EP2422066B1 - Procédé permettant de faire fonctionner une soupape d'injection - Google Patents

Procédé permettant de faire fonctionner une soupape d'injection Download PDF

Info

Publication number
EP2422066B1
EP2422066B1 EP10709516.8A EP10709516A EP2422066B1 EP 2422066 B1 EP2422066 B1 EP 2422066B1 EP 10709516 A EP10709516 A EP 10709516A EP 2422066 B1 EP2422066 B1 EP 2422066B1
Authority
EP
European Patent Office
Prior art keywords
actuator
variable
electromagnetic actuator
valve needle
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10709516.8A
Other languages
German (de)
English (en)
Other versions
EP2422066A1 (fr
Inventor
Helerson Kemmer
Holger Rapp
Anh-Tuan Hoang
Achim Deistler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2422066A1 publication Critical patent/EP2422066A1/fr
Application granted granted Critical
Publication of EP2422066B1 publication Critical patent/EP2422066B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Definitions

  • the invention relates to a method for operating an injection valve, in particular an internal combustion engine of a motor vehicle, in which a component of the injection valve, in particular a valve needle, is driven by means of an electromagnetic author.
  • This object is achieved in the operating method of the type mentioned in the present invention that in dependence on at least one electrical operating variable of the electromagnetic actuator, the acceleration of a movable component of the electromagnetic actuator, in particular a magnet armature of the electromagnetic actuator, characterizing size is formed, and that in dependence the magnitude characterizing the acceleration is inferred to an operating state of the injection valve.
  • the acceleration of a movable component of the electromagnetic actuator, in particular of the magnet armature, characterizing size has a value characterizing the operating state or the state transition and / or time characteristic, so that precise information about an operating state of the injection valve can be obtained from the consideration according to the invention of the variable characterizing the acceleration.
  • the acceleration-based method according to the invention advantageously makes it possible to obtain information about an operating state of the injection valve, even if the transmission of power from the electromagnetic actuator to the valve needle by means of a complex Mass system takes place, which does not provide a simple, rigid mechanical coupling between the armature and the valve needle.
  • the valve needle preferably in a closing direction of the valve needle, spring-loaded, the armature is connected to the valve needle, that the armature relative to a direction of movement of the valve needle with a non-disappearing mechanical clearance is movable relative to the valve needle , And from a characteristic feature of the acceleration of the armature characterizing magnitude is concluded that the armature detaches from the valve needle.
  • the impact of the valve needle on its associated valve seat (closing time) can be determined because in this case the armature of the valve needle using the existing mechanical clearance dissolves, resulting in a corresponding acceleration change of the armature reflected.
  • This acceleration change of the magnet armature results in the present embodiment of the operating method according to the invention in that after releasing the armature of the valve needle, the still spring-loaded valve needle exerts no more force on the armature.
  • the armature moves itself accordingly in contrast to the valve needle initially in the closing direction, but henceforth with a lower acceleration.
  • Conventional methods based solely on the evaluation of the speed of the armature do not allow detection of the closing time in the present configuration.
  • the method according to the invention by utilizing the variable characterizing the acceleration of the magnet armature, enables precise information as to when the magnet armature releases itself from the valve needle or when the valve needle has reached its closed position in the region of the valve seat.
  • the operating method according to the invention is used as the electrical operating variable of the electromagnetic actuator applied to a solenoid coil of the electromagnetic actuator actuator voltage, and the first time derivative of the actuator voltage is formed as the acceleration of the armature characterizing size. For example, it can advantageously be concluded from the occurrence of a local minimum of the first time derivative of the actuator voltage that the magnet armature is released from the valve needle.
