EP2391906B1 - Appareil et procédé pour aider les véhicules à décollage à la verticale - Google Patents

Appareil et procédé pour aider les véhicules à décollage à la verticale Download PDF

Info

Publication number
EP2391906B1
EP2391906B1 EP10735428.4A EP10735428A EP2391906B1 EP 2391906 B1 EP2391906 B1 EP 2391906B1 EP 10735428 A EP10735428 A EP 10735428A EP 2391906 B1 EP2391906 B1 EP 2391906B1
Authority
EP
European Patent Office
Prior art keywords
imaging system
interest
area
transmitter
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10735428.4A
Other languages
German (de)
English (en)
Other versions
EP2391906A2 (fr
EP2391906A4 (fr
Inventor
Ian Dennis Longstaff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teledyne Australia Pty Ltd
Original Assignee
Teledyne Australia Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009900337A external-priority patent/AU2009900337A0/en
Application filed by Teledyne Australia Pty Ltd filed Critical Teledyne Australia Pty Ltd
Publication of EP2391906A2 publication Critical patent/EP2391906A2/fr
Publication of EP2391906A4 publication Critical patent/EP2391906A4/fr
Application granted granted Critical
Publication of EP2391906B1 publication Critical patent/EP2391906B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • G01S13/913Radar or analogous systems specially adapted for specific applications for traffic control for landing purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/347Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using more than one modulation frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/882Radar or analogous systems specially adapted for specific applications for altimeters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0858Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • G01S2013/0254Active array antenna

