EP2235491A1 - Mikromechanischer drucksensor - Google Patents

Mikromechanischer drucksensor

Info

Publication number
EP2235491A1
EP2235491A1 EP08869465A EP08869465A EP2235491A1 EP 2235491 A1 EP2235491 A1 EP 2235491A1 EP 08869465 A EP08869465 A EP 08869465A EP 08869465 A EP08869465 A EP 08869465A EP 2235491 A1 EP2235491 A1 EP 2235491A1
Authority
EP
European Patent Office
Prior art keywords
membrane
pressure sensor
reinforcements
frame
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08869465A
Other languages
English (en)
French (fr)
Inventor
Geert Brokmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cis Forschungsinstitut fur Mikrosensorik und Photovoltaik
Original Assignee
Cis Forschungsinstitut fur Mikrosensorik und Photovoltaik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cis Forschungsinstitut fur Mikrosensorik und Photovoltaik filed Critical Cis Forschungsinstitut fur Mikrosensorik und Photovoltaik
Publication of EP2235491A1 publication Critical patent/EP2235491A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0022Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element
    • G01L9/0025Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element with acoustic surface waves

Definitions

  • the invention relates to a micromechanical pressure sensor with a substrate and a membrane, on which piezoelectric sensor elements are located.
  • the invention can preferably be used for pressure measurements with frequently changing loads.
  • JP 61-82130 for example, a pressure sensor device is described, which detects pressure fluctuations of a gas or a liquid and converts it into electrical signals.
  • a device is used which detects fluctuations in the applied pressure as changes in the oscillation frequency of a sensor part.
  • DE 11 2004 002 281 T5 specifies an arrangement for pressure measurement, in which a sensor substrate contains on its lower surface a surface acoustic wave element for detecting pressure, which is fastened on a carrier substrate.
  • the surface acoustic wave element is hermetically sealed in the sealed space for pressure detection.
  • the invention has for its object to provide a pressure sensor of the type mentioned, which has small dimensions and are largely avoided in the Torsionsbe screw.
  • the invention also relates to combinations of features in which the individual features specified in the description and / or in the claims are combined with one another as desired.
  • the pressure sensor has a substrate with a frame on which the membrane is arranged. At the bottom of the membrane is a centrally located mass element. This allows small dimensions of the arrangement.
  • the strip-shaped sections of the membrane, which are located between frame and mass element, are each provided with two partial reinforcements. This achieves both a high level of safety against torsional stresses and also reduces nonlinearities of the pressure-deflection dependence.
  • the piezoelectric sensors are located in the reinforcements.
  • An advantageous embodiment provides that the reinforcements are mounted symmetrically in each case to the right and left of the middle of the strip-shaped sections.
  • the strip-shaped reinforcements are arranged at the corners of the mass element.
  • a further advantageous embodiment results from the fact that the piezoelectric zones in the membrane are connected to a Wheatstone measuring bridge, with which the pressure-dependent deflection of the membrane is detected.
  • the double arrangement of the stiffeners allows the piezoelectric zones in the membrane to be connected to two Wheatstone bridges. This can also be compensated for temperature differences in the measurement.
  • FIG. 1 shows a perspective view of a detail of an arrangement with eccentric reinforcement of the membrane
  • FIG. 2 shows a perspective view of a detail of an arrangement with reinforcement of the membrane at the corners
  • Figure 3 is a schematic representation of a measuring bridge circuit.
  • the arrangement shown in Figure 1 consists of a substrate which includes a rectangular frame 1, on the upper side of a membrane 2 is arranged. At the bottom of the membrane 2 is a centrally disposed mass element 3 with a rectangular cross-section.
  • the membrane 2 is provided with piezoelectric sensor elements. These are diffused in the edge region of the membrane 2 in this.
  • the strip-shaped sections of the membrane 2, which are located between the frame and mass element 3, are provided with two partial reinforcements 2.1 and 2.2. These reinforcements 2.1, 2.5 or 2.2 and 2.6 or 2.3 and 2.7 or 2.4 and 2.8 are mounted symmetrically to the right and left of the middle of the strip-shaped sections.
  • a measuring bridge circuit is shown schematically.
  • Each of the eight reinforcements 2.1 ... 2.8 contains piezoelectric sensor elements.
  • a piezoelectric sensor element of a reinforcement 2.1, 2.2, 2.3 and 2.4 located in a strip forms a resistance element of a measuring bridge.
  • a second measuring bridge can be formed from the piezoelectric sensor elements located in the gains 2.5, 2.6, 2.7 and 2.8.
  • Both Measuring bridges each contain a resistance element which is assigned to one of the four strip-shaped membrane sections.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Die Erfindung betrifft einen mikromechanischen Drucksensor mit einem Substrat und einer Membran, an der sich piezoelektrische Sensorelemente befinden. Der Erfindung liegt die Aufgabe zugrunde, einen Drucksensor zu schaffen, der geringe Abmessungen aufweist und bei dem Torsionsbeanspruchungen der Membran weitgehend vermieden werden. Erfindungsgemäß wird die Aufgabe mit einer Anordnung gelöst, bei der das Substrat einen Rahmen (1) aufweist, an dem die Membran (2) angeordnet ist, wobei sich an der Unterseite der Membran (2) ein zentral angeordnetes Masseelement (3) befindet und die Membran (2) an streifenförmigen Abschnitten, die sich zwischen Rahmen 1 und Masseelement (3) befinden, mit jeweils zwei partiellen Verstärkungen (2.1, 2.2) versehen ist.