  • a particularly simple and reliable evaluation of the size characterizing the acceleration is, according to a further advantageous variant of the invention, possible if an actuator current flowing through the magnet coil is impressed to a predeterminable value.
  • Particularly advantageous is a temporally constant actuator current, more preferably also a vanishing actuator current, impressed.
  • an actuator current flowing through a magnet coil of the electromagnetic actuator in order to determine the acceleration of the actuator Magnetankers characterizing size, in this case the first time derivative of the Aktorstroms to determine.
  • variable characterizing the acceleration it is also possible to compare a time profile of the variable characterizing the acceleration with a predetermined reference curve or also other features such as a bend over time or the like identify.
  • a particularly precise determination of the operating state of the injector is again given when - in the case of detecting the actuator current - an applied to the solenoid of the electromagnetic actuator actuator voltage to a predetermined value, in particular zero, impressed, which by a corresponding control of the injection valve can be accomplished by controlling ECU final stage.
  • a first electrical operating variable of the electromagnetic actuator is detected and fed to an observer member, which simulates the electromagnetic actuator without considering the reaction of an armature movement to electrical operating variables of the electromagnetic actuator, the observer member having an observed second electrical operating variable the electromagnetic actuator determines that the observed second electrical operating variable is compared with a detected second electrical operating variable, and that the acceleration characterizing variable is determined as a function of the comparison result.
  • the comparison result obtained using the observer member has significant information about an operating state of the injection valve and therefore advantageous for Determination of opening and / or closing times of the injection valve can be used.
  • the operating method according to the invention by the evaluation of the acceleration characterizing size allows the precise determination of an actual hydraulic opening or closing time, in which the Lifting valve needle from its closing seat or again hits its closing seat.
  • An internal combustion engine carries in FIG. 1 overall, the reference numeral 10. It comprises a tank 12 from which a conveyor system 14 promotes fuel in a common rail 16. To this a plurality of electromagnetically operated injection valves 18a to 18d are connected, which inject the fuel directly into them associated combustion chambers 20a to 20d. The operation of the internal combustion engine 10 is controlled or regulated by a control and regulating device 22 which, among other things, also controls the injection valves 18a to 18d.
  • FIGS. 2a to 2c schematically show the injection valve 18a according to FIG. 1 in a total of three different operating states.
  • the others in FIG. 1 illustrated injectors 18b, 18c, 18d have a corresponding structure and functionality.
  • the injection valve 18a has an electromagnetic actuator which has a magnetic coil 26 and a magnetic armature 30 cooperating with the magnetic coil 26.
  • the armature 30 is connected to a valve needle 28 of the injection valve 18 a, that he referred to a in FIG. 2a vertical direction of movement of the valve needle 28 with a non-disappearing mechanical clearance relative to the valve needle 28 is movable.
  • valve needle 28 is actuated by a valve spring 36 as in FIG. 2a shown acted upon with a corresponding spring force against the valve seat 38 in the region of the housing 40.
  • FIG. 2a the injection valve 18a is shown in its opened state.
  • the magnet armature 30 is energized by the solenoid 26 in FIG. 2a moved upward so that it moves out of its valve seat 38 against the spring force by engaging in the stop 32, the valve needle 28. This allows fuel 42 from the injection valve 18a into the combustion chamber 20a (FIG. FIG. 1 ) are injected.
  • valve needle 28 moves under the action of the force exerted by the valve spring 36 spring force to its valve seat 38 and takes the armature 30 with.
  • a power transmission from the valve needle 28 to the armature 30 is in this case again by the upper stop 32nd
  • At least one electrical operating variable of the electromagnetic actuator 26, 30 is detected. This may be, for example, an actuator voltage applied to the magnetic coil 26 or else an actuator current flowing through the magnetic coil 26.
