EP2299336B1 - Spiral plat pour balancier d'horlogerie et ensemble balancier-spiral - Google Patents

Spiral plat pour balancier d'horlogerie et ensemble balancier-spiral Download PDF

Info

Publication number
EP2299336B1
EP2299336B1 EP10405172.7A EP10405172A EP2299336B1 EP 2299336 B1 EP2299336 B1 EP 2299336B1 EP 10405172 A EP10405172 A EP 10405172A EP 2299336 B1 EP2299336 B1 EP 2299336B1
Authority
EP
European Patent Office
Prior art keywords
balance spring
spiral
hairspring
balance
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10405172.7A
Other languages
German (de)
English (en)
Other versions
EP2299336A2 (fr
EP2299336A3 (fr
Inventor
Jérôme Daout
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolex SA
Original Assignee
Rolex SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolex SA filed Critical Rolex SA
Publication of EP2299336A2 publication Critical patent/EP2299336A2/fr
Publication of EP2299336A3 publication Critical patent/EP2299336A3/fr
Application granted granted Critical
Publication of EP2299336B1 publication Critical patent/EP2299336B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/066Manufacture of the spiral spring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency

Definitions

  • the present invention relates to a flat spring balance spring comprising a wound blade, shaped to ensure a substantially concentric development of the hairspring and a virtually zero force exerted on the pivots and the embedding point, during the rotation less than 360 ° of its inner end relative to its outer end in both directions, from its rest position.
  • This invention also relates to a sprung balance assembly.
  • the non-concentric development of a hairspring associated with a watch pendulum during the oscillation of the balance-hairspring assembly causes a decentering of the center of gravity of the hairspring, which is translated, according to the positions occupied by the watch, by a delay or advance effect, that is to say by a decrease or an increase in the natural frequency of the balance spring system.
  • This decentering of the center of gravity of the spiral also causes a lateral pressure of the pivots of the balance on the bearings.
  • the Breguet hairspring involves the formation of a terminal curve in a plane parallel to that of the flat hairspring, which requires the formation of two inverted bends to form an inclined connecting segment between the hairspring and the parallel terminal curve.
  • a Breguet hairspring can be made of different ferromagnetic or paramagnetic alloys, especially for self-compensating hairsprings.
  • a fragile material such as monocrystalline silicon or polycrystalline silicon. Indeed, it is not possible to form the two inverted bends intended to allow the formation of the terminal Breguet curve because of the brittle nature of such a fragile material, and it is thus necessary to resort to a technique to form solidarity structures on several levels.
  • the CH 327 796 proposes to modify the cross-section of the spiral blade to give it superior rigidity, over an arc of up to 180 °, either in the center or the outside. This modification is carried out by folding, adding material (galvanic deposition, welding), or pickling (rolling, etching).
  • the US 3,550,928 recommends to stiffen the terminal curve of the spiral by a non-rectangular section obtained by plastic deformation of a part of the last turn.
  • the EP 1 473 604 relates to a planar hairspring having on its outer turn a stiffened portion arranged to make the deformations of the turns substantially concentric.
  • the BE 526689 proposes to vary the section of the spiral blade on one or more parts of its length, or to modify the profile or to add to one or more parts of the blade any body intended to modify the flexibility of these parts. No further details are given as to these variations or modifications.
  • the EP 1431844 refers to a spiral whose section varies from one to the other of its ends. However, little precision is provided as to the mode of variation of the spiral section. The only information is that given in Figure 11 and in the part of the description associated with it.
  • the definition given on page 4, lines 55-57 speaks of "variable parallelepipedal section", "in this case a rectangular section E towards the center evolving to a square section E 'on the outside”. This definition, which is the only information on the type of variation, suggests a monotonic variation. Indeed, the two sections EE 'between which the section evolves seem to imply a continuous and monotonous variation of the section.
  • All the aforementioned spirals aim to improve the isochronism of the balance-balance oscillator for the different positions of the watch.
  • the simulation study of these different spirals shows that it is difficult to reduce significantly below a maximum difference between the different positions of 4 s / d for typical operating amplitudes, ie amplitudes greater than 200 °, while keeping sufficient security to prevent the turns from touching during the contraction and expansion of the hairspring , or following a shock suffered by the wristwatch.
  • the average slope of the gait curves as a function of the amplitude of the balance-balance oscillator should be as small as possible, ideally slightly negative so as to compensate for the isochronism defects generated by a flight exhaust. Swiss anchor. It will also be more difficult to obtain good performance for small spirals, for example below 2.5mm distance between the axis of rotation and the outer end.
  • the object of the present invention is to provide a solution that makes it possible to be closer to these objectives than the spirals of the state of the art.
  • this invention firstly relates to a flat spring balance spring comprising a wound blade and shaped to ensure a substantially concentric development of the hairspring and a virtually zero force exerted on the pivots and the mounting point during rotation less than 360 ° from its inner end relative to its external end in both directions from its rest position, as defined by claim 1.
  • Another subject of the invention is a balance spring and spiral assembly. according to claim 11.
  • substantially concentric development and “almost zero force” are intended to encompass spirals capable of achieving at least performance equal to that of Breguet curve spirals, its aim being to achieve at least such performance, but with a flat hairspring.
  • the hairspring according to the invention is equally applicable to ductile material spirals to fragile materials such as silicon.
  • the performance of the balance-balance oscillator in particular the difference between the positions, can vary substantially with the torque developed by the spiral and with its bulk, that is to say the distance between the point of contact. internal attachment of the spiral to the ferrule and the external attachment point.
  • the number of turns also has a significant influence.
  • the spirals given by way of examples in the figures all have the same nominal torque (same inertia of the balanced balance spring to obtain an oscillation frequency of 4 Hz), and the same size.
  • the spirals are made of Si.
  • the distance to the axis of rotation is 0.6mm for the inner end and 2.1mm for the outer end.
  • the height of the turns is 150 ⁇ m.
