EP2365141B1 - Trink- oder Brauchwassersystem - Google Patents

Trink- oder Brauchwassersystem Download PDF

Info

Publication number
EP2365141B1
EP2365141B1 EP11001956.9A EP11001956A EP2365141B1 EP 2365141 B1 EP2365141 B1 EP 2365141B1 EP 11001956 A EP11001956 A EP 11001956A EP 2365141 B1 EP2365141 B1 EP 2365141B1
Authority
EP
European Patent Office
Prior art keywords
line
ring line
supply line
ring
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11001956.9A
Other languages
English (en)
French (fr)
Other versions
EP2365141A3 (de
EP2365141A2 (de
Inventor
Rupprecht Kemper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gebr Kemper GmbH and Co KG
Original Assignee
Gebr Kemper GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebr Kemper GmbH and Co KG filed Critical Gebr Kemper GmbH and Co KG
Publication of EP2365141A2 publication Critical patent/EP2365141A2/de
Publication of EP2365141A3 publication Critical patent/EP2365141A3/de
Application granted granted Critical
Publication of EP2365141B1 publication Critical patent/EP2365141B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/04Domestic or like local pipe systems
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03BINSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
    • E03B7/00Water main or service pipe systems
    • E03B7/04Domestic or like local pipe systems
    • E03B7/045Domestic or like local pipe systems diverting initially cold water in warm water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0078Recirculation systems