  • a variable characterizing the acceleration of a movable component of the electromagnetic actuator 26, 30, in particular of the magnet armature 30 of the electromagnetic actuator is formed as a function of the at least one electrical operating variable of the electromagnetic actuator 26, 30, which takes place in step 110.
  • an operating state of the injection valve 18a is finally closed in step 120.
  • the operating method according to the invention can be used to determine an actual hydraulic closing time at which the valve needle 28 (FIG. FIG. 2a ) meets its valve seat 38.
  • the operating method according to the invention is used as an electrical operating variable of the electromagnetic actuator applied to the solenoid 26 actuator voltage u, and as the acceleration of the armature 30 characterizing size, the first time derivative u ⁇ the actuator voltage u is formed and used.
  • FIG. 4 shows by way of example a simplified time profile of a needle stroke h of the valve needle 28 (FIG. FIG. 2a ) And a corresponding section of the time course of the first time derivative u ⁇ the actuator voltage u.
  • valve needle 28 is lifted out of its rest position marked by the needle stroke value h0 on the valve seat 38, which is accomplished by the solenoid coil 26 being energized accordingly and the magnet armature 30 in FIG FIG. 2a is moved upward, whereby it entrains the valve needle 28 under power transmission via the stop 32.
  • FIG. 4 shows for t> t1 accordingly a decreasing needle stroke h.
  • the first time derivative u.sub.u of the actuator voltage u when the valve needle strikes its valve seat 38 has a local minimum Mu, which represents a clearly discernible deviation from the otherwise exponentially decaying time profile of the first derivative u.sub.o.
  • this local minimum Mu results from the fact that, when the valve needle 28 impinges on its valve seat 38, the armature 30 loosens from the valve needle 28 by virtue of the non-vanishing mechanical backlash and initially continues in the closing direction, that is to say in FIG FIG. 2b down, moved on before he hits the stop 34.
  • a particularly precise detection of the local minimum Mu is possible if in the time range of interest around the closing time t2 an actuator current flowing through the magnetic coil 26 is impressed to a predeterminable value, preferably a constant value, in particular zero.
  • the time derivative u of the actuator voltage u can be subjected to filtering for interference suppression and thus more efficient signal processing before the evaluation, it may be advantageous to perform the differentiation of the actuator voltage u and the filtering of the derived signal in one step, for example by filtering the voltage signal u by means of a high-pass filter.
  • variable characterizing the acceleration of the armature 30 can also be formed as a function of the actuator current i flowing through the magnet coil 26.
  • the first time derivative i ⁇ of the actuator current i is used as the variable characterizing the acceleration of the magnet armature 30.
  • FIG. 5 shows a time course of the needle stroke h, as already described with reference to FIG. 4 has been described.
  • the stroke course hA of the magnet armature 30 is shown in dashed lines to make it clear that the magnet armature 30 after the time t2 first in the closing direction, that is in FIG. 2b down, moved on before he hits the stop 34.
  • FIG. 5 further schematically shows a section of the time course of the first time derivative i of the inventively considered Aktorstroms i. How out FIG. 5 It can be seen that the present time as the acceleration of the armature 30 characterizing size used first time derivative i of the actuator current i has a local maximum Mi or a kink at the time t2 at which the valve needle 28 impinges on the valve seat 38.
  • the local maximum Mi or the bend at the time t2 can be analyzed and used as a criterion for the actual hydraulic closing of the injection valve 18a.
  • a particularly precise evaluation of the first time derivative i of the actuator current i is in turn possible when the actuator voltage u applied to the magnetic coil 26 of the electromagnetic actuator 26, 30 is impressed on a presettable value, in particular zero.
  • the time derivative i of the actuator current i can be subjected to filtering for interference suppression and thus more efficient signal processing before the evaluation, it may be advantageous to carry out the differentiation of the actuator current i and the filtering of the derived signal in one step, for example by filtering the current signal i by means of a high-pass filter.