Definitions

  • the present application relates to apparatus and methods for assisting operators of vertical takeoff vehicles in landing operations within environments of low visual acuity.
  • the present application relates to a radar altimeter for assisting in landing operations of vertical takeoff vehicles.
  • the increased turbulence created by the rotors can create eddy currents within the particulate cloud.
  • the swirling mass of particles can lead the pilot to experience the vection illusion, a form of spatial disorientation where the helicopter appears to be turning when it is actually in a level hover.
  • a pilot not using the flight instruments for reference may instinctively try to level the aircraft, resulting in an accident.
  • the basic radar altimeter utilises a radar ranging system which measures the time delay of the signal reflected from the nearest object within a single wide beam illuminating the ground. This wide-beam is intended to monitor aircraft height even when in a bank or flying near steep slopes.
  • US patent No. 5,047,779 to Hager which is capable of tracking at least two targets.
  • the altimeter of Hager information relating to the first target is captured via a first set of radar antennas and stored before the altimeter switches to a track and store information of the second target via a second set of radar antennas.
  • US patent No. 6,750,807 also to Hager et al describes a similar scheme, but with a forward-looking scanning beam for obstacle warning. Both arrangements proposed in Hager patents simply provide range information to both targets and as such are generally useful in assisting a pilot with obstacle avoidance in flight.
  • Neither of the altimeter Hager patents is capable of providing the pilot of any useful information regarding the tomography of the desired landing surface.
  • US 2008/074312A1 discloses an imaging system for assisting operators of vertical take off vehicles in landing operations with environments of low visual acuity by profiling an area of interest, the area of interest being a desired landing surface, said system comprising
  • WO 2008/134815 discloses a collision avoidance system for use with an unmanned vehicle, the system includes a plurality of radar elements arranged parallel to the longitudinal axis of the unmanned vehicle wherein said radar elements transmit a plurality of pulses about said vehicle and receive a plurality of return signals from one or more objects within range of said vehicle. Upon detecting that one or more objects are within range of said vehicle the system determines if the object is on a course which requires evasive action and suitably alters the vehicle's course in order to avoid a collision.
  • an imaging system for assisting operators of vertical takeoff vehicles in landing operations within environments of low visual acuity by profiling an area of interest, the area of interest being a desired landing surface, said system comprising:
  • the plurality of coded signals transmitted by the transmitters may each have a different signature code allowing the receiving elements to separate out return signals for each transmitting element reflected from the area of interest.
  • the coded signals may be transmitted in accordance with a suitable multiplexing scheme such as time division multiplexing (TDM), frequency division multiplexing (FDM), code division multiplexing (CDM), or combinations of these.
  • each coded signal may each have a different signature code.
  • Each signature code may be formed by a linear frequency sweep at staggered intervals. Alternately each signature code may be formed as a differing code sequence of pulses at the same frequency.
  • each signature code may coded by applying phase or amplitude modulations.
  • each signature code may have a unique carrier frequency selected from a set of predetermined frequencies.
  • the carrier frequencies of the coded signals maybe cycled incrementally after each transmission, such that each transmitter element transmits a full set of pulses covering all the predetermined frequencies.
  • the transmission of the coded signals may be staggered, whereby each transmitter element transmits a different carrier frequency within the sequence of coded signals to that off the adjacent transmitter element/s.
  • the pulses are transmitted in the microwave or millimetre portions of the electromagnetic spectrum.
  • the transmitter and receiver elements have patterns covering +/- 60 degrees in along track and cross track.
  • the transmitter and receiver element patterns may be tilted forward to cover from +90 degrees forward-horizontal to 30 degrees behind nadir.
  • the transmitter and receiver elements have the same polarisation.
  • the transmitter and receiver elements may be formed into transmitter and receiver sub-arrays arranged orthogonal to one another. Suitably the spacing between the elements is about half a wavelength.
  • Each element within the sub-arrays may be connected in series to reduce the number of active devices.
  • the transmitter and receiver sub-arrays are arranged to form planar array wherein the transmitter and receiver elements are positioned adjacent to the array perimeter.
  • the planar array may define any suitable closed planar shape such as a circle, square, rectangle, octagon or the like.
  • the terrain profile may be displayed as a contour or mesh plot.
  • the terrain profile maybe further processed to determine a substantially level area within the area of interest, which may then be identified on the displayed contour or mesh plot.
  • a warning may be displayed if no substantially level area can be identified.
  • the warning may also include an audible warning.
  • the imaging system may also compare the terrain profile with a threshold value denoting the level clearance and flatness to safely land an aircraft within the area of interest and display suitable and unsuitable areas to the aircrafts operator.
  • a constant frequency separation is employed between the carrier frequencies of each pulses (i.e. the spacing between the carrier frequencies of each pulse in the frequency domain is identical).
  • pulse compression techniques such as step-frequency range compression can be employed to further improve range resolution.
  • the chosen coding scheme should preferably have codes which produce low time sidelobes after auto-correlation (range compression) and low or zero resultant if cross-correlated against others in the set used.
  • the synthesis of the multiple beams is conducted in accordance with a coherent Multiple Input Multiple Output (MIMO) processing technique.
  • MIMO processing includes the steps of converting the distance between each transmitter element, and each receiver element to a delay time and then removing the delay time from the received signals, before weighting and summing the pulses and signals from all the transmitter and receiver element pairs.
  • MIMO Multiple Input Multiple Output
  • the MIMO technique makes use of the fact that the signal received from the far field with a bi-static transmitter receiver pair is identical to the signal which would be received by a single mono-static transmit/receive element placed at the mid point between the bi-static pair.
  • the image computation can be based on the geometry arising from a notional plurality of transient elements.
  • the technique can also be used for signals from the nearer field, but additional processing is required to account for an ellipsoidal co-phase surface with the bi-static elements at the foci. In the far field this ellipsoid tends to a spherical surface centred on a synthetic element at the rnid-point.
  • each receiver element is able to separate the return signals in order to match them to the corresponding signals transmitted from each transmitter element (i.e. a form of multi-static processing within the array itself).
  • NxM the product of the transmitter and receiver element numbers
