EP2370771B1 - Brazed heat exchanger - Google Patents

Brazed heat exchanger Download PDF

Info

Publication number
EP2370771B1
EP2370771B1 EP09771363.0A EP09771363A EP2370771B1 EP 2370771 B1 EP2370771 B1 EP 2370771B1 EP 09771363 A EP09771363 A EP 09771363A EP 2370771 B1 EP2370771 B1 EP 2370771B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
port openings
plates
pressure port
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09771363.0A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2370771A1 (en
Inventor
Sven Andersson
Svante Hoberg
Tomas Dahlberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swep International AB
Original Assignee
Swep International AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swep International AB filed Critical Swep International AB
Publication of EP2370771A1 publication Critical patent/EP2370771A1/en
Application granted granted Critical
Publication of EP2370771B1 publication Critical patent/EP2370771B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means

Definitions

  • the present invention relates to a heat exchanger comprising a number of heat exchanger plates comprising a pressed pattern of ridges and grooves adapted to form flow channels for media to exchange heat flowing through said flow channels, the plates further comprising at least four port openings arranged to allow fluid communication to said flow channels and a skirt extending around the periphery of the heat exchanger plates, said skirt sealing the flow channels.
  • a relatively common type of heat exchanger for carbon dioxide applications is the "dual pipe" exchanger, which comprises two parallel pipes, which are interconnected to enable heat transfer between the pipes. Usually, a pipe with a small diameter is used for the high pressure medium, whereas a pipe with a large diameter is used for the low pressure medium.
  • Dual pipe heat exchangers have excellent properties concerning capability to withstand pressure, but are inefficient in terms of heat exchanging capability vs. weight.
  • CBE Compact Brazed Exchanger
  • a CBE generally comprises a number of heat exchanger plates, all of which being provided with a pressed pattern of ridges and grooves and port openings for fluid communication with flow channels formed by interaction between the pressed patterns of ridges and grooves of neighboring plates.
  • the pressed patterns of neighboring plates are arranged such that ridges of one plate contact grooves of a neighboring plate.
  • the contact points are brazed to one another to provide sufficient strength to the flow channel formed by the patterns of ridges and grooves of neighboring plates.
  • the flow channels formed by the interaction between the ridges and grooves are laterally sealed by interacting skirts provided around the circumference of the heat exchanger plates.
  • Such a heat exchanger is disclosed in JP06074672 .
  • this and other problems are solved by providing at least one of the port openings on a peninsula which extends outside the general area of a heat exchanging surface of heat exchanger plates comprised in the heat exchanger, said peninsula being closely surrounded by skirts over at least 100 degrees.
  • a heat exchanger plate 100 comprises a heat exchanging area 110, provided with a pressed pattern (not shown) of ridges and grooves, in a way well known to persons skilled in the art.
  • the patterns of ridges and grooves of neighboring plates are adapted to provide flow channels between the plates due to contact between ridges of one plate contacting grooves of its neighboring plate when the plates 100 are stacked onto one another in a way well known by persons skilled in the art.
  • the heat exchanger 100 also comprises at least two low pressure port openings 120 and two high pressure openings 130. The port openings are in selective fluid communication with the flow channels formed by the pattern of ridges and grooves in a way to be described below.
  • a skirt 140 surrounds the heat exchanging area 110 and is arranged such that two skirts of neighboring plates interact to form a seal between such neighboring plates by an overlapping engagement between neighboring skirts, hence sealing the flow channels formed by the pressed pattern of ridges and grooves.
  • the high pressure port 130 is placed on a "peninsula" 150 extending out from the heat exchanging area 110.
  • the peninsula 150 is closely surrounded by the skirt 140 over an angle ⁇ of about 180 degrees.
  • Fig 2 shows virtually the same embodiment as is shown in Fig. 1 , with the exception that fig. 2 shows the skirt 140 being surrounded by a plate portion 160 which is provided with a pressed pattern of ridges and grooves.
  • the ridges and grooves 165, 166, respectively, of the plate portion 160 are adapted to contact corresponding ridges and grooves of the plate portion 160 of a neighboring plate, and hence increase the strength of the seal formed by the skirt 140.
  • Fig. 3 shows still a further embodiment of a heat exchanger plate 200 according to the present invention.
  • a peninsula 210 extends in a direction parallel to a length axis of the heat exchanger plate 200, and a high pressure port 220 is located on such peninsula.
  • the skirt 140 closely surrounds the high pressure port 220 over about 180 degrees.
  • a desired number of heat exchanger plates are stacked onto one another. Not all heat exchanger plates 100 or 200 are of the same design, every other plate in the stack is a mirror image of its neighboring plates; by varying the height of the areas surrounding both the high pressure ports and the low pressure ports, it is possible to determine which port opening that shall communicate with each flow channel. This method of determining the fluid communication in a heat exchanger is well known by persons skilled in the art, and will hence not be more thoroughly discussed.
  • the entire plate package is subjected to a brazing operation, i.e. the plate package is put into a furnace and heated to a temperature sufficient to melt a brazing material arranged between the plates. After the brazing material has melted, it will concentrate to areas wherein the plates are lying close to one another (the concentration of the brazing material is due to capillary forces). Consequently, the plates will be joined by a brazing connection after the heat exchanger has cooled down sufficiently to allow the brazing material to solidify.
  • a heat exchanger 400 comprising a number of heat exchanger plates 200 is shown. It can clearly be seen that the skirts 140 form an edge around the circumference of the heat exchanger plates, and it is also very clear how the skirts 140 interact to form a half-pipe like closure around the high pressure port openings 130.
  • the half-pipe like closure formed by the skirts 140 around the high pressure port openings 130 gives a very high strength around the port openings; the forces emanating from the surface area of the port will be transferred through the connections between the overlapping skirts.
  • the peninsula placement of the high pressure port 130 increases the strength of the port by fact that a large portion of the port opening lies in the vicinity of the skirt 140; as previously described, skirts 140 of neighboring plates will overlap to form a sealed connection between the plates.
  • the overlapping skirts will form a "half-pipe" of overlapping skirts.
  • Such a half pipe-like array of overlapping skirts has proven to be very strong, it can absorb forces in a much more efficient way than e.g. the contact points between the pressed patterns of the heat exchanging areas.
  • a heat exchanger plate according to a further embodiment embodying this feature of the present invention is shown.
  • both a high pressure port 300 and a low pressure port 310 are placed on peninsulas 320, 330, respectively, the definition of a peninsula being that the skirts surrounding the plates closely surrounds the port openings over more than 90 degrees.
  • skirt 140 not necessarily must be arranged such that it only surrounds the heat exchanger as a whole; it is also possible to provide any portion of the heat exchanger plates with skirts.
  • a skirt could be arranged such that an opening is formed in the heat exchanger; any arrangement wherein plate portions extend in a generally perpendicular direction vis-à-vis a plane of the heat exchanger, and wherein such plate portions of neighboring plates are designed to overlap corresponding plate portions of neighboring plates in a way that has been described above with reference to the skirt 140 are regarded as skirts in the wording of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
EP09771363.0A 2008-12-17 2009-12-11 Brazed heat exchanger Active EP2370771B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0802596 2008-12-17
PCT/EP2009/066928 WO2010069871A1 (en) 2008-12-17 2009-12-11 High pressure port on peninsula