  • the section can be modified, and more particularly the thickness of the blade as it is known that the rigidity of a blade varies with the thickness of the cube. It would also be possible to use a localized heat treatment or to act on the shape of the blade for example, without changing the section, for example by changing the orientation of the cross section of the spiral relative to a center of rotation provided for this spiral. This could be achieved by twisting or waving the spiral blade, or combining these stiffening modes with the section change.
  • the spiral object of the invention may be of a fragile material, in particular a crystalline material such as silicon. It is easy to realize such a spiral having a variable section by using the manufacturing process described in EP 0732635 B1 which uses the etching techniques with etching which are perfectly mastered in the field of electronics for the work of silicon wafers in particular.
  • This document precisely describes a manufacturing method that can be used in particular for spirals. Although this document does not mention the possibility of making a hairspring with non-constant section, it is obvious that the masking technique used lends itself perfectly to obtaining such a result. In addition, this method allows for the spiral integrally with its ferrule and its embedding means.
  • the processes mentioned are particularly suitable for producing spirals whose section of the blade is not constant to obtain a non-monotonically variable rigidity in order to maintain the center of gravity of the spiral substantially on a center of rotation provided for this hairspring.
  • Other methods could also be used, for example heat treatment or machining. laser, to subsequently modify the rigidity of the hairspring in a non-monotonic manner in order to obtain the desired result.
  • a treatment or machining could also be associated with a spiral comprising at least two segments of different sections.
  • thermocompensation of the spirals is carried out by known means.
  • a layer of material on the surface of the turns that compensates for the first thermal coefficient of the Young's modulus of the base material.
  • a suitable material for the layer is SiO 2 .
  • the spiral object of the invention illustrated by the figure 1 has an extra thickness that decreases from its inner end over 360 ° and a thickening that grows gradually over 360 ° (more than five turns in the case of the figure 1 ) before the outer end and up to this outer end.
  • This non monotonic thickness variation is illustrated by the diagram of the figure 2 . Between the outer end of the hairspring and its minimum thickness, the thickness decreases by a factor of 2.6. Between its inner end and its minimum thickness, the thickness decreases by 35%.
  • the pitch of the spiral object of the invention can also vary from non-monotonic way, as illustrated by the diagram of the figure 3 .
  • This diagram shows a decrease in pitch from the inner end of the hairspring, followed by a slight increase and then a local maximum, two turns of the outer end in this example.
  • This local maximum (a sudden increase followed by a sudden decrease) is intended to prevent the turns from touching during oscillations of the sprung balance assembly.
  • this variation of pitch does not require a substantial increase in the spacing of the end turn, which makes it possible to have a hairspring with a high number of turns, in this example more than 14 turns for a hairspring of 2.1 mm radius.
  • the maximum pitch of the hairspring is not located at its outer end, but is located on the outer third of the hairspring (between 1 and 3 turns of this end, and more precisely to 1.75 turns in this example) and that the value of the pitch has a local maximum on the outer third of the hairspring (between 1 and 3 turns of the outer end).
  • the second embodiment illustrated by the figure 5 comprises two end-stage curves with progressive rigidity, one internal and the other external, whose function is to achieve a smooth transition between the ends and the central turns.
  • the areas where the pitch is larger are useful so that the turns do not touch in operation, that is to say in contraction and expansion.
  • the intermediate part between these two zones can very well be satisfied by a small step approximately constant (variation of the pitch of about 4% in the example of the figure 7 ).
  • the middle part moves globally as a whole towards the contraction center, or outwardly expanding. She needs space on both sides.
  • the square located towards the center may be smaller than the one located outside, and is not necessarily necessary as shown in the diagram of the figure 3 .
  • the thickness diagram of the figure 6 is similar to that of the form of execution of Figures 1-4 , that is to say, extra thicknesses at both ends of the spiral thus constituting terminal curves extending over more than 360 °. Between the outer end of the hairspring and its minimum thickness, the thickness decreases by a factor of 4.4. Between its inner end and its minimum thickness, the thickness decreases by 48%.
  • the thickness of the inner and / or outer coil could cease to grow, or even decrease slightly, on the last internal and / or external turn, without noticeably changing the properties of the oscillator.
  • the step diagram of the figure 7 has non-monotonic and progressive variations, with a local maximum located in the first third of the hairspring (at 2 turns of the inner end) in addition to that located in the outer third (about 3 turns from the outer end) .
  • the 250 ° amplitude difference of the balance-balance oscillator is 1.99 s / d and is comparable to the example of the figure 4 , with an average of the difference between 200 and 300 ° of amplitude lower than for the spiral of the figure 1 .
  • Two other forms of execution are still represented.
  • One is illustrated by the figure 9 with zones with turns spaced apart in the inner third and the outer third, with a continuous variation of the pitch, with no local maximum of the pitch neither inside nor outside.
  • the thickness variation curve has a similar appearance to that of the first embodiment illustrated by the figure 2 , with a decrease from the inner end to the inner third (first four rounds), a portion of constant thickness, then an increase on the outer third to the outer end (last two rounds).
  • the pitch it varies non-monotonically, gradually decreasing from the inner end to the middle of the length of the hairspring and then increasing progressively to the outer end of the hairspring, with no maximum local.
  • the chronometric performances are better than for the spirals with constant pitch and thickness, but slightly less good than for the first two embodiments (maximum gap between positions of 2.67 s / d at 250 °).
  • the other embodiment is illustrated by the figure 10 and has a much larger central area and no variation of pitch in the inner part of the hairspring.
  • the thickness variation curve looks similar to that of the first embodiment illustrated by the figure 2 , with a decrease from the inner end to the inner third (first four rounds), a portion of constant thickness, then an increase on the outer third to the outer end (last three rounds).
  • the spiral pitch illustrated by the figure 10 is constant on the inner first third of the length of the hairspring, then it undergoes a sudden increase followed by a decrease, ie a local maximum, at 3 and a half turns of the outer end. The pitch then increases again to the outer end.
  • the chronometric performances are comparable to those of the first two forms of execution (maximum difference between positions of 2.08 s / d at 250 °).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Springs (AREA)
  • Stringed Musical Instruments (AREA)
  • Toys (AREA)