  • a first electrical operating variable of the electromagnetic actuator 26, 30 is detected and fed to an observer member which simulates the electromagnetic actuator 26, 30 without consideration of the retroactivity of an armature movement to electrical operating variables of the electromagnetic actuator, wherein the observer member an observed second electrical operating variable of the electromagnetic actuator determined.
  • the observed second electrical operating variable is compared according to the invention with a detected second electrical operating variable and the acceleration characterizing variable is determined as a function of the comparison result.
  • FIG. 6 shows a simplified equivalent circuit diagram of the magnetic actuator 26, 30 (FIG. FIG. 2a ), wherein the reference numeral 46 denotes a main current path and the reference numeral 48 is an eddy current path.
  • the resistor R s in this case represents a series resistance of the magnetic coil 26 (FIG. FIG. 2a ).
  • the inductive elements L h , L o represent the respective inductance of the main current path 46 and the eddy current path 48.
  • the resistance R w * represents an ohmic resistance of the eddy current path 48.
  • the current flows through the main current path while the current i w * flows through the eddy current path 48.
  • the currents i m , i w * together form the drive current i, with which the electromagnetic actuator 26, 30 is acted upon by the control unit 22.
  • the actuator voltage u is applied to the terminals of the electromagnetic actuator 26, 30.
  • FIG. 7 shows a block diagram showing the function of the above with reference to FIG. 6 realized equivalent circuit diagram.
  • the eddy current path 48 is shown in the block diagram of FIG. 7 represented by an unspecified integrator with the time constant T ⁇ and a proportional member associated with the gain K Rw .
  • the main current path 46 is shown in the block diagram of FIG. 7 represented by the unspecified integrator with the time constant T h and associated with this integrator proportional element with the gain K Rs .
  • FIG. 8 shows a structure of the observer member 56 according to the invention, the input side, as already described, the actuator voltage u is supplied, and outputs at its output an observed actuator current ib.
  • the adder 58 By means of the adder 58, a comparison is made between the observed actuator current ib and the actual measured actuator current i, for example, measured, which leads to the comparison result .DELTA.ib.
  • the comparison result .Dib will look like FIG. 8 can be fed to the feedback element 60, which forms therefrom an output u cor , which is subtracted via the adder 62 from the detected actuator voltage u.
  • the feedback element 60 may be formed, for example, as a proportional element, as a proportional-integral element or as a feedback element of higher order and / or more complex structure.
  • the gradient of the output u corr to the closing time t2 (FIG. FIG. 4 ) is usually subjected to a sign change, whereby it comes to an extremum in the time course of the output u cor .
  • This extremum is inventively detected and used as a signal for the closing time t2 of the injection valve 18a.
  • the transmission behavior between the speed of the armature 30 and the output u corr can be influenced.
  • a filtering of interference signals can thereby be carried out, resulting in an even more precise evaluation.
  • an internal size of the feedback element 60 can also be used to detect the closing instant t2 (FIG. FIG. 4 ) be used. If the feedback element 60 is designed, for example, as a proportional-integral element, instead of the output variable u corr, for example, only the integral component of the feedback quantity can be used.
  • the inventive method is also suitable for closing time detection in conventional injectors with a rigid coupling between the electromagnetic actuator and the valve needle.
  • observer member 56 may be performed both digitally and analogously and is preferably in a computing unit of the control unit 22 (FIG. FIG. 1 ) implemented.
  • the operating method according to the invention also makes it possible to detect other operating states or state transitions of the injection valve 18a (FIG. FIG. 2a ), which are accompanied by a corresponding characteristic change in the acceleration of the magnet armature 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetically Actuated Valves (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (12)

