EP2333572B1 - Magnétomètre triaxial intégré en technologie MEMS-semiconducteur - Google Patents

Magnétomètre triaxial intégré en technologie MEMS-semiconducteur Download PDF

Info

Publication number
EP2333572B1
EP2333572B1 EP10194490A EP10194490A EP2333572B1 EP 2333572 B1 EP2333572 B1 EP 2333572B1 EP 10194490 A EP10194490 A EP 10194490A EP 10194490 A EP10194490 A EP 10194490A EP 2333572 B1 EP2333572 B1 EP 2333572B1
Authority
EP
European Patent Office
Prior art keywords
suspended
masses
triaxial magnetometer
magnetometer according
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10194490A
Other languages
German (de)
English (en)
Other versions
EP2333572A1 (fr
Inventor
Lorenzo Baldo
Francesco Procopio
Sarah Zerbini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SRL
Original Assignee
STMicroelectronics SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SRL filed Critical STMicroelectronics SRL
Publication of EP2333572A1 publication Critical patent/EP2333572A1/fr
Application granted granted Critical
Publication of EP2333572B1 publication Critical patent/EP2333572B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • G01R33/0286Electrodynamic magnetometers comprising microelectromechanical systems [MEMS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/038Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices

Definitions

  • the present invention relates to an integrated MEMS magnetometer of semiconductor material formed in MEMS technology.
  • magnetometers are devices that enable measurement of external magnetic fields, for example the Earth's magnetic field.
  • Known magnetometers belong to two categories: scalar magnetometers, which are able to measure only the magnitude of the magnetic field; and vector magnetometers, which are able to measure the components of the magnetic field along three axes in space.
  • known magnetometers work according to different principles. Older magnetometers are needle compasses, wherein a needle of magnetized material is able to orient itself parallel to the magnetic field. Moreover, known magnetometers are coil magnetometers, which measure the external magnetic field exploiting the electromagnetic induction in a coil; Hall-effect sensors, based upon the measurement of the electrical voltage existing between two terminals of a conductive region flowed by a transverse current and immersed in a magnetic field having a vertical component; proton magnetometers, which exploit the intrinsic magnetic momentum of protons; and magnetoresistive sensors, which exploit the capacity of appropriate ferromagnetic materials (referred to as magnetoresistive materials, for example the material known by the name of "permalloy" constituted by an Fe-Ni alloy) for modifying their own resistance in presence of an external magnetic field.
  • magnetoresistive materials for example the material known by the name of "permalloy" constituted by an Fe-Ni alloy
  • magnetometers of small dimensions and low cost are desired for various applications, such as navigation systems integrated in advanced cell phones.
  • US 2007/030001 discloses a single-axis magnetometer having an MEMS implementation, wherein a suspended structure includes a cross-beam suspended over a substrate through two legs, detection electrodes extending from the cross-beam and drive electrodes, arranged laterally to the detection electrodes, that impart a magnetic field independent oscillatory force to the cross-beam.
  • US 2009/0139330 discloses a three-axial sensor formed by two adjacent structures, each of which is formed by two proof masses, an internal one and an external one, the latter surrounding the internal mass and being coupled thereto through springs.
  • the aim of the present invention is to provide an integrated magnetometer that overcomes the drawbacks of the prior art.
  • a triaxial magnetometer is provided as defined in claim 1.
  • the present triaxial magnetometer exploits the Lorentz law acting on two conductors formed by suspended masses manufactured in MEMS technology.
  • this force is detected using at least two masses suspended on a substrate (with which they are capacitively coupled) and traversed by respective currents flowing in two mutually perpendicular directions.
  • One of the two masses is connected to mobile electrodes facing respective fixed electrodes.
  • the masses move towards or away from the substrate, modifying the coupling capacitance therewith, or horizontally, modifying the coupling capacitance of the mobile electrodes with respect to the fixed electrodes. Detection of these capacitance variations thus allows calculation of the magnitude and direction of the external magnetic field.
  • FIG. 2 an embodiment of a planar magnetometer formed in MEMS technology is shown in Figure 2 and comprises four suspended masses 1-4 arranged symmetrically in twos along two Cartesian axes X, Y and each supported, through respective pairs of springs 6, between a central anchorage 7, common to all the suspended masses 1- 4, and an own peripheral anchorage 8.
  • the suspended masses 1-2 and 3-4 here have a rectangular shape with the major sides directed parallel to the axis X and to the axis Y, respectively.
  • the suspended masses 1-4 have a symmetrical shape with respect to respective middle axes parallel to the axes X and Y and are arranged symmetrically with respect to these axes.
