EP2316149B1 - Kompaktstrahlungsstruktur mit geringem verlust - Google Patents

Kompaktstrahlungsstruktur mit geringem verlust Download PDF

Info

Publication number
EP2316149B1
EP2316149B1 EP09807916.3A EP09807916A EP2316149B1 EP 2316149 B1 EP2316149 B1 EP 2316149B1 EP 09807916 A EP09807916 A EP 09807916A EP 2316149 B1 EP2316149 B1 EP 2316149B1
Authority
EP
European Patent Office
Prior art keywords
resonator
triplate
metal
radiating element
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09807916.3A
Other languages
English (en)
French (fr)
Other versions
EP2316149A1 (de
Inventor
Hervé Legay
Barbara Bonnet
David Nevo
Claude Drevon
Philippe Monfraix
Chloé SCHAFFAUSER
Renaud Chiniard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2316149A1 publication Critical patent/EP2316149A1/de
Application granted granted Critical
Publication of EP2316149B1 publication Critical patent/EP2316149B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0485Dielectric resonator antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/085Triplate lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/09Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens wherein the primary active element is coated with or embedded in a dielectric or magnetic material

Definitions

  • the present invention relates to a compact radiating element with low losses. It applies in particular to the field of active antennas transmitting / receiving radio frequency signals.
  • Active antennas generally consist of a network of radiating elements connected to passive and active microwave components, such as filters, amplifiers, phase shifters, and a beamforming network that combines the electromagnetic signals emitted by each radiating element.
  • passive and active microwave components such as filters, amplifiers, phase shifters, and a beamforming network that combines the electromagnetic signals emitted by each radiating element.
  • the connections between radiating elements and active equipment must be as short as possible in order to reduce transmission losses.
  • the electromagnetic signal processing means must be placed as close as possible to the emission source and the transmitting and receiving means must be located in the mesh of the network.
  • the supply of the radiating elements is most often carried out by electromagnetic coupling of the resonant structure to the supply line which is parallel to the radiating mass plane and produced in so-called planar technology.
  • the feed line can be, for example, micro-ribbon, coplanar or stripline type (stripline) and it can be coupled to the resonant structure either by proximity coupling or by electromagnetic coupling through a coupling slot made in the radiant ground plane.
  • the power supply circuit being placed on the radiating ground plane or under it, the resonant structure can be disturbed by unwanted radiation or parasitic couplings.
  • the supply circuit being placed parallel to the plane radiant mass, it is difficult to insert into the mesh network active equipment. This difficulty is further reinforced when the network operates in orthogonal polarizations, since it is then necessary to double certain equipment (especially active ones). It is therefore the insertion constraints that impose the minimum sizes of the meshs of the networks.
  • the planar technology with excitation parallel to the radiating mass plane is therefore handicapped by the need to produce multilayer circuits on which microwave circuits such as filtering circuits, redundancy switches, low noise amplifiers, etc. are reported. ... It requires connections between good quality layers for microwave signals, which is complex to achieve.
  • the document EP 1 605 546 discloses examples of compact radiating elements having an orthogonal supply line and a coupling aperture for transferring electromagnetic energy from the orthogonal line to a dielectric resonator.
  • the dielectric resonator is mounted on the upper face of the parallelepiped and the active devices are arranged along the feed line and molded in the parallelepiped. All active devices are integrated in a very compact volume and very close to the radiating element.
  • the object of the present invention is to remedy these drawbacks by proposing a compact low loss radiating element comprising an orthogonal plane waveguide, in particular a triplate line, totally shielded to orthogonally excite a dielectric resonator.
  • the compact radiating element comprises at least a first and a second row of metallized holes passing through the thickness of the two substrates of the strip line, the two rows of metallized holes being disposed on either side of the metallized track on the entire length of said track, thus ensuring the shielding of the triplate line.
  • the metal transition element may be formed by the extended metal track outside the triplate line.
  • the resonator is made of a dielectric material having a parallelepipedal shape.
  • the metal transition element is positioned perpendicularly to the radiating mass plane, in a groove machined in the resonator.
  • the groove is machined in one of the faces of the resonator and the face provided with the machined groove is disposed in line with the metal track.
  • the compact radiating element further comprises an electrical connector connected to the first end of the metal track.
  • the electrical connector can be molded into the resin.
  • the compact radiating element further comprises active components molded in the resin.