  1. Procédé de mise en fonctionnement d'une soupape d'injection (18a) d'un moteur à combustion interne (10) d'un véhicule automobile, dans lequel un pointeau de soupape (28) de la soupape d'injection (18a) est entraîné au moyen d'un actionneur électromagnétique (26, 30), et une grandeur caractérisant l'accélération d'une armature (30) de l'actionneur électromagnétique est établie en fonction d'au moins un paramètre électrique de l'actionneur électromagnétique (26, 30), et un état de fonctionnement de la soupape d'injection (18a) est déduit en fonction de la grandeur caractérisant l'accélération, caractérisé en ce que le pointeau de soupape (28) est soumis à une force de ressort, de préférence dans une direction de fermeture du pointeau de soupape, en ce que l'armature (30) est reliée au pointeau de soupape (28) de manière à ce que l'armature (30) soit mobile par rapport à une direction de mouvement du pointeau de soupape (28) avec un jeu mécanique non amorti par rapport au pointeau de soupape (28), et en ce qu'il est déduit, à partir d'une caractéristique de la grandeur caractérisant l'accélération de l'armature (30), que l'armature (30) se sépare du pointeau de soupape (28).
  2. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une tension d'actionneur (u) appliquée à une bobine d'induction (26) de l'actionneur électromagnétique (26, 30) est utilisée en tant que paramètre électrique de l'actionneur électromagnétique (26, 30), et en ce que la dérivée première par rapport au temps (ü) de la tension d'actionneur (u) est établie en tant que grandeur caractérisant l'accélération de l'armature (30).
  3. Procédé selon la revendication 2, caractérisé en ce qu'il est déduit, à partir de l'apparition d'un minimum local (Mu) de la dérivée première par rapport au temps (ü) de la tension d'actionneur (u), que l'armature (30) se sépare du pointeau de soupape (28).
  4. Procédé selon la revendication 3, caractérisé en ce qu'un courant d'actionneur (i) passant à travers la bobine d'induction (26) est fixé à une valeur pouvant être prédéterminée, notamment zéro.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un courant d'actionneur (i) passant à travers une bobine d'induction (26) de l'actionneur électromagnétique (26, 30) est utilisé en tant que paramètre électrique de l'actionneur électromagnétique (26, 30), et en ce que la dérivée première par rapport au temps (ï) du courant d'actionneur (i) est établie en tant que grandeur caractérisant l'accélération de l'armature (30).
  6. Procédé selon la revendication 5, caractérisé en ce qu'il est déduit, à partir de l'apparition d'un maximum local (Mi) de la dérivée première par rapport au temps (ï) du courant d'actionneur (i), que l'armature (30) se sépare du pointeau de soupape (28).
  7. Procédé selon la revendication 6, caractérisé en ce qu'une tension d'actionneur (u) appliquée à la bobine d'induction (26) de l'actionneur électromagnétique (26, 30) est fixée à une valeur pouvant être prédéterminée, notamment zéro.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un premier paramètre électrique (u) de l'actionneur électromagnétique (26, 30) est détecté et est délivré à un élément observateur (56) qui représente l'actionneur électromagnétique (26, 30) sans prise en compte de la rétroaction d'un mouvement de l'armature sur des paramètres électriques (u, i) de l'actionneur électromagnétique (26, 30), dans lequel l'élément observateur (56) détermine un deuxième paramètre électrique observé (ib) de l'actionneur électromagnétique (26, 30), en ce que le deuxième paramètre électrique observé (ib) est comparé à un deuxième paramètre électrique détecté (i), et en ce que la grandeur caractérisant l'accélération (ukorr) est déterminée en fonction du résultat de la comparaison (Δib).
  9. Procédé selon l'une quelconque des revendications 3 à 8, caractérisé en ce que la dérivée première par rapport au temps (ü) de la tension d'actionneur (u) et/ou la dérivée première par rapport au temps (ï) du courant d'actionneur (i), notamment avant une autre évaluation, est soumise à un filtrage par un élément filtrant, dans lequel un calcul de la dérivée première par rapport au temps (ü,ï) et le filtrage s'effectuent de préférence en une étape, par exemple au moyen d'un filtrage passe-haut.
  10. Programme d'ordinateur, caractérisé en ce qu'il est programmé pour une utilisation dans un procédé selon l'une quelconque des revendications précédentes.
  11. Support de stockage électronique ou optique destiné à un dispositif de commande et/ou de régulation (22) d'un moteur à combustion interne (10), caractérisé en ce qu'un programme d'ordinateur destiné à une utilisation dans un procédé selon les revendications 1 à 10 est stocké sur celui-ci.
  12. Dispositif de commande et/ou de régulation (22) destiné à un moteur à combustion interne (10), caractérisé en ce qu'il est réalisé pour une utilisation dans un procédé selon l'une quelconque des revendications 1 à 10.
EP10709516.8A 2009-04-20 2010-03-18 Procédé permettant de faire fonctionner une soupape d'injection Active EP2422066B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009002483A DE102009002483A1 (de) 2009-04-20 2009-04-20 Verfahren zum Betreiben eines Einspritzventils
PCT/EP2010/053503 WO2010121868A1 (fr) 2009-04-20 2010-03-18 Procédé permettant de faire fonctionner une soupape d'injection