Description

Mikromechanischer Drucksensor
Die Erfindung betrifft einen mikromechanischen Drucksensor mit einem Substrat und einer Membran, an der sich piezoelektrische Sensorelemente befinden.
Die Erfindung ist vorzugsweise für Druckmessungen mit häufig wechselnden Belastungen einsetzbar.
Im Stand der Technik sind verschiedene mikromechanische Anordnungen zur Druckmessung bekannt.
In JP 61-82130 wird beispielsweise eine Drucksensorvorrichtung beschrieben, die Druckschwankungen eines Gases oder einer Flüssigkeit erkennt und in elektrische Signale umwandelt. Dabei wird eine Einrichtung verwendet, die Schwankungen des aufgebrachten Drucks als Änderungen der Oszillationsfrequenz eines Sensorteils erkennt.
Ferner ist in DE 11 2004 002 281 T5 eine Anordnung zur Druckmessung angegeben, bei der ein Sensorsubstrat auf seiner unteren Oberfläche ein oberflächenakustisches Wellenelement zur Druckerkennung enthält, welches auf einem Trägersubstrat befestigt ist. Das oberflächenakustische Wellenelement ist zur Druckerkennung hermetisch in dem abgedichteten Raum eingeschlossen.
Der Erfindung liegt die Aufgabe zugrunde, einen Drucksensor der eingangs genannten Art zu schaffen, der geringe Abmessungen aufweist und bei dem Torsionsbeanspruchungen der Membran weitgehend vermieden werden.
Erfindungsgemäß wird die Aufgabe mit einer Anordnung gelöst, welche die in Anspruch 1 angegebenen Merkmale enthält. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
Gegenstand der Erfindung sind auch Merkmalskombinationen bei denen die in der Beschreibung und/oder in den Ansprüchen angegebenen Einzelmerkmale beliebig miteinander kombiniert werden.
Der Drucksensor weist ein Substrat mit einem Rahmen auf, an dem die Membran angeordnet ist. An der Unterseite der Membran befindet sich ein zentral angeordnetes Masseelement. Damit werden geringe Abmessungen der Anordnung ermöglicht. Die streifenförmigen Abschnitte der Membran, die sich zwischen Rahmen und Masseelement befinden, sind jeweils mit zwei partiellen Verstärkungen versehen. Damit werden sowohl eine hohe Sicherheit gegenüber Torsionsbeanspruchungen erreicht als auch Nichtlinearitäten der Druck-Auslenkungs-Abhängigkeit verringert. Zweckmäßigerweise befinden sich die piezoelektrischen Sensoren in den Verstärkungen.
Eine vorteilhafte Ausführung sieht vor, dass die Verstärkungen symmetrisch jeweils rechts und links der Mitte der streifenförmigen Abschnitte angebracht sind.
Ferner ist es möglich, dass die streifenförmigen Verstärkungen an den Ecken des Masseelementes angeordnet sind.
Eine weitere vorteilhafte Ausführung entsteht dadurch, dass die piezoelektrischen Zonen in der Membran zu einer Wheatstonschen Messbrücke geschaltet sind, mit der die druckabhängige Auslenkung der Membran erfasst wird.
Die zweifache Anordnung der Versteifungen ermöglicht es, dass die piezoelektrischen Zonen in der Membran zu zwei Wheatstonschen Messbrücken geschaltet sind. Damit können auch Temperaturunterschiede bei der Messung kompensiert werden.
Die Erfindung wird im Folgenden anhand eines Ausführungsbeispieles näher erläutert. In den zugehörigen Zeichnungen zeigen:
Figur 1 eine perspektivische Ansicht eines Ausschnittes auf eine Anordnung mit außermittiger Verstärkung der Membran,
Figur 2 eine perspektivische Ansicht eines Ausschnittes auf eine Anordnung mit Verstärkung der Membran an den Ecken,
und
Figur 3 eine schematische Darstellung einer Messbrückenschaltung.
Die in Figur 1 dargestellte Anordnung besteht aus einem Substrat, welches einen rechteckförmigen Rahmen 1 enthält, an dessen Oberseite eine Membran 2 angeordnet ist. An der Unterseite der Membran 2 befindet sich ein zentral angeordnetes Masseelement 3 mit rechteckigem Querschnitt. Die Membran 2 ist mit piezoelektrischen Sensorelementen versehen. Diese sind im Randbereich der Membran 2 in diese eindiffundiert. Die streifenförmigen Abschnitte der Membran 2, die sich zwischen Rahmen und Masseelement 3 befinden, sind mit jeweils zwei partiellen Verstärkungen 2.1 und 2.2 versehen. Diese Verstärkungen 2.1, 2.5 oder 2.2 und 2.6 o- der 2.3 und 2.7 oder 2.4 und 2.8 sind symmetrisch rechts und links der Mitte der streifenförmigen Abschnitte angebracht.
Bei der in Figur 2 gezeigten Ausführung befinden sich die Verstärkungen 2.1 ... 2.8 der streifenförmigen Abschnitte an den Ecken des Massenelementes.
In Figur 3 ist eine Messbrückenschaltung schematisch dargestellt. In jedem der acht Verstärkungen 2.1 ... 2.8 befinden sich piezoelektrische Sensorelemente. Dabei bildet jeweils ein piezoelektrisches Sensorelement aus einer sich in einem Streifen befindenden Verstärkung 2.1, 2.2, 2.3 und 2.4 ein Widerstandselement einer Messbrücke. Eine zweite Messbrücke kann aus den piezoelektrischen Sensorelementen gebildet werden, die sich in den Verstärkungen 2.5, 2.6, 2.7 und 2.8 befinden. Beide Messbrücken enthalten je ein Widerstandselement, welches einem der vier streifenförmigen Membranabschnitten zugeordnet ist.
B E Z U G S Z E I C H E N L I S T E
1 Rahmen
2 Membran 2.1...2.8 Verstärkung
3 Masseelement