  • Two of the suspended masses for example the suspended masses 1 and 2 aligned along the axis Y, carry two suspended arms 10 extending from middle points of the long sides of the suspended masses 1, 2.
  • the suspended arms 10 extend perpendicular to the long sides of the suspended masses 1, 2, and thus parallel to the axis X, and in turn carry mobile electrodes 11 extending perpendicular to the corresponding suspended arm 10, and thus parallel to the axis Y.
  • the mobile electrodes 11 face respective fixed electrodes 12 mutually connected through respective fixed arms 13.
  • the springs 6 may for example be of the folded type.
  • the structure is not completely symmetrical since the ends of the spring lie on two different sides of the symmetry axis and are not specular.
  • Figures 3 and 4 show two cross-sections of the magnetometer of Figure 2 , taken, respectively, in the symmetry plane along axis X and thus traversing the suspended masses 3, 4, and along a plane IV-IV parallel to the previous one and passing through the suspended arms 10 that extend from the suspended mass 1.
  • the magnetometer is formed in a chip 15 including a substrate 16 of monocrystalline silicon overlaid by an insulating layer 17, for example, of thermally grown oxide; conductive regions 18 of polycrystalline silicon extend thereon and include contact and biasing regions 18a (underneath the anchorages 7, 8 and the fixed regions 12, 13), lower electrodes 18b (underneath the suspended masses 1-4), and electrical connection lines (not shown).
  • Figure 3 shows two lower electrodes 18b arranged underneath the suspended masses 3 and 4, whereas Figure 4 shows one lower electrode 18b extending underneath the suspended mass 1.
  • the lower electrodes 18b have a slightly greater area than the suspended masses 1-4 so that any possible movement of the suspended masses 1-4 in the plane X-Y does not entail capacitance modifications between the suspended masses 1-4 and the respective lower electrodes 18b, as discussed in greater detail hereinafter.
  • Some of the contact and biasing regions 18a are in electrical contact with the central anchorage 7 and with the peripheral anchorages 8 so as to supply the suspended masses 1-4 with currents I flowing from the individual peripheral anchorages 8 towards the central anchorage 7, as represented in Figure 2 .
  • an air gap 19 separates the suspended regions (suspended masses 1-4, springs 6, suspended arms 10, and mobile electrodes 11) from the underlying structures.
  • Figure 3 schematically shows electronic components 20 integrated in the same chip 15 and suitable for generating the biasing quantities of the magnetometer and processing of the signals supplied by the present magnetometer.
  • the fixed electrodes 12 and the fixed arms 13 are connected to the electronic components 20 at least in part via conductive regions 18 (not shown), similar to the conductive regions 18a, 18b visible in Figures 3 and 4 .
  • the magnetometer shown has typical dimensions that range between 0.6 x 0.6 mm and 3 x 3 mm and can thus be easily mounted in portable devices, such as cell phones, PDAs, and the like.
  • the magnetometer of Figures 2-4 can be manufactured using the technologies common in the manufacture of MEMS devices.
  • the structure illustrated can be obtained by depositing on the monocrystalline substrate 16 the insulating layer 17, which can be removed where the electronic components 20 are to be provided (circuitry area) or be used as gate oxide of MOS transistors.
  • a polycrystalline layer is deposited and then shaped so as to obtain the conductive regions 18, which include the contact and biasing regions 18a, the lower electrodes 18b, and electrical connection lines (not shown).
  • the polycrystalline layer can be removed in the circuitry area or form the gate regions of MOS transistors.
  • a sacrificial layer is deposited, for example a silicon-oxide layer, and, after deposition of a polycrystalline seed layer, a structural layer of polycrystalline silicon is epitaxially grown.
  • the circuitry area (where the electronic components 20 are to be provided) can be protected, or, after prior removal of the sacrificial layer, can be epitaxially grown.
  • the structural layer can be monocrystalline so as to enable integration of the electronic components 20 in the same epitaxial layer that forms the structural layer, without any defect.
  • the structural layer is masked and photolithographically defined so as to obtain the desired configuration for the suspended regions. Finally, the sacrificial layer is removed.
  • the circuitry can be integrated prior to defining the suspended structures.
  • the suspended mass 1 approaches the substrate 16 and the suspended mass 2 moves away therefrom, with opposite variation of capacitance.
  • the variations of capacitance can be detected by a purposely provided read circuit obtained with the electronic components 20, which are moreover able to calculate the magnitude and direction of the magnetic field B1 from the detected variations of capacitance.
  • the suspended masses 3 and 4 are not instead affected by any force since the current I that flows through them is parallel to the magnetic field B.
  • the suspended masses 1 and 2 are not subjected to any force (their current I is parallel to the magnetic field B), and the masses 3 and 4 undergo respective forces in the same direction as the forces F1 and F2 of the suspended masses 1, 2 in Figures 5-7 .
  • the read circuit 20 is able to detect direction and magnitude of the magnetic field B from the detected variations of capacitance.