  • the compact radiating element comprises at least two independent triplate lines made on two different printed circuits, the printed circuits being oriented in two perpendicular planes, the two triplic lines and the two printed circuits being molded into one and the same resin block, each triplate line having a metal track and a metal transition element connected to the track, the two transition elements being respectively pressed against two side faces of the dielectric resonator.
  • the compact radiating element comprises at least two triplate lines made on the same printed circuit, each triplate line having a metal track, the two triplic lines being spaced from one another and shielded respectively by at least first and second rows of through-going through holes, the dielectric resonator being oriented at 45 ° with respect to the printed circuit having the two triplate lines.
  • the compact radiating element comprises at least a first and a second orthogonally polarized dielectric resonators and two independent triplic lines made on two different printed circuits, the two printed circuits being oriented in two perpendicular planes, each line plate comprising a metal track and a metal transition element connected to the track, the two triplic lines and the two printed circuits being molded in a same block of resin, the metal transition elements being fixed on a lateral face of the first, respectively of the second, resonator.
  • the compact radiating element comprises at least two triplate lines made on the same printed circuit, the two triplate lines and the two printed circuits being molded in the same resin block, and at least one first and a second resonator mounted on a first, respectively on a second, metallized face of the resin block, each triplate line having a metal track, the two tracks being spaced from one another and shielded respectively by at least a first and a second rows of through metal holes, the two metal tracks being respectively connected to a side face of the first and second resonators respectively.
  • the resonator is made of a dielectric material, has a cavity having an inner surface conforming to the shape of the resin in which is molded at least one triplate line.
  • the invention also relates to an active antenna comprising at least one compact radiating element.
  • the strip line 1 comprises a metal strip 2 between two substrates 3, 4, each substrate being made of a dielectric material 3b, 4b, having a completely metallized outer face 3a, 4a.
  • the external metal planes 3a, 4a constitute the ground planes of the triplate line.
  • This triplate line can for example be achieved using two double-sided printed circuits mounted head to tail or a multilayer printed circuit.
  • the metal track is totally shielded laterally by at least a first and a second row of metallized holes 5, 6, passing through the thickness of the two substrates 3, 4 and thus connecting the two external metal planes 3a, 4a.
  • the two rows of metallized holes are arranged on either side of the metal track 2 and along the latter between its two ends 7, 8.
  • the holes 18, 19, arranged in two adjacent rows may preferably be arranged in staggered rows.
  • the triplate line is completely shielded, the risk of leakage from the sides is then significantly reduced, or even eliminated.
  • the compact radiating element comprises an orthogonal plane waveguide, more particularly a triplate line as described in FIG. figure 1 mounted orthogonally relative to the resonator 10.
  • the resonator 10 may be for example a dielectric resonator, or a patch etched on a substrate or a dielectric resonator on which is etched a patch.
  • the resonator 10 can have different geometrical shapes, for example a parallelepipedal shape as represented on the Figures 2a and 2b and have four lateral faces and two respectively upper and lower faces.
  • one of the faces 11 of the resonator 10 is arranged parallel to the plane of the strip line 1 and to the right of the metal strip 2.
  • a metal transition element 13 is connected to the second end 8 of the metal track 2 so as to extend this metal track, the metal transition element 13 being pressed against said face 11 of the resonator 10 to directly excite this resonator.
  • This metal transition element 13 constitutes an exciter source of the resonator 10.
  • the positioning of the element of metal transition 13 on the face 11 of the resonator 10 is calculated so as to optimize the coupling of the stripline line 1 to the resonator 10.
  • the metal transition element 13 is preferably positioned in the middle of the face 11 by relative to the two adjacent sidewalls 14, 15 to this face 11.
  • the exciter source of the resonator could be arranged differently, for example positioned in a hole or a local machining arranged in the resonator, the position of the hole or local machining depending on the desired operating mode. For example, it is possible to make a hole near the center of the resonator.
  • the resonator 10 may be made of a dielectric material, for example ceramic such as alumina, or of an organic material, and may comprise an air cavity machined in the dielectric, the air cavity making it possible to widen the bandwidth of the resonator.
  • a dielectric material for example ceramic such as alumina, or of an organic material
  • the metal transition element 13 may be constituted by an extension of the metal track 2 out of the plate line 1 and positioned, then fixed, for example by gluing, on the resonator 10.
