EP2431700B1 - Kreuzstrom-Mikrowärmeübertrager - Google Patents

Kreuzstrom-Mikrowärmeübertrager Download PDF

Info

Publication number
EP2431700B1
EP2431700B1 EP11007158.6A EP11007158A EP2431700B1 EP 2431700 B1 EP2431700 B1 EP 2431700B1 EP 11007158 A EP11007158 A EP 11007158A EP 2431700 B1 EP2431700 B1 EP 2431700B1
Authority
EP
European Patent Office
Prior art keywords
channel
micro
cross
channels
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11007158.6A
Other languages
English (en)
French (fr)
Other versions
EP2431700A3 (de
EP2431700A2 (de
Inventor
Klaus Schubert
Achim Wenka
Roland Dittmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP2431700A2 publication Critical patent/EP2431700A2/de
Publication of EP2431700A3 publication Critical patent/EP2431700A3/de
Application granted granted Critical
Publication of EP2431700B1 publication Critical patent/EP2431700B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels

Definitions

  • the invention relates to a cross-flow heat exchanger, preferably a cross-flow micro heat exchanger according to the first claim.
  • Cross-flow heat exchangers are well known in the art. They have a heat exchange region in which a fluid flow in a first channel group is tempered by a heat transfer fluid flow in a second, the first crossing channel group.
  • Each of the channel groups has a plurality of preferably over their entire length connected in parallel and preferably also parallel channels.
  • the channels per channel group - as usual in cross-flow heat exchangers - parallel to each other and preferably arranged in a straight line on a plane.
  • the first and second channel groups, with or without interleaves without channels are alternately arranged plane-wise, i. Cooling or heating of the fluid stream takes place by heat transfer at the intersections, which thus form the heat transfer areas.
  • a quantity of heat is transferred, wherein the fluid flow in a channel of the first group of channels passes through a plurality of intersections and thus heat transfer areas and add the amounts of heat transferred in each case.
  • the entirety of the channels of a channel group preferably forms a passage through the cross-flow heat exchanger.
  • a cross-flow micro heat exchanger in which the microchannels are integrated in layers as a plurality of parallel grooves on one side in metal foils.
  • the films are preferably cut out square and stacked with the grooves crosswise alternately rotated by preferred 90 ° and connected together by gluing, soldering or welding, wherein the groove-structured foil sides in each case rest on an unstructured side of the adjacent foil.
  • countercurrent and direct current heat exchangers are also known in which the channels of the fluid to be temperature-controlled and of the heat transfer fluid do not intersect, but are guided parallel to one another.
  • cross-flow micro heat exchanger of the aforementioned type speak not only the outstanding thermal properties, described for example in [2], but also easier compared to DC or Jacobstromebenschreibern because not intertwined to be realized and low-loss inlets and outlets fluid streams.
  • the object of the invention is to propose a further improved cross-flow heat transfer system which does not have the aforementioned limitations and in particular allows a uniform temperature control of the fluids in all channels per channel group.
  • the solution of the problem is based on a modification of a cross-flow heat exchanger described above.
  • the channels are divided into two channel groups, each having a first channel group for the fluid to be tempered and a second channel group for the heat transfer fluid.
  • the channels are arranged in layers. Each level has channels only one channel group, the levels and thus the channel groups - as described above - are stacked in preferred alternating order to a heat exchanger.
  • the channels are connected in parallel for each channel group and preferably also arranged in parallel, wherein different channel groups are aligned differently and thus the channels intersect. Intermediate levels without channels or adjacent levels with channels from the same channel group are not excluded within the scope of the possible embodiments. It is essential that two channels from adjacent levels cross with different channel group membership and heat transfer areas for heat transfer between the adjacent channels arise in these intersections.
  • the cross-flow heat exchanger is designed as a Kreustrom-Mikroebenziestedtrager
  • the channels are micro-channels, with narrowest cross sections between 0.001 mm 2 and 1 mm 2, and preferably with closest cross-sectional dimensions between 0.01 mm and 1 mm.
  • Micro heat exchanger are preferably made of plate or film stacks, wherein the microchannels of the microchannel groups are incorporated as grooves on one side or both sides in the plates or films and the films are joined together by pressing, gluing, soldering or welding to form a film stack.
  • the inlets and outlets of the microchannels are laterally, for each channel group preferably on its own side surface.