Definitions

  • the present invention relates to a drinking or process water system with a transfer point from a public supply network and at least one supply line for the supply of water and at least one ring line leading to at least one consumer.
  • This ring line is connected to the supply line via threading or threading openings, a cross-sectional constriction being provided in the supply line between the threading and threading opening.
  • the cross-sectional constriction is designed in such a way that a flow is caused in the ring line when the supply line flows through, specifically because of the Venturi effect.
  • Such a drinking or process water system is from the EP 2 098 645 A1 known.
  • the drinking or process water system according to the present invention can be a cold or a hot water system.
  • Modern hot water systems are designed with a circulation that ensures that hot water heated by a heating device is continuously circulated in the lines leading to the consumer, so that when the water is drawn from the consumer, hot water is emitted immediately and the system becomes contaminated, for example, by legionella bacteria is avoided.
  • the circulation prevents the hot water in the pipe from cooling down.
  • the circulation line leading away from the consumer and connecting it to the heating device or a boiler of the heating device is designed with a smaller diameter than the supply line.
  • a generic drinking or process water system is also from, for example DE 10 2006 017 807 known to the present applicant.
  • a plurality of ring lines start from a supply line which, with the interposition of a motor-driven valve, communicates with a flushing line which leads to a discharge point to the dirty water line.
  • This configuration makes it possible to rinse a supply line in order to drain any water standing there.
  • DE 100 08 427 A1 is known a hot water supply system with a hot water tank, a circulation line connected to the hot water tank and a supply line supplying the hot water tank with fresh cold water.
  • the supply line is connected to the hot water tank by means of a circulating injector that narrows a flow cross-section, so that fresh cold water flows into the hot water tank via the circulating injector each time hot water is drawn, this cold water flow through the circulating injector due to the Bernoulli effect drawing water from the circulation line to the sequence Has.
  • the circulation injector is according to DE 100 08 427 A1 advantageous compared to a conventional circulation pump, since it is less susceptible to limescale deposits and works without external energy.
  • the present invention is intended to provide a generic drinking or process water system which can reliably avoid stagnation in the ring line.
  • the present invention proposes a drinking or process water system with the features of claim 1.
  • a volume flow leading to the supply line can be generated in the ring line, which leads to a safe and inevitable exchange of the volume in the ring line. Accordingly, stagnation can be avoided.
  • a ring line volume flow measuring device with which the volume flow in the ring line can be measured and whose volume flow measurement signal can be processed in a control device assigned to the ring line pump. Due to the narrowing of the cross-section between the opening and threading opening a pressure difference is generated in the supply line, which leads to a forced flow through the ring line when there is a flow in the supply line.
  • the cross-sectional constriction is used to achieve a certain flow in the ring line with a volume flow acting in the supply line. A fine adjustment can be made by controlling the loop line pump.
  • the volume flow at the threading opening is divided with the present invention, specifically into a ring line volume flow and a further volume flow that is not branched off into the ring line and flows in the supply line.
  • These two volume flows combine - provided no fluid is removed from the corresponding ring line via a consumer connected to it - in the threading opening.
  • the flow is also caused by the ring line pump when no fluid is withdrawn from the system at all by a consumer.
  • a supply line volume flow measuring device is provided with which the volume flow in the supply line can be measured.
  • the measurement signal of this supply line volume flow measuring device can be processed in the control device assigned to the ring line pump.
  • the ring line pump can be controlled or regulated accordingly with this preferred embodiment and an adjustment can be made between the volume flow in the supply line and the volume flow in the ring line.
  • This configuration serves in particular the purpose of controlling or regulating the volume flows on both sides between the ring line on the one hand and the supply line on the other hand on the basis of the activity of the ring line pump.
  • a ring line temperature sensor with which the water temperature in the ring line is measurable.
  • the signal of this ring line temperature sensor can be processed in the control device assigned to the ring line pump.
  • the ring line pump can accordingly be operated in a temperature-controlled manner.
  • a regulation can be stored in the control device, according to which, in particular at higher ambient temperatures, for example in a cold water system, the ring line is flushed by actuating the ring line pump. In hot summer months, for example, this ensures that fresh water is present in the ring line and that there is no contamination.
  • a supply line temperature sensor is also provided, by means of which the water temperature in the supply line can be measured and the signal of which can be processed in the control device assigned to the ring line pump.
  • This supply line temperature sensor can be provided alone or in combination with the ring line temperature sensor.
  • control device is designed such that the ring line pump can be controlled on the basis of the signal or signals supplied to the control device.
  • These signals can be the signals for the volume flows in the supply and ring line and / or the temperature values in these two lines.
  • the volume flow information can be provided, for example, by measuring a pressure difference over a given flow path, in particular via a throttle.
  • a flow measuring element can also be provided in the supply or ring line.
  • this comprises a heat source for heating the water and furthermore a circulation pump provided in the supply line, which circulates water contained in the system.
  • This circulation pump usually comprises a circulation pump control device which is connected in terms of control to the control device of the ring line pump, so that the two pumps can be operated in a coordinated manner. Accordingly, the two pumps can be operated so that their effects are mutually reinforcing.
  • Figure 1 shows a schematic view of a first embodiment of a drinking and process water system with a supply line 1, which is connected to a transfer point, not shown, for process water from a public supply network, optionally with the interposition of a device for heating the process water.
  • a device for heating the process water This can be a heat exchanger of a heater.
  • a boiler can also be integrated in a hot water network in a manner known per se.
  • the embodiment shown is a cold water network. Accordingly, the supply line 1 communicates with the interposition of a conventional water meter and a filter with the transfer point for cold water from the public supply network.
  • a multiplicity of ring lines can be connected to the supply line 1, the in Figure 1 shown section limited to the representation of a ring line 2.
  • This ring line 2 is connected to the supply line via a connection fitting 3.
  • the connection fitting 3 comprises a threading opening 3a and a threading opening 3b and a flow resistance arranged between them. This arrangement of threading opening 3b and threading opening 3a with flow resistance arranged in between is designed such that when the supply line 1 flows through the ring line 2, a flow is preferably effected according to the Venturi effect. A flow in the supply line 1 thus leads to an exchange of the water standing in the ring line 2.
  • shut-off valves 5 are located between the ring line 2 and the connection fitting 3, via which the respective ring line 2 can be separated from the supply line 1 for maintenance purposes.
  • the embodiment shown can be divided into different ring line sections.
  • the flow path formed by the first ring line section 6 is the longest flow path between a consumer, a shut-off valve 5 or between the supply line 1 and the corresponding consumer 4d.
  • a second and with reference numerals 7 marked ring line section connects the shut-off valve 5 associated with the threading opening 3b with a nearby consumer 4a.
  • This second ring line section 7 forms the shortest flow path within the ring line 2 between the shut-off valve 5 or the supply line 1 and a consumer 4a.