  • this may be achieved by transmitting from each element in turn (time division multiplexing), or by simultaneously transmitting separable code sequences from each element (code division multiplexing), or by simultaneously transmitting differing frequency sequences (for instance orthogonal frequency division multiplexing).
  • the code sequences required for signal separability can also serve the need for pulse compression.
  • Fig 1 illustrates the concept of synthesising multiple beams under the MIMO technique.
  • the coding scheme is modulated onto a carrier 101 by encoders 102a, 102b,..., 102M via mixers 103a, 103b,..., 103M to produce a set of M discrete coded signal, before being transmitted toward the area of interest 105 from transmitting elements 104a, 104b,..., 104M.
  • a set of reflected encoded signals are received by each receiver element 106a, 106b,..., 106N i.e. each receiver element captures reflected signals corresponding to the transmitted from each of the transmitter elements Tx 1 , Tx 2 ,...,Tx M .
  • the received encoded signals are then decoded by applying a decode signal 107a,107b,...,107M to each of the received signals captured ([Rx 11 , Rx 12 Rx 1M ], [Rx 21 , Rx 22 ,...,Rx 2M ], ..., [Rx N1 , Rx N2 ,...,Rx NM ]) by each of the receiver 106a, 106b,...,106N via banks of mixers 108a, 108b,...,108N.
  • the proposed radar altimeter utilises a downward looking MIMO phased array to form multiple beams, covering a relatively wide sector, +/- 60 degrees or thereabouts.
  • the distance to the ground is then measured in each beam allowing the ground profile to be formed.
  • the beams may be tilted forward to cover from +90 degrees forward (horizontal) to 30 degrees behind nadir.
  • the provision of such a forward tilt gives a greater degree of coverage in the direction of approach vector to the ground.
  • This additional cover enables the altimeter to more accurately detect other vehicles in the proximity to the current approach vector of the vehicle to the desired landing zone.
  • Such functionality is exceedingly desirable in instance where multiple vehicles are to be landed within a limited space e.g. a deck of an aircraft carrier etc.
  • FIG. 2A depicts an open array 200 arrangement which is formed from two sub-arrays 201 a, 201 b, one a transmitter array and one receiver array arranged substantially orthogonal to one another such that they form an L shape.
  • An alternative open array construction 200 is shown in Fig 2B in this case the sub-arrays 201 a, 201 b have been arranged to form a T shape. Again the sub-arrays 201 a, 201 b are aligned substantially orthogonal to one another.
  • Fig 2C depicts one possible configuration of a closed array 200 which is more commonly referred to as perimeter array.
  • the array includes 32 transmitter elements and 32 receiver elements arranged into four sub-arrays.
  • Two transmitter sub-arrays 201 a, 201 a' disposed on opposing side of the array and orthogonal to the two receiver sub-arrays 201 b, 201 b'.
  • Each of the transmitter sub-arrays 201 a, 201 a' includes 16 antenna elements arranged in banks 203 of four antennas 205.
  • Each transmission bank 203 is coupled to a switching network 207. The selection of which transmission elements 205 are active during the transmission cycle is determined by the switching network 207 which opens and closes the appropriate switches to activate the appropriate antenna element 203 based on the chosen multiplexing scheme.
  • the receiver sub-arrays 202b, 202b' are arranged into banks 204 of four antenna elements 206.
  • Each receiver bank 204 is coupled to a switching network 208 which passes the signals received by the active receiver elements 206 to the backend processing section.
  • each of the antenna elements in the sub-arrays 201 a, 201 a' and 202b, 202b' have the same polarisation.
  • the antenna elements should also be selected to provide sufficient beam-width (element directional pattern) to illuminate a sufficient area direct beneath and beyond the extremities of the vehicle e.g. +/- 60 degrees in along track and cross track.
  • the spacing between the elements would need to be slightly greater than a half wavelength sufficient to synthesise 32 beams within the +/-60 degree element beam.
  • the array shown in Fig 2C is a square parameter array it will be appreciated by those skilled in the art that the array may be in the form of any suitable shape where multiple combinations of transmitter/receiver pairs allow the formation of a filled aperture.
  • Such configurations might include a rectangle, a T or L shape, a circle, octagon or the like.
  • Fig 3 depicts the use of a MIMO array in a ground profiling operation in a radar altimeter according to one embodiment of the present invention.
  • the aircraft 301 scans of the desired landing zone 302.
  • the synthesised beams each form a narrow cone.
  • the illuminated patch 302 is wide at higher altitudes.
  • the aircraft 301 descends smaller features of the ground profile can be resolved.
  • Each of the transmitter elements 203 in the array 200 radiate a sequence of M differing signals, the ground reflections from which are captured by each of the N receiver element 206 of the array. Each of the N receiver elements then separates out the M received ground reflections from the M transmitters to produce MxN differing received channels.
  • the channels are formed into MxN beams by co-phasing the data channels to remove the phase shifts associated with a particular angle of arrival and then summing. Then by suitably filtering the data in each beam a set of range profiles is formed, thereby allowing the time delay of the return signal via the nearest point in each beam be measured and converted to a distance. These distance measures are then converted into a profile showing the ground and any obstacles 303 on the ground, allowing the suitability of a selected landing zone to be assessed.
  • a signal detector with a short sampling widow is utilised.
  • the signal detector measures the range to the nearest point in each beam with leading edge trackers which search out from zero range to detect the first return.
  • the first return in each beam is then tracked with a suitable early-late gate or similar. If the signal fades the tracker stays locked for a short interval and if the signal has not returned in this interval the tracker repeatedly searches out from zero again until it can lock onto the return signal.
  • the resultant ground profile may be displayed to the pilot for assessment as a contour plot or as a mesh plot. This would allow the pilot to independently judge which regions within a surveyed area may be suitable landing sites.
  • the altimeter may employ an algorithm to automatically determine the suitability of surveyed area for landing. The algorithm may incorporate such considerations as whether there is adequate rotor/wing clearance, whether the ground slope is sufficiently parallel to the landing gear and determining the height at which any obstacles on the landing zone project above the landing surface, in order to decide which regions within a surveyed area are suitable for landing. Areas identified as suitable and unsuitable could then be displayed to the pilot via display unit to further assist the pilot in the selection of a landing zone.
  • An audible warning may also be provided if the ground in view has a profile falling outside the specification for a safe landing. If a vertical reference is available the display could be referenced to this, otherwise the terrain display would be referenced to the pitch and roll of the vehicle. In this case the image of the ground profile would tilt according to the vehicle's angle with respect to the ground.
  • a radar altimeter with a leading edge tracker can deliver the required accuracy (+/- 2 ft) with a 20 ns pulse, but waveforms which can be time-compressed to that length (pulse compression) are also suitable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (27)