Description

  • La présente invention se rapporte à un spiral plat pour balancier d'horlogerie comportant une lame enroulée, conformée pour assurer un développement sensiblement concentrique du spiral et une force quasi nulle exercée sur les pivots et le point d'encastrement, lors de la rotation inférieure à 360° de son extrémité interne par rapport à son extrémité externe dans les deux sens, à partir de sa position de repos. Cette invention se rapporte également à un ensemble balancier-spiral.
  • Le développement non concentrique d'un spiral associé à un balancier d'horlogerie lors de l'oscillation de l'ensemble balancier-spiral provoque un décentrage du centre de gravité du spiral, qui se traduit, suivant les positions occupées par la montre, par un effet de retard ou d'avance, c'est-à-dire par une diminution ou une augmentation de la fréquence propre du système balancier-spiral. Ce décentrage du centre de gravité du spiral provoque également une pression latérale des pivots du balancier sur les paliers.
  • Ces effets de déséquilibre du spiral et de pressions latérales des pivots détruisent les conditions nécessaires à l'isochronisme des oscillations du balancier. Depuis le milieu du XVIIIe siècle, les horlogers s'étaient rendu compte que le développement non concentrique du spiral a une mauvaise influence sur l'isochronisme et en particulier que la pression latérale provoquée par un spiral décentré sur les pivots du balancier occasionne des perturbations de la marche et une usure des pivots. Ces mêmes horlogers ont alors préconisé de former une ou deux courbes terminales tout d'abord sur des spiraux cylindriques puis sur un spiral de type Archimède contenu dans un plan, c'est le spiral Breguet du nom de son inventeur.
  • Ces courbes étaient faites de manière plus ou moins empiriques et corrigées en fonction des résultats de la marche de l'oscillateur, avant que certaines formes soient retenues en fonction de ces résultats. Ce n'est que plusieurs dizaines d'années plus tard que les conditions mathématiques de cette courbe terminale ont été étudiées par Ed. Phillips, apportant ainsi une confirmation théorique aux intuitions antérieures des horlogers, à savoir que si le centre de gravité du spiral est maintenu sensiblement sur l'axe de balancier pendant l'oscillation du système balancier-spiral, le spiral n'exerce pratiquement aucune force latérale sur les pivots du balancier et son développement reste concentrique.
  • Les conditions énoncées par Phillips sont les mêmes que celles définies par les horlogers qui les avaient eux-mêmes déduites de leurs observations des défauts induits par le spiral, par rapport aux règles de l'isochronisme d'un corps oscillant énoncées au XVIIe siècle par Huygens.
  • Le spiral Breguet implique la formation d'une courbe terminale dans un plan parallèle à celui du spiral plat, ce qui nécessite la formation de deux coudes inversés pour former un segment de liaison incliné entre le spiral et la courbe terminale parallèle.
  • Un spiral Breguet peut être réalisé en différents alliages ferromagnétiques ou paramagnétiques, notamment pour les spiraux auto-compensateurs. Par contre, il est beaucoup plus difficile à réaliser en un matériau fragile tel que le silicium mono-cristallin ou poly-cristallin. En effet, il n'est pas possible de former les deux coudes inversés destinés à permettre la formation de la courbe Breguet terminale en raison de la nature cassante d'un tel matériau fragile, et il est ainsi nécessaire de recourir à une technique permettant de former des structures solidaires sur plusieurs niveaux.
  • On a déjà proposé d'obtenir un effet technique comparable à celui de la courbe Breguet sur un spiral plat, en variant l'épaisseur de la lame du spiral.
  • Dans le US 209 642 , on a proposé d'augmenter l'épaisseur de la lame du spiral de façon graduelle ou discontinue, depuis le centre jusqu'à l'extérieur du spiral.
  • Le CH 327 796 propose de modifier la section droite de la lame du spiral pour lui conférer une rigidité supérieure, sur un arc de 180° au maximum, soit au centre, soit à l'extérieur. Cette modification est réalisée par pliage, par ajout de matière (déposition galvanique, soudage), ou par décapage (laminage, attaque chimique).
  • Le US 3 550 928 préconise de rigidifier la courbe terminale du spiral par une section non rectangulaire obtenue par déformation plastique d'une partie de la dernière spire.
  • Le EP 1 473 604 se rapporte à un spiral plan comportant sur sa spire extérieure une portion rigidifiée agencée pour rendre les déformations des spires sensiblement concentriques.
  • Le BE 526689 propose de varier la section de la lame du spiral sur une ou plusieurs parties de sa longueur, ou de modifier le profil ou d'ajouter à une ou plusieurs parties de la lame un corps quelconque destiné à modifier la flexibilité de ces parties. Aucune autre précision n'est donnée quant à ces variations ou modifications.
  • On a proposé dans l'article d'Emile et Gaston Michel, Spiraux plats concentriques sans courbes, Bulletin Annuel de la Société Suisse de Chronométrie et du Laboratoire de Recherches Horlogères, Vol.IV, 1957-1963, pages 162-169, 01. 01.1963, de former une partie de la lame en cornière. Cette « partie traitée en cornière ne fléchit pratiquement plus aux fortes amplitudes. Elle ne compte plus dans le réglage, c'est en quelque sorte un bout mort dans la spire » (fin page 164-début page 165). Il s'agit donc de neutraliser le spiral sur une partie de sa longueur.
  • Le EP 1431844 se rapporte à un spiral dont la section varie de l'une à l'autre de ses extrémités. Toutefois, peu de précision est fournie quant au mode de variation de la section du spiral. La seule information est celle qui est donnée par la figure 11 et dans la partie de la description qui lui est associée. La définition donnée page 4, lignes 55-57 parle de « section parallélépipédique variable », « en l'occurrence une section E rectangulaire vers le centre évoluant jusqu'à une section E' carrée à l'extérieur ». Cette définition qui est la seule information quant au type de variation fait penser à une variation monotone. En effet, les deux sections E-E' entre lesquelles la section évolue semblent impliquer une variation continue et monotone de la section.
  • La question de la variation du pas illustrée par la figure 10 du EP 1431844 est limitée à une variation du pas le long d'un axe radial F-F' qui donne au spiral une forme d'ellipse. Ce qui est montré par cette figure ressemble plus à une déformation de la spirale selon l'un des deux axes qu'à une variation du pas proprement dite, et ne permet pas d'obtenir un spiral fonctionnel, en particulier un spiral dont les spires ne se touchent pas en fonctionnement.
  • Enfin dans le EP 1 593 004 , la section de la lame du spiral diminue progressivement du centre du spiral vers l'extérieur.
  • Tous les spiraux susmentionnés visent à améliorer l'isochronisme de l'oscillateur balancier-spiral pour les différentes positions de la montre. L'étude par simulation de ces différents spiraux montre cependant qu'il est difficile de descendre sensiblement au-dessous d'un écart maximal entre les différentes positions de 4 s/j pour des amplitudes typiques de fonctionnement, soit des amplitudes supérieures à 200°, tout en gardant des sécurités suffisantes pour éviter que les spires ne se touchent en fonctionnement lors de la contraction et de l'expansion du spiral, ou suite à un choc subi par la montre-bracelet. Par ailleurs, la pente moyenne des courbes de marche en fonction de l'amplitude de l'oscillateur balancier-spiral devrait être la plus faible possible, dans l'idéal légèrement négative de façon à compenser les défauts d'isochronisme engendrés par un échappement à ancre suisse. Il sera en outre d'autant plus difficile d'obtenir de bonnes performances pour des spiraux de petite taille, par exemple en dessous de 2.5mm de distance entre l'axe de rotation et l'extrémité externe.
