EP2273098B1 - Kraftstoffeinspritzventil und Kraftstoffeinspritzsystem - Google Patents

Kraftstoffeinspritzventil und Kraftstoffeinspritzsystem Download PDF

Info

Publication number
EP2273098B1
EP2273098B1 EP10161770.2A EP10161770A EP2273098B1 EP 2273098 B1 EP2273098 B1 EP 2273098B1 EP 10161770 A EP10161770 A EP 10161770A EP 2273098 B1 EP2273098 B1 EP 2273098B1
Authority
EP
European Patent Office
Prior art keywords
fuel
valve
fuel injection
solenoid valve
cooling circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10161770.2A
Other languages
English (en)
French (fr)
Other versions
EP2273098A1 (de
Inventor
Matthias Burger
Dietrich Klauk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2273098A1 publication Critical patent/EP2273098A1/de
Application granted granted Critical
Publication of EP2273098B1 publication Critical patent/EP2273098B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M53/00Fuel-injection apparatus characterised by having heating, cooling or thermally-insulating means
    • F02M53/04Injectors with heating, cooling, or thermally-insulating means
    • F02M53/043Injectors with heating, cooling, or thermally-insulating means with cooling means other than air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • F02M63/008Hollow valve members, e.g. members internally guided
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/003Valve inserts containing control chamber and valve piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2700/00Supplying, feeding or preparing air, fuel, fuel air mixtures or auxiliary fluids for a combustion engine; Use of exhaust gas; Compressors for piston engines
    • F02M2700/07Nozzles and injectors with controllable fuel supply
    • F02M2700/077Injectors having cooling or heating means