  • the basic idea is to equalize the fluid flows in all channels of the first and second channel group just by geometrically individual design of the intersections and thus the thermal transmission paths in the heat transfer areas in total.
  • an equal temperature change of the fluid flow in the first channel group as well as the heat carrier fluid flow in the second channel group is realized in an advantageous manner in total.
  • the outlet temperatures of the fluids to be tempered and the heat transfer fluid are kept in close temperature intervals.
  • the risk of hypothermia or overheating of fluid components and thus crystallization or vapor formation is effectively reduced.
  • This advantageously also allows a more exact maintenance and utilization of a definable temperature window and thus a use of fluids with phase transitions near the temperature window.
  • both fluid flows leaving the heat exchanger per channel group have a homogeneous temperature and can be introduced directly without intervening mixer stage, for example in a reactor or another heat exchanger.
  • the claimed cross-flow heat exchanger or cross-flow micro heat exchanger is thus particularly suitable for use in process engineering Processes in which both fluids used in both micro-channel groups and not only the fluid in the first micro-channel group are procedurally changed.
  • both channel groups have different geometric dimensions in their channels (e.g., cross-section, width) and / or in channel spacings and / or land widths.
  • the channel width or the channel cross-section increases in the direction upstream of the respective other channel group, ie. to the respective fluid inlets of the other channel group towards.
  • the object is achieved by a cross-flow micro heat exchanger, in which the channels are formed in two channel groups per level with different, preferably stepped cross-sections.
  • the depth of the microchannels i. the groove depth in the individual foils or plates and the web width between the channels are constant, so that the different cross sections are realized by different channel widths.
  • the gradation of the cross sections and the aforementioned channel widths per level is preferably always in continuous steps with each channel increasing or decreasing, wherein the channel is arranged with the largest cross section or the largest width near the fluid inlets of the respective intersecting channels of the other channel group.
  • the following channels on the level gradually show smaller and smaller sections or widths on, wherein the channel with the smallest cross-section is arranged near the fluid exits of the respective intersecting channels of the other channel group.
  • Fig.1 a perspective sectional view of a cross-flow micro heat exchanger.
  • the in Fig.1 illustrated cross-flow micro heat exchanger consists of films 1 with groove-shaped rectilinear 2 incorporated channels of a first channel group 3 for a fluid to be tempered (fluid flow direction 4) and a second channel group 5 for a heat transfer fluid (fluid flow direction 6) .
  • the facing to the viewer end surfaces 7 each include the fluid inlets.
  • Between two channels of a film is a web as a channel boundary and channel separation.
  • Each film with channels has only channels of a channel group and preferably one-sided or two-sided always adjacent to films with channels of the other channel group.
  • the channels have equal depths and different widths.
  • the fluid connections of the cross-flow micro heat exchanger are in Fig.1 not shown.
  • all channels 2 of both channel groups have a depth of 0.1 mm and also a web width between the microchannels of 0.1 mm.
  • the foils 1 in the exemplary embodiment consist of VA steel (18-8-chromium-nickel steel) and have a thickness of 0.2 mm.
  • B n 1 4 . 1 - 1 208 , n + 1 1 . 3 ⁇ n 2 ⁇ B 1
  • N is the total number of microchannels per plane (foil) and is between 10 and 60
  • is the thermal conductivity in W / mK of the respective fluid in the channels.
  • the ridge widths are constant at least for each channel group, and preferably in the range between 10 and 15% of B 1 .
  • the width B n is also possible to calculate those of the cross-sectional areas A n of the channels.
  • the web width is to be corrected.
  • the channel spacing between the center lines of the individual channels is used here, which adds to the web width plus the width B n calculated with (1) at an underlying channel depth.
  • the exemplary embodiment is a cross-flow micro heat exchanger with square foils each having 34 microchannels.
  • the depth of the microchannels is 0.1 mm, the width of the webs between the microchannels 0.1 mm.
  • the mass throughput per film is 1 kg / h, the films have a dimension of 10 x 10 mm and are structured on one side to 8 mm wide with 0.1 mm deep channels.
  • exit temperatures in the described embodiment with graduated channel widths in all channels of both channel groups are equal to ⁇ 4% (reference to ° C) and ⁇ 0.6% (refer to Kelvin).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Temperature-Responsive Valves (AREA)