  • Le but de la présente invention est d'apporter une solution qui permette de se rapprocher davantage de ces objectifs que les spiraux de l'état de la technique.
  • A cet effet, cette invention a tout d'abord pour objet un spiral plat pour balancier d'horlogerie comportant une lame enroulée et conformée pour assurer un développement sensiblement concentrique du spiral et une force quasi nulle exercée sur les pivots et le point d'encastrement, lors de la rotation inférieure à 360° de son extrémité interne par rapport à son extrémité externe dans les deux sens à partir de sa position de repos, tel que défini par la revendication 1. Cette invention a également pour objet un ensemble balancier-spiral selon la revendication 11.
  • Les expressions "développement sensiblement concentrique" et "force quasi nulle" sont destinées à englober des spiraux susceptibles d'atteindre au moins des performances égales à celle des spiraux à courbes Breguet, son but étant d'atteindre au moins de telles performances, mais avec un spiral plat.
  • Le spiral selon l'invention s'applique aussi bien à des spiraux en matériau ductile qu'à des matériaux fragiles tel que le silicium.
  • Les dessins annexés illustrent, schématiquement et à titre d'exemple, différentes formes d'exécution du spiral plat objet de la présente invention.
    • La figure 1 est une vue en plan d'un spiral plat au repos dont le centre de gravité est situé sur un centre de rotation prévu pour ce spiral;
    • la figure 2 est un diagramme de l'épaisseur E de la lame du spiral en fonction du nombre de tours N du spiral de la figure 1;
    • la figure 3 est un diagramme du pas P du spiral en fonction du nombre de tours N du spiral de la figure 1;
    • la figure 4 est un diagramme des courbes de marche théoriques d'un oscillateur balancier-spiral équipé du spiral de la figure 1, dans les différentes positions en fonction de l'amplitude de cet oscillateur (isochronisme libre);
    • la figure 5 est une vue en plan d'une deuxième forme d'exécution de spiral plat au repos dont le centre de gravité est situé sur un centre de rotation prévu pour ce spiral;
    • la figure 6 est un diagramme de l'épaisseur E de la lame du spiral en fonction du nombre de tours N du spiral de la figure 5;
    • la figure 7 est un diagramme du pas du spiral P en fonction du nombre de tours N du spiral de la figure 5;
    • la figure 8 est un diagramme des courbes de marche théoriques d'un oscillateur balancier équipé du spiral de la figure 5, dans les différentes positions en fonction de l'amplitude de cet oscillateur (isochronisme libre);
    • la figure 9 est une vue en plan d'une troisième forme d'exécution du spiral plat au repos dont le centre de gravité est situé sur un centre de rotation prévu pour ce spiral;
    • la figure 10 est une vue en plan d'une quatrième forme d'exécution du spiral plat au repos dont le centre de gravité est situé sur un centre de rotation prévu pour ce spiral.
  • Les performances de l'oscillateur balancier-spiral, en particulier l'écart de marche entre les positions, peuvent varier sensiblement avec le couple développé par le spiral et avec son encombrement, c'est-à-dire la distance entre le point d'attache interne du spiral à la virole et le point d'attache externe. Le nombre de tours a également une influence non-négligeable. Pour cette raison, les spiraux donnés à titre d'exemples dans les figures présentent tous le même couple nominal (même inertie du balancier apparié au spiral pour obtenir une fréquence d'oscillation de 4 Hz), et le même encombrement. Les spiraux sont réalisés en Si. La distance à l'axe de rotation est de 0.6mm pour l'extrémité interne et 2.1mm pour l'extrémité externe. La hauteur des spires est de 150µm.
  • Pour augmenter ou diminuer sélectivement la rigidité de la lame du spiral, on peut en modifier la section, et plus particulièrement l'épaisseur de la lame vu qu'il est connu que la rigidité d'une lame varie avec l'épaisseur au cube. Il serait aussi possible d'avoir recours à un traitement thermique localisé ou encore d'agir sur la forme de la lame par exemple, sans en changer la section, par exemple en modifiant l'orientation de la section droite du spiral par rapport à un centre de rotation prévu pour ce spiral. Ceci pourrait être obtenu en la vrillant ou en formant des ondulations sur la lame du spiral, ou en combinant ces modes de rigidification avec le changement de section.
  • Le spiral objet de l'invention peut être en un matériau fragile, notamment un matériau cristallin tel que le silicium. On peut aisément réaliser un tel spiral présentant une section variable en ayant recours au procédé de fabrication décrit dans le EP 0732635 B1 qui utilise les techniques de masquage avec attaque chimique qui sont parfaitement maîtrisées dans le domaine de l'électronique pour le travail des plaquettes de silicium en particulier. Ce document décrit précisément un procédé de fabrication utilisable notamment pour des spiraux. Bien que ce document ne mentionne pas la possibilité de réaliser un spiral à section non constante, il est évident que la technique de masquage utilisée se prête parfaitement à l'obtention d'un tel résultat. De plus, ce procédé permet de réaliser le spiral d'un seul tenant avec sa virole et son moyen d'encastrement.
  • D'autres techniques utilisant l'électrodéposition multi-couches associée à la technique de masquage pour fabriquer des pièces de micromécanique sont décrites dans deux articles publiés dans Elsevier Sensors and Actuators A 64 (1998) 33-39, High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS, et dans Elsevier Sensors et Actuators A 53 (1996) 364-368, Low-cost technology for multilayer electroplated parts using laminated dry film resist. Ces techniques sont donc utilisables pour former des pièces métalliques de micromécanique présentant un rapport de forme élevé et sont donc tout à fait adaptées à la fabrication d'un spiral métallique de section variable pour produire un spiral à variation de rigidité non monotone. Grâce à ces techniques, il est donc également possible de réaliser un spiral métallique.
  • Bien entendu, les procédés mentionnés sont particulièrement adaptés à la fabrication de spiraux dont la section de la lame n'est pas constante pour obtenir une rigidité variable de façon non monotone en vue de maintenir le centre de gravité du spiral sensiblement sur un centre de rotation prévu pour ce spiral. On pourrait aussi utiliser d'autres procédés, par exemple un traitement thermique ou un usinage par laser, pour modifier ultérieurement à sa fabrication proprement dite, la rigidité du spiral de façon non monotone en vue d'obtenir le résultat recherché. Un traitement ou usinage pourrait aussi être associé à un spiral comprenant au moins deux segments de sections différentes.
  • D'autres moyens de rigidifier sélectivement le spiral pour atteindre le but recherché peuvent être envisagés. C'est ainsi que l'on pourrait varier de manière non monotone la rigidité de ce spiral en formant une couche d'un matériau plus rigide. Cette couche pourrait notamment être réalisée par électrodéposition.
  • On pourrait encore changer la rigidité de ce spiral par dopage du silicium notamment par une technique d'implantation ionique ou par diffusion.
  • La thermocompensation des spiraux est réalisée par des moyens connus. On peut par exemple utiliser une couche de matériau à la surface des spires qui compense le premier coefficient thermique du module d'Young du matériau de base. Dans le cas d'un spiral en Si, un matériau adéquat pour la couche est le SiO2.