  • the suspended masses 1-4 are subject to forces F3-F6 directed in the drawing plane XY and thus move in this plane XY.
  • the magnetic field B3 enters the drawing plane (directed away from the observer)
  • the suspended mass 1 moves towards the right
  • the suspended mass 2 moves towards the left
  • the suspended mass 3 moves upwards
  • the suspended mass 4 moves downwards.
  • the displacement of the suspended masses 1 and 2 causes a corresponding movement of the suspended arms 10; thus, the mobile electrodes 11 arranged on one side of the suspended mass 1 (to the right in the drawing) approach the respective fixed electrodes 12; instead, the mobile electrodes 11 on the other side of the suspended mass 1 (to the left in the drawing) move away from the respective fixed electrodes 12. Consequently, the capacitance between the mobile electrodes 11 and the fixed electrodes 12 increases in the first and third quadrants of Figure 8 , and the capacitance between the mobile electrodes 11 and the fixed electrodes 12 decreases in the second and fourth quadrants. This variation of capacitance can be detected by the read circuit 20, which can thus determine the magnitude and direction of the field.
  • the displacement of the suspended masses 3 and 4 is instead of no effect in so far as there is no change in their distance from the lower electrodes, which have a larger area, as referred to above, and are not connected to suspended electrodes.
  • the detection of the external magnetic field could be carried out using just two suspended masses flowed by mutually perpendicular currents, for example the suspended masses 1, 3.
  • the presence of pairs of suspended masses 1-2 and 3-4 flowed by currents I directed in opposite directions enables, however, a differential reading such as to cancel out common-mode disturbance, linked, for example, to parasitic capacitances as well as to possible stress conditions.
  • the read circuit 20 will have to multiply the value of the magnitude of the field B by a correction factor k (shown in Figure 10 ).
  • Figures 11-16 show variants of the magnetometer of Figure 2 .
  • Figures 11-16 show only the second quadrant, and the complete structure can be obtained by turning over the illustrated partial structure about the axes X and Y.
  • Figures 11-15 do not show the fixed electrodes 12 or the fixed arms 13.
  • the end of the suspended arm 10 not connected to the suspended mass 1 is connected to first ends of a pair of supporting springs 25, the second ends whereof are connected to a same supporting anchorage 26.
  • the two supporting springs 25 are of a folded type and extend symmetrically with respect to the longitudinal axis of the suspended arm 10. Similar supporting springs (not shown) are provided for the suspended arms 10 of the first, third, and fourth quadrants of the magnetometer.
  • the suspended masses 1 and 3 (as also the suspended masses 2 and 4, not shown), again of a rectangular shape, are no longer anchored centrally and in peripheral anchorages arranged on the symmetry axes, but are supported by four respective lateral springs 28, each of which extends from a respective sharp edge.
  • the lateral springs 28 that extend from the inner sharp edge of each suspended mass 1, 3 (which also in part face the respective suspended mass 1, 3 and in part project beyond it) are anchored to a same common anchorage 30.
  • two separate anchorages could be provided.
  • the lateral springs 28 are arranged symmetrically with respect to middle planes traversing the suspended masses 1, 3 parallel to axis X and Y, respectively.
  • the elastic suspension elements (springs) of the suspended masses 1-4 are each split into two elements, anchored eccentrically but symmetrically, thus obtaining a doubling of the length or of the foldings of the individual spring and a greater symmetry of the structure on both axes X and Y. In this way, the same vibration mode is guaranteed for all the suspended masses 1-4.
  • the springs could extend from the sharp edges of the respective suspended masses 1-4 towards respective peripheral anchorages, without having any portion facing the long sides of the suspended masses.
  • the suspended masses 1, 3 have a greater length than in the preceding figure so that the lateral springs 28 do not project beyond the long side of the suspended masses 1, 3.
  • the lateral springs 28 connected to the suspended mass 1 have both distal ends connected to an own anchorage 32 arranged in proximity of the suspended arm 10, while the lateral springs 28 connected to the suspended mass 3 have distal ends anchored to a single middle anchorage 31.
  • the lateral springs 28 connected to the suspended mass 3 could have single anchorages 32, or all the lateral springs 28 could be anchored as shown in Figure 12 .
  • Figure 14 shows an embodiment wherein the suspended masses 1, 3 have the same overall length as Figure 13 but no longer have a rectangular shape, and comprise an approximately square or rectangular central portion 35a and two projections 35b directed, respectively, along axis Y (for the suspended mass 1) and axis X (for the suspended mass 3) .
  • the lateral springs 28 in this case have a first end connected to a respective sharp edge of a projection 35b and a second (distal) end connected to an own anchorage 33 in proximity of the central portion 35a.