Definitions

  • the invention relates to a fuel injection valve for an internal combustion engine having a solenoid valve for controlling the open or closed position of a valve needle, via which the fuel supply to the combustion chamber of the internal combustion engine is controllable.
  • the solenoid valve comprises an electromagnet and a movable armature connected to a valve member and arranged within a valve space.
  • the invention relates to a fuel injection system comprising at least one such injection valve.
  • fuel injectors or fuel injectors are used to inject high pressure fuel into the combustion chamber of an internal combustion engine.
  • the fuel is usually compressed via a high-pressure fuel pump of the fuel injection system to a pressure of up to 2000 bar and a common high pressure storage line ("common rail"), which is also part of the injection system supplied.
  • a common high-pressure accumulator line reaches the high-pressure fuel to the injectors, from where it is injected into the combustion chamber of the internal combustion engine.
  • the actuation of the injection valve is usually via an actuator unit, which may for example comprise a piezo actuator or a solenoid valve, and forms a structural unit with the injection valve.
  • a fuel injector with a solenoid valve as a pressure plate is for example from the published patent application DE 10 2007 029 969 A1 and DE 10 2007 011789 A1 known.
  • the invention is therefore based on the object, a fuel injection valve of the type mentioned in such a way that it is suitable for injection pressures above 2000 bar, without causing the aforementioned disadvantages occur.
  • the proposed fuel injection valve has a solenoid valve for controlling the open or closed position of a valve needle, via which the fuel supply to the combustion chamber of the internal combustion engine is controllable.
  • the solenoid valve comprises an electromagnet and an armature connected to a valve member and movable via the electromagnet, which armature is arranged within a valve chamber.
  • a fuel is provided as a cooling medium incipient cooling circuit for cooling the solenoid valve, wherein the fuel is a storage tank can be removed, with which the solenoid valve is hydraulically connected via a respectively formed on the solenoid valve inlet and outlet.
  • the temperature in the valve chamber can be significantly reduced.
  • a cooling medium is available outside of the fuel injection valve stored fuel, which has a lower temperature than, for example, the fuel, which is used as hydraulic fluid in the injection valve. At injection pressures above 2000 bar, for example, the temperature of the hydraulic fluid can be well over 200 ° C and thus exceed the maximum allowable temperature of critical components.
  • valve chamber is connected to the cooling circuit, so that at the same time a flushing, in particular a forced flushing, of the valve chamber can be effected via the circulating fuel.
  • a flushing in particular a forced flushing
  • the gas content in the valve chamber is kept as constant as possible.
  • the pressure required to convey the fuel serving as cooling medium is preferably effected via a prefeed pump which is integrated in the cooling circuit.
  • the prefeed pump is arranged between the inlet of the solenoid valve and the storage tank. This means that advantageously the inlet of the cooling circuit is connected to the pressure side of the prefeed pump, while the fuel of the return circuit passes directly through the process back into the storage tank.
  • the fuel of the cooling circuit is pumped from the tank through the valve chamber and back into the tank. In this way, a constant cooling of the valve chamber is ensured.
  • the fuel feed pump is set such that the refrigeration cycle is a low pressure circuit.
  • At least one plug-in element which can be connected to the solenoid valve is provided for the hydraulic connection of the inlet formed on the magnetic valve and / or the outlet formed on the magnetic valve with the storage tank.
  • both the inlet, and the drain connected to the plug element.
  • At least two further connections are provided on the plug-in element, by way of which the plug-in element can in turn be connected to the storage tank on the inlet and outlet side.
  • the plug-in element is also T-shaped and has separate flow paths for the incoming and outgoing fuel.
  • the two separate flow paths are hydraulically connected to each other via the valve space, so that a circuit is formed.
  • the plug element preferably has at least one radial bore and / or an axial bore, wherein the bores are each arranged on a common leg of the preferably T-shaped plug-in element.
  • For hydraulic connection of this leg is then placed in a corresponding recess of the solenoid valve, so that a radial bore opens into the inlet formed on the solenoid valve and the drain formed on the solenoid valve is connected via an axial bore of the leg.
  • the flow paths are securely separated.
  • connection can also be reversed, so that the drain formed on the solenoid valve is hydraulically connected to a radial and the inlet to an axial bore of the plug-in element.
  • the flow paths are separated by a central wall.
  • at least one fuel-carrying groove is furthermore preferably provided on the outside of the magnetic core of the electromagnet. This groove can be arranged to extend radially and / or axially. This depends inter alia on which position and orientation of the inlet or the drain has, depending on whether the groove is to lead incoming or outgoing fuel.
  • the magnetic core may have a pot-shaped design and the bottom side in conjunction with the T-shaped plug element, so that a radial bore of the plug element first opens into a radially guided over the bottom side of the magnetic core groove.
  • This groove can be led to radially outward and extend axially from here over the outer peripheral side of the magnetic core until it opens into the valve chamber.
  • such a groove is used on the inlet side.
  • At least one fuel-carrying radially and / or axially extending bore in the magnetic core is also provided to form the cooling circuit, which is preferably used on the outlet side.
  • the cooling circuit which is preferably used on the outlet side.
  • the bore of the guide is used by incoming fuel. Because as already mentioned, the connection of the inlet and the outlet can be made either via a radial or axial bore of the plug element.
  • At least one radially and / or axially extending fuel leading bore in the armature is further provided to form the cooling circuit, so that the valve chamber, for example, with a radially and / or axially extending bore of the magnetic core is connectable.
  • the preferably plate-shaped armature may also have a plurality of recesses, for example in the form of a perforation, via which a hydraulic connection of the valve chamber with at least one serving as a drain bore or groove on the magnetic core can be produced.
  • the fuel injection valve according to the invention proves to be suitable not only for injection systems that exceed a system pressure of 2000 bar, but also for existing systems in which the system pressure is still below 2000 bar. Because of the proposed cooling circuit allows a multiple-clocked injection with very short switching cycles, since overheating of the solenoid due to the correspondingly higher electrical currents is not to be feared. Thus, a multiple injection need not be limited to a few injections. Furthermore, a temperature-induced power loss of the electromagnet can be effectively prevented. The advantages mentioned above are particularly evident in fuel injectors with servo-operated solenoid valves.
  • the fuel injection system comprises a plurality of fuel injection valves of the aforementioned type, which are connected in parallel and / or in series, preferably via the flow paths of a plug-in element.
  • a combination of parallel and series connection is also conceivable.
  • a parallel circuit largely corresponds to the individual circuit already described above. This means that the inlet and the outlet of each injection valve is in direct connection with the storage tank, so that the fuel provided for cooling can be taken directly from the storage tank.
  • the fuel injection valve of FIG. 1 comprises a housing part 21, in which a solenoid valve 1 is held for actuating a valve needle 2, via the open or closed position, the fuel supply to the combustion chamber, he internal combustion engine is controllable.
  • the actuation of the valve needle 2 via the respectively set hydraulic pressure of a control chamber 22, via which the valve needle 2 can be acted upon by a closing pressure. If a pressure drop in the control chamber 22 is effected, the valve needle 2 can assume an open position, in which the release of at least one injection opening takes place via which the injection can be carried out.
  • valve member 4 of the solenoid valve 1 In order to effect a pressure drop in the control chamber 22, a valve member 4 of the solenoid valve 1 is moved to an open position, so that hydraulic fluid can flow out of the control chamber 22 into a valve chamber 6 designed as a low-pressure chamber via an outflow throttle 23, in which the valve member 4 is accommodated.
  • the valve member 4 forms a structural unit with a plate-shaped armature 5, the over the electromagnet 3 is movable such that the valve member 4 can be converted into an open position or a closed position.
  • a magnetic force is exerted on the armature 5, via which the armature 5 including the valve member 4 is moved counter to the pressure force of a valve closing spring 24 in the direction of the magnetic core 17 of the electromagnet 3.
  • the valve member 4 is lifted from its valve seat 25.
  • the lifting movement of the valve member 4 is limited by a trained on the magnetic core 17 stroke stop 26.
  • the stop 26 may be provided with either a non-magnetic stainless steel disc or a chromium coating.
  • the magnetic force collapses and the valve closing spring 24 pushes the valve member 4 back into the valve seat 25, so that the connection to the control chamber 22 is shut off.
  • Via an inlet throttle 27 inflowing fuel can thus cause an increase in the control pressure in the control chamber 22, which transfers the valve needle 2 in a closed position.
  • the solenoid valve of the injector FIG. 1 is "pressure balanced", that is, in the closed position of the valve member 4 no hydraulic forces on the valve member 4 attack.
  • the injection valve has the FIG. 2 a solenoid valve 1, which is not “pressure balanced”. Because the valve member 4 is acted upon in the closed position by the pressure prevailing in the valve chamber 6 hydraulic pressure.
  • the valve seat 25 is in the embodiment of FIG. 2 also conical shaped to cooperate with a part-spherical closing body of the valve member 4.
  • the solenoid valve 1 has a connectable to a storage tank 8 cooling circuit 7, is used in the fuel from the storage tank 8 as a cooling medium.
  • a prefeed pump 11 is arranged between inlet 9 and storage tank 8, the delivery pressure of which permits forced flushing of the valve space 6 connected to the cooling circuit 7.
  • the hydraulic connection of the inlet 9 and the outlet 10 with the storage tank 8 is at the solenoid valve 1 itself produced via a T-shaped plug-in element 12, whose centrally arranged leg, in which two separate flow paths 13, 14 are formed, can be inserted into a central recess of the solenoid valve 1.
  • the recess of the solenoid valve 1 is formed in the bottom region of a cup-shaped magnetic core 17.
  • the usable in this recess leg of the plug element 12 has two connection holes 15, 16, of which one extends radially and the other axially.
  • the radial bore 15 is presently assigned to the inlet 9 of the solenoid valve and the axial bore 16 to the drain 10. However, the assignment can also be reversed, as long as it is ensured that a circuit with separate flow paths 13, 14 is formed, which via the valve chamber. 6 communicate with each other.
  • the inlet 9 continues in a magnetic core 17 formed, initially radially extending groove 18 in the bottom region of the magnetic core 17, which is axially guided along the outer periphery of the magnetic core 17 to finally open into the valve chamber 6.
  • the plate-shaped armature 5 has a bore 20, which finds its continuation in an axial bore 19 of the magnetic core 17, to which the axial bore 16 of the T-shaped plug-in element 12 connects. The cycle is closed.
  • the valve chamber 6 is supplied with “cold” fuel from the storage tank 8 via the prefeed pump 11. There, the “cold” fuel mixed with the existing "hot” fuel, the temperature in the valve chamber 6 is cooled down. At the same time a "cold / hot” fuel mixture in an appropriate amount from the valve chamber 6 again supplied to the storage tank 8.
  • the prefeed pump 11 ensures a sufficient delivery pressure, so that the valve chamber 6 undergoes a forced flush via the cooling circuit 7. As a result, the temperature in the valve chamber 6 can be lowered permanently.
  • the idea according to the invention can be implemented very easily in already existing series products.
  • the invention is particularly interesting for use in commercial vehicles, because here prevail usually very high system pressures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