  • the metal transition element 13 may be constituted by a metal pin mounted in an orifice 16 formed in the substrate of the strip line 1 opposite the metal track. The metal pin is then positioned and fixed, for example by gluing, in a groove 17 machined in the resonator, for example on the face 11 of the resonator 10.
  • the power supply of the radiating element can be achieved by means of an insert connector 20 having a central core 21 connected to the first end 7 of the track as shown in FIG. figure 3 .
  • the mounting of the connector 20 on the strip line 1 may for example be performed, after molding in the resin parallelepiped 30, by insertion of the central core 21 into a hole drilled through the strip line 1, the core 21 being able to to be fixed on the metal track 2 by a conductive adhesive, the body of the connector 20 can be fixed on the outer surface of the triplate line 1 by a conductive adhesive, optionally reinforced by a second adhesive to obtain a good mechanical adhesion.
  • the power supply of the radiating element can be achieved by means of a molded connector 22.
  • the stripline line must comprise a particular arrangement at the transition with the connector 22.
  • one of the substrates 3 of the triplate line comprises a machining 23 at the end 7 so as to be able to arrange the connector 22.
  • the machining 23 may extend over the entire width of the substrate as shown in FIGS. Figures 4a and 4b , or only over a part of the width of the substrate as shown on the figure 4c .
  • the connector 22 is provided with two lateral metal tabs 24, 25, situated on either side of its metal core 26.
  • the line is then no longer of the type triplate but of the coplanar type, that is to say that two metal ground planes 27, 28, are arranged on the non-machined substrate 4, on either side of the track 2.
  • the coplanar line is optimized with metallized holes 29 made through the thickness of the substrate 4 and lateral ground planes 27, 28, on either side of the track 2.
  • the connector 22 is positioned on the substrate 4 provided with the coplanar line, its central metal core 26 is welded to the track 2 and its two lateral lugs 24, 25 are welded to the lateral mass planes 27, 28, of the coplanar line.
  • a metal cap can be added to the above the transition zone equipped with the molded connector.
  • the connector 22 is surrounded by the ground planes of the triplate line.
  • said strip line 1 may be molded in resin and form a support structure for the resonator 10.
  • the strip line is molded in a parallelepiped-shaped resin block and forms a parallelepiped of resin 30.
  • the connector is a molded connector 22
  • the assembly constituted by the stripline line 1 and the connector 22 can be integrated and / or molded in the same resin parallelepiped 30.
  • the resin parallelepiped comprises 4 lateral faces, a lower face 33 and an upper face 34. At least one of the faces, for example the upper face 34, of the parallelepiped 30 is covered with a metal layer constituting a radiant ground plane. . Although it is not essential, the other faces of the resin parallelepiped can also be metallized to achieve a shielding of the parallelepiped.
  • the strip line 1 is positioned orthogonally with respect to the metallized face 34 of the resin, under the radiating mass plane and may for example be oriented so that the plane of the waveguide formed by the strip line is parallel to two faces 32 of the parallelepiped 30.
  • the resonator 10 is mounted on the metallized face 34 of the resin 30.
  • the lower face of the resonator 10 is mounted on the metallized face 34 of the parallelepiped 30 and oriented so that the lateral face 11 of the resonator 10 is parallel to the lateral faces 32, 35, of the parallelepiped 30 as well as to the plane of the guide. wave formed by the triplate line.
  • the metal transition element 13, constituting the exciter source, extends the metal track 2 outside the parallelepiped 30 and is fixed on the lateral face 11 of the resonator as indicated above with reference to FIGS. Figures 2a and 2b .
  • an antenna can be made by arranging a waveguide provided with a horn 36 above the dielectric resonator of the radiating element, the antenna being able to operate in Ka or Ku band in mono-polarization.
  • FIGS. 6a and 6b show a first exemplary embodiment of a compact radiating element adapted for producing an antenna operating in bi-polarization.
  • two independent triplic lines 61, 62 are made on two different printed circuits.
  • Each line may include an impedance matching means 63 called stub.
  • the stub can be constituted for example by a local enlargement of the track.
  • the two triplic lines 61, 62 are arranged in perpendicular planes and each comprise a metal transition element, 64, 65, respectively connected to the track 60, 69, of the corresponding triplate line.
  • the two triplate lines are integrated and / or molded in the same block of resin such as for example a resin parallelepiped 30, each triplate line being oriented parallel to two different lateral faces of the resin parallelepiped.
  • One face, for example the upper face of the resin parallelepiped is metallized to form a radiant ground plane.
  • a dielectric resonator 10 is mounted on the metallized face of the resin parallelepiped constituting the radiating ground plane so that the two transition elements 64, 65 are respectively in contact with two lateral faces 11, 15 of the resonator 10.
  • a guide of FIG. wave associated with a horn 68 is placed above the resonator to form an antenna. The antenna thus obtained operates in bi-polarization when it is fed via two connectors mounted at the end of each track, as described above in conjunction with FIGS. 3, 4a, 4b, 4c.