Publications (2)

Publication Number Publication Date
EP2370771A1 EP2370771A1 (en) 2011-10-05
EP2370771B1 true EP2370771B1 (en) 2017-07-19

Family

ID=41819669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09771363.0A Active EP2370771B1 (en) 2008-12-17 2009-12-11 Brazed heat exchanger

Country Status (5)

Country Link
US (1) US20120118546A1 (zh)
EP (1) EP2370771B1 (zh)
JP (1) JP5882739B2 (zh)
CN (1) CN102245993A (zh)
WO (1) WO2010069871A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3062949B2 (en) * 2013-10-29 2023-05-24 SWEP International AB A method of brazing a plate heat exchanger using scren printed brazing material
JP6080746B2 (ja) * 2013-11-28 2017-02-15 三菱電機株式会社 プレート積層体
DE102013225321A1 (de) * 2013-12-09 2015-06-11 MAHLE Behr GmbH & Co. KG Stapelscheibe für einen Wärmeübertrager und Wärmeübertrager
JP6552499B2 (ja) * 2013-12-10 2019-07-31 スウェップ インターナショナル アクティエボラーグ 改良された流れを有する熱交換器
SE541905C2 (en) * 2017-12-05 2020-01-02 Swep Int Ab Heat exchanger and method for forming heat exchanger plates

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611447C1 (de) * 1996-03-22 1997-07-10 Laengerer & Reich Gmbh & Co Gehäuseloser Plattenwärmetauscher