  1. Système d'imagerie destiné à aider des opérateurs de véhicules à décollage vertical au cours d'opérations d'atterrissage dans des environnements à faible visibilité, en profilant une zone d'intérêt (302), la zone d'intérêt (302) étant une zone d'atterrissage souhaitée, ledit système comprenant :
    une pluralité d'éléments émetteurs (104, 205), chaque élément émetteur (104, 205) émettant un signal codé vers la zone d'intérêt (302) ;
    une pluralité d'éléments récepteurs (106, 206), chaque élément récepteur (106, 206) recevant une pluralité de signaux retour provenant de la zone d'intérêt (302) et correspondant aux signaux codés transmis ; et
    au moins un processeur raccordé aux éléments récepteurs. (106, 206) pour recevoir les signaux retour provenant de ceux-ci, ledit processeur étant adapté pour:
    séparer les signaux retour pour chaque trajet d'émetteur à récepteur reçu par chacun des éléments récepteurs (106, 206) pour former une pluralité de canaux de données ;
    former une pluralité de faisceaux à partir de la pluralité de canaux de données en co-phasant les canaux de données pour supprimer les déphasages associés à chacun des angles d'arrivée des signaux reçus, et en additionnant les canaux de données de chaque récepteur, et chaque faisceau incluant un premier signal reçu ;
    produire un ensemble de profils de plage à partir des données contenues dans chacun de la pluralité de faisceaux ;
    mesurer la distance jusqu'au point le plus proche dans chaque faisceau, sur la base d'un temps de retard pour la réception du premier signal retour reçu dans chaque faisceau ;
    produire un profil de terrain avec une valeur seuil indiquant des niveaux de dégagement et de planéité pour faire atterrir le véhicule à décollage vertical en toute sécurité dans la zone d'intérêt pour déterminer des zones appropriées et inappropriées identifiées sur le profil de terrain.
  2. Système d'imagerie selon la revendication 1, dans lequel les signaux codés sont transmis selon un système de multiplexage par répartition dans le temps, le retard entre la transmission de chaque signal codé étant suffisant pour permettre à tous les signaux retour provenant de la zone d'intérêt (302) de se dissiper avant la transmission du signal codé suivant.
  3. Système d'imagerie selon l'une quelconque des revendications 1 et 2, dans lequel les signaux codés présentent respectivement un code de signature différent.
  4. Système d'imagerie selon la revendication 3, dans lequel chaque code de signature est formé par un balayage de fréquence linéaire à des intervalles échelonnés.
  5. Système d'imagerie selon la revendication 3, dans lequel chaque code de signature est formé comme une séquence de code différente d'impulsions à la même fréquence.
  6. Système d'imagerie selon la revendication 5, dans lequel chaque code de signature est formé par une modulation de phase ou d'amplitude.
  7. Système d'imagerie selon la revendication 1, dans lequel la pluralité de signaux codés est transmise selon un système de multiplexage par répartition en fréquence (FDM).
  8. Système d'imagerie selon la revendication 1, dans lequel les signaux codés présentent des codes de signature différents, chaque code de signature présentant une fréquence porteuse unique sélectionnée parmi un ensemble de fréquences prédéterminées, pour permettre à l'au moins un processeur de séparer des signaux retour pour chaque élément émetteur réfléchi à partir de la zone d'intérêt (302).
  9. Système d'imagerie selon la revendication 8, dans lequel les fréquences porteuses des impulsions sont cadencées progressivement après chaque émission, de telle façon que chaque élément émetteur (104, 205) émette un ensemble complet d'impulsions couvrant toutes les fréquences prédéterminées.
  10. Système d'imagerie selon la revendication 1, dans lequel les impulsions sont transmises selon un système de multiplexage par répartition en fréquence orthogonal (OFDM).
  11. Système d'imagerie selon la revendication 10, dans lequel les signaux codés présentent chacun un code de signature différent présentant une fréquence porteuse unique sélectionnée parmi un ensemble de fréquences prédéterminées, pour permettre à l'au moins un processeur de séparer des signaux retour pour chaque élément émetteur (104, 205) réfléchi à partir de la zone d'intérêt (302).
  12. Système d'imagerie selon la revendication 10 ou 11, dans lequel l'émission des signaux codés est échelonnée, moyennant quoi chaque élément émetteur (104, 205) émet une fréquence porteuse différente dans la séquence de signaux codés par rapport à celle des éléments émetteurs (104, 205) adjacents.
  13. Système d'imagerie selon l'une quelconque des revendications précédentes, dans lequel les configurations d'éléments émetteurs et récepteurs couvrent +/-60 degrés sur un trajet longitudinal et un trajet transversal.
  14. Système d'imagerie selon l'une quelconque des revendications précédentes, dans lequel les configurations d'éléments émetteurs et récepteurs sont inclinées vers l'avant pour couvrir entre +90 degrés horizontalement vers l'avant et 30 degrés derrière le nadir.