  • the Figures 7a and 7b represent a second embodiment of a compact radiating element adapted for producing an antenna operating in bi-polarization.
  • two triplate lines are made on the same printed circuit board 75.
  • the two metal tracks 71, 72 are spaced from one another and shielded respectively by at least a first and a second row of through holes, represented on the Figures 7a and 7b .
  • the rows of holes are positioned along each track and on both sides of it.
  • the printed circuit containing the two triplate lines is molded in a resin parallelepiped 30 and mounted orthogonally with respect to the plane radiant mass formed by a metal layer deposited on the upper face of the resin parallelepiped 30.
  • a resonator 10 is positioned on the radiant ground plane and oriented at 45 ° with respect to the printed circuit containing the triplic lines.
  • Two transition elements 73, 74, respectively fixed on the tracks 71, 72, and on two consecutive lateral faces of the resonator 10 make it possible to excite the latter.
  • a dual polarization antenna is then obtained by coupling the resonator to a waveguide provided with a horn 68.
  • a multi-polarization antenna can be obtained by using four triplic lines made in pairs on two different printed circuits, the four transition elements fixed on the respective tracks of the triplic lines being respectively fixed on the four lateral faces of the resonator.
  • the figure 8 shows a third embodiment of a compact radiating element to improve the decoupling between the excitatory sources.
  • two independent triplate lines 81, 82 are mounted orthogonally with respect to a metallic radiating plane 85 in a configuration identical to that shown in FIGS. Figures 6a and 6b .
  • the two triplic lines are oriented in two perpendicular planes and each comprise a metal transition element, respectively 86, 87, connected to the track of the corresponding strip line.
  • the two metal transition elements 86, 87 are not connected on two adjacent faces of the same resonator but are connected to two different dielectric resonators 83, 84, the two resonators 83, 84, being orthogonally polarized.
  • each exciter source excites a different resonator operating in mono-polarization, which increases the decoupling between the sources with respect to the use of a common resonator excited double-polarization.
  • Similar configurations with four resonators arranged in planes oriented at 90 ° to each other can be performed in the same way.
  • FIGS. 9a and 9b represent a fourth embodiment of a compact radiating element to improve the decoupling between the excitatory sources.
  • three triplate lines are made on the same circuit board, but their number could be different.
  • the three metal tracks 91, 92, 93 are spaced from one another and shielded respectively by at least a first and a second row of through holes, not shown on the Figures 9a and 9b .
  • the rows of holes are positioned along each track and on both sides of it.
  • the printed circuit comprising three triplate lines is molded in a resin parallelepiped 30 as described above in connection with the Figures 7a and 7b .
  • Three faces of the resin parallelepiped are metallized to form three orthogonal radiating ground planes on which three different resonators are respectively mounted.
  • a first resonator 95 is mounted on the upper face of the resin parallelepiped
  • a second 94 and a third resonator 96 are respectively mounted on two side faces of said resin parallelepiped.
  • the two tracks 91 and 93 were bent at 90 °. This configuration makes it possible to excite several resonators mounted on orthogonal faces of a parallelepiped and is perfectly suitable for producing multi-beam radiating elements.
  • the resonator 10 may be constituted by a dielectric block 97 having an oversized shape with respect to the resin block 30.
  • the dielectric block functions as a dielectric resonator but can not be placed on the single upper surface of the resin block. In this case, the dielectric block constituting the resonator can then surround the resin block. The size of this dielectric block depends on the permittivity of the dielectric and the order of the excited resonant mode.
  • the dielectric 97 has a cavity 99 having an inner surface 98 conforming to the shape of the resin block 30 and an outer surface 90 substantially spherical.
  • the resin block 30, preferably of parallelepipedal shape, comprising at least one triplate line, a connector, and the various active components, can then be housed in the cavity of the dielectric 97.
  • the excitation source (s) of the resonator 10 for example one or more metal transition elements 13, can be fixed in a hole or a local machining arranged in the dielectric 97.
  • the inner surface 98 can for example be flat so that the antenna is stable if it is intended to be placed on the ground.
  • a radiating element can be realized with a dielectric block having the shape of a semi-hemispherical dome , height 6cm, in which is formed the form of resin block for example cubic dimension 8 cm 3 .
  • the hemispheric form is in no way obligatory. It could also be a cylindrical block, even cubic.
  • the shape and dimensions of the block will determine their own resonance modes. It is around these resonances that the wave can be transmitted from the triplate line to the dielectric block, and that the radiating element radiates.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Claims (15)