    Stand der Technik
  • Die Erfindung betrifft ein Kraftstoffeinspritzventil für eine Brennkraftmaschine mit einem Magnetventil zur Steuerung der Offen- oder Schließstellung einer Ventilnadel, über welche die Kraftstoffzufuhr zum Brennraum der Brennkraftmaschine steuerbar ist. Das Magnetventil umfasst hierzu einen Elektromagneten und einen mit einem Ventilglied verbundenen, innerhalb eines Ventilraumes angeordneten, beweglichen Anker. Des Weiteren betrifft die Erfindung ein Kraftstoffeinspritzsystem, das wenigstens ein solches Einspritzventil umfasst.
  • In einem Kraftstoffeinspritzsystem dienen Kraftstoffeinspritzventile bzw. Kraftstoffinjektoren der Einspritzung von unter hohem Druck stehenden Kraftstoff in den Brennraum einer Brennkraftmaschine. Zuvor wird der Kraftstoff üblicherweise über eine Kraftstoffhochdruckpumpe des Kraftstoffeinspritzsystems auf einen Druck von bis zu 2000 bar verdichtet und einer gemeinsamen Hochdruckspeicherleitung ("Common Rail"), die ebenfalls Bestandteil des Einspritzsystems ist, zugeführt. Über die gemeinsame Hochdruckspeicherleitung gelangt der unter hohem Druck stehende Kraftstoff zu den Injektoren, von wo aus er in den Brennraum der Brennkraftmaschine eingespritzt wird. Die Betätigung des Einspritzventils erfolgt in der Regel über eine Aktor-Einheit, die beispielsweise einen Piezo-Aktor oder ein Magnetventil umfassen kann, und eine Baueinheit mit dem Einspritzventil bildet. Ein Kraftstoffinjektor mit einem Magnetventil als Drucksteller ist zum Beispiel aus der Offenlegungsschrift DE 10 2007 029 969 A1 und DE 10 2007 011789 A1 bekannt.
  • Bei der Weiterentwicklung von Einspritzsystemen wird insbesondere der Einhaltung der allgemein geforderten hohen Schadstoffgrenzwerte Beachtung geschenkt. Um diese zu erfüllen, werden bereits Einspritzsysteme entwickelt, deren Systemdruck deutlich über 2000 bar liegt. Darüber hinaus werden schnell schaltende Einspritzventile für derart hohe Einspritzdrücke bereit gestellt. Mit der Erhöhung des Einspritzdruckes sowie mit der Steigerung der Schaltdynamik geht jedoch ein Temperaturanstieg im Ventilraum des Einspritzventils einher, der die Funktionsfähigkeit der Aktor-Einheit, insbesondere die eines Magnetventils, gefährden kann. Denn an die Temperaturbeständigkeit der Bauteile eines Magnetventils werden bereits aufgrund der hohen Ströme der Magnetspule von bis zu 30 A und der damit verbundenen Heizwirkung hohe Anforderungen gestellt. Als besonders temperaturempfindliche Bauteile sind beispielsweise der Spulenträger oder die Beschichtung des Spulendrahtes anzusehen. Zugleich führt ein Temperaturanstieg im Ventilraum zu einem höheren Gasgehalt, wodurch ebenfalls die Funktionsfähigkeit des Einspritzventils beeinträchtigt werden kann.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Kraftstoffeinspritzventil der eingangs genannten Art derart weiterzuentwickeln, dass es auch für Einspritzdrücke über 2000 bar geeignet ist, ohne dass dabei die vorstehend genannten Nachteile auftreten.
  • Offenbarung der Erfindung
  • Zur Lösung der Aufgabe wird ein Kraftstoffeinspritzventil mit den Merkmalen des Anspruchs 1 vorgeschlagen. Vorteilhafte Weiterbildungen der Erfindung werden in den Unteransprüchen angegeben. Ferner wird ein Kraftstoffeinspritzsystem beansprucht, das ein solches Einspritzventil umfasst.
  • Das vorgeschlagene Kraftstoffeinspritzventil weist ein Magnetventil zur Steuerung der Offen- oder Schließstellung einer Ventilnadel auf, über welche die Kraftstoffzufuhr zum Brennraum der Brennkraftmaschine steuerbar ist. Das Magnetventil umfasst einen Elektromagneten und einen mit einem Ventilglied verbundenen, über den Elektromagneten bewegbaren Anker, der innerhalb eines Ventilraumes angeordnet ist.
  • Erfindungsgemäß ist zur Kühlung des Magnetventils ein Kraftstoff als Kühlmedium einsetzender Kühlkreislauf vorgesehen, wobei der Kraftstoff einem Vorratstank entnehmbar ist, mit dem das Magnetventil über jeweils einen am Magnetventil ausgebildeten Zulauf und Ablauf hydraulisch verbindbar ist. Durch Ausbildung eines Kühlkreiskaufes kann die Temperatur im Ventilraum deutlich gesenkt werden. Denn als Kühlmedium steht außerhalb des Kraftstoffeinspritzventils bevorrateter Kraftstoff zur Verfügung, der eine geringere Temperatur aufweist, als beispielsweise der Kraftstoff, der im Einspritzventil als Hydraulikfluid Verwendung findet. Bei Einspritzdrücken über 2000 bar kann beispielsweise die Temperatur des Hydraulikfluids weit über 200°C liegen und damit die maximal zulässige Temperatur kritischer Bauteile überschreiten. Indem eine Vermischung des zugeführten "kalten" Kraftstoffs mit dem vorhandenen "heißen" Kraftstoff angestrebt wird, stellt sich im Ventilraum eine Gleichgewichtstemperatur ein, die für die kritischen Bauteile des Magnetventils unbedenklich ist. Darüber hinaus findet ein regelmäßiger Austausch der Hydraulikflüssigkeit statt, so dass auch ein erhöhter Gasgehalt abgebaut wird.