  15. Système d'imagerie selon l'une quelconque des revendications précédentes, dans lequel les signaux codés rayonnés par chaque élément émetteur (104, 205) sont dans la portion microonde ou millimétrique du spectre électromagnétique.
  16. Système d'imagerie selon l'une quelconque des revendications précédentes, dans lequel le profil de terrain est affiché comme un tracé de mailles ou un tracé de contours.
  17. Système d'imagerie selon la revendication 1, dans lequel un avertisseur s'affiche si aucune zone appropriée ne peut être identifiée.
  18. Système d'imagerie selon la revendication 17, dans lequel l'avertisseur comprend en outre un signal sonore.
  19. Système d'imagerie selon l'une quelconque des revendications précédentes, dans lequel les éléments émetteurs et récepteurs (104, 205) (106, 206) sont divisés en sous-réseaux d'émetteurs et de récepteurs (201a, 201a') (201b, 201 b').
  20. Système d'imagerie selon la revendication 19, dans lequel les sous-réseaux d'émetteurs et de récepteurs (201 a, 201 a') (201 b, 201 b') sont disposés de façon orthogonale les uns par rapport aux autres.
  21. Système d'imagerie selon la revendication 19 ou la revendication 20, dans lequel chaque élément dans les sous-réseaux (201a, 201a') (201 b, 201 b') est relié en séquence pour réduire le nombre de dispositifs actifs.
  22. Système d'imagerie selon l'une quelconque des revendications 3 à 12, dans lequel une compression d'impulsion est appliquée.
  23. Système d'imagerie selon l'une quelconque des revendications précédentes, dans lequel la formation de la pluralité de faisceaux comprend en outre un déphasage de chacun des signaux retour reçus séparés, par chaque élément récepteur (106, 206).
  24. Système d'imagerie selon l'une quelconque des revendications précédentes, dans lequel le premier signal renvoyé dans chaque faisceau est pisté.
  25. Procédé destiné à assister des opérateurs de véhicules à décollage vertical au cours des opérations d'atterrissage dans des environnements à faible visibilité, en prospectant une zone d'intérêt pour produire un profil de terrain, la zone d'intérêt (302) étant une surface d'atterrissage souhaitée, ledit procédé comprenant les étapes suivantes :
    transmission d'une pluralité de signaux codés vers la zone d'intérêt (302), la pluralité de signaux codés étant transmise par une pluralité d'éléments émetteurs (104, 205), chaque élément émetteur (104, 205) émettant un signal codé ;
    réception, au niveau d'une pluralité d'éléments récepteurs (106, 206), d'une pluralité de signaux retour provenant de la zone d'intérêt (302) correspondant aux signaux codés transmis ; et
    apport de la pluralité de signaux retour à un processeur, le processeur exécutant les étapes suivantes :
    séparation des signaux retour pour chaque trajet d'émetteur à récepteur reçu par chacun des éléments récepteurs pour former une pluralité de canaux de données ;
    formation d'une pluralité de faisceaux à partir de la pluralité de canaux de données en co-phasant les canaux de données pour supprimer les déphasages associés à chacun des angles d'arrivée des signaux reçus, et en additionnant les canaux de données de chaque récepteur, et chaque faisceau incluant un premier signal reçu ;
    production d'un ensemble de profils de plage à partir des données contenues dans chacun de la pluralité de faisceaux ;
    mesure de la distance jusqu'au point le plus proche dans chaque faisceau, sur la base d'un temps de retard pour la réception du premier signal retour reçu dans chaque faisceau ;
    production d'un profil de terrain de la zone d'intérêt (302) à partir des mesures de distance ;
    comparaison du profil de terrain avec une valeur seuil indiquant des niveaux de dégagement et de planéité pour faire atterrir le véhicule à décollage vertical en toute sécurité dans la zone d'intérêt (302) afin de déterminer des zones appropriées et inappropriées ; et
    affichage d'une image du profil de terrain de la zone d'intérêt (302) avec les zones appropriées et inappropriées identifiées sur le profil de terrain.
  26. Procédé selon la revendication 25, dans lequel les signaux codés rayonnés par chaque élément émetteur (104, 205) sont dans la portion microonde ou millimétrique du spectre électromagnétique.
  27. Procédé selon la revendication 25 ou 26, dans lequel l'étape d'affichage du profil de terrain comprends l'affichage du profil de terrain comme un tracé de mailles ou un tracé de contours.
EP10735428.4A 2009-01-30 2010-01-28 Appareil et procédé pour aider les véhicules à décollage à la verticale Not-in-force EP2391906B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2009900337A AU2009900337A0 (en) 2009-01-30 Apparatus and method for assisting vertical takeoff vehicles
PCT/AU2010/000082 WO2010085846A2 (fr) 2009-01-30 2010-01-28 Appareil et procédé pour aider les véhicules à décollage à la verticale