  1. Verlustarmes Kompaktstrahlungselement, das wenigstens einen in einer strahlenden Masseebene montierten Resonator (10) und wenigstens eine Dreiplatten-Versorgungsleitung (1) umfasst, die in der Dicke eine innere Metallbahn (2) zwischen zwei dielektrischen Substraten (3, 4) umfasst, wobei jedes Substrat eine metallisierte Außenfläche (3a, 4a) aufweist, wobei die Metallbahn (2) eine Länge aufweist, die sich zwischen einem ersten und einem zweiten Ende (7, 8) der Dreiplatten-Leitung (1) erstreckt, dadurch gekennzeichnet, dass:
    - die Dreiplatten-Leitung (1) in einem Harz (30) abgeschirmt und geformt ist, wobei das Harz wenigstens eine Fläche (34) aufweist, die von einer Metallschicht bedeckt ist, die die strahlende Masseebene bildet, auf der der Resonator (10) montiert ist,
    - die abgeschirmte und geformte Dreiplatten-Leitung orthogonal mit Bezug auf die metallisierte Fläche des Harzes unter der strahlenden Masseebene montiert ist, und dadurch, dass es ferner Folgendes umfasst:
    - ein metallisches Übergangselement (13), das mit dem zweiten Ende (8) der Metallbahn (2) so verbunden ist, dass diese Bahn aus dem Harz (30) hinaus verlängert wird, wobei das metallische Übergangselement (13) an dem Resonator (10) anliegt, um den Resonator (10) direkt anzuregen.
  2. Kompaktstrahlungselement nach Anspruch 1, dadurch gekennzeichnet, dass es wenigstens eine erste (5) und eine zweite (6) Reihe von metallisierten Löchern umfasst, die die Dicke der beiden Substrate der Dreiplatten-Leitung (1) durchqueren, wobei die beiden Reihen von metallisierten Löchern (5, 6) auf beiden Seiten der metallisierten Bahn (2) über die gesamte Länge der Bahn (2) angeordnet sind und so die Abschirmung der Dreiplatten-Leitung gewährleisten.
  3. Kompaktstrahlungselement nach Anspruch 2, dadurch gekennzeichnet, dass die Metallbahn (2) aus der Dreiplatten-Leitung (1) hinaus verlängert ist, um das metallische Übergangselement (13) zu bilden.
  4. Kompaktstrahlungselement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Resonator (10) aus einem dielektrischen Material gefertigt ist und eine Quaderform hat.
  5. Kompaktstrahlungselement nach Anspruch 4, dadurch gekennzeichnet, dass das metallische Übergangselement (13) lotrecht zu der strahlenden Masseebene in einer in dem Resonator (10) gearbeiteten Rille positioniert ist.
  6. Kompaktstrahlungselement nach Anspruch 5, dadurch gekennzeichnet, dass die Rille in eine Fläche (11) des Resonators (10) eingearbeitet ist, der auf der rechten Seite der Metallbahn (2) angeordnet ist.
  7. Kompaktstrahlungselement nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass es ferner einen elektrischen Verbinder (20, 22) umfasst, der mit dem ersten Ende (7) der Metallbahn (2) verbunden ist.
  8. Kompaktstrahlungselement nach Anspruch 7, dadurch gekennzeichnet, dass die Dreiplatten-Leitung und der elektrische Verbinder (22) in das Harz (30) eingeformt sind.
  9. Kompaktstrahlungselement nach Anspruch 8, dadurch gekennzeichnet, dass es ferner aktive Komponenten (31) umfasst, die in das Harz (30) eingeformt sind.
  10. Kompaktstrahlungselement nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass es wenigstens zwei unabhängige Dreiplatten-Leitungen (61, 62) umfasst, die auf zwei unterschiedlichen gedruckten Schaltungen realisiert sind, wobei die gedruckten Schaltungen in zwei lotrechten Ebenen orientiert sind, wobei die zwei Dreiplatten-Leitungen und die zwei gedruckten Schaltungen in einem selben Harzblock (30) geformt sind, wobei jede Dreiplatten-Leitung (61, 62) eine Metallbahn (60, 69) und ein mit der Bahn (60, 69) verbundenes metallisches Übergangselement (64, 65) umfasst, wobei die beiden Übergangselemente (64, 65) jeweils an zwei seitlichen Flächen (11, 15) des elektrischen Resonators (10) anliegen.