  • Additional ring line sections 8 connect the aforementioned consumers 4a and 4d to additional consumers 4b, 4c.
  • the first ring line section 6 is designed with a nominal diameter of DN 15.
  • the further ring line sections 8 and the second ring line section 7 are designed with a nominal diameter DN 12.
  • DN 12 the nominal diameter of DN 12
  • DN 15 the nominal size of DN 15
  • Both nominal diameters are suitable for leading a sufficient volume flow of process water to the individual consumers 4a to 4d, provided that water is drawn from the corresponding consumers 4a to 4d.
  • connection fitting 3 is preferably a connection fitting which has means for varying the passage area in the cross-sectional constriction, as a result of which the pressure difference achievable via the cross-sectional constriction can be changed dynamically, as can be traced back to the applicant DE 20 2007 009 832 U1 is disclosed, the disclosure content of which is included in this application by reference.
  • the connection fitting disclosed there is to be referred to below as “dynamic connection fitting", since this can be used to change the ratio of pressure difference to flow rate through the supply line to the effect that even with relatively small flow rates, a relatively high pressure difference is caused, which leads to a flow through the Ring line 2 leads.
  • the exemplary embodiment shown is, for example, when the process water is removed from the consumer 4a, the corresponding process water is essentially supplied via the threading opening 3b, whereas when the process 4d is removed from the consumer, the water removed there is essentially supplied via the threading opening 3a.
  • water is led to the corresponding consumer on both sides through the ring line 2 during a withdrawal.
  • Substantial volume flows through both ring line sections 6 and 7, 8 occur in particular when water is removed from consumer 4b or consumer 4c. In this case the process water is supplied both through the threading opening 3a and via the threading opening 3b.
  • the line cross-sections can be reduced compared to a conventional design, in which the feed takes place exclusively via the threading opening 3a and the threading opening 3b only serves to return the flow through the ring line 2 and therefore the return line is designed with a smaller diameter. It is also possible to design the entire ring line 3 from line sections with an identical or almost identical nominal diameter. This simplifies the assembly of the drinking water or process water system. Furthermore, assembly errors are largely excluded. Overall, the pipeline volume is lower than with conventional installation. In particular, this also results in better hygienic conditions.
  • FIG. 1 The exemplary embodiment shown has in the ring line 2 adjacent to the threading opening 3b a ring line pump 60 which is provided between this threading opening 3b and the associated check valve 5.
  • a measuring point M1 is located in the supply line 1 and the threading opening 3a in the flow direction, for measuring the volume flow in the supply line 1 and for measuring the temperature of the flowing fluid there.
  • the measuring point can also be arranged downstream in the supply line 1 of this connection fitting 3 (see M2).
  • a circulation pump 61 is provided in the supply line 1, with which the water in the system, which is hot water, circulates in the system.
  • the measurement signals for the volume flow and the temperature measured at the measuring points M1 or M2 and MR are fed to a controller, which act on the respective pumps 60 and 61, respectively.
  • FIG. 2 The opposite shows that in Figure 2
  • the exemplary embodiment shown is a schematic view of a ring line 10 which is designed as a riser pipe line and comprises two essentially parallel ring line sections which are designed as riser pipes running essentially parallel to one another and are provided, for example, in a supply shaft of a building.
  • Each of the ring line sections 11, 12 has a plurality of connections 13 for consumers (not shown), with shut-off valves 14 being provided between the consumers and the respective connections 13 close to the connections 13.
  • the ring line 10 also starts from a connection fitting 3 of a supply line 1 and is connected to the respective threading or unthreading openings 3b, 3a via shut-off valves 5.
  • the connections 13 are alternately formed on the section 11 and the section 12 in the vertical direction.
  • the usual main flow in the supply line is marked with an arrow H.
  • this flow there is a circulation of the ring line 10, the circulation starting at the threading opening 3a and leading to the threading opening 3b via the pipe sections 12, 11.
  • the water withdrawn is almost predominantly supplied via the threading opening 3a.
  • the connection 13.2 located above at least the main part of the flow is supplied via the threading opening 3b.
  • the measuring point M1 for measuring the temperature and the volume flow in the supply line 1 is provided upstream in the flow direction of the connection fitting 3.
  • the ring line pump 60 is located directly in the flow direction behind the threading opening 3a.
  • the measuring point MR assigned to the ring line 2 is located upstream of the threading opening 3b and the assigned shut-off valve 5.
  • Downstream of the connection fitting 3 in the main flow direction H a measuring point M2 is shown as an alternative to the measuring point M1.
  • the temperature and / or volume flow can also be measured there and fed to a central control device, which acts on the ring line pump 60 and the circulation pump 61.
  • This in Figure 2 The exemplary embodiment shown represents a cold water system. A circulation pump is missing.
  • the Figure 3 shows a further embodiment of a cold water system with a main line 20, which opens at a distributor 21. From there go through the interposition of valves 22, 23 riser strands 24, 25.
  • the valve 22 is a manually operated valve for shutting off the riser pipe 24;
  • the valve 23 is a motor-operated valve for shutting off the riser pipe 25 and for actuating the flushing operation in connection with a motor-controlled flushing valve 26, the function of which will be discussed later.
  • the exemplary embodiment shown is shown as a building with three floors with corresponding floor strands 27.1 to 27.3.
  • the respective floors 27 pass through as a supply line several connection fittings with threading and unthreading.
  • a motor-operated shut-off valve 28.1 to 28.3 is located in each of the floor strands 27.1 to 27.3.
  • the respective ring lines 2 are only shown with their associated shut-off valves 5, the illustration of the consumers for these ring lines 2 being omitted. It may be assumed that each of the ring lines 2 leads to a wet room in a hotel or a hospital with several cold water consumers.
  • the floor strands 27.1 and 27.3 communicate with the two riser strands 24 and 25, whereby a ring line is formed which opens into the distributor 21.
  • the respective motor-operated shut-off valves 28 are open.
  • a consumer is opened on the ring line 2.1.1
  • this consumer is supplied with process water essentially via the riser pipe 24.
  • the process water is supplied via the riser pipe train 25.
  • the corresponding quantity ratio of the individual water flows changes with increasing distance from the corresponding riser strands.
  • the predominant portion of the process water is supplied via the riser pipe 24, whereas a small proportion of the volume flow is fed from the riser pipe 25.
  • the measuring points M1 or M2 can optionally be provided.
  • the arrangement of the ring line pump 60 and the measuring point MR can also be interchanged.
  • a plurality of riser pipes 31.1 to 31.4 laid in the vertical direction are provided.
  • Shut-off valves 33 which are provided between the individual strands 31.1 to 31.3 and a horizontal distributor line 34, are located at the front end of the respective strands 31 in the direction of flow.
  • the individual riser strands 31.1 to 31.4 penetrate four floors one above the other.
  • a single wet room 35 is shown schematically, which is connected via a ring line 10, which comprises the measuring point MR and the ring line pump 60.
  • ring line 10 which comprises the measuring point MR and the ring line pump 60.
  • the wet rooms underneath with the associated ring lines are not shown, but are nevertheless present.
  • valves 36 At the upper end of the three left strands 31.1 to 31.3 there are motor-controllable valves 36. These valves 36 are provided between the individual strands 31.1 to 31.3 and the distributor line 34, the distal end of which is connected to the last strand 31.4, which is a flow falling in the vertical direction leads and is connected at its end to a likewise controllable, ie motor-operated flushing valve 37 which leads to a delivery point.
  • Each one according to the embodiment Figure 4 provided ring lines 10 has a ring line pump 60.
  • a measurement point MR is also provided in each individual ring line 10, ie also the ring line 10 (not shown) to a wet room 35.