Description

  • Die Erfindung betrifft einen Kreuzstrom-Wärmeübertrager, vorzugsweise einen Kreuzstrom-Mikrowärmeübertrager gemäß des ersten Patentanspruchs.
  • Kreuzstrom-Wärmeübertrager sind in der Technik allgemein bekannt. Sie weisen einen Wärmetauschbereich auf, in dem ein Fluidstrom in einer ersten Kanalgruppe durch einen Wärmeträgerfluidstrom in einer zweiten, die erste kreuzenden Kanalgruppe temperiert wird. Jede der Kanalgruppen weist eine Vielzahl vorzugsweise über ihre gesamte Länge parallel verschalteter und vorzugsweise auch parallel verlaufender Kanäle auf. Vorzugsweise sind die Kanäle je Kanalgruppe - wie bei Kreuzstrom-Wärmeübertragern üblich - parallel zueinander und vorzugsweise geradlinig auf einer Ebene angeordnet. Üblicherweise sind die erste und zweite Kanalgruppe mit oder ohne Zwischenlagen ohne Kanäle ebenenweise abwechselnd angeordnet, d.h. eine Kühlung oder Aufheizung des Fluidstroms erfolgt durch Wärmeübertragung an den Kreuzungen, die damit die Wärmeübertragungsbereiche bilden. An jeder Kreuzung wird eine Wärmemenge übertragen, wobei der Fluidstrom in einem Kanal der ersten Kanalgruppe eine Vielzahl von Kreuzungen und damit Wärmeübertragungsbereiche passiert und sich die jeweils übertragenen Wärmemengen addieren. Die Gesamtheit der Kanäle einer Kanalgruppe bildet für sich vorzugsweise eine Passage durch den Kreuzstrom-Wärmeübertrager.
  • In der [1] wird beispielhaft neben anderen Bauformen ein Kreuzstrom-Mikrowärmeübertrager offenbart, bei dem die Mikrokanäle ebenenweise als eine Vielzahl paralleler Rillen einseitig in Metallfolien eingearbeitet sind. Die Folien werden vorzugsweise quadratisch ausgeschnitten und mit den Rillen kreuzweise abwechselnd um bevorzugte 90° verdreht gestapelt und durch Kleben, Löten oder Schweißen miteinander verbunden, wobei die mit Rillen strukturierten Folienseiten jeweils an einer unstrukturierten Seite der benachbarten Folie anliegen.
  • Alternativ zu einem Kreuzstromwärmeübertrager sind auch Gegenstrom- und Gleichstromwärmeübertrager bekannt, in denen sich die Kanäle des zu temperierenden Fluids und des Wärmeträgerfluids nicht kreuzen, sondern parallel zueinander geführt werden.
  • Für einen Einsatz von Kreuzstrom-Mikrowärmeübertragern der vorgenannten Art sprechen nicht nur die herausragenden thermischen Eigenschaften, beschrieben z.B. in [2], sondern auch die im Vergleich zu Gleich- oder Gegenstromwärmeübertragern einfacher, da nicht ineinander verschlungen zu realisierenden sowie verlustärmeren Zu- und Ableitungen der Fluidströme.
  • Der Nachteil eines Kreuzstromwärmeübertragers im Vergleich zu einem Gegenstrom- oder Gleichstromwärmeübertrager liegt darin, dass der zu temperierende Fluidstrom wegen des querströmenden Wärmeträgerfluids nicht in jedem Kanal gleich temperiert wird. Mit jedem Kreuzen zwischen zwei sich kreuzenden Kanälen kommt es zu einer Wärmeübertragung, die auch die Temperatur des Wärmeübertragungsfluids verändert.
  • Eine wirtschaftliche und in allen Kanälen einer jeden Kanalgruppe gleichförmige Temperierung, d.h. Erhitzung oder Abkühlung der Fluide ist in einem Kreuzstromwärmetauscher herkömmlicher Bauart ohne ein verzerrtes Temperaturprofil des zu temperierenden Fluidstroms am Austritt aus dem Kanälen praktisch nicht möglich. Da es bei jeder Kreuzung zweier Kanäle zu einer Übertragung von Wärme kommt, die bei einer nachfolgenden Kreuzung nicht mehr zur Verfügung steht, ist eine nahezu gleichförmige Temperierung des Fluids in allen Kanälen nur mit einem erheblichen Überschuss an Wärmeenergie im Wärmeträgerfluidstrom realisierbar. Dies kann nur mit einem signifikant erhöhten Massenstrom an Wärmeübertragungsfluid erfolgen, was nicht nur den Wirkungsgrad, sondern auch die Wirtschaftlichkeit reduziert.
  • Folglich liegt die Aufgabe der Erfindung darin, ein weiter verbessertes Kreuzstromwärmeübertragersystem vorzuschlagen, das die vorgenannten Einschränkungen nicht aufweist und insbesondere eine gleichförmige Temperierung der Fluide in allen Kanälen je Kanalgruppe ermöglicht.