Publications (2)

Publication Number Publication Date
EP2422066A1 EP2422066A1 (fr) 2012-02-29
EP2422066B1 true EP2422066B1 (fr) 2016-11-09

Family

ID=42227767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10709516.8A Active EP2422066B1 (fr) 2009-04-20 2010-03-18 Procédé permettant de faire fonctionner une soupape d'injection

Country Status (6)

Country Link
US (1) US20120101707A1 (fr)
EP (1) EP2422066B1 (fr)
JP (1) JP5474178B2 (fr)
CN (1) CN102405342B (fr)
DE (1) DE102009002483A1 (fr)
WO (1) WO2010121868A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2455601B1 (fr) * 2010-11-17 2018-06-06 Continental Automotive GmbH Procédé et dispositif de commande d'une soupape d'injection
EP2455600A1 (fr) * 2010-11-17 2012-05-23 Continental Automotive GmbH Procédé et dispositif de commande d'une soupape d'injection
DE102010063380A1 (de) 2010-12-17 2012-06-21 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP5806021B2 (ja) * 2011-07-12 2015-11-10 有限会社メカノトランスフォーマ アクチュエータの当接検出方法、一定力発生機構及び発生力推定方法
DE102011080858B4 (de) 2011-08-11 2021-04-08 Robert Bosch Gmbh Verfahren zum Betreiben eines Magnetventils unter Berücksichtigung einer Größe
DE102011083033A1 (de) 2011-09-20 2013-03-21 Robert Bosch Gmbh Verfahren zur Beurteilung eines Einspritzverhaltens wenigstens eines Einspritzventils einer Brennkraftmaschine und Betriebsverfahren für Brennkraftmaschine
EP2662555A1 (fr) 2012-05-10 2013-11-13 Continental Automotive GmbH Procédé de surveillance d'une soupape d'injection
DE102012210415A1 (de) * 2012-06-20 2013-12-24 Robert Bosch Gmbh Einspritzventil
WO2013191267A1 (fr) * 2012-06-21 2013-12-27 日立オートモティブシステムズ株式会社 Dispositif de commande pour moteur à combustion interne
JP6169404B2 (ja) 2013-04-26 2017-07-26 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置
JP6130280B2 (ja) * 2013-09-25 2017-05-17 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
DE102013226849B3 (de) * 2013-12-20 2015-04-30 Continental Automotive Gmbh Verfahren zum Betreiben eines Einspritzventils
DE102015104117B4 (de) * 2014-03-20 2019-12-05 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Bewegungssteuerung eines aktors
US9777686B2 (en) 2014-03-20 2017-10-03 GM Global Technology Operations LLC Actuator motion control
US9664158B2 (en) 2014-03-20 2017-05-30 GM Global Technology Operations LLC Actuator with integrated driver
US10480674B2 (en) 2014-03-20 2019-11-19 GM Global Technology Operations LLC Electromagnetic actuator structure
US9726100B2 (en) * 2014-03-20 2017-08-08 GM Global Technology Operations LLC Actuator with deadbeat control
WO2015143116A1 (fr) 2014-03-20 2015-09-24 GM Global Technology Operations LLC Entraînement à courant alternatif pour actionneurs
US9657699B2 (en) 2014-03-20 2017-05-23 GM Global Technology Operations LLC Actuator with integrated flux sensor
US9863355B2 (en) * 2014-03-20 2018-01-09 GM Global Technology Operations LLC Magnetic force based actuator control
US9932947B2 (en) 2014-03-20 2018-04-03 GM Global Technology Operations LLC Actuator with residual magnetic hysteresis reset
US9777660B2 (en) 2014-03-20 2017-10-03 GM Global Technology Operations LLC Parameter estimation in an actuator
DE102014206430B4 (de) * 2014-04-03 2016-04-14 Continental Automotive Gmbh Verfahren und Steuereinheit zur Detektion des Öffnungsbeginnes einer Düsennadel
DE102014209587B4 (de) * 2014-05-20 2016-03-31 Continental Automotive Gmbh Charakterisierung eines Messkanals zum Vermessen eines Rückkopplungssignals, welches von einem sich in Betrieb befindenden Kraftstoff-Injektor generiert wird
DE102015217945A1 (de) * 2014-10-21 2016-04-21 Robert Bosch Gmbh Vorrichtung zur Steuerung von wenigstens einem schaltbaren Ventil
DE102015202389A1 (de) 2015-02-11 2016-08-11 Robert Bosch Gmbh Verfahren zum Betreiben eines Einspritzventils
DE102016219067A1 (de) 2016-09-30 2018-04-05 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP6268261B1 (ja) 2016-10-26 2018-01-24 本田技研工業株式会社 内燃機関の制御装置
JP6508228B2 (ja) 2017-02-07 2019-05-08 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
US11073105B2 (en) 2018-10-02 2021-07-27 Rohr, Inc. Acoustic torque box