  • a measuring point M1 for example, upstream of the threading opening 3a in the flow direction of the strand 31.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Domestic Plumbing Installations (AREA)
  • Devices For Dispensing Beverages (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Trink- oder Brauchwassersystem mit einer Übergabestelle aus einem öffentlichen Versorgungsnetz und wenigstens einer Versorgungsleitung für die Zuleitung von Wasser und wenigstens einer Ringleitung, die zu wenigstens einem Verbraucher führt. Diese Ringleitung ist über Ein- bzw. Ausfädelöffnungen an die Versorgungsleitung angeschlossen, wobei in der Versorgungsleitung zwischen der Aus- und Einfädelöffnung eine Querschnittsverengung vorgesehen ist. Die Querschnittsverengung ist derart ausgestaltet, dass bei Durchströmung der Versorgungsleitung in der Ringleitung eine Durchströmung bewirkt wird, und zwar aufgrund des Venturi-Effekts. Ein solches Trink- oder Brauchwassersystem ist aus der EP 2 098 645 A1 bekannt.
  • Das Trink- oder Brauchwassersystem nach der vorliegenden Erfindung kann ein Kaltoder ein Warmwassersystem sein. Moderne Warmwassersysteme werden mit einer Zirkulation ausgebildet, die dafür Sorge trägt, dass von einer Heizvorrichtung erwärmtes Brauchwasser kontinuierlich in den zu dem Verbraucher führenden Leitungen umgewälzt wird, so dass bei einer Wasserentnahme am Verbraucher umgehend Warmwasser abgegeben wird und eine Verkeimung des Systems zum Beispiel durch Legionellen vermieden wird. Die Zirkulation verhindert ein Erkalten von in der Leitung stehendem Brauchwasser. Bei Warmwasserzirkulationssystemen ist die von dem Verbraucher wegführende und diese mit der Heizvorrichtung bzw. einem Boiler der Heizvorrichtung verbindende Zirkulationsleitung mit einem kleineren Durchmesser als die Zuführleitung ausgebildet. Der Grund hierfür liegt darin begründet, dass durch die Zuführleitung als Verbrauchsleitung ein hoher Volumenstrom bei Wasserentnahme hindurchfließen muss, wohingegen in der Zirkulationsleitung lediglich eine solche Strömung geführt werden muss, die einen ständigen Austausch des Warmwassers in den Leitungen des Warmwassersystems gewährleistet.
  • Ein gattungsgemäßes Trink- oder Brauchwassersystem ist beispielsweise auch aus der DE 10 2006 017 807 der vorliegenden Anmelderin bekannt. Bei diesem Stand der Technik gehen mehrere Ringleitungen von einer Versorgungsleitung ab, die unter Zwischenschaltung eines motorgetriebenen Ventils mit einer Spülleitung kommuniziert, die zu einer Abgabestelle an die Schmutzwasserleitung führt. Durch diese Ausgestaltung ist es möglich, eine Versorgungsleitung zu spülen, um dort stehendes Wasser abzuführen.
  • Auch bei der eingangs genannten EP 2 098 645 A1 erfolgt die Durchströmung der Ringleitung passiv durch eine zwischen der Aus- und der Einfädelöffnung vorgesehene Querschnittsverengung, die zu einem Druckverlust in der Versorgungsleitung führt, so dass sich in der Ringleitung eine Strömung ergibt.
  • Aus DE 100 08 427 A1 ist eine Warmwasserversorgungsanlage mit einem Warmwasserspeicher, einer mit dem Warmwasserspeicher verbundenen Zirkulationsleitung und einer den Warmwasserspeicher mit frischem Kaltwasser versorgenden Zuleitung bekannt. Dabei ist die Zuleitung mittels eines einen Strömungsquerschnitt verengenden Umwälzinjektors an den Warmwasserspeicher angeschlossen, so dass bei jeder Warmwasserentnahme frisches Kaltwasser über den Umwälzinjektor in den Warmwasserspeicher nachfließt, wobei dieser Kaltwasserstrom durch den Umwälzinjektor aufgrund des Bernoulli-Effekts ein Ansaugen von Wasser aus der Zirkulationsleitung zur Folge hat. Der Umwälzinjektor ist gemäß DE 100 08 427 A1 vorteilhaft gegenüber einer herkömmlichen Umwälzpumpe, da er weniger anfällig für Kalkablagerungen ist und ohne Fremdenergie arbeitet.
  • Die aus dem Stand der Technik bekannten Lösungen für eine Durchströmung der Ringleitung dahingehend, dass dort eine Stagnation von Trink- oder Brauchwasser vermieden wird, bedürfen der weiteren Verbesserung.
  • Mit der vorliegenden Erfindung soll ein gattungsgemäßes Trink- oder Brauchwassersystem angegeben werden, welches verlässlich eine Stagnation in der Ringleitung vermeiden kann.
  • Zur Lösung dieses Problems wird mit der vorliegenden Erfindung ein Trink- oder Brauchwassersystem mit den Merkmalen von Anspruch 1 vorgeschlagen. Durch die in der Ringleitung vorgesehene Ringleitungspumpe kann in der Ringleitung ein zu der Versorgungsleitung führender Volumenstrom erzeugt werden, der zu einem sicheren und zwangsläufigen Austausch des Volumens in der Ringleitung führt. Dementsprechend kann Stagnation vermieden werden.
  • Erfindungsgemäß ist eine Ringleitungs-Volumenstrom-Messeinrichtung vorgesehen, mit welcher der Volumenstrom in der Ringleitung messbar ist und deren Volumenstrom-Messsignal in einer der Ringleitungspumpe zugeordneten Steuereinrichtung verarbeitbar ist. Aufgrund der zwischen der Aus- und Einfädelöffnung vorgesehenen Querschnittsverengung wird dabei eine Druckdifferenz in der Versorgungsleitung erzeugt, die zu einer Zwangsdurchströmung der Ringleitung bei einer Strömung in der Versorgungsleitung führt. Die Querschnittsverengung wird dazu genutzt, um eine gewisse Durchströmung in der Ringleitung bei einem in der Versorgungsleitung wirkenden Volumenstrom zu erreichen. Eine Feinjustierung kann durch Steuerung bzw. Regelung der Ringleitungspumpe erfolgen. Jedenfalls aber wird mit der vorliegenden Erfindung der Volumenstrom an der Einfädelöffnung aufgeteilt, und zwar in einen Ringleitungsvolumenstrom und einen weiteren Volumenstrom, der nicht in die Ringleitung abgezweigt wird und in der Versorgungsleitung strömt. Diese beiden Volumenströme vereinigen sich - sofern kein Fluid aus der entsprechenden Ringleitung über einen daran angeschlossenen Verbraucher entnommen wird - in der Ausfädelöffnung. Die Durchströmung wird aufgrund der Ringleitungspumpe auch dann bewirkt, wenn überhaupt kein Fluid aus dem System über einen Verbraucher entnommen wird.
  • Gemäß einer bevorzugten Ausgestaltung der vorliegenden Erfindung ist eine Versorgungsleitungs-Volumenstrom-Messeinrichtung vorgesehen, mit welcher der Volumenstrom in der Versorgungsleitung messbar ist. Das Messsignal dieser Versorgungsleitungs-Volumenstrom-Messeinrichtung ist in der der Ringleitungspumpe zugeordneten Steuereinrichtung verarbeitbar. Durch Analyse der Strömungsbedingungen in der Versorgungsleitung kann mit dieser bevorzugten Ausgestaltung die Ringleitungspumpe entsprechend gesteuert bzw. geregelt und eine Anpassung zwischen dem Volumenstrom in der Versorgungsleitung und dem Volumenstrom in der Ringleitung vorgenommen werden. Diese Ausgestaltung dient dabei insbesondere dem Zweck, die beiderseitigen Volumenströme zwischen Ringleitung einerseits und Versorgungsleitung andererseits aufgrund der Aktivität der Ringleitungspumpe zu steuern bzw. zu regeln.
  • Wenngleich bereits eine gewisse Durchströmung von Versorgungs- und Ringleitung zu einem hinreichenden Austausch des Fluids in der Ringleitung führt und damit der Verkeimung der Ringleitung vorgebeugt wird, ist es gemäß einer bevorzugten Weiterbildung der vorliegenden Erfindung zu bevorzugen, einen Ringleitungs-Temperatur-Sensor vorzusehen, mit dem die Wassertemperatur in der Ringleitung messbar ist. Das Signal dieses Ringleitungs-Temperatur-Sensors ist in der der Ringleitungspumpe zugeordneten Steuereinrichtung verarbeitbar. Dementsprechend kann die Ringleitungspumpe temperaturgesteuert betrieben werden. So kann beispielweise eine Vorschrift in der Steuereinrichtung hinterlegt sein, wonach insbesondere bei höheren Umgebungstemperaturen beispielsweise in einem Kaltwassersystem eine zyklische Durchspülung der Ringleitung durch Betätigung der Ringleitungspumpe erfolgt. Damit wird beispielsweise in heißen Sommermonaten jederzeit sichergestellt, dass frisches Wasser in der Ringleitung ansteht und Verkeimung dort nicht eintritt.
  • Gemäß einer weiteren bevorzugten Ausgestaltung wird des Weiteren ein Versorgungsleitungs-Temperatur-Sensor vorgesehen, durch den die Wassertemperatur in der Versorgungsleitung messbar ist und dessen Signal in der der Ringleitungspumpe zugeordneten Steuereinrichtung verarbeitbar ist. Dieser Versorgungsleitungs-Temperatur-Sensor kann für sich oder in Kombination mit dem Ringleitungs-Temperatur-Sensor vorgesehen sein. Durch Anordnen von zwei Temperatursensoren, von denen der eine der Ringleitung und der andere der Versorgungsleitung zugeordnet ist, kann beispielsweise der Grad der Durchspülung der Ringleitung überwacht werden. Bei wirksamer Strömung in der Versorgungsleitung und einer gegebenen Temperaturdifferenz mit höherer Temperatur in der Ringleitung kann darauf geschlossen werden, dass das Volumen in der Ringleitung noch nicht vollständig ausgetauscht ist. Im Hinblick darauf sollte der Temperatursensor am in Strömungsrichtung hinteren Bereich bzw. Ende der Ringleitung eingebaut sein.