  • Die Aufgabe wird durch einen Kreuzstrom-Mikrowärmeübertrager mit den Merkmalen des Anspruchs 1 gelöst. Unteransprüche geben vorteilhafte Ausgestaltungen wieder.
  • Die Lösung der Aufgabe basiert auf einer Modifikation eines eingangs beschriebenen Kreuzstrom-Wärmeübertragers. Die Kanäle sind in zwei Kanalgruppen, jeweils eine erste Kanalgruppe für das zu temperierende Fluid und eine zweite Kanalgruppe für das Wärmeträgerfluid aufgeteilt. Die Kanäle sind ebenenweise angeordnet. Jede Ebene weist Kanäle nur einer Kanalgruppe auf, wobei die Ebenen und damit die Kanalgruppen - wie eingangs beschrieben - in bevorzugt abwechselnder Reihenfolge zu einem Wärmeübertrager gestapelt sind. Die Kanäle sind für jede Kanalgruppe parallel geschaltet und vorzugsweise auch parallel angeordnet, wobei unterschiedliche Kanalgruppen unterschiedlich ausgerichtet sind und sich die Kanäle somit kreuzen. Zwischenebenen ohne Kanäle oder benachbarte Ebenen mit Kanälen aus der gleichen Kanalgruppe sind im Rahmen der möglichen Ausführungsformen nicht ausgeschlossen. Wesentlich ist, dass sich zwei Kanäle aus benachbarten Ebenen mit unterschiedlicher Kanalgruppenzugehörigkeit kreuzen und in diesen Kreuzungen Wärmeübertragungsbereiche für eine Wärmeübertragung zwischen den angrenzenden Kanälen entstehen.
  • Vorzugsweise ist der Kreuzstrom-Wärmeübertrager als Kreustrom-Mikrowärmeübertrager gestaltet, wobei die Kanäle Mikrokanäle sind, mit engsten Querschnitten zwischen 0,001 mm2 und 1 mm2 sowie vorzugsweise mit engsten Querschnittsabmessungen zwischen 0,01 mm und 1 mm. Mikrowärmeübertrager sind vorzugsweise aus Platten- oder Folienstapeln gefertigt, wobei die Mikrokanäle der Mikrokanalgruppen als Rillen einseitig oder beidseitig in die Platten oder Folien eingearbeitet und die Folien durch Pressung, Klebung, Lötung oder Schweißung zu einem Folienstapel zusammengefügt sind. Die Ein- und Austritte der Mikrokanäle sind seitlich, für jede Kanalgruppe bevorzugt auf einer eigenen Seitenfläche.
  • Die Grundidee liegt darin, die Fluidströme in allen Kanälen der ersten und zweiten Kanalgruppe allein durch geometrisch individuelle Gestaltung der Kreuzungen und damit der thermischen Übertragungswege in den Wärmeübertragungsbereichen in Summe gleich zu temperieren. Damit wird in vorteilhafter Weise in Summe eine gleiche Temperaturänderung des Fluidstroms in der ersten Kanalgruppe wie auch des Wärmeträgerfluidstroms in der zweiten Kanalgruppe realisiert. Damit werden die Austrittstemperaturen der zu temperierenden Fluide und des Wärmeträgerfluids in engen Temperaturintervallen gehalten. Die Gefahr von Unterkühlung oder Überhitzung von Fluidbestandteilen und damit Auskristallisation bzw. Dampfbildung wird wirksam reduziert. Dies ermöglicht in vorteilhafter Weise auch eine exaktere Einhaltung und Ausnutzung eines definierbaren Temperaturfensters und damit eine Verwendung von Fluiden mit Phasenübergängen nahe dem Temperaturfenster. Ferner weisen beide den Wärmeübertrager verlassende Fluidströme je Kanalgruppe eine homogene Temperatur auf und können ohne zwischengeschaltete Vermischerstufe direkt z.B. in einen Reaktor oder einen weiteren Wärmeübertrager eingeleitet werden. Der beanspruchte Kreuzstrom-Wärmeübertrager oder Kreuzstrom-Mikrowärmeübertrager eignet sich damit besonders für einen Einsatz in verfahrenstechnischen Prozessen, bei dem beide eingesetzten Fluide in beiden Mikrokanalgruppen und nicht nur das Fluid in der ersten Mikrokanalgruppe verfahrenstechnisch verändert werden.
  • Als Variationsparameter dienen nicht nur die spezifische Kontaktfläche der Fluidströme zu den Kanalwandungen, sondern auch die Fluidstromdichte oder der Massenstrom an den Kreuzungen.
  • Wesentlich ist, dass die Kanäle einer jeden Ebene für sich, d.h. beide Kanalgruppen unterschiedliche geometrische Abmessungen in ihren Kanälen (z.B. Querschnitt, Breite) und/oder in den Kanalabständen und/oder Stegbreiten aufweisen. Dabei nimmt in jeder Ebene die Kanalbreite oder der Kanalquerschnitt in stromaufwärts der jeweils anderen Kanalgruppe gelegener Richtung, d.h. zu den jeweiligen Fluideintritten der jeweils anderen Kanalgruppe hin zu. Durch diese Variation ändert man das Wärmeübertragungsverhalten in den Wärmeübertragungsbereichen der Kreuzungen.