Publications (3)

Publication Number Publication Date
EP2391906A2 EP2391906A2 (fr) 2011-12-07
EP2391906A4 EP2391906A4 (fr) 2013-11-06
EP2391906B1 true EP2391906B1 (fr) 2016-12-07

Family

ID=42396093

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10735428.4A Not-in-force EP2391906B1 (fr) 2009-01-30 2010-01-28 Appareil et procédé pour aider les véhicules à décollage à la verticale

Country Status (5)

Country Link
US (2) US8427360B2 (fr)
EP (1) EP2391906B1 (fr)
AU (1) AU2010200313B2 (fr)
IL (1) IL213904A0 (fr)
WO (1) WO2010085846A2 (fr)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2391906B1 (fr) 2009-01-30 2016-12-07 Teledyne Australia Pty Ltd. Appareil et procédé pour aider les véhicules à décollage à la verticale
US9322917B2 (en) * 2011-01-21 2016-04-26 Farrokh Mohamadi Multi-stage detection of buried IEDs
FR2972537B1 (fr) * 2011-03-11 2014-08-22 Eurocopter France Procede de mesure de hauteur et de detection d'obstacle, radioaltimetre et aeronef
US9329001B2 (en) * 2011-10-26 2016-05-03 Farrokh Mohamadi Remote detection, confirmation and detonation of buried improvised explosive devices
US9110168B2 (en) * 2011-11-18 2015-08-18 Farrokh Mohamadi Software-defined multi-mode ultra-wideband radar for autonomous vertical take-off and landing of small unmanned aerial systems
CN102866401B (zh) * 2012-08-06 2014-03-12 西北工业大学 一种基于mimo技术的三维成像方法
US9036002B2 (en) * 2012-10-30 2015-05-19 Eastman Kodak Company System for making a panoramic image
EP2962123A4 (fr) * 2013-02-26 2016-10-19 Teledyne Tech Inc Appareil et procédé d'assistance de véhicules à décollage vertical
WO2015031934A1 (fr) 2013-09-04 2015-03-12 Teledyne Australia Pty Ltd Système et procédé de détection
US9300388B1 (en) * 2013-12-18 2016-03-29 Google Inc. Systems and methods for using different beam widths for communications between balloons
US9915728B2 (en) * 2014-01-10 2018-03-13 Raytheon Company Sub-diffraction limit resolution radar arrays
US20150253419A1 (en) * 2014-03-05 2015-09-10 Delphi Technologies, Inc. Mimo antenna with improved grating lobe characteristics
US9541639B2 (en) * 2014-03-05 2017-01-10 Delphi Technologies, Inc. MIMO antenna with elevation detection
US9568600B2 (en) * 2014-03-05 2017-02-14 Delphi Technologies, Inc. MIMO antenna with elevation detection
JP6492377B2 (ja) * 2014-08-28 2019-04-03 日本無線株式会社 直交分離装置および直交分離方法
US9948362B2 (en) * 2015-01-12 2018-04-17 Mitsubishi Electric Research Laboratories, Inc. System and method for 3D imaging using a moving multiple-input multiple-output (MIMO) linear antenna array
US9755796B2 (en) * 2015-03-18 2017-09-05 Honeywell International Inc. System and method of using radio altimeter frequency spectrum for wireless signals
JP6396244B2 (ja) 2015-03-25 2018-09-26 パナソニック株式会社 レーダ装置
JP6377000B2 (ja) * 2015-03-25 2018-08-22 パナソニック株式会社 レーダ装置
US20160349746A1 (en) * 2015-05-29 2016-12-01 Faro Technologies, Inc. Unmanned aerial vehicle having a projector and being tracked by a laser tracker
US10101440B2 (en) 2015-06-08 2018-10-16 Mitsubishi Electric Corporation Sensor device
CN114185042A (zh) * 2015-09-17 2022-03-15 松下电器产业株式会社 雷达装置
JP2017116402A (ja) * 2015-12-24 2017-06-29 日本電産エレシス株式会社 車載用レーダ装置
US9739881B1 (en) * 2016-03-24 2017-08-22 RFNAV, Inc. Low cost 3D radar imaging and 3D association method from low count linear arrays for all weather autonomous vehicle navigation
US11608173B2 (en) 2016-07-01 2023-03-21 Textron Innovations Inc. Aerial delivery systems using unmanned aircraft
US10315761B2 (en) 2016-07-01 2019-06-11 Bell Helicopter Textron Inc. Aircraft propulsion assembly
JP6716435B2 (ja) * 2016-11-21 2020-07-01 株式会社東芝 レーダシステム及びそのレーダ信号処理方法
JP6846437B2 (ja) * 2016-12-01 2021-03-24 日立Astemo株式会社 レーダ装置
IL250253B (en) 2017-01-24 2021-10-31 Arbe Robotics Ltd A method for separating targets and echoes from noise, in radar signals
IL250381A0 (en) * 2017-01-31 2017-03-30 Arbe Robotics Ltd A compact array of radar antennas with high horizontal and vertical resolution
US10782394B2 (en) 2017-02-08 2020-09-22 Texas Instruments Incorporated Slim object detection using multi-polarized millimeter wave signals
US10371812B2 (en) 2017-02-23 2019-08-06 Rosemount Aerospace Inc. Ultra-wideband radar altimeter
US10403158B2 (en) * 2017-04-06 2019-09-03 The Boeing Company Vertical landing vehicle, situational awareness system, and method thereof
JP6573748B2 (ja) * 2017-06-09 2019-09-11 三菱電機株式会社 レーダ装置
US10761205B2 (en) * 2017-06-23 2020-09-01 Inxpect S.P.A. Systems for determining target direction and methods therefor
US10989802B2 (en) * 2017-10-12 2021-04-27 Honeywell International Inc. Altimeter with high-resolution radar
US11194040B2 (en) * 2018-07-17 2021-12-07 Aptiv Technologies Limited Slow time frequency division multiplexing with binary phase shifters
IL260694A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for two-stage signal processing in a radar system
IL260696A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for structured self-testing of radio frequencies in a radar system
IL260695A (en) 2018-07-19 2019-01-31 Arbe Robotics Ltd Method and device for eliminating waiting times in a radar system
WO2020037321A1 (fr) * 2018-08-17 2020-02-20 Aura Intelligent Systems, Inc. Antenne réseau à ouverture synthétique pour imagerie 3d
IL261636A (en) 2018-09-05 2018-10-31 Arbe Robotics Ltd Deflected MIMO antenna array for vehicle imaging radars
US10749258B1 (en) * 2018-09-28 2020-08-18 Rockwell Collins, Inc. Antenna system and method for a digitally beam formed intersecting fan beam
JP7224174B2 (ja) * 2018-12-26 2023-02-17 ルネサスエレクトロニクス株式会社 電子装置およびレーダー制御方法
US10962639B2 (en) 2019-01-11 2021-03-30 Isaac Weissman Smallsat surveillance constellation using MIMO radar
US11327170B2 (en) * 2019-04-22 2022-05-10 GM Global Technology Operations LLC Azimuth and elevation radar imaging with single-dimension antenna arrays of radar system
US11181614B2 (en) * 2019-06-06 2021-11-23 GM Global Technology Operations LLC Antenna array tilt and processing to eliminate false detections in a radar system
CN116381720A (zh) * 2019-07-19 2023-07-04 深圳市镭神智能***有限公司 一种多线激光雷达及其驱动方法
CN110389355B (zh) * 2019-07-19 2023-04-25 深圳市镭神智能***有限公司 一种多线激光雷达
CN110609295B (zh) * 2019-07-19 2023-11-03 深圳市镭神智能***有限公司 一种多线激光雷达及其驱动方法
CN110675414B (zh) * 2019-09-30 2021-08-17 广州极飞科技股份有限公司 地块分割方法、装置、电子设备及存储介质
CA3186897A1 (fr) * 2020-06-11 2021-12-16 Skygig, Llc Systeme et procede d'architecture frontale de formation de faisceau a faisceaux multiples pour des emetteurs-recepteurs sans fil
US11371840B2 (en) 2020-10-28 2022-06-28 Rockwell Collins, Inc. ESA based altimeter
US11636772B2 (en) 2020-10-30 2023-04-25 Rockwell Collins, Inc. ESA collision avoidance system and method
US11630467B2 (en) 2020-12-23 2023-04-18 Textron Innovations Inc. VTOL aircraft having multifocal landing sensors
US11953617B2 (en) 2021-03-24 2024-04-09 Rockwell Collins, Inc. Multi-panel multi-function AESA system
US11835648B2 (en) 2021-03-24 2023-12-05 Rockwell Collins, Inc. Multi-beam multi-function AESA system
CN112799031B (zh) * 2021-03-31 2021-07-13 长沙莫之比智能科技有限公司 一种毫米波仿地雷达数据的杂波抑制方法
US20220390582A1 (en) * 2021-06-03 2022-12-08 Qualcomm Incorporated Object detection and ranging using one-dimensional radar arrays
US11917425B2 (en) * 2021-12-02 2024-02-27 Honeywell International Inc. Variable beamwidth antenna control for aerial vehicles
US11673662B1 (en) 2022-01-05 2023-06-13 Textron Innovations Inc. Telescoping tail assemblies for use on aircraft
CN116400325B (zh) * 2022-09-14 2024-01-26 苏州睿新微***技术有限公司 一种光发射组件及激光雷达