  • Gemäß einer weiteren bevorzugten Ausgestaltung ist die Steuereinrichtung derart ausgebildet, dass die Ringleitungspumpe aufgrund von dem oder den der Steuereinrichtung aufgegebenen Signalen steuerbar ist. Bei diesen Signalen kann es sich um die Signale zu den Volumenströmen in der Versorgungs- und Ringleitung und/oder um die Temperaturwerte in diesen beiden Leitungen handeln. Die Informationen zum Volumenstrom können beispielsweise durch Messung einer Druckdifferenz über einen gegebenen Strömungsweg, insbesondere über eine Drossel erfolgen. Alternativ kann auch in der Versorgungs- bzw. Ringleitung ein Durchflussmesselement vorgesehen sein.
  • Gemäß einer weiteren bevorzugten Ausgestaltung der vorliegenden Erfindung, bei der das System als Warmwassersystem vorgesehen ist, umfasst diese eine Wärmequelle zum Erwärmen des Wassers und des Weiteren eine in der Versorgungsleitung vorgesehene Zirkulationspumpe, die in dem System enthaltenes Wasser zirkuliert. Diese Zirkulationspumpe umfasst üblicherweise eine Zirkulationspumpen-Steuereinrichtung, die mit der Steuereinrichtung der Ringleitungspumpe steuerungsmäßig verbunden ist, so dass die beiden Pumpen aufeinander abgestimmt betrieben werden können. Dementsprechend können die beiden Pumpen so betrieben werden, dass sich ihre Wirkungen gegenseitig verstärken.
  • Weitere Einzelheiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels in Verbindung mit der Zeichnung.
  • In dieser zeigen:
  • Figur 1
    eine schematische Darstellung eines ersten Ausführungsbeispiels;
    Figur 2
    eine schematische Darstellung einer Ringleitung;
    Figur 3
    eine schematische Darstellung eines Kaltwassersystems; und
    Figur 4
    eine weitere schematische Darstellung eines Kaltwassersystems.
  • Figur 1 zeigt eine schematische Ansicht eines ersten Ausführungsbeispiels eines Trink- und Brauchwassersystems mit einer Versorgungsleitung 1, die an eine nicht dargestellte Übergabestelle für Brauchwasser aus einem öffentlichen Versorgungsnetz angeschlossen ist, gegebenenfalls unter Zwischenschaltung einer Einrichtung zum Erwärmen des Brauchwassers. Hierbei kann es sich um einen Wärmetauscher einer Heizung handeln. In einem Warmwassernetz kann auch ein Boiler in an sich bekannter Weise integriert sein.
  • Bei dem in Figur 1 gezeigten Ausführungsbeispiel handelt es sich um Kaltwassernetz. Dementsprechend kommuniziert die Versorgungsleitung 1 unter Zwischenschaltung eines üblichen Wasserzählers und eines Filters mit der Übergabestelle für Kaltwasser aus dem öffentlichen Versorgungsnetz. An die Versorgungsleitung 1 können eine Vielzahl von Ringleitungen angeschlossen sein, wobei sich der in Figur 1 gezeigte Ausschnitt auf die Darstellung einer Ringleitung 2 beschränkt. Diese Ringleitung 2 ist über eine Anschlussarmatur 3 an die Versorgungsleitung angeschlossen. Die Anschlussarmatur 3 umfasst eine Ausfädelöffnung 3a und eine Einfädelöffnung 3b und einen dazwischen angeordneten Strömungswiderstand. Diese Anordnung von Einfädelöffnung 3b und Ausfädelöffnung 3a mit dazwischen angeordneten Strömungswiderstand ist derart ausgebildet, dass bei einer Durchströmung der Versorgungsleitung 1 in der Ringleitung 2 vorzugsweise eine Durchströmung nach dem Venturi-Effekt bewirkt wird. Eine Strömung in der Versorgungsleitung 1 führt damit zu einem Austausch des in der Ringleitung 2 stehenden Wassers.
  • An der Ringleitung 2 sind mehrere Verbraucher 4 angeschlossen. Zwischen der Ringleitung 2 und der Anschlussarmatur 3 befinden sich Absperrventile 5, über welche die jeweilige Ringleitung 2 zu Wartungszwecken von der Versorgungsleitung 1 getrennt werden kann.
  • Bei dem in Figur 1 gezeigten Ausführungsbeispiel lässt sich die Ringleitung in verschiedene Ringleitungsabschnitte unterteilen. So gibt es einen Ringleitungsabschnitt 6, der der Ausfädelöffnung 3a nachgelagert ist und zu einem fernen Verbraucher 4d führt. Der durch den ersten Ringleitungsabschnitt 6 gebildete Strömungsweg ist der längste Strömungsweg zwischen einem Verbraucher, einem Absperrventil 5 respektive zwischen der Versorgungsleitung 1 und dem entsprechenden Verbraucher 4d. Ein zweiter und mit Bezugszeichen 7 gekennzeichneter Ringleitungsabschnitt verbindet das der Einfädelöffnung 3b zugeordnete Absperrventil 5 mit einem nahen Verbraucher 4a. Dieser zweite Ringleitungsabschnitt 7 bildet den kürzesten Strömungsweg innerhalb der Ringleitung 2 zwischen dem Absperrventil 5 respektive der Versorgungsleitung 1 und einem Verbraucher 4a. Weitere Ringleitungsabschnitte 8 verbinden die zuvor genannten Verbraucher 4a bzw. 4d mit weiteren Verbrauchern 4b, 4c.
  • Der erste Ringleitungsabschnitt 6 ist bei dem gezeigten Ausführungsbeispiel mit einem Nenndurchmesser von DN 15 ausgebildet. Die weiteren Ringleitungsabschnitte 8 und der zweite Ringleitungsabschnitt 7 sind mit einem Nenndurchmesser DN 12 ausgebildet. Bei dieser Fallgestaltung wird davon ausgegangen, dass Rohrleitungen zwischen einer Nenngröße von DN 12 und einer Nenngröße von DN 15 nicht vorhanden sind. Beide Nenndurchmesser sind geeignet, einen hinreichenden Volumenstrom an Brauchwasser zu den einzelnen Verbrauchern 4a bis 4d zu führen, sofern an den entsprechenden Verbrauchern 4a bis 4d Wasser entnommen wird.
  • Bei der Anschlussarmatur 3 handelt es sich vorzugsweise um eine Anschlussarmatur, welche Mittel zum Variieren der Durchtrittsfläche in der Querschnittsverengung aufweist, wodurch sich die über die Querschnittsverengung erreichbare Druckdifferenz dynamisch verändern lässt, wie dies in der auf die Anmelderin zurückgehenden DE 20 2007 009 832 U1 offenbart ist, deren Offenbarungsgehalt insofern durch Bezugnahme in diese Anmeldung einbezogen wird. Die dort offenbarte Anschlussarmatur soll im Folgenden als "dynamische Anschlussarmatur" bezeichnet werden, da sich mit dieser das Verhältnis von Druckdifferenz zu Durchflussmenge durch die Versorgungsleitung dahingehend verändern lässt, dass auch bei relativ kleinen Durchflussmengen eine relativ hohe Druckdifferenz bewirkt wird, welche zu einer Durchströmung der Ringleitung 2 führt.
  • Bei dem in Figur 1 gezeigten Ausführungsbeispiel wird beispielsweise bei Entnahme von Brauchwasser an dem Verbraucher 4a das entsprechende Brauchwasser im Wesentlichen über die Einfädelöffnung 3b zugeführt, wohingegen bei Entnahme an dem Verbraucher 4d das dort entnommene Wasser im Wesentlichen über die Ausfädelöffnung 3a zugeführt wird. Üblicherweise wird bei einer Entnahme beidseitig durch die Ringleitung 2 Wasser zu dem entsprechenden Verbraucher geführt. Substantielle Volumenströme durch beide Ringleitungsabschnitte 6 bzw. 7, 8 stellen sich insbesondere bei einer Entnahme von Wasser an dem Verbraucher 4b bzw. dem Verbraucher 4c ein. In diesem Fall wird das Brauchwasser sowohl über die Ausfädelöffnung 3a als auch über die Einfädelöffnung 3b zugeführt. Durch entsprechende hydrodynamische Auslegung können die Leitungsquerschnitte gegenüber einer konventionellen Ausgestaltung, bei der die Zuführung ausschließlich über die Einfädelöffnung 3a erfolgt und die Einfädelöffnung 3b lediglich der Rückführung der Durchströmung der Ringleitung 2 dient und daher die rückführende Leitung mit kleinerem Durchmesser ausgebildet ist, verkleinert werden. Auch ist es möglich, die gesamte Ringleitung 3 aus Leitungsabschnitten mit identischem oder nahezu identischem Nenndurchmesser auszugestalten. Dadurch wird die Montage des Trink- bzw. Brauchwassersystems vereinfacht. Des Weiteren werden Montagefehler weitestgehend ausgeschlossen. Insgesamt ist das Rohrleitungsvolumen geringer als bei der konventionellen Installation. Dadurch ergeben sich insbesondere auch bessere hygienische Verhältnisse.
  • Bei dem gemäß Figur 1 gezeigten Ausführungsbeispiel kann davon ausgegangen werden, dass die Versorgungsleitung als Steigleitung mehrere Stockwerke eines Gebäudes durchsetzend vorgesehen ist, wohingegen die in Figur 1 gezeigte Ringleitung die Nasszelle einer Wohneinheit oder einer Wohneinheit insgesamt abbildet.
  • Das in Figur 1 gezeigte Ausführungsbeispiel hat in der Ringleitung 2 benachbart zu der Ausfädelöffnung 3b eine Ringleitungspumpe 60, die zwischen dieser Ausfädelöffnung 3b und der dem zugeordneten Sperrventil 5 vorgesehen ist. In der Versorgungsleitung 1 und der Einfädelöffnung 3a in Strömungsrichtung vorgelagert befindet sich eine Messstelle M1, zur Messung des Volumenstroms in der Versorgungsleitung 1 sowie zum Messen der dort herrschenden Temperatur des strömenden Fluids. Statt der Anschlussarmatur 3 vorgelagert, kann die Messstelle auch in der Versorgungsleitung 1 dieser Anschlussarmatur 3 nachgelagert vorgehen sein (siehe M2). Des Weiteren ist in der Versorgungsleitung 1 eine Zirkulationspumpe 61 vorgesehen, mit welcher das in dem System befindliche Wasser, bei dem es sich um Warmwasser handelt, in dem System zirkuliert.
  • Zwischen dem Absperrventil 5 und der Einfädelöffnung 3a befindet sich eine weitere, in der Ringleitung vorgesehene Messstelle MR zu Messung des Volumenstroms in der Ringleitung 2 und zur Messung der Temperatur des Wassers in der Ringleitung 2.
  • Die an den Messstellen M1 bzw. M2 und MR gemessenen Messsignale für den Volumenstrom und die Temperatur werden einer Steuerung zugeleitet, die auf die jeweiligen Pumpen 60 bzw. 61 einwirken.