  • Vorzugsweise wird die Aufgabe durch einen Kreuzstrom-Mikrowärmeübertrager gelöst, bei dem die Kanäle in beiden Kanalgruppen je Ebene mit unterschiedlichen, vorzugsweise abgestuften Querschnitten ausgebildet sind. Vorzugsweise sind die Tiefe der Mikrokanäle, d.h. die Rillentiefe in den einzelnen Folien oder Platten sowie die Stegbreite zwischen den Kanälen konstant, sodass die unterschiedlichen Querschnitte durch unterschiedliche Kanalbreiten realisiert werden.
  • Die Abstufung der Querschnitte und der vorgenannten Kanalbreiten je Ebene erfolgt vorzugsweise in kontinuierlichen Schritten mit jedem Kanal stets zu- oder abnehmend, wobei der Kanal mit dem größten Querschnitt bzw. der größten Breite nahe den Fluideintritten der jeweils kreuzenden Kanäle der anderen Kanalgruppe angeordnet ist. Die folgenden Kanäle auf der Ebene weisen stufenweise immer kleinere Querschnitte oder Breiten auf, wobei der Kanal mit dem kleinsten Querschnitt nahe den Fluidaustritten der jeweils kreuzenden Kanäle der anderen Kanalgruppe angeordnet ist.
  • Die Erfindung wird im Folgenden anhand eines Ausführungsbeispiels erläutert, das optional auch mit einzelnen oder allen vorgenannten Maßnahmen zusätzlich kombinierbar oder erweiterbar ist. Es zeigt
  • Fig.1 eine perspektivische abschnittsweise Darstellung eines Kreuzstrom-Mikrowärmeübertragers.
  • Der in Fig.1 dargestellte Kreuzstrom-Mikrowärmeübertrager besteht aus Folien 1 mit rillenförmigen geradlinig eingearbeiteten Kanälen 2 einer ersten Kanalgruppe 3 für ein zu temperierendes Fluid (Fluidstromrichtung 4) sowie einer zweiten Kanalgruppe 5 für ein Wärmeträgerfluid (Fluidstromrichtung 6). Die zum Betrachter hinweisenden Stirnflächen 7 umfassen jeweils die Fluideintritte. Zwischen zwei Kanälen einer Folie befindet sich ein Steg als Kanalbegrenzung sowie zur Kanaltrennung. Jede Folie mit Kanälen weist nur Kanäle einer Kanalgruppe auf und grenzt einseitig oder beidseitig vorzugsweise stets an Folien mit Kanälen der jeweils anderen Kanalgruppe an. Die Kanäle weisen gleiche Tiefen und unterschiedliche Breiten auf. Die Fluidanschlüsse des Kreuzstrom-Mikrowärmeübertragers sind in Fig.1 nicht dargestellt. Im Ausführungsbeispiel weisen alle Kanäle 2 beider Kanalgruppen eine Tiefe von 0,1 mm sowie eine Stegbreite zwischen den Mikrokanälen ebenfalls von 0,1 mm auf. Die Folien 1 bestehen im Ausführungsbeispiel aus VA-Stahl (18-8-Chrom-Nickel-Stahl) und weisen eine Stärke von 0,2 mm auf.
  • Im Folgenden wird die rechnerische Ermittlung der individuellen Abstufungen der Breiten und damit der Querschnitte der Mikrokanäle der beiden Kanalgruppen beschrieben. Die Querschnitte und Abstufungen sind im konkreten Ausführungsbeispiel für beide Kanalgruppen identisch, wobei sich die Anmeldung nicht nur auf diese Ausführungsform beschränkt. Die Berechnung erfolgt somit unter der Annahme, dass in beiden Kanalgruppen identische thermische Kapazitätsströme, z.B. die gleichen Massenströme des gleichen Fluids durchgesetzt werden. Dies wird insbesondere durch eine ähnliche oder gleiche Wärmeleitzahl und Viskosität realisiert. Als Eintrittstemperaturen werden für die erste Kanalgruppe 8°C, für die zweite Kanalgruppe 95°C angenommen.
  • Für die Abstufung oder Verringerung der Breiten Bn der Mikrokanäle für beide Kanalgruppen gilt folgende Beziehung B n = 1 4 , 1 1 208 . n + 1 1 , 3 n 2 B 1
    Figure imgb0001
  • Dabei ist n die laufende Nummer des Kanals (n= 1, ..., N), beginnend mit dem breitesten Mikrokanal (Breite B1 in mm) vorzugsweise parallel nahe den fluideintrittsseitigen Stirnflächen der kreuzenden Mikrokanäle. Ergibt sich für Bn ein Wert kleiner 0,05 mm, erfolgt vorzugsweise (und im Rahmen der vorliegenden Berechnung) eine Aufrundung dieses Bn-Wertes auf einen Wert von 0,05 mm.
