORMER OWNER: STAHLWERK ERGSTE WESTIG GMBH, 58239 SCHWERTE, DE

Effective date: 20141104

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010005436

Country of ref document: DE

Representative=s name: KOENIG SZYNKA TILMANN VON RENESSE PATENTANWAEL, DE

Effective date: 20141104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140818

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140221

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100818

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 641717

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150818

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131120

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230811

Year of fee payment: 14

Ref country code: IT

Payment date: 20230831

Year of fee payment: 14

Ref country code: ES

Payment date: 20230918

Year of fee payment: 14

Ref country code: CH

Payment date: 20230902

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230804

Year of fee payment: 14

Ref country code: FR

Payment date: 20230821

Year of fee payment: 14

Ref country code: DE

Payment date: 20230919

Year of fee payment: 14