  • Le spiral objet de l'invention illustré par la figure 1 comporte une surépaisseur qui va en diminuant à partir de son extrémité interne sur plus de 360° et une surépaisseur qui croît progressivement sur plus de 360° (plus de cinq tours dans le cas de la figure 1) avant l'extrémité externe et jusqu'à cette extrémité externe. Cette variation d'épaisseur non monotone est illustrée par le diagramme de la figure 2. Entre l'extrémité externe du spiral et son épaisseur minimum, l'épaisseur diminue d'un facteur 2,6. Entre son extrémité interne et son épaisseur minimum, l'épaisseur diminue de 35%.
  • Parallèlement à cette variation d'épaisseur non monotone de la lame du spiral et donc de sa rigidité, avantageusement, le pas du spiral objet de l'invention peut aussi varier de façon non monotone, comme illustré par le diagramme de la figure 3. Ce diagramme montre une diminution du pas à partir de l'extrémité interne du spiral, suivie d'une légère augmentation puis d'un maximum local, à deux tours de l'extrémité externe dans cet exemple. Ce maximum local (une brusque augmentation suivie d'une brusque diminution) a pour but d'éviter que les spires ne se touchent lors des oscillations de l'ensemble balancier-spiral. On constatera que cette variation de pas ne nécessite pas d'augmenter sensiblement l'écartement de la spire terminale, ce qui permet d'avoir un spiral avec un nombre de tours élevé, dans cet exemple, plus de 14 tours pour un spiral de 2.1 mm de rayon. Or on sait que plus le nombre de tours est élevé, plus la pente moyenne de l'isochronisme est faible.
  • On peut constater que dans cette forme d'exécution, le pas maximal du spiral n'est pas situé à son extrémité externe, mais se situe sur le tiers externe du spiral (entre 1 et 3 tours de cette extrémité, et plus précisément à 1.75 tours dans cet exemple) et que la valeur du pas présente un maximum local sur le tiers externe du spiral (entre 1 et 3 tours de l'extrémité externe).
  • Les simulations effectuées à l'aide de ce spiral ont montré que cette géométrie de spiral permet de diviser par 2 l'écart maximum entre les différentes positions dans lesquelles la pièce d'horlogerie est testée (CH et FH qui sont les positions horizontales, fond tourné vers le haut, respectivement cadran tourné vers le haut; 3H, 6H, 9H et 12H qui sont les positions verticales avec rotation de 90° entre les positions successives) par rapport à un spiral à pas et à épaisseur constants. L'écart à 250° d'amplitude de l'oscillateur balancier-spiral est de 1,87 s/j. Quant à la pente moyenne de l'isochronisme, le diagramme de la figure 4 montre qu'elle est très légèrement négative à cette amplitude et permet de compenser la pente très légèrement positive due à l'échappement ancre suisse standard.
  • La deuxième forme d'exécution illustrée par la figure 5 comporte deux courbes terminales à rigidité progressive, l'une interne, l'autre externe, qui ont pour fonction de réaliser une transition douce entre les extrémités et les spires centrales. Les zones où le pas est plus grand sont utiles afin que les spires ne se touchent pas en fonctionnement, c'est-à-dire en contraction et en expansion. La partie intermédiaire entre ces deux zones peut très bien se satisfaire d'un petit pas approximativement constant (variation du pas d'environ 4% dans l'exemple de la figure 7). En fait, ce qui se passe lors du développement du spiral est que la partie intermédiaire se déplace globalement dans son ensemble vers le centre en contraction, ou vers l'extérieur en expansion. Elle a donc besoin de place de part et d'autre. La place située vers le centre peut être plus petite que celle située à l'extérieur, et n'est donc pas forcément nécessaire comme le montre le diagramme de la figure 3.
  • En résumé, le diagramme d'épaisseur de la figure 6 est analogue à celui de la forme d'exécution des figures 1-4, c'est-à-dire des surépaisseurs aux deux extrémités du spiral constituant ainsi des courbes terminales s'étendant sur plus de 360°. Entre l'extrémité externe du spiral et son épaisseur minimum, l'épaisseur diminue d'un facteur 4,4. Entre son extrémité interne et son épaisseur minimum, l'épaisseur diminue de 48%.
  • Selon une variante de la figure 6, l'épaisseur de la spire interne et/ou externe pourrait cesser de croître, voire décroître légèrement, sur le dernier tour interne et/ou externe, sans changer notablement les propriétés de l'oscillateur.
  • Le diagramme du pas de la figure 7 comporte des variations non-monotones et progressives, avec un maximum local situé dans le premier tiers du spiral (à 2 tours de l'extrémité interne) en plus de celui situé dans le tiers externe (à environ 3 tours de l'extrémité externe).
  • Comme le montre la figure 8, l'écart à 250° d'amplitude de l'oscillateur balancier-spiral est de 1,99 s/j et est comparable à l'exemple de la figure 4, avec une moyenne de l'écart entre 200 et 300° d'amplitude plus faible que pour le spiral de la figure 1.
  • Deux autres formes d'exécution sont encore représentées. L'une est illustrée par la figure 9 avec des zones à spires écartées dans le tiers intérieur et dans le tiers extérieur, avec une variation continue du pas, sans maximum local du pas ni à l'intérieur ni à l'extérieur. La courbe de variation d'épaisseur a une allure similaire à celle de la première forme d'exécution illustrée par la figure 2, avec une diminution depuis l'extrémité interne sur le tiers interne (quatre premiers tours), une partie d'épaisseur constante, puis une augmentation sur le tiers externe jusqu'à l'extrémité externe (deux derniers tours). Quant au pas, il varie de façon non-monotone, en diminuant de façon progressive de l'extrémité interne jusqu'au milieu de la longueur du spiral et en augmentant ensuite de façon progressive jusqu'à l'extrémité externe du spiral, sans maximum local. Les performances chronométriques sont meilleures que pour les spiraux à pas et à épaisseur constants, mais légèrement moins bonnes que pour les deux premières formes d'exécution (écart maximal entre positions de 2.67 s/j à 250°).
  • L'autre forme d'exécution est illustrée par la figure 10 et comporte une zone centrale beaucoup plus étendue et sans variation de pas dans la partie intérieure du spiral. La courbe de variation d'épaisseur a une allure similaire à celle de la première forme d'exécution illustrée par la figure 2, avec une diminution depuis l'extrémité interne sur le tiers interne (quatre premiers tours), une partie d'épaisseur constante, puis une augmentation sur le tiers externe jusqu'à l'extrémité externe (trois derniers tours). Le pas du spiral illustré par la figure 10 est constant sur le premier tiers interne de la longueur du spiral, ensuite il subit une brusque augmentation suivie d'une diminution, soit un maximum local, à 3 tours et demi de l'extrémité externe. Le pas augmente ensuite à nouveau jusqu'à l'extrémité externe. Les performances chronométriques sont comparables à celles des deux premières formes d'exécution (écart maximal entre positions de 2.08 s/j à 250°).
  • Les formes d'exécution qui précèdent sont données à titre d'exemples non limitatifs. De plus, les variations d'épaisseur et de pas devront être optimisées en fonction du cahier des charges du spiral, c'est-à-dire du couple développé et de l'encombrement (rayon à la virole et rayon au piton) afin d'obtenir des performances chronométriques optimales (écarts de marche entre positions et pente moyenne de l'isochronisme les plus faibles possibles) tout en évitant un contact entre les spires lors du fonctionnement.