  11. Kompaktstrahlungselement nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass es wenigstens zwei auf einer selben gedruckten Schaltung (75) realisierte Dreiplatten-Leitungen umfasst, wobei jede Dreiplatten-Leitung eine Metallbahn (71, 72) hat, so dass die beiden Metallbahnen (71, 72) voneinander beabstandet und jeweils durch wenigstens eine erste und eine zweite Reihe von metallisierten Durchgangslöchern abgeschirmt sind, und wobei die beiden Dreiplatten-Leitungen und die gedruckte Schaltung aus einem selben Harzblock (30) geformt sind, wobei der dielektrische Resonator (10) um 45° in Bezug auf die die beiden Dreiplatten-Leitungen umfassende gedruckte Schaltung (75) orientiert ist.
  12. Kompaktstrahlungselement nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass es wenigstens einen ersten und einen zweiten dielektrischen Resonator (83, 84), die orthogonal polarisiert sind, und zwei unabhängige Dreiplatten-Leitungen (81, 82) umfasst, die auf zwei verschiedenen gedruckten Schaltungen realisiert sind, wobei die beiden gedruckten Schaltungen in zwei lotrechten Ebenen orientiert sind, wobei jede Dreiplatten-Leitung (81, 82) eine Metallbahn und ein mit der Bahn verbundenes metallisches Übergangselement (86, 87) umfasst, wobei die beiden Dreiplatten-Leitungen und die beiden gedruckten Schaltungen in einem selben Harzblock (30) geformt sind, wobei die metallischen Übergangselemente (86, 87) an einer seitlichen Fläche des ersten bzw. des zweiten Resonators (83, 84) befestigt sind.
  13. Kompaktstrahlungselement nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass es wenigstens zwei auf einer selben gedruckten Schaltung realisierte Dreiplatten-Leitungen, wobei die beiden Dreiplatten-Leitungen und die gedruckte Schaltung in einem selben Harzblock (30) geformt sind, und wenigstens einen ersten und einen zweiten Resonator (94, 95) umfasst, die an einer ersten bzw. an einer zweiten metallisierten Fläche des Harzblocks (30) montiert sind, wobei jede Dreiplatten-Leitung eine Metallbahn (91, 92) hat, wobei die beiden Bahnen (91, 92) voneinander beabstandet und jeweils durch wenigstens eine erste und eine zweite Reihe von metallisierten Durchgangslöchern abgeschirmt sind, wobei die beiden Bahnen jeweils mit einer seitlichen Fläche des ersten bzw. zweiten Resonators (94, 95) verbunden sind.
  14. Kompaktstrahlungselement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Resonator (10) aus einem dielektrischen Material (97) realisiert ist, einen Holraum (99) mit einer Innenfläche (98) umfasst, die sich der Form des Harzes (30) anpasst, in der wenigstens eine Dreiplatten-Leitung geformt ist.
  15. Aktive Antenne, dadurch gekennzeichnet, dass sie wenigstens ein Kompaktstrahlungselement nach einem der vorherigen Ansprüche umfasst.
EP09807916.3A 2008-08-19 2009-06-08 Kompaktstrahlungsstruktur mit geringem verlust Not-in-force EP2316149B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0804632A FR2935198B1 (fr) 2008-08-19 2008-08-19 Element rayonnant compact a faibles pertes
PCT/EP2009/057029 WO2010020443A1 (fr) 2008-08-19 2009-06-08 Element rayonnant compact a faibles pertes

