EP2229555B1 - Anordnung zur kühlung von halbleiterlichtquellen und scheinwerfer mit dieser anordnung - Google Patents

Anordnung zur kühlung von halbleiterlichtquellen und scheinwerfer mit dieser anordnung Download PDF

Info

Publication number
EP2229555B1
EP2229555B1 EP08707877A EP08707877A EP2229555B1 EP 2229555 B1 EP2229555 B1 EP 2229555B1 EP 08707877 A EP08707877 A EP 08707877A EP 08707877 A EP08707877 A EP 08707877A EP 2229555 B1 EP2229555 B1 EP 2229555B1
Authority
EP
European Patent Office
Prior art keywords
condensation zone
heat
arrangement according
condensation
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08707877A
Other languages
English (en)
French (fr)
Other versions
EP2229555A1 (de
Inventor
Alois Biebl
Stefan Dietz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2229555A1 publication Critical patent/EP2229555A1/de
Application granted granted Critical
Publication of EP2229555B1 publication Critical patent/EP2229555B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/51Cooling arrangements using condensation or evaporation of a fluid, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • F21S45/48Passive cooling, e.g. using fins, thermal conductive elements or openings with means for conducting heat from the inside to the outside of the lighting devices, e.g. with fins on the outer surface of the lighting device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/60Heating of lighting devices, e.g. for demisting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/54Cooling arrangements using thermoelectric means, e.g. Peltier elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/71Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements
    • F21V29/717Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks using a combination of separate elements interconnected by heat-conducting means, e.g. with heat pipes or thermally conductive bars between separate heat-sink elements using split or remote units thermally interconnected, e.g. by thermally conductive bars or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to an arrangement for cooling semiconductor light sources, wherein the semiconductor light sources are arranged on a thermally conductive module, which is in operative connection with an evaporator zone of a heat pipe, and a first condensation zone of the heat pipe is connected to a first heat sink.
  • the arrangement is suitable for example for headlights of all kinds, but especially for headlights in the automotive sector.
  • a tubular device As a heat pipe, a tubular device is referred to below, which can transport large amounts of heat energy between its two ends by evaporation / condensation of a working fluid.
  • a cooling system for automotive lighting arrangements which cools the semiconductor light sources by means of a heat pipe with a heat sink remote from the semiconductor light sources.
  • the W02006 / 52022 A1 discloses a motor vehicle headlamp with semiconductor light sources cooled by a heat pipe.
  • the heat sink is placed here above the semiconductor light sources on the back of the headlight.
  • EP 1 643 188 an arrangement for cooling of semiconductor light sources is known, wherein the semiconductor light sources are arranged on a thermally conductive module, which is in operative connection with an evaporator zone of a heat pipe, wherein a first condensation zone of the heat pipe is connected to a first heat sink and the heat pipe to at least a second condensation zone with at least a second heat sink is connected.
  • the object is achieved with respect to the arrangement by an arrangement for cooling semiconductor light sources, wherein the semiconductor light sources are arranged on a thermally conductive module, which is in operative connection with an evaporator zone of a heat pipe, and a first condensation zone of the evaporator tube is connected to a first heat sink wherein the heat pipe to a second condensation zone with a second heat sink is connected and a heat flow between the condensation zones is switchable.
  • the heat sinks can be used as a controlled heating for other purposes, as can be switched by switching the heat flow at any time to the second heat sink, and thus no restriction in the operation of semiconductor light sources occurs.
  • the second heat sink is designed so that they Waste heat of semiconductor light sources can absorb at any time.
  • the switching of the condensation zones is done with a 3-way valve.
  • the 3-way valve contains a permanent magnetic double cone, wherein the conical tips in each case close the evaporator tube of a condensation zone alternately.
  • a 2-way valve is conceivable in which only one condensation zone is switched on and off. This has the advantage that a first cooling path into a first condensation zone is always open, while a second cooling path can be connected in a second condensation zone if necessary.
  • the double cone closes only the evaporator tube and not the capillary area of the heat pipe.
  • the drive of the double cone is arranged outside the heat pipe and takes place magnetically. Outside the heat pipe there is usually enough space available for the drive, and the magnetic drive does not require any sealing measures.
  • the heat sink (33) of the first condensation zone (23) is preferably in operative connection with a heating device. As a result, the waste heat produced can advantageously be used for another task.
  • the evaporator tube When switching on the semiconductor light sources, the evaporator tube is advantageously open to the first condensation zone and the evaporator tube is closed to the second condensation zone.
  • the switching of the condensation zones is dependent on the temperature of the first condensation zone.