Claims (11)

  1. Spiral plat pour balancier d'horlogerie comportant une lame enroulée, conformée pour assurer un développement sensiblement concentrique du spiral et une force quasi nulle exercée sur les pivots et le point d'encastrement, lors d'une rotation inférieure à 360° de son extrémité interne par rapport à son extrémité externe dans les deux sens à partir de sa position de repos, la rigidité de sa lame décroissant de manière progressive et sur plus de 360° à partir, d'une part d'un point situé entre son extrémité interne et sa deuxième spire, caractérisé en ce que la rigidité de sa lame décroit d'autre part d'un point situé entre son extrémité externe et son avant dernière spire, la rigidité la plus faible se situant dans la partie médiane de ladite lame.
  2. Spiral selon la revendication 1, dans lequel le pas du spiral varie de façon non monotone en diminuant entre son extrémité externe et le tiers externe compté en nombre de tours.
  3. Spiral selon l'une des revendications précédentes, dans lequel le pas du spiral varie de façon non monotone en diminuant entre son extrémité interne et le tiers interne compté en nombre de tours.
  4. Spiral selon l'une des revendications précédentes, dans lequel le pas du spiral subit une brusque augmentation suivie d'une brusque diminution, le tout s'étendant sur plus de 360° et se situant à au moins un tour d'au moins une de ses extrémités.
  5. Spiral selon l'une des revendications précédentes, dans lequel les rigidités respectives différentes correspondent à des sections respectives différentes de la lame du spiral.
  6. Spiral selon l'une des revendications précédentes, dans lequel la rigidité diminue d'au moins un facteur 8 entre un point situé entre son extrémité externe et son avant dernière spire, et la valeur minimum.
  7. Spiral selon l'une des revendications précédentes, dans lequel la rigidité diminue d'au moins 50% entre son extrémité interne et la valeur minimum.
  8. Spiral selon l'une des revendications précédentes, réalisé en un matériau fragile.
  9. Spiral selon l'une des revendications précédentes, réalisé en un matériau cristallin.
  10. Spiral selon l'une des revendications précédentes, réalisé en silicium.
  11. Ensemble balancier-spiral utilisant un spiral selon l'une des revendications précédentes.
EP10405172.7A 2009-09-21 2010-09-16 Spiral plat pour balancier d'horlogerie et ensemble balancier-spiral Active EP2299336B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH14542009 2009-09-21
CH00319/10A CH701846B8 (fr) 2009-09-21 2010-03-09 Spiral plat pour balancier d'horlogerie et ensemble balancier-spiral.