  • Weiterhin ist vorgesehen, dass der Ventilraum an den Kühlkreislauf angeschlossen ist, so dass über den zirkulierenden Kraftstoff zugleich eine Spülung, insbesondere eine Zwangsspülung, des Ventilraumes bewirkbar ist. Dadurch ist zum Einen sicher gestellt, dass aus dem Hochdruckbereich zurück in den Ventilraum gelangendes, heißes Hydraulikfluid nicht im Ventilraum verbleibt, sondern abtransportiert wird. Zum Anderen ist gewährleistet, dass der Gasgehalt im Ventilraum weitestgehend konstant gehalten wird. Mit einer Zwangsspülung werden die im Wesentlichen temperaturbedingten Gasanteile heraus gespült und ein Anstieg der Fluidtemperatur wirksam verhindert.
  • Der zur Förderung des als Kühlmedium dienenden Kraftstoffes erforderliche Druck wird vorzugsweise über eine Vorförderpumpe bewirkt, die in den Kühlkreislauf eingebunden ist. Vorteilhafterweise ist die Vorförderpumpe zwischen dem Zulauf des Magnetventils und dem Vorratstank angeordnet. Das heißt, dass vorteilhafterweise der Zulauf des Kühlkreislaufes an die Druckseite der Vorförderpumpe angeschlossen ist, während der Kraftstoff des Rückkreislaufes direkt über den Ablauf zurück in den Vorratstank gelangt. Dabei wird der Kraftstoff des Kühlkreislaufes vom Tank durch den Ventilraum hindurch und wieder zurück in den Tank gepumpt. Auf diese Weise ist eine konstante Kühlung des Ventilraumes sichergestellt. Die Kraftstoffvorförderpumpe ist derart eingestellt, dass der Kühlkreislauf einen Niederdruckkreislauf darstellt.
  • Erfindungsgemäß ist zur hydraulischen Verbindung des am Magnetventil ausgebildeten Zulaufes und/oder des am Magnetventil ausgebildeten Ablaufes mit dem Vorratstank wenigstens ein mit dem Magnetventil verbindbares Steckelement vorgesehen. Erfindungsgemäß sind sowohl der Zulauf, als auch der Ablauf mit dem Steckelement verbunden. Am Steckelement selbst sind weiterhin wenigstens zwei weitere Anschlüsse vorgesehen, über welche das Steckelement wiederum zulauf- und ablaufseitig mit dem Vorratstank verbindbar ist. Der Einsatz eines Steckelementes ermöglicht eine besonders einfache Art der Verbindung, so dass ein entsprechender Kühlkreislauf leicht herstellbar ist.
  • Das Steckelement ist zudem T-förmig ausgebildet und weist getrennte Strömungspfade für den zulaufenden und den ablaufenden Kraftstoff auf. Die beiden getrennten Strömungspfade stehen über den Ventilraum hydraulisch miteinander in Verbindung, so dass ein Kreislauf ausgebildet wird.
    Zur hydraulischen Verbindung mit dem Magnetventil weist das Steckelement vorzugsweise wenigstens eine radiale Bohrung und/oder eine axiale Bohrung auf, wobei die Bohrungen jeweils an einem gemeinsamen Schenkel des vorzugsweise T-förmigen Steckelementes angeordnet sind. Zur hydraulischen Verbindung wird dieser Schenkel dann in eine entsprechende Ausnehmung des Magnetventils gesetzt, so dass eine radiale Bohrung in den am Magnetventil ausgebildeten Zulauf mündet und der am Magnetventil ausgebildete Ablauf über eine axiale Bohrung des Schenkels angeschlossen wird. Somit sind die Strömungspfade sicher getrennt. Alternativ kann die Anschluss auch umgekehrt erfolgen, so dass der am Magnetventil ausgebildete Ablauf mit einer radialen und der Zulauf mit einer axialen Bohrung des Steckelementes hydraulisch verbunden ist. Innerhalb des Schenkels des T-Profils werden die Strömungspfade über eine Mittelwand getrennt.
    Zur Ausbildung des Kühlkreislaufes ist weiterhin bevorzugt wenigstens eine Kraftstoff führende Nut außen am Magnetkern des Elektromagneten vorgesehen. Diese Nut kann radial und/oder axial verlaufend angeordnet sein. Dies hängt unter anderem davon ab, welche Lage und Ausrichtung der Zulauf bzw. der Ablauf besitzt, je nach dem, ob die Nut zulaufenden oder ablaufenden Kraftstoff führen soll. Beispielsweise kann der Magnetkern eine topfförmige Gestaltung aufweisen und bodenseitig in Verbindung mit dem T-förmigen Steckelement stehen, so dass eine radiale Bohrung des Steckelementes zunächst in eine radial über die Bodenseite des Magnetkerns geführte Nut mündet. Diese Nut kann bis nach radial außen geführt sein und von hier aus axial über die Außenumfangseite des Magnetkerns verlaufen, bis sie in den Ventilraum mündet. Vorzugsweise wird eine solche Nut zulaufseitig genutzt.