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1051454B (it) * 1975-12-09 1981-04-21 Fiat Spa Procedimento e dispositivo di stabilizzazione della portata negli iniettori elettromagnetici mediante correlazione tra istante di apertura e corrente di eccitazione
DE3314899A1 (de) * 1983-04-25 1984-10-25 Mesenich, Gerhard, Dipl.-Ing., 4630 Bochum Federanordnung mit zusatzmasse zur verbesserung des dynamischen verhaltens von elektromagnetsystemen
DE3408012A1 (de) * 1984-03-05 1985-09-05 Gerhard Dipl.-Ing. Warren Mich. Mesenich Elektromagnetisches einspritzventil
US5267545A (en) * 1989-05-19 1993-12-07 Orbital Engine Company (Australia) Pty. Limited Method and apparatus for controlling the operation of a solenoid
US4978074A (en) * 1989-06-21 1990-12-18 General Motors Corporation Solenoid actuated valve assembly
GB9225622D0 (en) * 1992-12-08 1993-01-27 Pi Research Ltd Electromagnetic valves
US5299776A (en) * 1993-03-26 1994-04-05 Siemens Automotive L.P. Impact dampened armature and needle valve assembly
DE4420282A1 (de) * 1994-06-10 1995-12-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines elektromagnetischen Verbrauchers
DE4434684A1 (de) * 1994-09-28 1996-04-04 Fev Motorentech Gmbh & Co Kg Verfahren zur Steuerung der Ankerbewegung einer elektromagnetischen Schaltanordnung
SE515565C2 (sv) * 1995-07-17 2001-08-27 Scania Cv Ab Metod för reglering av samt detektering av läget hos en solenoidpåverkad armatur
DE19733138A1 (de) * 1997-07-31 1999-02-04 Fev Motorentech Gmbh & Co Kg Verfahren zur Erkennung der Ankeranlage an einem elektromagnetischen Aktuator
DE19834405B4 (de) * 1998-07-30 2007-04-05 Robert Bosch Gmbh Verfahren zur Schätzung eines Nadelhubs eines Magnetventils
DE10081384D2 (de) * 1999-05-19 2001-08-09 Fev Motorentech Gmbh Verfahren zur Ansteuerung eines elektromagnetischen Ventiltriebs für ein Gaswechselventil an einer Kolbenbrennkraftmaschine
US6848626B2 (en) * 2001-03-15 2005-02-01 Siemens Vdo Automotive Corporation End of valve motion detection for a spool control valve
DE10150199A1 (de) * 2001-10-12 2003-04-24 Wolfgang E Schultz Verfahren und Schaltung zur Erkennung der Ankerlage eines Elektromagneten
FI115008B (fi) * 2003-05-13 2005-02-15 Waertsilae Finland Oy Menetelmä solenoidin toiminnan valvomiseksi
DE10340137A1 (de) * 2003-09-01 2005-04-07 Robert Bosch Gmbh Verfahren zur Bestimmung der Ansteuerspannung eines piezoelektrischen Aktors eines Einspritzventils
DE102005002242A1 (de) * 2005-01-18 2006-07-20 Robert Bosch Gmbh Verfahren zum Betreiben einer Kraftstoff-Einspritzvorrichtung einer Brennkraftmaschine
DE102005036190A1 (de) * 2005-08-02 2007-02-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Einspritzsystems einer Brennkraftmaschine
DE102005044886B4 (de) * 2005-09-20 2009-12-24 Continental Automotive Gmbh Vorrichtung und Verfahren zum Erkennen eines Endes einer Bewegung eines Ventilkolbens in einem Ventil
US7404397B2 (en) * 2006-09-07 2008-07-29 Total Fuel Systems, Llc Method and apparatus for modifying fuel injection scheme
US7430899B2 (en) * 2006-10-27 2008-10-07 Ford Motor Company Methods and systems for testing electromagnetically actuated fuel injectors
DE102007038512A1 (de) * 2007-08-16 2009-02-19 Robert Bosch Gmbh Verfahren zur Überwachung eines Einspritzventils