Publications (2)

Publication Number Publication Date
EP2316149A1 EP2316149A1 (de) 2011-05-04
EP2316149B1 true EP2316149B1 (de) 2016-05-04

Family

ID=40418951

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09807916.3A Not-in-force EP2316149B1 (de) 2008-08-19 2009-06-08 Kompaktstrahlungsstruktur mit geringem verlust

Country Status (3)

Country Link
EP (1) EP2316149B1 (de)
FR (1) FR2935198B1 (de)
WO (1) WO2010020443A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2546794B (en) * 2016-01-29 2020-01-08 Teraview Ltd A transmission line
CN107175587B (zh) * 2017-06-06 2019-04-05 广东长盈精密技术有限公司 挡片
WO2023228444A1 (ja) * 2022-05-24 2023-11-30 パナソニックIpマネジメント株式会社 レンズアンテナ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135935A (en) * 1962-10-02 1964-06-02 Bell Telephone Labor Inc Transmission line and method of making
US6292141B1 (en) * 1999-04-02 2001-09-18 Qualcomm Inc. Dielectric-patch resonator antenna
EP1205005B1 (de) * 1999-07-23 2003-05-02 Michael Nagel Streifenleitung für mikrowellenanwendungen
JP3646782B2 (ja) * 1999-12-14 2005-05-11 株式会社村田製作所 アンテナ装置およびそれを用いた通信機
JP3914401B2 (ja) * 2001-09-06 2007-05-16 株式会社日立製作所 発振器、送受信モジュール、及びレーダ装置
GB0207192D0 (en) * 2002-03-27 2002-05-08 Antenova Ltd Back-to-back antenna arrangements

Also Published As

Publication number Publication date
EP2316149A1 (de) 2011-05-04
FR2935198B1 (fr) 2011-11-25
FR2935198A1 (fr) 2010-02-26
WO2010020443A1 (fr) 2010-02-25