  • the aforementioned heating device can be designed to be regulated, and by means of this priority circuit a defined operation of the arrangement for cooling semiconductor light sources is possible.
  • the power supply of the semiconductor light sources via the heat pipe via the heat pipe.
  • This has the advantage of a simpler and more reliable design.
  • simple and inexpensive tubes can be used as a power supply, wherein the two poles of the power supply are formed by the two coaxial tubes.
  • FIG. 1 A perspective view of a connected to a heat pipe semiconductor light source module with a connected to the heat pipe rosette-shaped heat sink in an embodiment according to the prior art.
  • FIG. 2 A detailed drawing of the cut semiconductor light source module with the illustrated end of the incorporated heat pipe.
  • FIG. 3 A perspective view of the above arrangement incorporated in a lampshade.
  • Fig. 4 A perspective view of an inventive arrangement for cooling semiconductor light sources with two independent heat sinks which are connected to a respective condensation zone, which can be switched between the condensation zones.
  • Fig. 5 A schematic side view of an inventive arrangement for cooling semiconductor light sources.
  • Fig. 6 A detailed perspective view of a switching valve according to the invention.
  • Fig. 1 shows an embodiment of an arrangement for cooling semiconductor light sources according to the prior art with only one condensation zone, which is enclosed by a rosette-shaped heat sink 31, which dissipates the heat of condensation arising.
  • a multi-chip LED 5 (not shown) with an attached primary optics 51 is mounted on a light-emitting diode module 11.
  • the light-emitting diode module 11 is made of a good heat-conducting material in order to dissipate the resulting heat loss of the multi-chip LED 5 quickly and safely.
  • the light-emitting diode module 11 is embedded in a housing 13 which, in addition to the light-emitting diode module 11, also has an electronic control unit 15 for the multichip light-emitting diode 5.
  • the housing 13 is made of a poorly heat-conductive material to minimize the temperature load of the drive electronics 15 through the multi-chip LED 5.
  • a heat pipe 20 leads from the light-emitting diode module 11 to a heat sink 31.
  • Fig. 2 shows a detail section through the light-emitting diode module 11 with the housing 13.
  • the heat pipe 20 is incorporated with its evaporator-side end 27 in the light-emitting diode module 11, and reaches up to the multi-chip LED 5 zoom in order to remove the heat loss as efficiently as possible can.
  • the heat is transported from the heat pipe via the vaporized working medium in the condensation zone and there from the heat sink 31 (In Fig. 2 not shown).
  • Fig. 3 shows the whole arrangement built into a reflector screen 53.
  • the heat sink 31 is mounted centrally on the reflector screen 53. All generated heat is thus discharged to the reflector screen 53 out.
  • Fig. 4 shows a perspective view of an inventive arrangement for cooling semiconductor light sources, which solves the above problem.
  • the arrangement is in this case a motor vehicle headlamp, in which the waste heat of the multi-chip LED 5 is passed through a heat pipe 20 to a condensation zone 23, which is cooled by a heat sink 33 and thus heats the lens 37.
  • the inventive arrangement for cooling semiconductor light sources has two switchable heat sinks 33, 35. The switching is accomplished by means of a temperature-controlled valve in the heat pipe 20.
  • the first heat sink 33 is used as above besc written as heating, for example, the headlight deicing.
  • the temperature control is designed so that primarily this task is solved, this heat sink 33 is thus only as long in operation as here heat energy is needed. If the setpoint temperature is reached, is switched to a second heat sink 35. This is designed to be the to be able to absorb any heat flow at any time and at any time.
  • the second heat sink 35 may be a sufficiently large heat sink. But it is also conceivable that the second heat sink 35 is connected to an existing or to be created for cooling system.
  • the second heat sink 35 may be e.g. be connected to the water cooling of the motor vehicle. But it can also be e.g. a Peltier element may be provided which is connected to the second heat sink 35.
  • the heat pipe 20 has a switching valve 21, by means of which it is possible to switch between two condensation zones 23, 25 with the correspondingly connected heat sinks 33, 35.
  • the first heat sink 33 is formed as a ring around the diffuser 37 of the headlamp 1. This makes it possible to heat the diffuser 37 in bad weather conditions to the extent that an ice crystal formation is reliably prevented.
  • the control of the changeover valve 21 is such that from a certain temperature of the ring is switched to the second condensation zone 25 to the diffusion plate 37 in order to ensure efficient cooling of the multi-chip LED 5 and to prevent overheating of the heat sink 33.
  • the power supply to the multi-chip LEDs 5 is thereby accomplished by the heat pipe itself, which consists of an electrically conductive material such as aluminum or copper. If two of these conductive tubes are arranged coaxially with one another with insulation between them, a cost-effective and robust construction results Power supply for the multi-chip LEDs 5 and arranged on the module 11 electronics.