Publications (3)

Publication Number Publication Date
EP2299336A2 EP2299336A2 (fr) 2011-03-23
EP2299336A3 EP2299336A3 (fr) 2017-10-11
EP2299336B1 true EP2299336B1 (fr) 2019-04-24

Family

ID=42985690

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10405172.7A Active EP2299336B1 (fr) 2009-09-21 2010-09-16 Spiral plat pour balancier d'horlogerie et ensemble balancier-spiral

Country Status (5)

Country Link
US (1) US8348497B2 (fr)
EP (1) EP2299336B1 (fr)
JP (1) JP5496034B2 (fr)
CN (1) CN102023558B (fr)
CH (1) CH701846B8 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2284629A1 (fr) * 2009-08-13 2011-02-16 ETA SA Manufacture Horlogère Suisse Résonateur mécanique thermocompensé
GB201001897D0 (en) * 2010-02-05 2010-03-24 Levingston Gideon Non magnetic mateial additives and processes for controling the thermoelastic modulus and spring stiffness within springs for precision instruments
US8562206B2 (en) 2010-07-12 2013-10-22 Rolex S.A. Hairspring for timepiece hairspring-balance oscillator, and method of manufacture thereof
CH705471B1 (fr) * 2011-09-07 2016-03-31 Patek Philippe Sa Geneve Mouvement d'horlogerie à balancier-spiral.
US8777195B2 (en) * 2011-09-23 2014-07-15 Adicep Technologies, Inc. Non-linear torsion spring assembly
CH706087B1 (fr) * 2012-02-01 2016-09-15 Société Anonyme De La Mft D'horlogerie Audemars Piguet & Cie Spiral plat pour organe régulateur d'un mouvement d'horlogerie.
HK1178376A2 (en) * 2012-07-17 2013-09-06 Master Dynamic Ltd Hairspring for mechanical timepiece
EP2687917A3 (fr) * 2012-07-17 2018-01-24 Master Dynamic Limited Ressort spiral de pièce d'horlogerie et conception dudit ressort pour la concentricité
HK1178377A2 (en) * 2012-07-17 2013-09-06 Master Dynamic Ltd Hairspring design for concentricity
EP2690507B1 (fr) * 2012-07-26 2014-12-31 Nivarox-FAR S.A. Spiral d'horlogerie
CH707165B1 (fr) * 2012-11-07 2016-12-30 Patek Philippe Sa Geneve Mouvement d'horlogerie à balancier-spiral.
EP2920653A1 (fr) * 2012-11-16 2015-09-23 Nivarox-FAR S.A. Résonateur moins sensible aux variations climatiques
CH706532B1 (fr) * 2012-11-26 2013-11-29 Detra Sa Zi Echappement à ancre pour pièce d'horlogerie.
EP2781968A1 (fr) * 2013-03-19 2014-09-24 Nivarox-FAR S.A. Résonateur moins sensible aux variations climatiques
DE102013110090A1 (de) * 2013-09-13 2015-03-19 Damasko Uhrenmanufaktur KG Schwingsystem für mechanische Uhrwerke
WO2014203086A1 (fr) 2013-06-21 2014-12-24 Damasko Uhrenmanufaktur KG Système oscillant pour mouvements d'horlogerie mécaniques, spirals et leur procédé de production
WO2014203085A1 (fr) * 2013-06-21 2014-12-24 Damasko Uhrenmanufaktur KG Système oscillant pour mouvements d'horlogerie mécaniques, procédé de production d'un spiral et spiral
DE102013106505B8 (de) * 2013-06-21 2014-08-21 Damasko Uhrenmanufaktur KG Schwingsystem für mechanische Uhrwerke
CH708429A1 (fr) 2013-08-19 2015-02-27 Manuf Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle S A Spiral pour organe réglant de montre mécanique, organe régulateur muni d'un tel spiral, et procédé de réalisation d'un tel spiral.
EP2908183B1 (fr) * 2014-02-14 2018-04-18 ETA SA Manufacture Horlogère Suisse Spiral d'horlogerie
US10474104B2 (en) 2015-06-03 2019-11-12 Eta Sa Manufacture Horlogere Suisse Resonator with fine adjustment via an index-assembly
EP3159746B1 (fr) * 2015-10-19 2018-06-06 Rolex Sa Spiral en silicium fortement dopé pour pièce d'horlogerie
EP3214506B1 (fr) * 2016-03-04 2019-01-30 ETA SA Manufacture Horlogère Suisse Spiral a encombrement reduit a double section constante
EP3159748B1 (fr) * 2015-10-22 2018-12-12 ETA SA Manufacture Horlogère Suisse Spiral a encombrement reduit a section variable
EP3159747A1 (fr) * 2015-10-22 2017-04-26 ETA SA Manufacture Horlogère Suisse Spiral a encombrement reduit a section constante
WO2017163148A1 (fr) 2016-03-23 2017-09-28 Patek Philippe Sa Geneve Oscillateur balancier-spiral pour piece d'horlogerie
CH713822A2 (fr) * 2017-05-29 2018-11-30 Swatch Group Res & Dev Ltd Dispositif et procédé d'ajustement de marche et correction d'état d'une montre.
EP3534222A1 (fr) * 2018-03-01 2019-09-04 Rolex Sa Procédé de réalisation d'un oscillateur thermo-compensé
FR3088396B1 (fr) 2018-11-08 2021-06-18 Abdou Dib Ressort de torsion spirale a couple quasi constant pour le stockage d’energie
EP3913441B1 (fr) 2020-05-22 2024-05-01 Patek Philippe SA Genève Oscillateur pour pièce d'horlogerie
EP4293428A1 (fr) * 2022-06-14 2023-12-20 Patek Philippe SA Genève Spiral pour résonateur horloger
EP4372479A1 (fr) * 2022-11-18 2024-05-22 Richemont International S.A. Procede de fabrication de spiraux d'horlogerie