  • Die Breite des breitesten Mikrokanals berechnet sich zu B 1 = 10 3 3 , 3 N + 800 0 , 314 0 , 815 ln λ 0 , 69 mm
    Figure imgb0002
    wobei N die Gesamtzahl der Mikrokanäle pro Ebene (Folie) ist und zwischen 10 und 60 liegt sowie λ die Wärmeleitzahl in W/mK des jeweiligen Fluids in den Kanälen. Die Stegbreiten sind zumindest für jede Kanalgruppe konstant und vorzugsweise im Bereich zwischen 10 und 15% von B1.
  • In analoger Weise, d.h. mit grundsätzlich den gleichen Formeln lassen sich anstelle der Abstufungen der Breite Bn auch die der Querschnittsflächen An der Kanäle berechnen. Die Stegbreite ist dabei zu korrigieren. Vorzugsweise wird hier der Kanalabstand zwischen den Mittellinien der einzelnen Kanäle herangezogen, der sich zu der Stegbreite zuzüglich der mit (1) berechneten Breite Bn bei einer zugrundeliegenden Kanaltiefe summiert.
  • Tab.1 zeigt die unter den vorgenannten Annahmen und Beziehungen ermittelten Kanalbreiten Bn und die Austrittstemperaturen von kalter (Wärme aufnehmender) und warmer (Wärme abgebender) Kanalgruppe eines Kreuzstrom-Mikrowärmeübertragers, ausgelegt für Wasser (λ = 0,5562 W/mK). Bei dem Ausführungsbeispiel handelt es sich um einen Mikrowärmeübertrager im Kreuzstrom mit quadratischen Folien mit jeweils 34 Mikrokanälen. Die Tiefe der Mikrokanäle beträgt 0,1 mm, die Breite der Stege zwischen den Mikrokanälen 0,1 mm. Der Massendurchsatz pro Folie beträgt 1kg/h, wobei die Folien eine Abmessung von 10 x 10 mm aufweisen und einseitig auf 8 mm Breite mit 0,1 mm tiefen Kanälen strukturiert sind.
  • Zudem ergibt sich, dass die Austrittstemperaturen bei der beschriebenen Ausführungsform mit abgestuften Kanalbreiten in allen Kanälen beider Kanalgruppen bis auf ±4% (Bezug auf °C) und ±0,6% (Bezug auf Kelvin) gleich sind.
  • Für den Fall, dass ein größeres Temperaturintervall von ±8% (Bezug auf °C) für die aus den Mikrokanälen austretenden Fluide einer Kanalgruppe tolerierbar ist, berechnen sich die Breiten mit n = 1,..., N zu B n = 1 n 1 / 2 B 1
    Figure imgb0003
    Tabelle 1: Kanalbreiten und Austrittstemperaturen
    Kanal-Nr.: Kanalbreite Austrittstemperatur kalte Passage Austrittstemperatur warme Passage
    in mm in K in °C in K in °C
    Kanal 1 0,706 324,6 51,4 322,7 49,5
    Kanal 2 0,299 322,7 49,5 325,5 52,3
    Kanal 3 0,221 323,1 50,0 325,2 52,1
    Kanal 4 0,191 323,2 50,0 325,4 52,2
    Kanal 5 0,176 323,0 49,9 325,7 52,5
    Kanal 6 0,166 322,8 49,7 326,0 52,9
    Kanal 7 0,159 322,5 49,4 326,4 53,3
    Kanal 8 0,153 322,3 49,1 326,8 53,7
    Kanal 9 0,148 322,0 48,8 327,2 54,1
    Kanal 10 0,143 321,7 48,6 327,6 54,4
    Kanal 11 0,139 321,5 48,3 327,9 54,8
    Kanal 12 0,135 321,3 48,2 328,2 55,0
    Kanal 13 0,131 321,2 48,0 328,4 55,3
    Kanal 14 0,127 321,1 47,9 328,6 55,4
    Kanal 15 0,123 321,0 97,9 328,7 55,5
    Kanal 16 0,119 321,0 47,9 328,7 55,6
    Kanal 17 0,116 321,0 47,9 328,8 55,6
    Kanal 18 0,112 321,1 97,9 328,7 55,6
    Kanal 19 0,109 321,2 48,0 328,7 55,5
    Kanal 20 0,105 321,3 48,2 328,5 55,3
    Kanal 21 0,102 321,5 48,4 328,3 55,2
    Kanal 22 0,098 321,8 48,6 328,0 54,9
    Kanal 23 0,095 322,0 48,9 327,7 54,6
    Kanal 24 0,091 322,3 49,2 327,4 54,2
    Kanal 25 0,088 322,6 49,5 327,0 53,9
    Kanal 26 0,085 322,9 49,8 326,7 53,5
    Kanal 27 0,081 323,3 50,1 326,3 53,1
    Kanal 28 0,078 323,6 50,4 325,9 52,7
    Kanal 29 0,074 323,9 50,8 325,5 52,4
    Kanal 30 0,071 324,2 51,0 325,3 52,1
    Kanal 31 0,067 324,4 51,3 325,0 51,9
    Kanal 32 0,064 324,6 51,4 324,9 51,7
    Kanal 33 0,061 324,7 51,6 324,8 51,6
    Kanal 34 0,057 324,7 51,6 324,8 51,6
  • Literatur:
    1. [1] DE 37 09 278 C2
    2. [2] Schubert, K. et al.: Microstructure Devices for Applications in Thermal and Chemical Process Engineering; Microscale Thermophysical Eng. 5 (2001) S.17-39
    Bezugszeichenliste:
  • 1
    Folie
    2
    Kanal
    3
    erste Kanalgruppe
    4
    Fluidstromrichtung in der ersten Kanalgruppe
    5
    zweite Kanalgruppe
    6
    Fluidstromrichtung in der zweiten Kanalgruppe
    7
    Stirnfläche