  • Dem gegenüber zeigt das in Figur 2 gezeigte Ausführungsbeispiel eine schematische Ansicht einer Ringleitung 10, die als Steigrohrstrang ausgebildet ist und zwei sich im Wesentlichen parallele Ringleitungsabschnitte umfasst, die als Steigrohre im Wesentlichen parallel zueinander verlaufend ausgebildet und beispielsweise in einem Versorgungsschacht eines Gebäudes vorgesehen sind, dargestellt. Jeder der Ringleitungsabschnitte 11, 12 hat mehrere Anschlüsse 13 für nicht dargestellte Verbraucher, wobei zwischen den Verbrauchern und den jeweiligen Anschlüssen 13 nahe an den Anschlüssen 13 Absperrventile 14 vorgesehen sind. Die Ringleitung 10 geht auch bei diesem Ausführungsbeispiel von einer Anschlussarmatur 3 einer Versorgungsleitung 1 ab und ist über Absperrventile 5 an den jeweiligen Ein- bzw. Ausfädelöffnungen 3b, 3a angeschlossen. Die Anschlüsse 13 sind jeweils in Höhenrichtung abwechselnd an dem Abschnitt 11 und dem Abschnitt 12 ausgebildet.
  • Bei diesem Ausführungsbeispiel ist die übliche Hauptströmung in der Versorgungsleitung mit einem Pfeil H gekennzeichnet. Bei dieser Durchströmung ergibt sich eine Zirkulation der Ringleitung 10, wobei die Zirkulation an der Ausfädelöffnung 3a beginnt und über die Rohrleitungsabschnitte 12, 11 zu der Einfädelöffnung 3b führt. Im Falle einer Wasserentnahme durch den untersten Verbraucher an dem untersten Anschluss 13.1 wird das entnommene Wasser fast überwiegend über die Ausfädelöffnung 3a zugeführt. Bei einer Entnahme über dem darüberliegenden Anschluss 13.2 wird zumindest der Hauptteil der Strömung über die Einfädelöffnung 3b zugeführt.
  • Bei diesem Ausführungsbeispiel ist in Strömungsrichtung der Anschlussarmatur 3 vorgelagert die Messstelle M1 zu Messung der Temperatur und des Volumenstroms in der Versorgungsleitung 1 vorgesehen. Die Ringleitungspumpe 60 befindet sich unmittelbar in Strömungsrichtung hinter der Einfädelöffnung 3a. Die der Ringleitung 2 zugeordnete Messstelle MR befindet sich der Ausfädelöffnung 3b und dem zugeordneten Absperrventil 5 vorgelagert. In Hauptströmungsrichtung H der Anschlussarmatur 3 nachgelagert ist als Alternative zu dem Messpunkt M1 ein Messpunkt M2 eingezeichnet. Auch dort können Temperatur und/oder Volumenstrom gemessen und einer zentralen Steuereinrichtung, die auf die Ringleitungspumpe 60 und die Zirkulationspumpe 61 einwirkt, zugeleitet werden. Das in Figur 2 gezeigte Ausführungsbeispiel stellt ein Kaltwassersystem dar. Eine Zirkulationspumpe fehlt.
  • Die Figur 3 zeigt ein weiteres Ausführungsbeispiel eines Kaltwassersystems mit einer Hauptleitung 20, die an einem Verteiler 21 mündet. Von dort gehen über Zwischenschaltung von Ventilen 22, 23 Steigrohrstränge 24, 25 ab. Das Ventil 22 ist ein manuell zu betätigendes Ventil zum Absperren des Steigrohrstranges 24; das Ventil 23 ist ein motorbetriebenes Ventil zum Absperren des Steigrohrstranges 25 und zur Betätigung des Spülbetriebes in Verbindung mit einem motorgesteuerten Spülventil 26, auf dessen Funktion später eingegangen wird.
  • Bei dem in Figur 3 gezeigten Ausführungsbeispiel sei ein Gebäude mit drei Stockwerken mit entsprechenden Stockwerkssträngen 27.1 bis 27.3 gezeigt. Die jeweiligen Stockwerksstränge 27 durchsetzen als Versorgungsleitung mehrere Anschlussarmaturen mit Einfädel- und Ausfädelöffnung. In jedem der Stockwerksstränge 27.1 bis 27.3 befindet sich ein motorgetriebenes Absperrventil 28.1 bis 28.3. Die jeweiligen Ringleitungen 2 sind lediglich mit ihren zugeordneten Absperrventilen 5 dargestellt, wobei auf die Darstellung der Verbraucher zu diesen Ringleitungen 2 verzichtet wurde. Es mag davon ausgegangen werden, dass jede der Ringleitungen 2 zu einer Nasszelle in einem Hotel oder einem Krankenhaus mit mehreren Kaltwasserverbrauchern führt.
  • Die Stockwerksstränge 27.1 und 27.3 kommunizieren mit den beiden Steigrohrsträngen 24 und 25, wodurch eine Ringleitung gebildet ist, die in dem Verteiler 21 mündet.
  • Auf der dem Verteiler 21 abgewandten Seite des Strömungsweges in Bezug auf das Ventil 23 befindet sich in unmittelbarer Nachbarschaft zu dem motorgetriebenen Ventil 23 ein Abzweig 29, der zu einer Spülleitung 30 mit kleinerem Nenndurchmesser führt, die über das motorgetriebene Spülventil 26 geöffnet und geschlossen werden kann. Diese Spülleitung 30 mündet in ein Abwassersystem.
  • Beim üblichen Betrieb sind die jeweiligen motorgetriebenen Absperrventile 28 geöffnet. Für den Fall, dass beispielsweise an der Ringleitung 2.1.1 ein Verbraucher geöffnet wird, erfolgt die Versorgung dieses Verbrauchers mit Brauchwasser im Wesentlichen über den Steigrohrstrang 24. Wird ein der Ringleitung 2.1.8 zugeordneter Verbraucher geöffnet, erfolgt die Zufuhr von Brauchwasser über den Steigrohrstrang 25. Wird ein Verbraucher, der den mittleren Ringleitungen 2.1.4 bzw. 2.1.5 zugeordnet ist, zur Entnahme von Wasser genutzt, so fließt dieses nahezu zu gleichen Teilen durch die Steigrohrstränge 24 und 25. Das entsprechende Mengenverhältnis der einzelnen Wasserströme ändert sich mit zunehmendem Abstand von den entsprechenden Steigrohrsträngen. So wird bei Entnahme aus der Ringleitung 2.1.2 der überwiegende Anteil des Brauchwassers über den Steigrohrstrang 24 zugeführt, wogegen ein geringfügiger Anteil des Volumenstroms aus dem Steigrohrstrang 25 gespeist wird.
  • Bei dem in Figur 3 dargestellten Ausführungsbeispiel sei davon ausgegangen, dass wegen geringfügiger Belegung des Gebäudes ein Austausch von Wasser gewünscht ist, welches in dem oberen Stockwerkstrang 27.3 und den zugehörigen Ringleitungen 2.3 steht. In diesem Fall werden die motorgetriebenen Absperrventile 28.1 und 28.2 geschlossen. Ebenfalls wird das Ventil 23 geschlossen. Durch Öffnen des Spülventils 26 wird Spülwasser über den Steigrohrstrang 24 lediglich in den oberen Stockwerksstrang 27.3 gefördert und fließt über den Abzweig 29 in die Spülleitung 30 und ins Abwasser. Eine Durchströmung und damit ein unnötiger Verbrauch von Wasser in den anderen Stockwerkssträngen 27.1 und 27.2 wird vermieden.
  • Die Messpunkte M1 bzw. M2 können wahlweise vorgesehen sein. Auch kann die Anordnung der Ringleitungspumpe 60 und der Messstelle MR gegeneinander getauscht sein.
  • Bei dem in Figur 4 gezeigten Ausführungsbeispiel sind mehrere in der vertikalen Richtung verlegte Steigrohrstränge 31.1 bis 31.4 vorgesehen. An dem in Strömungsrichtung vorderen Ende der jeweiligen Stränge 31 befinden sich Absperrventile 33, die zwischen den einzelnen Strängen 31.1 bis 31.3 und einer horizontalen Verteilerleitung 34 vorgesehen sind. Die einzelnen Steigrohrstränge 31.1 bis 31.4 durchsetzen bei dem gezeigten Ausführungsbeispiel vier übereinanderliegende Stockwerke. Aus Gründen vereinfachter Darstellung ist lediglich eine einzige Nasszelle 35 schematisch dargestellt, die über eine Ringleitung 10 angeschlossen ist, die die Messstelle MR und die Ringleitungspumpe 60 umfasst. Für das obere Stockwerk sind sämtliche Ringleitungen 10 schematisch wiedergegeben. Die darunter liegenden Nasszellen mit den dazugehörigen Ringleitungen sind nicht gezeigt, gleichwohl vorhanden. Die entsprechende Ausgestaltung ist lediglich durch die am Stockwerk vorgesehene Ausfädelöffnung 3b angedeutet. Am oberen Ende der drei linken Stränge 31.1 bis 31.3 befinden sich motorisch steuerbare Ventile 36. Diese Ventile 36 sind zwischen den einzelnen Strängen 31.1 bis 31.3 und der Verteilerleitung 34 vorgesehen, deren strömungsfernes Ende an dem letzten Strang 31.4 angeschlossen ist, weleher eine in vertikaler Richtung fallende Strömung führt und an seinem Ende mit einem ebenfalls steuerbaren, d. h. motorisch betriebenen Spülventil 37 verbunden ist, welches zu einer Abgabestelle führt.
  • Jede einzelne, der bei dem Ausführungsbeispiel nach Figur 4 vorgesehenen Ringleitungen 10 weist eine Ringleitungspumpe 60 auf. In jeder einzelnen Ringleitung 10, d. h. auch den nicht eingezeichneten Ringleitung 10 zu einer Nasszelle 35 ist des Weiteren ein Messpunkt MR vorgesehen. Schließlich kann in jedem einzelnen Strang 31.4 bis 31.1 jeweils eine Messstelle M1 beispielsweise der Einfädelöffnung 3a in Strömungsrichtung des Stranges 31 vorgelagert sein.
  • Bezugszeichenliste
  • 1
    Versorgungsleitung
    2
    Ringleitung
    3
    Anschlussarmatur
    3a
    Einfädelöffnung
    3b
    Ausfädelöffnung
    4
    Verbraucher
    5
    Absperrventil
    6
    Erster Ringleitungsabschnitt
    7
    Zweiter Ringleitungsabschnitt
    8
    weitere Ringleitungsabschnitte
    10
    Ringleitung
    11
    Ringleitungsabschnitt
    12
    Ringleitungsabschnitt
    13
    Anschluss
    14
    Absperrventil
    20
    Hauptleitung (Kaltwasser)
    21
    Verteiler
    22
    Ventil
    23
    Ventil
    24
    Steigrohrstrang/Strang
    25
    Steigrohrstrang/Strang
    26
    Spülventil
    27.1 - 27.3
    Stockwerksstränge
    28.1 - 28.3
    Absperrventile
    29
    Abzweig
    30
    Spülleitung
    31
    Steigrohrstrang
    33
    Absperrventil
    34
    Verteilerleitung
    35
    Nasszelle
    36
    Motorisch angetriebenes Steuerventil
    37
    Spülventil
    60
    Ringleitungspumpe
    61
    Zirkulationspumpe
    M1
    Erste Messposition in Versorgungsleitung (Volumenstrom, Temperatur)
    M2
    Zweite Messposition in Versorgungsleitung (Volumenstrom, Temperatur), alternativ zu M1 vorzusehen
    MR
    Messstelle in der Ringleitung