  • Figure 15 shows a highly symmetrical structure, where also the suspended mass 3, as likewise the suspended mass 4 (not shown), carries respective mobile electrodes 38 which extend on either side of the suspended arms 39 similar to the suspended arms 10 of the suspended masses 1, 3.
  • the suspended masses 1, 3 have the shape appearing in Figure 14 , including a central portion 35a and projections 35b.
  • the sharp edges of the projections 35b of both of the suspended masses 1, 3 are connected to first ends of springs 40a, 40b having second ends connected, respectively, to a central anchorage 41 or to a peripheral anchorage 42.
  • the central anchorage 41 is substantially cross-shaped, only two half-arms whereof are visible, each half-arm being U-shaped (as represented by a dashed line in Figure 15 ) and is provided with a recess housing a projection 35b and the two springs 40a connected on the two sides of a same projection 35b.
  • the peripheral anchorages 42 are also U-shaped (as shown for the anchorage of the suspended mass 1), with the cavity facing the centre of the structure and housing the other projection 35b of each suspended mass 1, 3 as well as the two springs 40b connected to the same other projection 35b.
  • the structure is symmetrical also with respect to axes extending at 45° with respect to axes X and Y, and the mobile electrodes 38 (facing respective fixed electrodes - not shown) are also sensitive to external magnetic fields directed along the axis Z.
  • the mobile electrodes 38 are also sensitive to external magnetic fields directed along the axis Z.
  • FIG 16 shows a further embodiment, wherein all the masses (here the masses 1 and 3) carry a pair of suspended triangular structures 45 (only one suspended structure 45 for each suspended mass 1, 3 is visible in the figure).
  • Each suspended structure 45 includes a transverse arm 46, parallel to the principal direction of the respective suspended mass and bearing a series of suspended arms 47, perpendicular to the respective transverse arm 46; mobile electrodes 48 extend from the suspended arms 47 and face respective fixed electrodes (not shown).
  • the suspended masses 1, 3 here have the same shape and are anchored in the same way as in the embodiment of Figure 15 .
  • Figure 17 shows a variant of the embodiment of Figure 2 , where the suspended arm 10 extends parallel to the direction of the current I in the associated suspended mass (here parallel to axis Y, for the suspended mass 1) and thus the mobile electrodes 11 are directed perpendicular to the current direction.
  • a connection arm 49 connects the suspended arm 10 to the suspended mass 1.
  • the mobile electrodes 11 move parallel to the fixed electrodes 12 so as to decrease (as in the example shown) or increase the facing surface.
  • the capacitance variation detected by the read circuit (not shown) is linked in a linear way to the displacement, depending upon the variation of the facing area A rather than upon the distance d between the electrodes (C ⁇ A/d).
  • the mobile electrodes 11 could extend directly from the first suspended mass 1, without necessitating the suspended arm 10 and the connection arm 49.
  • the described magnetometer has numerous advantages. First, it can be integrated in a single die using widely adopted and well-controlled manufacturing techniques, at lower costs than for structures having a single or double sensitivity axis.
  • the described magnetometer has a good rejection to common-mode disturbance thanks to the high symmetry degree of the structure and thus has a high precision level.
  • an apparatus 50 having navigation functions can comprise the magnetometer 40 and a microcontroller 51, connected to the magnetometer 40 and with a display 52 and receiving external command signals through purposely provided interfaces (not shown).
  • position detectors either linear or rotary, for example knobs, cursors, joysticks, and the like, mobile members, such as pistons, etc.
  • level gauges and so forth.
  • the springs used for supporting the suspended masses can be of different types and can be optimized by varying the number of foldings, as well as the geometrical parameters (width, length, and thickness) so as to increase the sensitivity of the sensor, and can be combined differently with respect to what has been shown.
  • the connection arm 49 can proceed beyond the supporting arm 10 and be connected, in a way similar to Figure 11 , to a supporting anchoring region 26 through supporting springs 25.
  • the position and number of anchorages can vary widely so as to optimize the layout of the structure and the parameters of the springs and of the suspended masses.
  • the manufacturing process can vary with respect to the above. For example, it is possible to use the process described in patent application No. TO2009A000616 filed in the name of the present applicant on 5 August 2009 and including forming the insulating layer 17, the conductive regions 18 and the sacrificial layer; epitaxially growing the structural layer; selectively removing the structural layer as far as the sacrificial region so as to form through trenches; coating, completely and in a conformable way, the side walls and the bottom of the through trenches with a porous material layer; removing the sacrificial layer through the porous material layer; and possibly filling some through trenches.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Hard Magnetic Materials (AREA)
  • Conductive Materials (AREA)