  • Weiterhin vorzugsweise ist zur Ausbildung des Kühlkreislaufes zudem wenigstens eine Kraftstoff führende radial und/oder axial verlaufende Bohrung im Magnetkern vorgesehen, die bevorzugt ablaufseitig genutzt wird. Wird jedoch die vorstehend beschriebene Nut bereits ablaufseitig genutzt, dient die Bohrung der Führung von zulaufendem Kraftstoff. Denn wie bereits erwähnt kann der Anschluss des Zulaufes und des Ablaufes wahlweise über eine radiale oder axiale Bohrung des Steckelementes erfolgen.
  • Bevorzugt ist zur Ausbildung des Kühlkreislaufes ferner wenigstens eine radial und/oder axial verlaufende Kraftstoff führende Bohrung im Anker vorgesehen, damit der Ventilraum beispielsweise mit einer radial und/oder axial verlaufenden Bohrung des Magnetkerns verbindbar ist. Der vorzugsweise plattenförmige Anker kann auch mehrere Ausnehmungen, beispielsweise in Form einer Perforation, aufweisen, über welche eine hydraulische Verbindung des Ventilraumes mit wenigstens einer als Ablauf dienenden Bohrung oder Nut am Magnetkern herstellbar ist.
  • Das erfindungsgemäße Kraftstoffeinspritzventil erweist sich jedoch nicht nur für Einspritzsysteme als geeignet, die einen Systemdruck von 2000 bar überschreiten, sondern auch für bestehende Systeme, bei denen der Systemdruck noch unter 2000 bar liegt. Denn der vorgeschlagene Kühlkreislauf ermöglicht eine vielfach getaktete Einspritzung mit besonders kurzen Schaltzyklen, da eine Überhitzung der Magnetspule aufgrund der entsprechend höheren elektrischen Ströme nicht zu befürchten ist. Somit muss eine Mehrfacheinspritzung nicht auf wenige Einspritzungen limitiert werden. Weiterhin kann ein temperaturbedingter Leistungsabfall des Elektromagneten wirksam verhindert werden. Die vorstehend genannten Vorteile kommen insbesondere bei Kraftstoffinjektoren mit servobetriebenen Magnetventilen deutlich zum Tragen.
  • Des Weiteren wird ein Kraftstoffeinspritzsystem einer Brennkraftmaschine mit wenigstens einem erfindungsgemäßen Kraftstoffeinspritzventil vorgeschlagen. Vorzugsweise umfasst das Kraftstoffeinspritzsystem mehrere Kraftstoffeinspritzventile der vorstehend genannten Art, die, bevorzugt über die Strömungspfade eines Steckelements, parallel und/oder in Reihe geschaltet sind. Eine Kombination aus Parallel- und Reihenschaltung ist ebenfalls denkbar.
  • Eine Parallelschaltung entspricht weitestgehend der vorstehend bereits beschrieben Einzelschaltung. Das heißt, dass der Zulauf und der Ablauf eines jeden Einspritzventiles in direkter Verbindung mit dem Vorratstank steht, so dass der zur Kühlung vorgesehene Kraftstoff direkt dem Vorratstank entnommen werden kann.
  • Bei einer Reihenschaltung werden dagegen mehrere Einspritzventile hintereinander geschaltet. Das heißt, dass der zur Kühlung vorgesehen Kraftstoff dem Ablauf des jeweils vorgeschalteten Einspritzventils entnommen wird, so dass dieser bereits erwärmt ist und eine geringer Kühlleistung bewirkt. Als vorteilhaft erweist sich jedoch der einfache Aufbau einer solchen Reihenschaltung. Daher kann eine Kombination aus Parallel-und Reihenschaltung je nach Anzahl der verschalteten Injektoren sinnvoll sein.
  • Bevorzugte Ausführungsbeispiele eines erfindungsgemäßen Einspritzventils werden nachfolgend anhand der Zeichnungen näher erläutert. Diese zeigen:
  • Fig. 1
    einen Längsschnitt durch ein erstes erfindungsgemäßes Einspritzventil im Bereich des Magnetventils und
    Fig. 2
    einen Längsschnitt durch ein zweites erfindungsgemäßes Einspritzventil im Bereich des Magnetventils.
  • Das Kraftstoffeinspritzventil der Figur 1 umfasst ein Gehäuseteil 21, in welcher ein Magnetventil 1 zur Betätigung einer Ventilnadel 2 gehalten ist, über deren Offen- bzw. Schließstellung die Kraftstoffzufuhr zum Brennraum er Brennkraftmaschine steuerbar ist. Die Betätigung der Ventilnadel 2 erfolgt über den jeweils eingestellten Hydraulikdruck eines Steuerraumes 22, über welchen die Ventilnadel 2 mit einem Schließdruck beaufschlagbar ist. Wird ein Druckabfall im Steuerraum 22 bewirkt, kann die Ventilnadel 2 eine Offenstellung einnehmen, in der die Freigabe wenigstens einer Einspritzöffnung erfolgt, über welche die Einspritzung vorgenommen werden kann. Um einen Druckabfall im Steuerraum 22 zu bewirken, wird ein Ventilglied 4 des Magnetventils 1 in eine Offenstellung bewegt, so dass über eine Abflussdrossel 23 Hydraulikfluid aus dem Steuerraum 22 in einen als Niederruckraum ausgebildeten Ventilraum 6 abfließen kann, in welchem das Ventilglied 4 aufgenommen ist. Bei dem Beispiel der Figur 1 bildet das Ventilglied 4 eine bauliche Einheit mit einem plattenförmigen Anker 5, der über den Elektromagneten 3 derart bewegbar ist, dass das Ventilglied 4 in eine Offenstellung oder eine Schließstellung überführt werden kann.