Also Published As

Publication number Publication date
JP5474178B2 (ja) 2014-04-16
US20120101707A1 (en) 2012-04-26
JP2012524210A (ja) 2012-10-11
CN102405342A (zh) 2012-04-04
EP2422066A1 (fr) 2012-02-29
CN102405342B (zh) 2014-10-29
DE102009002483A1 (de) 2010-10-21
WO2010121868A1 (fr) 2010-10-28

Similar Documents

Publication Publication Date Title
EP2422066B1 (fr) Procédé permettant de faire fonctionner une soupape d'injection
EP2422067B1 (fr) Procédé et unité de commande permettant de faire fonctionner une soupape commandée par un actionneur
DE102011076363B4 (de) Verfahren und Vorrichtung zur Bestimmung des Öffnungsverhaltens eines Kraftstoffinjektors für eine Brennkraftmaschine
WO2011039043A1 (fr) Procédé et dispositif de commande pour faire fonctionner une soupape
DE102010063009B4 (de) Verfahren und Vorrichtung zur Charakterisierung einer Bewegung eines Kraftstoffinjektors mittels Erfassung und Auswertung einer magnetischen Hysteresekurve
DE102011087418B4 (de) Bestimmung des Öffnungsverhaltens eines Kraftstoffinjektors mittels einer elektrischen Test-Erregung ohne eine magnetische Sättigung
DE102012205573B4 (de) Bestimmen des zeitlichen Bewegungsverhaltens eines Kraftstoffinjektors basierend auf einer Auswertung des zeitlichen Verlaufs von verschiedenen elektrischen Messgrößen
WO2011042281A1 (fr) Procédé et appareil de commande du fonctionnement d'une soupape
WO2016166142A1 (fr) Commande d'une électrovanne d'un système d'injection de carburant
DE102015208573B3 (de) Druckbestimmung in einem Kraftstoff-Einspritzventil
DE102016203136B3 (de) Bestimmung einer elektrischen Ansteuerzeit für einen Kraftstoffinjektor mit Magnetspulenantrieb
DE102008054877A1 (de) Verfahren und Vorrichtung zum Betreiben eines elektromechanischen Aktors
WO2017063824A1 (fr) Reconnaissance d'un état d'ouverture prédéterminé d'un injecteur de carburant présentant un entraînement à bobine magnétique
WO2012041936A1 (fr) Détermination d'une trajectoire balistique d'un induit électromagnétiquement entraîné d'un actionneur à bobine
DE19834405B4 (de) Verfahren zur Schätzung eines Nadelhubs eines Magnetventils
DE102013209077B4 (de) Verfahren und Vorrichtung zum Bestimmen der elektrischen Ansteuerdauer eines Kraftstoffinjektors für eine Brennkraftmaschine
DE102015206739A1 (de) Bestimmung eines Hubes eines Magnetventils
WO2011082902A1 (fr) Procédé et dispositif de commande pour faire fonctionner une soupape
DE102008040250A1 (de) Verfahren und Vorrichtung zum Betreiben eines elektromagnetischen Aktors
DE102009003215A1 (de) Verfahren und Steuergerät zum Betreiben eines Einspritzventils
EP3394866B1 (fr) Détermination du trajet d'armature par mesure des courbes d'hystérésis
DE102009054588A1 (de) Verfahren und Steuergerät zum Betreiben eines Ventils
DE102013207152B4 (de) Verfahren und Vorrichtung zum Ansteuern eines Einspritzventils in einem nichtlinearen Betriebsbereich
DE102008055008B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102007039347A1 (de) Verfahren zum Betreiben eines Einspritzventils und Ansteuereinrichtung hierfür

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160802

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 844151

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012693

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012693

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012693

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170209

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170810

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 844151

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190321

Year of fee payment: 10

Ref country code: FR

Payment date: 20190326

Year of fee payment: 10

Ref country code: GB

Payment date: 20190325

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230524

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010012693

Country of ref document: DE