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3842417A (en) 1972-02-14 1974-10-15 Hughes Aircraft Co Bistatic radar system
GB1434638A (en) 1973-11-27 1976-05-05 Standard Telephones Cables Ltd Radio direction finding equipment
US4016565A (en) * 1975-09-15 1977-04-05 Rockwell International Corporation Aircraft ground closure rate filtering method and means
US4612547A (en) 1982-09-07 1986-09-16 Nec Corporation Electronically scanned antenna
US4571591A (en) 1983-12-16 1986-02-18 The United States Of America As Represented By The Secretary Of The Navy Three dimensional, orthogonal delay line bootlace lens antenna
US4758839A (en) * 1987-07-22 1988-07-19 Mcdonnell Douglas Corporation Terrain profile radar system
US5038150A (en) 1990-05-14 1991-08-06 Hughes Aircraft Company Feed network for a dual circular and dual linear polarization antenna
US5465142A (en) * 1993-04-30 1995-11-07 Northrop Grumman Corporation Obstacle avoidance system for helicopters and other aircraft
JP3375213B2 (ja) 1994-09-16 2003-02-10 並木精密宝石株式会社 レンズ付ファイバ
JP3308734B2 (ja) 1994-10-13 2002-07-29 本田技研工業株式会社 レーダーモジュール
JP2782053B2 (ja) 1995-03-23 1998-07-30 本田技研工業株式会社 レーダーモジュール及びアンテナ装置
US5828332A (en) * 1996-03-11 1998-10-27 Imaging Accessories, Inc. Automatic horizontal and vertical scanning radar with terrain display
US5781146A (en) * 1996-03-11 1998-07-14 Imaging Accessories, Inc. Automatic horizontal and vertical scanning radar with terrain display
US5790071A (en) 1997-07-03 1998-08-04 Lockheed Martin Corp. Method for determining orientation and attitude of a satellite- or aircraft-borne phased-array antenna
JP3433417B2 (ja) 1998-04-02 2003-08-04 トヨタ自動車株式会社 レーダ装置
US6956840B1 (en) 1998-09-21 2005-10-18 Ipr Licensing, Inc. Power control protocol for highly variable data rate reverse link of a wireless communication system
US6104346A (en) 1998-11-06 2000-08-15 Ail Systems Inc. Antenna and method for two-dimensional angle-of-arrival determination
US6889010B2 (en) 1999-09-03 2005-05-03 Altera Corporation Star topology network with fiber interconnect on chip
US6437750B1 (en) 1999-09-09 2002-08-20 University Of Kentucky Research Foundation Electrically-small low Q radiator structure and method of producing EM waves therewith
US6433729B1 (en) * 1999-09-27 2002-08-13 Honeywell International Inc. System and method for displaying vertical profile of intruding traffic in two dimensions
US6527456B1 (en) 1999-10-13 2003-03-04 Teraconnect, Inc. Cluster integration approach to optical transceiver arrays and fiber bundles
US6664529B2 (en) 2000-07-19 2003-12-16 Utah State University 3D multispectral lidar
AUPR187100A0 (en) 2000-12-04 2001-01-04 Cea Technologies Inc. Slope monitoring system
US6665063B2 (en) * 2001-09-04 2003-12-16 Rosemount Aerospace Inc. Distributed laser obstacle awareness system
US6720891B2 (en) * 2001-12-26 2004-04-13 The Boeing Company Vertical situation display terrain/waypoint swath, range to target speed, and blended airplane reference
US6792171B2 (en) 2002-11-15 2004-09-14 Jds Uniphase Corporation Receiver optical sub-assembly
US7064680B2 (en) * 2002-12-20 2006-06-20 Aviation Communications & Surveillance Systems Llc Aircraft terrain warning systems and methods
US7095488B2 (en) * 2003-01-21 2006-08-22 Rosemount Aerospace Inc. System for profiling objects on terrain forward and below an aircraft utilizing a cross-track laser altimeter
US7106217B2 (en) 2003-03-31 2006-09-12 Sikorsky Aircraft Corporation Technical design concepts to improve helicopter obstacle avoidance and operations in “brownout” conditions
US7011455B2 (en) 2003-06-19 2006-03-14 Emcore Corporation Opto-electronic TO-package and method for laser
US6851870B1 (en) 2003-12-22 2005-02-08 E-Pin Optical Industry Co., Ltd. Method for measuring and assembling transceiver optical sub-assembly
US7306377B2 (en) 2004-04-30 2007-12-11 Finisar Corporation Integrated optical sub-assembly having epoxy chip package
US6980153B2 (en) * 2004-05-17 2005-12-27 Honeywell International Inc. Radar altimeter for helicopter load carrying operations
US7149147B1 (en) * 2004-09-02 2006-12-12 The United States Of America As Represented By The Secretary Of The Army System and method for sound detection and image using a rotocraft acoustic signature
GB0502651D0 (en) 2005-02-09 2005-03-16 Univ Bristol Methods and apparatus for measuring the internal structure of an object
US7762085B2 (en) 2005-08-22 2010-07-27 Teledyne Technologies Incorporated Turbine engine having two off-axis spools with valving-enabled modulation between high and low power modes
DE102005047273B4 (de) * 2005-10-01 2008-01-03 Eads Deutschland Gmbh Verfahren zur Unterstützung von Tiefflügen
CA2615821A1 (fr) 2005-10-17 2007-04-26 Groundprobe Pty Ltd. Radar a synthese d'ouverture a reseau perimetrique
US7170440B1 (en) 2005-12-10 2007-01-30 Landray Technology, Inc. Linear FM radar
US20070139248A1 (en) 2005-12-16 2007-06-21 Izhak Baharav System and method for standoff microwave imaging
PL1989570T3 (pl) 2006-01-17 2017-02-28 Teledyne Australia Pty Ltd. Urządzenie i sposób do inwigilacji
US20080077015A1 (en) 2006-05-17 2008-03-27 Olga Boric-Lubecke Determining presence and/or physiological motion of one or more subjects with multiple receiver Doppler radar systems
US7456779B2 (en) * 2006-08-31 2008-11-25 Sierra Nevada Corporation System and method for 3D radar image rendering
EP2153245A1 (fr) * 2007-05-04 2010-02-17 Teledyne Australia Pty Ltd. Système et procédé pour éviter une collision
AU2008301226B2 (en) 2007-09-19 2013-10-10 Teledyne Uk Limited Imaging system and method
GB0808340D0 (en) * 2008-05-08 2008-06-18 Univ Edinburgh Remote sensing system
ES2367598T3 (es) * 2008-07-11 2011-11-04 Agence Spatiale Europeenne Método y sistema de altimetría.
US8248298B2 (en) * 2008-10-31 2012-08-21 First Rf Corporation Orthogonal linear transmit receive array radar
EP2391906B1 (fr) * 2009-01-30 2016-12-07 Teledyne Australia Pty Ltd. Appareil et procédé pour aider les véhicules à décollage à la verticale