Claims (7)

  1. Trink- oder Brauchwassersystem mit einer Übergabestelle aus einem öffentlichen Versorgungsnetz, wenigstens einer Versorgungsleitung (1) für die Zuleitung von Wasser und wenigstens einer zu wenigstens einem Verbraucher (4) führenden Ringleitung (2), die über eine von der Versorgungsleitung abgehende Ausfädelöffnung (3a) und eine in die Versorgungsleitung einmündende Einfädelöffnung (3b) an die Versorgungsleitung (1) angeschlossen ist, wobei zwischen der Ausfädelöffnung (3a) und der Einfädelöffnung (3b) in der Versorgungsleitung (1) eine Querschnittsverengung vorgesehen ist, so dass bei Durchströmung der Versorgungsleitung (1) in der Ringleitung (2) eine Durchströmung bewirkt wird,
    gekennzeichnet durch
    eine in der Ringleitung (2) vorgesehene Ringleitungspumpe (60) und eine Ringleitungs-Volumenstrom-Messeinrichtung (MR), mit der der Volumenstrom in der Ringleitung (2) messbar ist und dessen Volumen-Messsignal in einer der Ringleitungspumpe (60) zugeordneten Steuereinrichtung verarbeitbar ist.
  2. Trink- oder Brauchwassersystem nach Anspruch 1, gekennzeichnet durch eine Versorgungsleitungs-Volumenstrom-Messeinrichtung (M1), mit der der Volumenstrom in der Versorgungsleitung (1) messbar ist und dessen Volumen-Messsignal in der der Ringleitungspumpe (60) zugeordneten Steuereinrichtung verarbeitbar ist.
  3. Trink- oder Brauchwassersystem nach einem der vorherigen Ansprüche, gekennzeichnet durch einen Versorgungsleitungs-Temperatur-Sensor, durch den die Wassertemperatur in der Versorgungsleitung (1) messbar ist und dessen Signal in der der Ringleitungspumpe (60) zugeordneten Steuereinrichtung verarbeitbar ist.
  4. Trink- oder Brauchwassersystem nach einem der vorherigen Ansprüche, gekennzeichnet durch einen Ringleitungs-Temperatur-Sensor (MR), durch den die Wassertemperatur in der Ringleitung (2) messbar ist und dessen Signal in der der Ringleitungspumpe (60) zugeordneten Steuereinrichtung verarbeitbar ist.
  5. Trink- oder Brauchwassersystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung derart ausgebildet ist, dass die Ringleitungspumpe (60) aufgrund des oder der der Steuereinrichtung aufgegebenen Signale steuerbar ist.
  6. Trink- oder Brauchwassersystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das System als Warmwassersystem mit einer Wärmequelle zum Erwärmen des Wassers ausgebildet ist und dass in der Versorgungsleitung (1) eine Zirkulationspumpe (61) vorgesehen ist, die in dem System Wasser zirkuliert.
  7. Trink- oder Brauchwassersystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Zirkulationspumpe (61) eine Zirkulationspumpen-Steuereinrichtung aufweist, die mit der Steuereinrichtung steuerungsmäßig kommuniziert.
EP11001956.9A 2010-03-09 2011-03-09 Trink- oder Brauchwassersystem Active EP2365141B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202010003376U DE202010003376U1 (de) 2010-03-09 2010-03-09 Trink- und Brauchwassersystem