  • Bei einer Ansteuerung des Elektromagneten 3 wird eine Magnetkraft auf den Anker 5 ausgeübt, über welche der Anker 5 einschließlich Ventilglied 4 entgegen der Druckkraft einer Ventilschließfeder 24 in Richtung Magnetkern 17 des Elektromagneten 3 bewegt wird. Dabei wird das Ventilglied 4 aus seinem Ventilsitz 25 gehoben. Die Hubbewegung des Ventilgliedes 4 wird durch einen am Magnetkern 17 ausgebildeten Hubanschlag 26 begrenzt. Der Anschlages 26 kann entweder mit einer amagnetischen Edelstahlscheibe oder einer Chrombeschichtung versehen sein. Bei einer Absteuerung des Elektromagneten 3 bricht die Magnetkraft zusammen und die Ventilschließfeder 24 drückt das Ventilglied 4 in den Ventilsitz 25 zurück, so dass die Verbindung zum Steuerraum 22 abgesperrt ist. Über eine Zulaufdrossel 27 einströmender Kraftstoff kann somit einen Anstieg des Steuerdruckes im Steuerraum 22 bewirken, der die Ventilnadel 2 in eine Schließstellung überführt.
  • Das Magnetventil des Einspritzventils der Figur 1 ist "druckausgeglichen", das heißt, dass in Schließstellung des Ventilgliedes 4 keine hydraulischen Kräfte am Ventilglied 4 angreifen. Im Unterschied dazu weist das Einspritzventil der Figur 2 ein Magnetventil 1 auf, das nicht "druckausgeglichen" ist. Denn das Ventilglied 4 wird in Schließstellung vom im Ventilraum 6 herrschenden hydraulischen Druck beaufschlagt. Der Ventilsitz 25 ist bei dem Ausführungsbeispiel der Figur 2 zudem kegelförmig ausgebildet, um mit einem teilkugelförmigen Schließkörper des Ventilgliedes 4 zusammenzuwirken. Der nachfolgend näher beschriebene Aufbau des erfindungsgemäß vorgesehenen Kühlkreislaufes 7 ist bei beiden dargestellten Ausführungsbeispielen jedoch nahezu identisch, weshalb die nachfolgenden Ausführungen für beide Ausführungsbeispiele Gültigkeit besitzen.
  • Das Magnetventil 1 weist einen mit einem Vorratstank 8 verbindbaren Kühlkreislauf 7 auf, bei dem Kraftstoff aus dem Vorratstank 8 als Kühlmedium eingesetzt wird. Hierzu sind am Magnetventil 1 wenigstens ein Zulauf 9 und ein Ablauf 10 ausgebildet. Um den erforderlichen Förderdruck zu bewirken, ist zwischen Zulauf 9 und Vorratstank 8 eine Vorförderpumpe 11 angeordnet, deren Förderdruck eine Zwangsspülung des an den Kühlkreislauf 7 angeschlossenen Ventilraums 6 ermöglicht. Die hydraulische Verbindung des Zulaufes 9 und des Ablaufes 10 mit dem Vorratstank 8 wird am Magnetventil 1 selbst über ein T-förmiges Steckelement 12 hergestellt, dessen mittig angeordneter Schenkel, in dem zwei getrennte Strömungspfade 13, 14 ausgebildet sind, in eine zentrale Ausnehmung des Magnetventils 1 einsetzbar ist. Bei den beiden dargestellten Ausführungsbeispielen ist die Ausnehmung des Magnetventils 1 ist im Bodenbereich eines topfförmigen Magnetkerns 17 ausgebildet. Der in diese Ausnehmung einsetzbare Schenkel des Steckelementes 12 weist zwei Anschlussbohrungen 15, 16 auf, von denen die eine radial und die andere axial verläuft. Die radiale Bohrung 15 ist vorliegend dem Zulauf 9 des Magnetventils zugeordnet und die axiale Bohrung 16 dem Ablauf 10. Die Zuordnung kann jedoch auch umgekehrt erfolgen, solange gewährleistet ist, dass ein Kreislauf mit getrennten Strömungspfaden 13, 14 ausgebildet wird, die über den ventilraum 6 in Verbindung miteinander stehen.
  • Der Zulauf 9 setzt sich in einer am Magnetkern 17 ausgebildeten, zunächst radial verlaufenden Nut 18 im Bodenbereich des Magnetkerns 17 fort, die entlang des Außenumfangs des Magnetkerns 17 axial geführt ist, um schließlich in den Ventilraum 6 zu münden. Um den Ventilraum 6 mit dem Ablauf 10 zu verbinden weist der plattenförmige Anker 5 eine Bohrung 20 auf, die ihre Fortsetzung in einer axialen Bohrung 19 des Magnetkerns 17 findet, an welche die axiale Bohrung 16 des T-förmigen Steckelementes 12 anschließt. Der Kreislauf ist geschlossen.
  • Zur Kühlung des Magnetventils 1 wird dem Ventilraum 6 "kalter" Kraftstoff aus dem Vorratstank 8 über die Vorförderpumpe 11 zugeführt. Dort vermischt sich der "kalte" Kraftstoff mit dem vorhandenen "heißen" Kraftstoff, wobei die Temperatur im Ventilraum 6 herunter gekühlt wird. Zugleich wird eine "kalt/heiße" Kraftstoffmischung in entsprechender Menge aus dem Ventilraum 6 wieder dem Vorratstank 8 zugeführt. Die Vorförderpumpe 11 stellt dabei einen ausreichenden Förderdruck sicher, so dass der Ventilraum 6 über den Kühlkreislauf 7 eine Zwangsspülung erfährt. Dadurch kann die Temperatur im Ventilraum 6 dauerhaft abgesenkt werden.
  • Der erfindungsgemäße Gedanke lässt sich sehr einfach in bereits bestehenden Serienprodukten umsetzen. Dabei ist die Erfindung insbesondere für die Anwendung bei Nutzfahrzeugen interessant, weil hier in der Regel besonders hohe Systemdrücke vorherrschen.