Claims (6)

  1. Kreuzstrom-Mikrowärmeübertrager zum schnellen Temperieren eines Fluidstroms in einer ersten Mikrokanalgruppe (3) durch einen Wärmeträgerfluidstrom in einer zweiten, die erste kreuzende Mikrokanalgruppe (5) jeweils mit einer Vielzahl an Mikrokanälen (2) mit jeweils einer Kanalbreite, einem Kanalabstand zu einem benachbarten Mikrokanal der gleichen Mikrokanalgruppe sowie einem Kanalquerschnitt,
    dadurch gekennzeichnet, dass die Kanalbreite oder der Kanalquerschnitt für jeden Mikrokanal beider Mikrokanalgruppen stromaufwärts in Richtung der jeweils anderen Mikrokanalgruppe hin gerichtet zunimmt.
  2. Kreuzstrom-Mikrowärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass zwischen zwei Mikrokanälen (2) einer Mikrokanalgruppe (3, 5) Stege angeordnet sind, die eine konstante Stegbreite aufweisen oder die Mikrokanäle je Mikrokanalgruppe einen konstanten Kanalabstand zueinander aufweisen.
  3. Kreuzstrom-Mikrowärmeübertrager nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Tiefen aller Mikrokanäle (2) gleich sind und die Breiten Bn der fortlaufend mit n (n = 1, ... , N) bezeichneten Mikrokanäle für beide Mikrokanalgruppen sich ausgehend von einer ersten Kanalbreite B1 gemäß einer Formel B n = 1 4 , 1 1 208 . n + 1 1 , 3 n 2 B 1
    Figure imgb0004
    berechnen, wobei sich B1 in Abhängigkeit der Gesamtzahl N der Mikrokanäle und der Wärmeleitfähigkeit λ sowohl des Fluids als auch des Wärmeträgerfluidstroms zu B 1 = 10 3 3 , 3 N + 800 0 , 314 0 , 815 ln λ 0 , 69
    Figure imgb0005
    in Millimeter berechnet.
  4. Kreuzstrom-Mikrowärmeübertrager nach Anspruch 3, dadurch gekennzeichnet, dass die gemäß der Formel berechneten Kanalbreiten Bn unterhalb eines Wertes von 0,05 mm auf 0,05 mm aufgerundet werden.
  5. Kreuzstrom-Mikrowärmeübertrager nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass jeder Mikrokanal (2) einer Mikrokanalgruppe (3, 5) einen unveränderten Querschnitt aufweist.
  6. Kreuzstrom-Mikrowärmeübertrager nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Mikrokanäle (2) der Mikrokanalgruppen (3, 5) als Rillen einseitig oder beidseitig in Platten oder Folien (1) eingearbeitet und die Folien zu einem Folienstapel zusammengefügt sind.
EP11007158.6A 2010-09-17 2011-09-03 Kreuzstrom-Mikrowärmeübertrager Not-in-force EP2431700B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201010045905 DE102010045905B3 (de) 2010-09-17 2010-09-17 Kreuzstrom-Mikrowärmeübertrager

Publications (3)

Publication Number Publication Date
EP2431700A2 EP2431700A2 (de) 2012-03-21
EP2431700A3 EP2431700A3 (de) 2014-04-30
EP2431700B1 true EP2431700B1 (de) 2016-03-23

Family

ID=44675398

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11007158.6A Not-in-force EP2431700B1 (de) 2010-09-17 2011-09-03 Kreuzstrom-Mikrowärmeübertrager

Country Status (2)