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182411A (en) * 1975-12-19 1980-01-08 Hisaka Works Ltd. Plate type condenser
SE466171B (sv) * 1990-05-08 1992-01-07 Alfa Laval Thermal Ab Plattfoeraangare daer aatminstone den ena plattan i en foeraangningspassage aer uppdelad i faelt anordnade bredvid varandra mellan plattans laangsidor, vilka faelt uppvisar sinsemellan olika korrugeringsmoenster saa att stroemningsmotstaandet successivt minskar fraan ena sidan till den andra
JPH0674672A (ja) * 1992-08-25 1994-03-18 Hisaka Works Ltd プレート式熱交換器
DE4416391A1 (de) * 1994-05-10 1995-11-16 Schmidt Bretten Gmbh Plattenwärmetauscher
JP2887442B2 (ja) * 1994-09-22 1999-04-26 株式会社ゼクセル 積層型熱交換器
SE521916C2 (sv) * 1997-02-25 2003-12-16 Ep Technology Ab Plattvärmeväxlare med läckageutsläpp
JP3064371U (ja) * 1999-05-28 2000-01-14 東洋ラジエーター株式会社 積層型熱交換器
JP2001050681A (ja) * 1999-08-06 2001-02-23 Matsushita Electric Ind Co Ltd 熱交換器およびその熱交換器を用いた冷凍サイクル装置
JP3448265B2 (ja) * 2000-07-27 2003-09-22 昭 藤山 チタン製プレート式熱交換器の製造方法
US6478080B2 (en) * 2001-03-29 2002-11-12 Standard Motor Products, Inc. Fluid cooling device
DE10153877A1 (de) * 2001-11-02 2003-05-15 Behr Gmbh & Co Wärmeübertrager
SE520673C2 (sv) * 2001-12-17 2003-08-12 Alfa Laval Corp Ab Plattpaket, förfarande för dess tillverkning, användning av ett plattpaket, samt plattvärmeväxlare
FR2843449B1 (fr) * 2002-08-09 2005-05-06 Valeo Thermique Moteur Sa Echangeur de chaleur pour le circuit d'air d'admission d'un moteur thermique
DE10352880A1 (de) * 2003-11-10 2005-06-09 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere Ladeluft-/Kühlmittel-Kühler
DE20317469U1 (de) * 2003-11-11 2004-03-11 Viessmann Werke Gmbh & Co Kg Plattenwärmetauscher
DE102004003790A1 (de) * 2004-01-23 2005-08-11 Behr Gmbh & Co. Kg Wärmetauscher, insbesondere Öl-/Kühlmittel-Kühler
SE528886C2 (sv) * 2005-08-26 2007-03-06 Swep Int Ab Ändplatta
DE102005044291A1 (de) * 2005-09-16 2007-03-29 Behr Industry Gmbh & Co. Kg Stapelscheiben-Wärmeübertrager, insbesondere Ladeluftkühler
US7992628B2 (en) * 2006-05-09 2011-08-09 Modine Manufacturing Company Multi-passing liquid cooled charge air cooler with coolant bypass ports for improved flow distribution
US7377308B2 (en) * 2006-05-09 2008-05-27 Modine Manufacturing Company Dual two pass stacked plate heat exchanger
US7380544B2 (en) * 2006-05-19 2008-06-03 Modine Manufacturing Company EGR cooler with dual coolant loop

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611447C1 (de) * 1996-03-22 1997-07-10 Laengerer & Reich Gmbh & Co Gehäuseloser Plattenwärmetauscher

Also Published As

Publication number Publication date
CN102245993A (zh) 2011-11-16
JP2012512378A (ja) 2012-05-31
WO2010069871A1 (en) 2010-06-24
EP2370771A1 (en) 2011-10-05
JP5882739B2 (ja) 2016-03-09
US20120118546A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
EP2370774B1 (en) Brazed plate heat exchanger
EP2227668B1 (en) Distribution pipe
US9033026B2 (en) Double plate heat exchanger
EP2267391B1 (en) Asymmetric heat exchanger
JP4981063B2 (ja) プレート熱交換器用の手段
CN102395853B (zh) 板式热交换器
KR101445474B1 (ko) 열교환판과 판형 열교환기
US9341415B2 (en) Reinforced heat exchanger
EP2370771B1 (en) Brazed heat exchanger
JP2013083436A (ja) 外部マニホルドを備えた内部熱交換器
EP2199723B1 (en) Heat exchanger
US11353268B2 (en) Plate type heat exchanger
KR101987599B1 (ko) 용접식 판형 열교환기
EP4102170A1 (en) Double plate heat exchanger
KR20190078047A (ko) 비 동일형상 전열판 적용 반용접식 판형 열교환기
EP3812682A1 (en) Lining for heat exchanger
KR20210115247A (ko) 판형 열교환기

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110627

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150708

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 910788

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009047240

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 910788

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171020

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009047240

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

26N No opposition filed

Effective date: 20180420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091211

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231212

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231212

Year of fee payment: 15

Ref country code: NL

Payment date: 20231211

Year of fee payment: 15

Ref country code: FR

Payment date: 20231212

Year of fee payment: 15

Ref country code: DE

Payment date: 20231212

Year of fee payment: 15