Publications (3)

Publication Number Publication Date
EP2365141A2 EP2365141A2 (de) 2011-09-14
EP2365141A3 EP2365141A3 (de) 2017-01-11
EP2365141B1 true EP2365141B1 (de) 2020-07-15

Family

ID=44168084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11001956.9A Active EP2365141B1 (de) 2010-03-09 2011-03-09 Trink- oder Brauchwassersystem

Country Status (2)

Country Link
EP (1) EP2365141B1 (de)
DE (1) DE202010003376U1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012112178B4 (de) * 2012-03-17 2015-07-16 Norbert Windorfer Verfahren zur Umwälzung von Trinkwasser
DE102013109670A1 (de) * 2013-09-04 2015-03-05 I.C.B. Innovations-Center-Bad GmbH & Co. KG Trinkwasserinstallationsanordnung für Gebäude und Verfahren zum Teilentleeren einer Trinkwasserinstallationsanordnung
WO2017046109A1 (en) * 2015-09-18 2017-03-23 Koninklijke Philips N.V. Monitoring device for subject behavior monitoring
GB201601848D0 (en) 2016-02-02 2016-03-16 Equitherm Ltd Water systems
EP3598009B1 (de) * 2018-07-18 2022-08-10 R. Nussbaum AG Wasserverteilung
DE202018005578U1 (de) * 2018-11-30 2020-03-04 Gebr. Kemper Gmbh + Co. Kg Metallwerke Trink- und Brauchwassersystem
DE102019201263A1 (de) * 2019-01-31 2020-08-06 Gebrüder Kemper Gmbh + Co. Kg Metallwerke Trink- und Brauchwassersystem und Verfahren zum Spülen desselben
DE202020103873U1 (de) 2020-07-03 2021-10-07 Gebr. Kemper Gmbh + Co. Kg Vorrichtung zur Volumenstrommessung
DE202020104087U1 (de) * 2020-07-15 2021-10-18 Gebr. Kemper Gmbh + Co. Kg Trink- und Brauchwassersystem
LU102009B1 (de) * 2020-08-21 2022-02-21 Wilo Se Verfahren zum Betreiben und/ oder Überwachen einer Wasserzirkulation
DE202021101228U1 (de) 2021-03-11 2021-03-22 Gebr. Kemper Gmbh + Co. Kg Trinkwasser-Installation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3619217A1 (de) * 1986-06-07 1987-12-10 Vortex Gmbh Dt Vorrichtung zur regelung der zirkulation in einem temperaturbeaufschlagten, entnahmestellen aufweisenden medienkreislauf
DE3916195C2 (de) * 1989-01-25 1998-11-05 Bernhard Miller Wasserversorgungsanlage
DE9219121U1 (de) * 1992-02-27 1998-03-12 Sandler Energietechnik GmbH & Co. KG, 87600 Kaufbeuren Regelungsvorrichtung für die Entnahmetemperatur von Brauchwasser mit Trinkwasserqualität
DE10008427A1 (de) * 2000-02-23 2001-08-30 Johann Wilfer Umwälzinjektor für zentrale Warmwasser-Versorgungsanlagen
DE10118250A1 (de) * 2000-04-13 2002-01-10 Heinz Grueterich Vorrichtung zur automatischen Warmwasserzirkulation
DE10061971A1 (de) * 2000-12-13 2002-06-20 Holger Raese Steuereinrichtung für Warmwasserzirkulationspumpen
DE102006017807B4 (de) 2006-04-13 2013-10-24 Gebr. Kemper Gmbh & Co. Kg Metallwerke Trinkwassersystem sowie Verfahren zum Betrieb eines solchen Systems
DE202007009832U1 (de) 2007-07-12 2008-11-13 Gebr. Kemper Gmbh & Co. Kg Metallwerke Anschlussarmatur
DE202008003044U1 (de) 2008-03-04 2008-05-08 Gebr. Kemper Gmbh + Co. Kg Anschlussarmatur
DE202008004421U1 (de) * 2008-04-01 2008-07-03 Kesap Kessel- Und Apparatebau Gmbh Vorrichtung zum Erwärmen von Trinkwasser
DE202009001030U1 (de) * 2009-01-27 2010-06-24 Gebr. Kemper Gmbh & Co. Kg Metallwerke Trink- oder Brauchwassersystem

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALFONS OEBBEKE: "Zirkulationspumpen vermeiden Legionellen und versprechen Komfort", HTTPS://WWW.BAULINKS.DE/WEBPLUGIN/2003/0959.PHP4, 29 August 2003 (2003-08-29), XP055582292, Retrieved from the Internet <URL:https://www.baulinks.de/webplugin/2003/0959.php4> [retrieved on 20190418] *
DR WOLFGANG FEIST: "PASSIV HAUS INSTITUT Gebäudesanierung "Passivhaus im Bestand" in Ludwigshafen / Mundenheim Messung und Beurteilung der energetischen Sanierungserfolge Auftraggeber GAG Ludwigshafen am Rhein Mit Fördermitteln des Programms ExWoSt des Landes Rheinland-Pfalz", 31 December 2008 (2008-12-31), XP055582382, Retrieved from the Internet <URL:https://www.dbz.de/download/309556/PHiB_Passivhaus_im_Bestand_Endbericht.pdf> [retrieved on 20190418] *

Also Published As

Publication number Publication date
EP2365141A3 (de) 2017-01-11
EP2365141A2 (de) 2011-09-14
DE202010003376U1 (de) 2011-08-01

Similar Documents

Publication Publication Date Title
EP2365141B1 (de) Trink- oder Brauchwassersystem
EP1887150B1 (de) Trink- und Brauchwassersystem sowie Verfahren zum Betrieb eines solchen Systems
EP2098645A1 (de) Trink- und Brauchwassersystem
EP3037591B1 (de) Trink- oder brauchwassersystem
EP3690151B1 (de) Trink- und brauchwassersystem und verfahren zum spülen desselben
EP2895659B1 (de) Anordnung zur durchführung einer hygienespülung in einer wasserinstallation
EP2096214A2 (de) Trink-Brauchwasserversorgungseinrichtung eines Gebäudes und Steuervorrichtung für eine solche
DE102017101532A1 (de) Warmwasserversorgungsanlage und Verfahren zum Betrieb dieser Warmwasserversorgungsanlage
EP3695058A1 (de) Trinkwasserversorgungssystem mit gruppenweiser steuerung, verfahren zu dessen steuerung sowie computerprogramm
DE102008033063B4 (de) Verfahren und Vorrichtung zur zentralen Warmwasserversorgung
EP2210985B1 (de) Anschlussvorrichtung
DE102018217228A1 (de) Trinkwasserverteilungsmodul zum Verbinden einer Basisleitung mit einer Hauptzirkulationsleitung
DE112013001269B4 (de) Verfahren zum Betrieb einer Warmwasserversorgungsanlage sowie Warmwasserversorgungsanlage zur Durchführung des Verfahrens
DE102019107179A1 (de) Verfahren zur Wasserversorgung von mindestens einer Wasserentnahmestelle mit Kalt- und Warmwasser
DE202007010982U1 (de) Rohrsystem zur Verteilung von Trinkwasser in Gebäuden
EP4056768A1 (de) Trinkwasser-installation
DE102015114469B3 (de) System zur Führung von Kaltwasser, Verfahren zur Kühlung einer Kaltwasserstrecke und Verwendung einer Leitung zur Führung von Kaltwasser
DE102005024252A1 (de) Leitungsanordnung, sowie Rohrleitungsanschlussstück und Rohrleitungsabschnitt
EP3670765A1 (de) Warmwasserbereiterspeisung
DE102019135548A1 (de) Trinkwasserleitungsmodul zur Trinkwasserzirkulation bei geschlossenen Zapfstellen
DE102019111486A1 (de) Trinkwasser-Leitungsmodul zur Trinkwasserzirkulation bei geschlossenen Zapfstellen
DE9214861U1 (de) Anlage zum Erwärmen von Brauchwasser und zum Abtöten von Legionellen in diesem Brauchwasser
EP3495745B1 (de) Selbstregulierender differenzdruckregler für ein trinkwassersystem und trinkwassersystem mit einem solchen selbstregulierenden differenzdruckregler
AT410250B (de) Massenstrom-stabilisierungsbrücke für ein warmwasserzirkulationssystem und warmwasserzirkulationssystem
DE102019200133A1 (de) Trinkwasserverteilungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: E03B 7/04 20060101AFI20161206BHEP

Ipc: F24D 17/00 20060101ALI20161206BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170208

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190430

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200506

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016787

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1291178

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201015

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201116

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201016

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016787

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

26N No opposition filed

Effective date: 20210416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210309

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210309

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210309

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110309

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230401

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240319

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 14