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA910060A (en) * 1972-09-19 Timex Corporation Horological hairspring
BE526689A (fr)
US209642A (en) 1878-11-05 Improvement in balance-springs for time-keepers
CH327796A (fr) 1954-02-22 1958-02-15 Horlogerie Suisse S A Asuag Spiral plat
CH499094A (de) 1967-11-09 1970-11-15 Kienzle Apparate Gmbh Rückstellfeder für Messgeräte
US3528237A (en) * 1968-04-30 1970-09-15 Timex Corp Horological hairspring
CH564219A (fr) 1969-07-11 1975-07-15
EP0045814B1 (fr) * 1980-08-05 1983-12-14 Közuti Közlekedési Tudományos Kutato Intézet Ressort spiral réglable pour appareil mesureur
FR2731715B1 (fr) 1995-03-17 1997-05-16 Suisse Electronique Microtech Piece de micro-mecanique et procede de realisation
DE69911913T2 (de) * 1999-03-26 2004-09-09 Rolex Sa Selbstkompensierende Spiralfeder für Uhrwerkspiralfederunruh und Verfahren zur Behandlung derselben
DE60206939T2 (de) * 2002-11-25 2006-07-27 Csem Centre Suisse D'electronique Et De Microtechnique S.A. Spiraluhrwerkfeder und Verfahren zu deren Herstellung
EP1431844A1 (fr) 2002-12-19 2004-06-23 SFT Services SA Assemblage pour organe régulateur d'un mouvement d'horlogerie
EP1445670A1 (fr) 2003-02-06 2004-08-11 ETA SA Manufacture Horlogère Suisse Spiral de résonateur balancier-spiral et son procédé de fabrication
DE60333076D1 (de) 2003-04-29 2010-08-05 Patek Philippe Sa Unruh- und fläche Spiralfederregulator für Uhrwerk
ATE470086T1 (de) * 2004-06-08 2010-06-15 Suisse Electronique Microtech Unruh-spiralfeder-oszillator mit temperaturkompensation
JP2008116204A (ja) * 2006-10-31 2008-05-22 Seiko Epson Corp ゼンマイ、これを利用した駆動装置並びに機器、およびゼンマイの製造方法
EP2151722B8 (fr) * 2008-07-29 2021-03-31 Rolex Sa Spiral pour résonateur balancier-spiral
EP2184653A1 (fr) * 2008-11-06 2010-05-12 Montres Breguet S.A. Spiral à élévation de courbe en matériau micro-usinable

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CH701846B1 (fr) 2014-07-15
CN102023558B (zh) 2014-08-20
JP2011064687A (ja) 2011-03-31
EP2299336A2 (fr) 2011-03-23
CH701846A1 (fr) 2011-03-31
US20110069591A1 (en) 2011-03-24
JP5496034B2 (ja) 2014-05-21
CN102023558A (zh) 2011-04-20
EP2299336A3 (fr) 2017-10-11
US8348497B2 (en) 2013-01-08
CH701846B8 (fr) 2015-06-15

Similar Documents

Publication Publication Date Title
EP2299336B1 (fr) Spiral plat pour balancier d'horlogerie et ensemble balancier-spiral
EP2476028B1 (fr) Ressort spiral
EP2151722B1 (fr) Spirale pour résonateur balancier-spirale
EP2407831B1 (fr) Spiral pour oscillateur balancier de pièce d'horlogerie et son procédé de fabrication
EP1921518B1 (fr) Elément d'assemblage comportant des structures élastiques en forme de lames superposées et pièce d'horlogerie équipée de cet élément
EP1562087B1 (fr) Balancier pour mouvement d'horlogerie
EP1921516B1 (fr) Elément d'assemblage comportant deux séries de structures élastiques et pièce d'horlogerie comportant cet élément
EP2520984B1 (fr) Barillet comportant des moyens élastiques d'accumulation d'énergie supplémentaires
EP2761380A2 (fr) Ensemble monolithique ressort spiral-virole
EP2705271B1 (fr) Ressort de barillet comportant des courbures d'accumulation d'énergie supplémentaires
WO2011072960A1 (fr) Résonateur thermocompense au moins aux premier et second ordres
WO2012152843A1 (fr) Ressort spiral en silicium pour montre mecanique
CH707554A2 (fr) Résonateur thermocompensé par un métal à mémoire de forme.
EP2690506B1 (fr) Spiral d'horlogerie anti-galop
EP3159746B1 (fr) Spiral en silicium fortement dopé pour pièce d'horlogerie
EP3252542B1 (fr) Pièce de fixation d'un ressort-spiral horloger
CH713409B1 (fr) Balancier pour balancier-spiral du type thermocompensé, balancier-spiral du type thermocompensé, mouvement et pièce d'horlogerie.
EP2869138A2 (fr) Spiral pour organe réglant de montre mécanique, organe régulateur muni d un tel spiral, et procédé de réalisation d un tel spiral
CH705234B1 (fr) Méthode de fabrication d'un spiral.
CH708272B1 (fr) Ressort spiral de mouvement de montre.
WO2023242756A1 (fr) Mouvement horloger à réserve de marche accrue
CH708270B1 (fr) Ressort spiral de mouvement de montre.
CH704890A2 (fr) Barillet comportant des moyens élastiques d'accumulation d'énergie.
CH704889A2 (fr) Ressort de barillet comportant des courbures d'accumulation d'énergie.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: G04B 17/20 20060101ALI20170905BHEP

Ipc: G04B 17/06 20060101AFI20170905BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180409

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181102

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124849

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010058398

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MOINAS AND SAVOYE SARL, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1124849

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010058398

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190916

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190916

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100916

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230927

Year of fee payment: 14

Ref country code: DE

Payment date: 20230911

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 14