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US9041587B2 (en) 2015-05-26
US20110279669A1 (en) 2011-11-17
EP2391906A2 (fr) 2011-12-07
WO2010085846A2 (fr) 2010-08-05
AU2010200313A1 (en) 2010-08-19
US8427360B2 (en) 2013-04-23
EP2391906A4 (fr) 2013-11-06
AU2010200313B2 (en) 2015-10-29
WO2010085846A3 (fr) 2010-10-28
IL213904A0 (en) 2011-07-31
US20140125511A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
EP2391906B1 (fr) Appareil et procédé pour aider les véhicules à décollage à la verticale
US11843180B2 (en) Mobile radar for visualizing topography
US10620304B2 (en) Radar system and associated apparatus and methods
EP3186656B1 (fr) Système radar et appareil et procédés associés
EP0898718B1 (fr) Fonction d'alerte assistee par radar signalant la presence d'obtacles ou indiquant la nature du terrain
US20100204867A1 (en) Collision avoidance system and method
US10955548B1 (en) Weather radar enabled low visibility operation system and method
WO1997043666A9 (fr) Fonction d'alerte assistee par radar signalant la presence d'obtacles ou indiquant la nature du terrain
CN104269658A (zh) 用于mimo-sar成像的弧形阵列天线
US10585186B2 (en) Anticollision radar, especially for an aircraft when taxiing, and anticollision system
CN101203774A (zh) 飞行器的雷达***
CN104280735A (zh) 基于弧形阵列天线的mimo-sar成像方法及装置
CN104267400A (zh) 用于mimo-sar成像的微波信号收发***、方法及成像***
US10353068B1 (en) Weather radar enabled offshore operation system and method
Kemkemian et al. Radar systems for “Sense and Avoid” on UAV
US10705201B1 (en) Radar beam sharpening system and method
Walterscheid et al. Radar imaging with very low grazing angles in a bistatic forward-looking configuration
RU166885U1 (ru) Радиолокатор для анализа места посадки вертолета
RU2707275C1 (ru) Способ выбора площадки для посадки воздушного судна вертолетного типа
AU2018203898A1 (en) Apparatus and method for assisting vertical takeoff vehicles
RU2737760C1 (ru) Устройство выбора площадки для посадки воздушного судна вертолётного типа
CN105607061B (zh) 使用天气雷达感测的显示***和方法
RU2756596C1 (ru) Устройство выбора площадки для посадки воздушного судна вертолётного типа
Zaugg et al. Multi-Capability Sar for Geoscience Research

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110822

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20131004

RIC1 Information provided on ipc code assigned before grant

Ipc: G01C 3/08 20060101ALI20130927BHEP

Ipc: G01S 1/16 20060101AFI20130927BHEP

Ipc: G01C 11/26 20060101ALI20130927BHEP

Ipc: G01S 13/02 20060101ALI20130927BHEP

Ipc: G01S 13/91 20060101ALI20130927BHEP

Ipc: G01C 11/18 20060101ALI20130927BHEP

Ipc: G01S 13/88 20060101ALI20130927BHEP

17Q First examination report despatched

Effective date: 20140630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010038620

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01S0001160000

Ipc: G05D0001060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01S 13/02 20060101ALI20160630BHEP

Ipc: G05D 1/08 20060101ALI20160630BHEP

Ipc: G01S 13/91 20060101ALI20160630BHEP

Ipc: G01S 13/88 20060101ALI20160630BHEP

Ipc: G05D 1/06 20060101AFI20160630BHEP

INTG Intention to grant announced

Effective date: 20160721

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 852260

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010038620

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 852260

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010038620

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170128

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010038620

Country of ref document: DE

Representative=s name: HERNANDEZ, YORCK, DIPL.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602010038620

Country of ref document: DE

Owner name: TELEDYNE UK LIMITED, CHELMSFORD, GB

Free format text: FORMER OWNER: TELEDYNE AUSTRALIA PTY LTD., EIGHT MILE PLAINS, QLD, AU

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210122

Year of fee payment: 12

Ref country code: FR

Payment date: 20210125

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210128

Year of fee payment: 12

Ref country code: DE

Payment date: 20210127

Year of fee payment: 12

Ref country code: SE

Payment date: 20210127

Year of fee payment: 12

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210729 AND 20210804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602010038620

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220129

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220128

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220128