  • Fig. 5 shows a schematic side view of the inventive arrangement for cooling semiconductor light sources.
  • the switching valve 21 is controlled so that after switching on the multi-chip LED 5, the first condensation zone 23 with the first heat sink 33 is active. If the first heat sink has reached a certain temperature, the changeover valve 21 switches over to the second condensation zone 25 with the second heat sink 35. This is arranged behind the lampshade 53, and is sized in size so that they can absorb the heat energy generated at any time. If the temperature is not reached due to cold weather conditions, the first heat sink 33 remains permanently active in order to prevent ice crystal formation on the diffusing screen 37 as much as possible.
  • Fig. 6 shows a schematic detail drawing of the switching valve 21. It consists of a T-shaped piece of pipe, in which a permanent magnetic double cone is introduced. This consists of two conical parts 411, 412, which are aligned at the base same profile or congruent to each other, so that the conical tips point in opposite directions. Between the two base surfaces can still be a cylindrical portion 413 lie. However, the base surfaces can also be arranged offset from each other (not shown), so that a cylindrical slope arises between the two base surfaces. The base surfaces of the cones 411, 412 may also have an oval or ovate shape have (not shown). Polygons are also possible as a form of the base surface.
  • the cone 411, 412 is then shaped corresponding to the base surface (not shown).
  • This double cone 41 is located in the center of the T-shaped pipe section. At the cut ends, the cross section of the heat pipe 20 is shown.
  • the outer shell consists of a gas-tight tube 47 into which a capillary tube 45 made of a porous material is introduced. Within the capillary tube 45 is the evaporator tube 43. In the region of the double cone, the capillary tube is recessed or at least the wall thickness is formed weaker.
  • the base diameter of the double cone 41 is larger than the diameter of the evaporator tube 43.
  • the tips of the double cone 41 respectively to the first and second condensation zone 23, 25. The cone 41 can penetrate far enough into the evaporator tube 43 until it has completely closed.
  • the capillary tube 45 remains unaffected, so that working fluid flowing back into the evaporator zone 27 can pass. This contributes to an efficient operation of the heat pipe 20.
  • Externally attached to the tee are suitable controlled solenoids (not shown). These can, depending on the control, press the permanent-magnetic double cone 41 into the end of the evaporator tube 43 of the first or the second condensation zone 23, 25 and thus close it. Thus, it is possible to switch between the two cooling paths without affecting the heat flow altogether. Due to the construction as a 3-way valve 21, a heat flow into one of the condensation zones 23, 25 is always ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Description

  • Anordnung zur Kühlung von Halbleiterlichtquellen und Scheinwerfer mit dieser Anordnung.
  • Technisches Gebiet
  • Die Erfindung betrifft eine Anordnung zur Kühlung von Halbleiterlichtquellen, wobei die Halbleiterlichtquellen auf einem wärmeleitenden Modul angeordnet sind, das mit einer Verdampferzone eines Wärmerohrs in Wirkverbindung steht, und eine erste Kondensationszone des Wärmerohrs mit einer ersten Wärmesenke verbunden ist. Die Anordnung ist beispielsweise für Scheinwerfer aller Art geeignet, insbesondere aber für Scheinwerfer im Kfz-Bereich.
  • Als Wärmerohr (engl. Heat Pipe) wird im Folgenden eine rohrförmige Vorrichtung bezeichnet, die durch Verdampfen/Kondensieren einer Arbeitsflüssigkeit große Mengen an Wärmeenergie zwischen ihren zwei Enden transportieren kann.
  • Stand der Technik
  • Aus der US2004/213016 A1 ist ein Kühlsystem für automobile Lichtanordnungen bekannt, das die Halbleiterlichtquellen mittels eines Wärmerohrs mit entfernt von den Halbleiterlichtquellen liegender Wärmesenke kühlt.
  • Die W02006/52022 A1 offenbart einen Kfz-Scheinwerfer mit Halbleiterlichtquellen, die über ein Wärmerohr gekühlt werden. Die Wärmesenke ist hierbei oberhalb der Halbleiterlichtquellen an der Rückseite des Scheinwerfers platziert.
    Aus Dokument EP 1 643 188 ist eine Anordnung zur Kühlung von Halbleiterlichtquellen bekannt, wobei die Halbleiterlichtquellen auf einem wärmeleitenden Modul angeordnet sind, das mit einer Verdampferzone eines Wärmerohrs in Wirkverbindung steht, wobei eine erste Kondensationszone des Wärmerohrs mit einer ersten Wärmesenke verbunden ist und das Wärmerohr an mindestens eine zweite Kondensationszone mit mindestens einer zweiten Wärmesenke angeschlossen ist.