Claims (16)

  1. Magnétomètre triaxial intégré de matériau semi-conducteur fabriqué en technologie MEMS, comprenant :
    une première et une deuxième masses suspendues (1, 3) se trouvant dans un plan et configurées pour être traversées par des courants respectifs (I) circulant dans le plan dans des directions mutuellement transversales ;
    une première et une deuxième électrodes inférieures (18b), dont chacune s'étend sous le plan, en-dessous des première et deuxième masses suspendues (1, 3) et est couplée capacitivement à une masse suspendue respective ;
    des électrodes de détection mobiles (11), portées par la première masse suspendue (1) ; et
    des électrodes de détection fixes (12), couplées capacitivement à une électrode de détection mobile respective,
    la première masse suspendue (1) étant configurée pour être mobile dans une direction transversale par rapport au plan, vers/depuis la première électrode inférieure (18b), en présence d'un champ magnétique ayant un composant dans une première direction (X) parallèle au plan et transversalement au courant circulant dans la première masse suspendue ;
    la deuxième masse suspendue (3) étant configurée pour être mobile dans une direction transversale au plan vers/depuis la deuxième électrode inférieure en présence d'un champ magnétique ayant un composant dans une deuxième direction (Y) parallèle au plan et transversalement au courant circulant dans la deuxième masse suspendue ; et
    la première masse suspendue étant configurée pour être mobile dans une direction parallèle au plan et transversalement au courant circulant dans la première masse suspendue en présence d'un champ magnétique ayant un composant dans une troisième direction (Z) perpendiculaire au plan.
  2. Magnétomètre triaxial selon la revendication 1, comprenant un substrat (21) de matériau semi-conducteur portant les électrodes inférieures (18b) et écartées de la première et de la deuxième masses suspendues (1, 3) par un entrefer (19).
  3. Magnétomètre triaxial selon la revendication 2, comprenant des régions d'ancrage (7, 8 ; 26 ; 29-33 ; 41, 42) fixées au substrat (21) et des éléments de suspension élastiques (6 ; 25 ; 28 ; 40a, 40b) s'étendant entre les masses suspendues (1-4) et les régions d'ancrage.
  4. Magnétomètre triaxial selon la revendication 3, dans lequel les régions d'ancrage comprennent une région d'ancrage centrale (7 ; 41) et une première et une deuxième régions d'ancrage périphériques (8 ; 42), la première et la deuxième masses suspendues (1, 3) étant reliées entre la région d'ancrage centrale et une première et une deuxième régions d'ancrage périphériques respectives à travers les éléments de suspension élastiques (6 ; 40a, 40b), la première région d'ancrage périphérique (8 ; 42) et la région d'ancrage centrale (7 ; 41) étant mutuellement alignées et parallèles à la deuxième direction, et la deuxième région d'ancrage périphérique (8 ; 42) et la région d'ancrage centrale étant mutuellement alignées et parallèles à la première direction.
  5. Magnétomètre triaxial selon l'une des revendications 1-4, comprenant un bras suspendu (10 ; 49) s'étendant de la première masse suspendue (1) dans la première direction, les électrodes de détection mobiles (12) s'étendant du bras suspendu dans la deuxième direction.
  6. Magnétomètre triaxial selon la revendication 5, comprenant en outre au moins un élément de support élastique (25) s'étendant entre le bras suspendu (10) et au moins une région d'ancrage de support (26).