Claims (8)

  1. Kraftstoffeinspritzventil für eine Brennkraftmaschine mit einem Magnetventil (1) zur Steuerung der Offen- oder Schließstellung einer Ventilnadel (2), über welche die Kraftstoffzufuhr zum Brennraum der Brennkraftmaschine steuerbar ist, wobei das Magnetventil einen Elektromagneten (3) und einen mit einem Ventilglied (4) verbundenen, über den Elektromagneten bewegbaren Anker (5) umfasst, der innerhalb eines Ventilraumes (6) angeordnet ist, wobei zur Kühlung des Magnetventils (1) ein Kraftstoff als Kühlmedium einsetzender Kühlkreislauf (7) vorgesehen ist, wobei der Kraftstoff einem Vorratstank (8) entnehmbar ist, wobei das Magnetventil jeweils über einen am Magnetventil ausgebildeten Zulauf (9) und Ablauf (10) hydraulisch mit dem Kühlkreis (7) verbunden und wobei der Ventilraum (6) an den Kühlkreislauf (7) angeschlossen ist, so dass über den zirkulierenden Kraftstoff zugleich eine Zwangsspülung des Ventilraumes (6) bewirkbar ist, dadurch gekennzeichnet, dass zur hydraulischen Verbindung des am Magnetventil (1) ausgebildeten Zulaufes (9) und/oder des am Magnetventil (1) ausgebildeten Ablaufes (10) mit dem Vorratstank (8) wenigstens ein mit dem Magnetventil verbindbares Steckelement (12) vorgesehen ist, wobei das Steckelement (12) T-förmig ausgebildet ist und getrennte Strömungspfade (13, 14) für den zulaufenden und den ablaufenden Kraftstoff aufweist.
  2. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der zur Förderung des als Kühlmedium dienenden Kraftstoffes erforderliche Druck über eine Vorförderpumpe (11) bewirkbar ist, die vorzugsweise zwischen Zulauf (9) und Vorratstank (8) angeordnet ist.
  3. Kraftstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass das Steckelement (12) wenigstens eine radiale Bohrung (15) und/oder eine axiale Bohrung (16) zur hydraulischen Verbindung mit dem Magnetventil (1) aufweist.
  4. Kraftstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Ausbildung des Kühlkreislaufes wenigstens eine Kraftstoff führende Nut (18) außen am Magnetkern (17) des Elektromagneten (3) vorgesehen ist, die radial und/oder axial verläuft.
  5. Kraftstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Ausbildung des Kühlkreislaufes wenigstens eine Kraftstoff führende Bohrung (19) im Magnetkern (17) des Elektromagneten (3) vorgesehen ist, die radial und/oder axial verläuft.
  6. Kraftstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Ausbildung des Kühlkreislaufes wenigstens eine Kraftstoff führende Bohrung (20) im Anker (5) vorgesehen ist, die radial und/oder axial verläuft.
  7. Kraftstoffeinspritzsystem einer Brennkraftmaschine mit wenigstens einem Kraftstoffeinspritzventil nach einem der vorstehenden Ansprüche.
  8. Kraftstoffeinspritzsystem nach Anspruch 7, dadurch gekennzeichnet, dass mehrere Kraftstoffeinspritzventile über die Strömungspfade (13, 14) des Steckelements (12) parallel und/oder in Reihe geschaltet sind.
EP10161770.2A 2009-07-03 2010-05-03 Kraftstoffeinspritzventil und Kraftstoffeinspritzsystem Not-in-force EP2273098B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009027459A DE102009027459A1 (de) 2009-07-03 2009-07-03 Kraftstoffeinspritzventil und Kraftstoffeinspritzsystem