Country Link
EP (1) EP2431700B1 (de)
DE (1) DE102010045905B3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995073A1 (fr) * 2012-09-05 2014-03-07 Air Liquide Element d'echangeur pour echangeur de chaleur, echangeur de chaleur comprenant un tel element d'echangeur et procede de fabrication d'un tel element d'echangeur
CN107702566A (zh) * 2017-09-14 2018-02-16 华北电力大学 一种点阵式换热器
CN113546590A (zh) * 2021-08-18 2021-10-26 南通三责精密陶瓷有限公司 一种块孔式碳化硅微反应器及其应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347896A (en) * 1979-10-01 1982-09-07 Rockwell International Corporation Internally manifolded unibody plate for a plate/fin-type heat exchanger
JPS61110887A (ja) * 1984-11-02 1986-05-29 Matsushita Refrig Co 蒸発器
DE3709278A1 (de) * 1987-03-20 1988-09-29 Kernforschungsz Karlsruhe Verfahren zur herstellung von feinstrukturkoerpern
DE19801374C1 (de) * 1998-01-16 1999-03-11 Dbb Fuel Cell Engines Gmbh Verfahren zum Löten von metallischen mikrostrukturierten Blechen
KR19990074845A (ko) * 1998-03-16 1999-10-05 윤종용 병렬 플로우식 열 교환기
KR100382523B1 (ko) * 2000-12-01 2003-05-09 엘지전자 주식회사 마이크로 멀티채널 열교환기의 튜브 구조
DE102005033150A1 (de) * 2005-07-13 2007-01-25 Atotech Deutschland Gmbh Mikrostrukturierter Kühler und dessen Verwendung
DE102005052683B4 (de) * 2005-10-27 2012-05-31 Visteon Global Technologies Inc. Mehrkanalflachrohr für Wärmeübertrager

Also Published As

Publication number Publication date
EP2431700A3 (de) 2014-04-30
DE102010045905B3 (de) 2012-03-29
EP2431700A2 (de) 2012-03-21

Similar Documents

Publication Publication Date Title
EP1654508B2 (de) Wärmeübertrager sowie verfahren zu dessen herstellung
EP1506054B1 (de) Mikroreaktor und mikrowärmeübertrager
EP1856734B1 (de) Mikrowärmeübertrager
EP2045556A2 (de) Plattenwärmetauscher
EP1486749A2 (de) Turbulenzerzeuger
DE102008033302A1 (de) Ermüdungsfester Plattenwärmetauscher
EP2431700B1 (de) Kreuzstrom-Mikrowärmeübertrager
EP2669027B1 (de) Verfahren und Presswerkzeug zur Herstellung eines Plattenwärmetäuschers
EP1413844A2 (de) Temperierkanäle
DE102011113045A1 (de) Kreuzstrom-Wärmeübertrager
EP2671040A1 (de) Kreuzstrom-wärmeübertrager
DE202017102436U1 (de) Wärmetauscher mit Mikrokanal-Struktur oder Flügelrohr-Struktur
AT411397B (de) Turbulenzerzeuger für einen wärmetauscher
AT406301B (de) Plattenwärmetauscher
DE19846347C2 (de) Wärmeaustauscher aus Aluminium oder einer Aluminium-Legierung
DE19853750A1 (de) Kühler zur Verwendung als Wärmesenke für elektrische oder elektronische Komponenten
DE202008016603U1 (de) Wellrippe für Wärmeaustauscher
DE19846346C1 (de) Wärmeaustauscher
DE102020000274A1 (de) Verfahren zur Herstellung eines Rippen-Platten-Wärmetauschers
WO2006034666A1 (de) Aus gestapelten folien hergesteller mikrokanal-rekuperator
EP3077755A1 (de) Register für einen heizkörper sowie derartige register aufweisender heizkörper
DE102007039757A1 (de) Wärmeübertragerplatte für Hochdruckkältemittel
DE102022122518A1 (de) Wärmeübertrager
WO2017211523A1 (de) Fluidtemperierter gasverteiler in schichtbauweise
WO2020211903A1 (de) Platten-Rippen-Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 9/00 20060101AFI20140324BHEP

17P Request for examination filed

Effective date: 20141024

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150918

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 783572

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011009138

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160723

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011009138

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

26N No opposition filed

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160903

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170921

Year of fee payment: 7

Ref country code: CH

Payment date: 20170925

Year of fee payment: 7

Ref country code: GB

Payment date: 20170925

Year of fee payment: 7

Ref country code: FR

Payment date: 20170925

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170920

Year of fee payment: 7

Ref country code: BE

Payment date: 20170925

Year of fee payment: 7

Ref country code: NL

Payment date: 20170925

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011009138

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 783572

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180903

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180903