  7. Magnétomètre triaxial selon la revendication 5 ou 6, comprenant un deuxième bras suspendu (39) s'étendant de la deuxième masse suspendue (3) dans la deuxième direction et portant une pluralité d'électrodes auxiliaires (38) s'étendant parallèlement à la première direction.
  8. Magnétomètre triaxial selon l'une des revendications 1-4, dans lequel les électrodes de détection mobiles (12) s'étendent parallèlement à la première direction.
  9. Magnétomètre triaxial selon l'une des revendications 1-8, dans lequel la première et la deuxième masses suspendues (1, 3) présentent une forme polygonale symétrique par rapport aux plans médians respectifs parallèles à la première et à la deuxième directions.
  10. Magnétomètre triaxial selon la revendication 9, dans lequel des paires des éléments de suspension élastiques (28 ; 40a, 40b) s'étendent de la périphérie de la première et de la deuxième masses suspendues vers les deuxièmes régions d'ancrage (29, 30 ; 32 ; 33 ; 42) disposées de manière essentiellement symétrique aux plans médians respectifs.
  11. Magnétomètre triaxial selon l'une des revendications 1-10, dans lequel chacune de la première et de la deuxième masses suspendues (1, 3) comprend une partie centrale (35a) ayant une forme polygonale symétrique aux plans médians respectifs parallèles à la première et à la deuxième directions et une paire de saillies (35b) s'étendant le long de la deuxième, respectivement à la première direction, une paire d'éléments de suspension élastiques (28 ; 40a, 40b) s'étendant latéralement à chaque paire de saillies, symétriquement à la deuxième, respectivement à la première direction et aux plans médians respectifs parallèles à la première et respectivement à la deuxième directions.
  12. Magnétomètre triaxial selon la revendication 11, dans lequel les régions d'ancrage comprennent une région d'ancrage centrale (41) et une pluralité de régions d'ancrage périphériques (42), dans lequel la région d'ancrage centrale comprend au moins deux régions en forme de U entourant chacune une première saillie respective (35b) de la première et de la deuxième masses suspendues (1, 3).
  13. Magnétomètre triaxial selon la revendication 12, dans lequel les régions d'ancrage périphériques (42) comprennent des régions en forme de U entourant chacune une deuxième saillie respective (35B) de la première et de la deuxième masses suspendues (1, 3).
  14. Magnétomètre triaxial selon l'une des revendications précédentes, comprenant une troisième et une quatrième masses suspendues (2, 4) disposées symétriquement par rapport à la première et à la deuxième masses suspendues (1, 3) et faisant face à des électrodes inférieures respectives (18b).
  15. Magnétomètre triaxial selon l'une des revendications 1-14, intégré dans une puce de matériau semi-conducteur (15) recevant un ensemble de circuits d'alimentation/lecture (20).
  16. Appareil électronique (50) comprenant une unité de commande (51), un affichage (52) et un magnétomètre selon l'une des revendications 1-14 et formant un compas électronique, un détecteur de position ou un indicateur de niveau.
EP10194490A 2009-12-10 2010-12-10 Magnétomètre triaxial intégré en technologie MEMS-semiconducteur Active EP2333572B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
IT000973A ITTO20090973A1 (it) 2009-12-10 2009-12-10 Magnetometro triassiale integrato di materiale semiconduttore realizzato in tecnologia mems