Publications (2)

Publication Number Publication Date
EP2273098A1 EP2273098A1 (de) 2011-01-12
EP2273098B1 true EP2273098B1 (de) 2017-01-25

Family

ID=42830070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10161770.2A Not-in-force EP2273098B1 (de) 2009-07-03 2010-05-03 Kraftstoffeinspritzventil und Kraftstoffeinspritzsystem

Country Status (2)

Country Link
EP (1) EP2273098B1 (de)
DE (1) DE102009027459A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT512422B1 (de) * 2012-02-07 2016-01-15 Bosch Gmbh Robert Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE102013227063A1 (de) * 2013-12-23 2015-06-25 Robert Bosch Gmbh Kraftstoffinjektor
WO2019186290A1 (ja) * 2018-03-29 2019-10-03 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 燃料噴射装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394402A2 (de) * 2002-08-30 2004-03-03 Robert Bosch Gmbh Steckverbindung für medienführende Leitungen
US20060107928A1 (en) * 2004-11-25 2006-05-25 Itt Manufacturing Enterprises, Inc. Device to attach a fuel return line to a fuel injector and device to suction fuel from a fuel injector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466742A (ja) * 1990-07-05 1992-03-03 Yamaha Motor Co Ltd 高圧燃料噴射式エンジンのアイドリング制御装置
DE102007011789A1 (de) * 2007-03-12 2008-09-18 Robert Bosch Gmbh Kraftstoffinjektor
DE102007029969A1 (de) 2007-06-28 2009-01-08 Robert Bosch Gmbh Schnellschaltender Kraftstoffinjektor für hohe Einspritzdrücke
AT505666B1 (de) * 2007-08-20 2009-03-15 Bosch Gmbh Robert Verfahren und vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE102008002720A1 (de) * 2008-06-27 2009-12-31 Robert Bosch Gmbh Kraftstoffinjektor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1394402A2 (de) * 2002-08-30 2004-03-03 Robert Bosch Gmbh Steckverbindung für medienführende Leitungen
US20060107928A1 (en) * 2004-11-25 2006-05-25 Itt Manufacturing Enterprises, Inc. Device to attach a fuel return line to a fuel injector and device to suction fuel from a fuel injector

Also Published As

Publication number Publication date
EP2273098A1 (de) 2011-01-12
DE102009027459A1 (de) 2011-01-05

Similar Documents

Publication Publication Date Title
DE4311627B4 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
EP1125046B1 (de) Kraftstoffeinspritzsystem für eine Brennkraftmaschine mit einer Druckübersetzungseinheit
DE102014005741A1 (de) Dual-brennstoffeinspritzvorrichtung mit f-, a- und z-zumessöffnungssteuerung
EP2307698B1 (de) Kraftstoffinjektor
EP2867517B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102012015624A1 (de) Drei-Wege-Nadelsteuerventil und dieses verwendendes Dual-Brennstoffeinspritzsystem
EP2628938B1 (de) Brennstoffeinspritzventil
EP2888469B1 (de) Common-rail-system
DE10229419A1 (de) Druckübersetzter Kraftstoffinjektor mit schnellem Druckabbau bei Einspritzende
WO2007038811A1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
EP2273098B1 (de) Kraftstoffeinspritzventil und Kraftstoffeinspritzsystem
EP1925812B1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1939441A2 (de) Kraftstoffinjektor
EP3394420B1 (de) Magnetventil für ein kraftstoffeinspritzventil, verfahren zum betreiben des magnetventils und kraftstoffeinspritzventil mit einem solchen magnetventil
EP2733345A1 (de) Druckregelventil für einen Hochdruckspeicher eines Verbrennungsmotors
EP2119903B1 (de) Kraftstoff-Injektor sowie Brennkraftmaschine
EP2147206B1 (de) Kraftstoffinjektor mit magnetventil
EP1483499B1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
WO2013117979A1 (de) Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
DE102005061362B3 (de) Drucksteuerventil und Einspritzanlage für eine Brennkraftmaschine mit einem Drucksteuerventil
EP2019198B1 (de) Injektor
EP1911966A2 (de) Kraftstoffinjektor für eine Brennkraftmaschine
EP1887213B1 (de) Kraftstoffinjektor mit direkter Nadelsteuerung und Servoventil-Unterstützung
DE102012021154B4 (de) Doppelnadelinjektor
EP2628939B1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110712

17Q First examination report despatched

Effective date: 20160429

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161010

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 864307

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013105

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170425

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170426

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170425

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170525

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010013105

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20171026

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 864307

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100503

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190521

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190716

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010013105

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201