Claims

PATENTANSPRÜCHE
1. Mikromechanischer Drucksensor mit einem Substrat und einer Membran (2), an der sich piezoelektrische Sensorelemente befinden, dadurch gekennzeichnet, dass das Substrat einen Rahmen (1) aufweist, an dem die Membran (2) angeordnet ist, wobei sich an der Unterseite der Membran (2) ein zentral angeordnetes Masseelement (3) befindet und die Membran (2) an streifenförmigen Abschnitten, die sich zwischen Rahmen 1 und Masseelement (3) befinden, mit jeweils zwei partiellen Verstärkungen (2.1, 2.2) versehen ist.
2. Drucksensor nach Anspruch 1, dadurch gekennzeichnet, dass der Rahmen 1 einen rechteckigen Querschnitt aufweist.
3. Drucksensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die piezoelektrischen Sensoren sich in den Verstärkungen (2.1 ... 2.8) befinden.
4. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verstärkungen (2.1 ... 2.8) symmetrisch rechts und links der Mitte der streifenförmigen Abschnitte angebracht sind.
5. Drucksensor nach Anspruch 4, dadurch gekennzeichnet, dass die streifenförmigen Verstärkungen (2.1 ... 2.8) an den Ecken des Masseelementes (3) angeordnet sind.
6. Drucksensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die piezoelektrischen Zonen in der Membran (2) zu einer Wheatstonschen Messbrücke geschaltet sind, mit der die druckabhängige Auslenkung der Membran (2) erfasst wird. Drucksensor nach Anspruch 6, dadurch gekennzeichnet, dass die piezoelektrischen Zonen in der Membran (2) zu zwei Wheatstonschen Messbrücken geschaltet sind.
EP08869465A 2008-01-09 2008-12-22 Mikromechanischer drucksensor Withdrawn EP2235491A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008003716A DE102008003716A1 (de) 2008-01-09 2008-01-09 Mikromechanischer Drucksensor
PCT/EP2008/068146 WO2009087055A1 (de) 2008-01-09 2008-12-22 Mikromechanischer drucksensor

Publications (1)

Publication Number Publication Date
EP2235491A1 true EP2235491A1 (de) 2010-10-06

Family

ID=40490591

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08869465A Withdrawn EP2235491A1 (de) 2008-01-09 2008-12-22 Mikromechanischer drucksensor