Publications (2)

Publication Number Publication Date
EP2333572A1 EP2333572A1 (fr) 2011-06-15
EP2333572B1 true EP2333572B1 (fr) 2012-10-24

Family

ID=42229184

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10194490A Active EP2333572B1 (fr) 2009-12-10 2010-12-10 Magnétomètre triaxial intégré en technologie MEMS-semiconducteur

Country Status (4)

Country Link
US (2) US8471557B2 (fr)
EP (1) EP2333572B1 (fr)
CN (1) CN102116851B (fr)
IT (1) ITTO20090973A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947081B2 (en) * 2011-01-11 2015-02-03 Invensense, Inc. Micromachined resonant magnetic field sensors
US8860409B2 (en) * 2011-01-11 2014-10-14 Invensense, Inc. Micromachined resonant magnetic field sensors
WO2013014321A2 (fr) * 2011-07-25 2013-01-31 Baolab Microsystems Sl Procédés et systèmes pour dispositifs mems (systèmes microélectromécaniques) cmos (semiconducteur complémentaire à l'oxyde de métal) comprenant un compas à plusieurs fils
JP5790297B2 (ja) * 2011-08-17 2015-10-07 セイコーエプソン株式会社 物理量センサー及び電子機器
FR2982677B1 (fr) 2011-11-14 2013-12-20 Commissariat Energie Atomique Capteur vectoriel de champ magnetique
JP2014134481A (ja) * 2013-01-11 2014-07-24 Seiko Epson Corp 物理量センサー、電子機器、及び移動体
EP2784530B1 (fr) * 2013-03-27 2016-03-02 IMEC vzw Magnétomètre résonant MEMS à deux axes
ITTO20130653A1 (it) * 2013-07-31 2015-02-01 Milano Politecnico Sensore magnetico includente un trasduttore basato sulla forza di lorentz pilotato ad una frequenza diversa dalla frequenza di risonanza, e metodo di pilotaggio di un trasduttore basato sulla forza di lorentz
DE102013216935A1 (de) * 2013-08-26 2015-02-26 Robert Bosch Gmbh Drehratensensor mit voreingestelltem Quadratur-Offset
CN103528575B (zh) * 2013-10-18 2017-07-11 上海华虹宏力半导体制造有限公司 三维amrmems三轴磁力计结构以及磁力计
KR101929590B1 (ko) * 2013-12-05 2019-03-13 매그나칩 반도체 유한회사 3차원 구조로 배치된 복수의 홀 센서를 이용한 센싱 시스템 및 이를 이용한 장치
CN104730472A (zh) * 2013-12-20 2015-06-24 贵阳铝镁设计研究院有限公司 一种弹簧磁力计
US8973439B1 (en) * 2013-12-23 2015-03-10 Invensense, Inc. MEMS accelerometer with proof masses moving in anti-phase direction normal to the plane of the substrate
TWI538096B (zh) 2013-12-31 2016-06-11 財團法人工業技術研究院 具pn界面的微機電裝置
DE102014202053A1 (de) * 2014-02-05 2015-08-06 Robert Bosch Gmbh Sensorvorrichtung und Verfahren zum Betreiben einer Sensorvorrichtung mit mindestens einer seismischen Masse
TWI531805B (zh) * 2014-09-18 2016-05-01 碩英股份有限公司 磁力計
CN105527589B (zh) * 2014-09-29 2019-02-19 硕英股份有限公司 磁力计
WO2016090467A1 (fr) * 2014-12-09 2016-06-16 Motion Engine Inc. Magnétomètre de système micro électromécanique (mems) 3d et procédés associés
IT201600132408A1 (it) * 2016-12-29 2018-06-29 Milano Politecnico Sensore magnetico triassiale mems con configurazione perfezionata
CN110542869A (zh) * 2019-06-21 2019-12-06 西北工业大学 基于模态局部化效应的微弱磁场测量装置及方法
US10775450B1 (en) 2020-03-28 2020-09-15 QuSpin, Inc. Zero field parametric resonance magnetometer with triaxial sensitivity