Similar Documents

Publication Publication Date Title
EP0089084B1 (de) Flache Höchstfrequenz Antennenstruktur
EP1407512B1 (de) Antenne
FR3070224A1 (fr) Antenne plaquee presentant deux modes de rayonnement differents a deux frequences de travail distinctes, dispositif utilisant une telle antenne
CA2314826A1 (fr) Antenne a empilement de structures resonantes et dispositif de radiocommunication multifrequence incluant cette antenne
FR2888675A1 (fr) Systeme d'antenne a diversite d'ordre 2 et carte pour appareil de communication sans fil munie d'un tel systeme
EP1605546A1 (de) Orthogonal Speisung Strahlungsvorrichtung
EP2710676B1 (de) Strahlerelement für eine aktive gruppenantenne aus elementarfliesen
FR2810164A1 (fr) Perfectionnement aux antennes source d'emission/reception d'ondes electromagnetiques pour systemes de telecommunications par satellite
WO2010142756A1 (fr) Élément rayonnant d'antenne
WO2008065311A2 (fr) Antenne multi secteurs
EP0493190B1 (de) Schichtartig aufgebaute Mikrowellen-Streifenleitungsantenne
EP1042845B1 (de) Antenne
EP3602689A1 (de) Elektromagnetische antenne
EP2316149B1 (de) Kompaktstrahlungsstruktur mit geringem verlust
EP1346442B1 (de) Gedruckte patch-antenne
EP2637254B1 (de) Flachantenne für Endgerät, das über eine doppelte Kreispolarisierung funktioniert, auf dem Luftweg transportiertes Endgerät und Satellitentelekommunikationssystem, das mindestens eine solche Antenne umfasst
EP2291923B1 (de) Eingangsblock mit integrierten antenne
FR2901062A1 (fr) Dispositif rayonnant a cavite(s) resonnante(s) a air a fort rendement de surface, pour une antenne reseau
FR2736212A1 (fr) Coupleur balun hyperfrequence integre, en particulier pour antenne dipole
CA2342953C (fr) Element rayonnant hyperfrequence bi-bande
FR2943464A1 (fr) Element rayonnant bas cout, notamment pour antenne active a balayage electronique
EP1399990A1 (de) Breitbandiges gedrucktes antennensystem mit mehreren strahlungselementen
FR2903232A1 (fr) Antenne symetrique en technologie micro-ruban.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHAFFAUSER, CHLOE

Inventor name: DREVON, CLAUDE

Inventor name: CHINIARD, RENAUD

Inventor name: MONFRAIX, PHILIPPE

Inventor name: NEVO, DAVID

Inventor name: LEGAY, HERVE

Inventor name: BONNET, BARBARA

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NEVO, DAVID

Inventor name: CHINIARD, RENAUD

Inventor name: SCHAFFAUSER, CHLOE

Inventor name: BONNET, BARBARA

Inventor name: LEGAY, HERVE

Inventor name: MONFRAIX, PHILIPPE

Inventor name: DREVON, CLAUDE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 3/08 20060101ALI20151105BHEP

Ipc: H01Q 9/04 20060101AFI20151105BHEP

Ipc: H01P 5/08 20060101ALI20151105BHEP

Ipc: H01Q 15/08 20060101ALI20151105BHEP

Ipc: H01Q 19/09 20060101ALI20151105BHEP

INTG Intention to grant announced

Effective date: 20151201

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NEVO, DAVID

Inventor name: CHINIARD, RENAUD

Inventor name: SCHAFFAUSER, CHLOE

Inventor name: LEGAY, HERVE

Inventor name: MONFRAIX, PHILIPPE

Inventor name: DREVON, CLAUDE

Inventor name: BONNET, BARBARA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 797627

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009038478

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160504

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160804

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 797627

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160805

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160905

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009038478

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

26N No opposition filed

Effective date: 20170207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160804

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090608

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160608

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180530

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180529

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602009038478

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630