Country Status (3)

Country Link
EP (1) EP2235491A1 (de)
DE (1) DE102008003716A1 (de)
WO (1) WO2009087055A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2552824B1 (de) * 2010-03-26 2014-05-21 ELMOS Semiconductor AG Mikroelektromechanische vorrichtung und ihre verwendung
DE102011077499A1 (de) * 2011-06-14 2012-12-20 CiS Forschungsinstitut für Mikrosensorik und Photovoltaik GmbH Interferometrische Druckmesszelle
AT520304B1 (de) * 2018-03-21 2019-03-15 Piezocryst Advanced Sensorics Drucksensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4021424A1 (de) * 1989-07-11 1991-01-24 Teltov Geraete Regler Drucksensor fuer kleine druecke
US5068203A (en) * 1990-09-04 1991-11-26 Delco Electronics Corporation Method for forming thin silicon membrane or beam
US6255728B1 (en) * 1999-01-15 2001-07-03 Maxim Integrated Products, Inc. Rigid encapsulation package for semiconductor devices
WO2007073994A1 (de) * 2005-12-22 2007-07-05 Robert Bosch Gmbh Mikromechanisches sensorelement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780532A (en) * 1980-11-07 1982-05-20 Hitachi Ltd Semiconductor load converter
JPS6182130A (ja) 1984-09-28 1986-04-25 Shimadzu Corp 表面弾性波圧力センサ
DD267107A1 (de) * 1987-12-23 1989-04-19 Teltov Geraete Regler Drucksensor fuer kleine nenndruecke
JP4099504B2 (ja) 2003-11-27 2008-06-11 京セラ株式会社 圧力センサ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4021424A1 (de) * 1989-07-11 1991-01-24 Teltov Geraete Regler Drucksensor fuer kleine druecke
US5068203A (en) * 1990-09-04 1991-11-26 Delco Electronics Corporation Method for forming thin silicon membrane or beam
US6255728B1 (en) * 1999-01-15 2001-07-03 Maxim Integrated Products, Inc. Rigid encapsulation package for semiconductor devices
WO2007073994A1 (de) * 2005-12-22 2007-07-05 Robert Bosch Gmbh Mikromechanisches sensorelement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2009087055A1 *

Also Published As

Publication number Publication date
WO2009087055A1 (de) 2009-07-16
DE102008003716A1 (de) 2009-07-30

Similar Documents

Publication Publication Date Title
EP1797603B1 (de) Sensorelement mit zumindest einem messelement, welches piezoelektrische und pyroelektrische eigenschaften aufweist
EP1494004B1 (de) Differenzdrucksensor
WO2009077263A1 (de) Drehratensensor und verfahren zum betrieb eines drehratensensors
EP2235491A1 (de) Mikromechanischer drucksensor
DE60008304T2 (de) Scherkraftlastzelle
WO2012031961A1 (de) Lastmesseinrichtung für eine aufzugsanlage
DE102009031705A1 (de) Mikromechanischer Drucksensor
DE19743288A1 (de) Mikromechanischer Sensor
EP0896658B1 (de) Mikromechanischer druck- und kraftsensor
DE3740688C2 (de)
DE3701372C2 (de)
WO2000028293A1 (de) Kapazitiver messaufnehmer und betriebsverfahren
DE10049462A1 (de) Verfahren und Vorrichtung zum elektrischen Nullpunktabgleich für ein mikromechanisches Bauelement
DE19858828A1 (de) Kapazitiver Sensor
DE10036495C2 (de) Kraftmessvorrichtung in Form eines Biegebalkensensors
DE102007002593A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE2715339B2 (de) Kontinuierlich abtastbare Druckmeßdose für barometrische oder manometrische Zwecke
WO2000026608A2 (de) Verformungsmesser
DE10114482A1 (de) Vorrichtung und Verfahren zur dynamischen Messung der Achslast oder des Gewichts von Schienenfahrzeugen
DE102010039236A1 (de) Sensoranordnung und Verfahren zum Abgleich einer Sensoranordnung
AT503558A4 (de) Vorrichtung zur messung von druck, kraft, beschleunigung oder davon abgeleiteten grössen
DE4139439A1 (de) Kraftsensor
DE19537569C2 (de) Stahlbasiertes Kraft-Sensorsystem
DE10161918A1 (de) Verfahren zum Betrieb eines Füllstandssensors und Füllstandssensor
EP3163263B1 (de) Füllstandsbestimmungseinrichtung und fluidbehälteranordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110907

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150728

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151208