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142229A (en) * 1990-12-26 1992-08-25 Biomagnetic Technologies, Inc. Thin-film three-axis magnetometer and squid detectors for use therein
US5767405A (en) * 1992-04-07 1998-06-16 The Charles Stark Draper Laboratory, Inc. Comb-drive micromechanical tuning fork gyroscope with piezoelectric readout
US5491604A (en) * 1992-12-11 1996-02-13 The Regents Of The University Of California Q-controlled microresonators and tunable electronic filters using such resonators
US5818227A (en) * 1996-02-22 1998-10-06 Analog Devices, Inc. Rotatable micromachined device for sensing magnetic fields
GB0322236D0 (en) * 2003-09-23 2003-10-22 Qinetiq Ltd Resonant magnetometer device
WO2005029107A1 (fr) * 2003-09-23 2005-03-31 Qinetiq Limited Dispositif a magnetometre resonant
GB0329959D0 (en) * 2003-12-24 2004-01-28 Qinetiq Ltd Magnetic field sensor
JP4984408B2 (ja) * 2005-03-17 2012-07-25 ヤマハ株式会社 磁気センサおよびその製法
US7253616B2 (en) * 2005-10-13 2007-08-07 Lucent Technologies Inc. Microelectromechanical magnetometer
DE102008012825B4 (de) * 2007-04-02 2011-08-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Mikromechanisches Bauelement mit verkippten Elektroden
US7784344B2 (en) * 2007-11-29 2010-08-31 Honeywell International Inc. Integrated MEMS 3D multi-sensor
ITTO20090616A1 (it) 2009-08-05 2011-02-06 St Microelectronics Srl Procedimento di fabbricazione di dispositivi mems dotati di cavita' sepolte e dispositivo mems cosi' ottenuto

Also Published As

Publication number Publication date
US20110140693A1 (en) 2011-06-16
EP2333572A1 (fr) 2011-06-15
CN102116851A (zh) 2011-07-06
US8760156B2 (en) 2014-06-24
US20140077798A1 (en) 2014-03-20
CN102116851B (zh) 2014-12-03
US8471557B2 (en) 2013-06-25
ITTO20090973A1 (it) 2011-06-11

Similar Documents

Publication Publication Date Title
EP2333572B1 (fr) Magnétomètre triaxial intégré en technologie MEMS-semiconducteur
US7509748B2 (en) Magnetic MEMS sensors
US8159219B2 (en) MEMS 2D and 3D magnetic field sensors and associated manufacturing method
US10353020B2 (en) Manufacturing method for integrated multilayer magnetoresistive sensor
KR101235524B1 (ko) 자기 검출 장치
EP3006896B1 (fr) Boussole numérique à trois axes
US6215318B1 (en) Micromechanical magnetic field sensor
CN103116143B (zh) 一体式高精度三轴磁传感器
CN105358990B (zh) 使用磁性材料在加速计上的磁强计
US10551447B2 (en) Magnetic field sensing apparatus
KR100858234B1 (ko) 모션 센서 및 이를 이용하는 휴대 전화기
CN103116144B (zh) 一种采用磁变轨结构的z向磁场传感器
CN107894576B (zh) 一种高z向分辨力的一体化低功耗三轴磁场传感器
CN103901363A (zh) 一种单芯片z轴线性磁阻传感器
CN104567848B (zh) 一种基于隧道磁阻效应的微机械陀螺
CN102047126A (zh) 具有循环电极组和绝对电极组的电容传感器
CN102914394B (zh) Mems巨磁阻式高度压力传感器
CN103713158B (zh) 加速度传感器
US20100180681A1 (en) System and method for increased flux density d'arsonval mems accelerometer
EP2955534A1 (fr) Appareil de détection magnétique, procédé d'induction magnétique et technique de préparation de celui-ci
CN203480009U (zh) 一种单芯片z轴线性磁电阻传感器
CN109557337B (zh) 一种轴向变化的隧道磁阻加速度测量***及其测量方法
JP2011220977A (ja) 磁場検出装置
Todaro et al. Magnetic field sensors based on microelectromechanical systems (MEMS) technology
CN202853815U (zh) Mems巨磁阻式高度压力传感器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20111215

RIC1 Information provided on ipc code assigned before grant

Ipc: G01R 33/038 20060101ALI20120109BHEP

Ipc: G01R 33/028 20060101AFI20120109BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STMICROELECTRONICS SRL

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602010003330

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01R0033028000

Ipc: G01R0033000000

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIC1 Information provided on ipc code assigned before grant

Ipc: G01R 33/00 20060101AFI20120820BHEP

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 581203

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010003330

Country of ref document: DE

Effective date: 20121227

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 581203

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121024

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130124

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130225

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130125

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130124

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

26N No opposition filed

Effective date: 20130725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010003330

Country of ref document: DE

Effective date: 20130725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141210

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602010003330

Country of ref document: DE

Representative=s name: SCHMITT-NILSON SCHRAUD WAIBEL WOHLFROM PATENTA, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231121

Year of fee payment: 14