  • Es stellt sich jedoch das Problem dar, dass die Abwärme der Halbleiterlichtquellen oftmals an anderer Stelle als Heizwärme gebraucht würde. Da die Heizung aber meistens geregelt sein soll, ist die oben beschriebene Anordnung in so einem Fall nicht brauchbar.
  • Aufgabe
  • Es ist Aufgabe der Erfindung, eine Anordnung zur Kühlung von Halbleiterlichtquellen zu schaffen, wobei die Halbleiterlichtquellen auf einem wärmeleitenden Modul angeordnet sind, das mit einer Verdampferzone eines Wärmerohrs in Wirkverbindung steht, und eine erste Kondensationszone des Verdampferrohrs mit einer ersten Wärmesenke verbunden ist, und die Anordnung gleichzeitig die ganze oder einen Teil der Wärmeenergie einer anderen Verwendung zuführen kann.
  • Es ist weiterhin Aufgabe der Erfindung, ein Verfahren zu schaffen, das zur Kühlung von Halbleiterlichtquellen dient und bei dem gleichzeitig die ganze oder ein Teil der Wärmeenergie einer anderen Verwendung zugeführt wird.
  • Darstellung der Erfindung
  • Die Aufgabe wird bezüglich der Anordnung gelöst durch eine Anordnung zur Kühlung von Halbleiterlichtquellen, wobei die Halbleiterlichtquellen auf einem wärmeleitenden Modul angeordnet sind, das mit einer Verdampferzone eines Wärmerohrs in Wirkverbindung steht, und eine erste Kondensationszone des Verdampferrohrs mit einer ersten Wärmesenke verbunden ist wobei das Wärmerohr an eine zweite Kondensationszone mit einer zweiten Wärmesenke angeschlossen ist und ein Wärmestrom zwischen den Kondensationszonen umschaltbar ist. Damit kann eine der Wärmesenken als geregelte Heizung für andere Zwecke benutzt werden, da durch die Umschaltung der Wärmestrom jederzeit auf die zweite Wärmesenke geschaltet werden kann, und somit keine Einschränkung beim Betrieb der Halbleiterlichtquellen auftritt.Die zweite Wärmesenke ist dabei so ausgelegt, dass sie die Abwärme der Halbleiterlichtquellen jederzeit absorbieren kann.
  • Die Aufgabe wird weiterhin bezüglich des Verfahrens gelöst durch ein Verfahren mit den Merkmalen des Anspruchs 16.
  • Vorteilhafterweise geschieht die Umschaltung der Kondensationszonen mit einem 3-Wege Ventil. Dabei enthält das 3-Wege Ventil einen permanentmagnetischen Doppelkegel, wobei die Kegelspitzen jeweils das Verdampferrohr einer Kondensationszone abwechselnd verschließen. Dies hat den Vorteil, dass immer ein Kühlpfad geöffnet ist und ein Versagen der Halbleiterlichtquellen aufgrund Überhitzung somit ausgeschlossen wird. Durch diese Konstruktion ist ein magnetischer Antrieb des Doppelkegels möglich, der keine Probleme bezüglich der Abdichtung generiert.
  • Alternativ ist auch ein 2-Wege Ventil denkbar, bei dem nur eine Kondensationszone Ein- und Ausgeschaltet wird. Dies hat den Vorteil, dass ein erster Kühlpfad in eine erste Kondensationszone immer offen ist, während ein zweiter Kühlpfad in eine zweite Kondensationszone bei Bedarf hinzugeschaltet werden kann.
  • Bevorzugt verschließt der Doppelkegel nur das Verdampferrohr und nicht den Kapillarbereich des Wärmerohrs. Dadurch kann zurückfliessende Arbeitsflüssigkeit wieder in den Arbeitskreislauf gelangen, was zu erhöhter Effizienz und Betriebssicherheit führt. Der Antrieb des Doppelkegels ist dabei außerhalb des Wärmerohrs angeordnet und erfolgt magnetisch. Außerhalb des Wärmerohrs steht gewöhnlich genügend Platz für den Antrieb zur Verfügung, und durch den magnetischen Antrieb sind keine Dichtungsmaßnahmen notwendig.
  • Die Wärmesenke (33) der ersten Kondensationszone (23) steht dabei vorzugsweise mit einer Heizvorrichtung in Wirkverbindung Dadurch kann die entstehende Abwärme vorteilhaft für eine andere Aufgabe genutzt werden.
  • Beim Einschalten der Halbleiterlichtquellen ist das Verdampferrohr Vorteilhafterweise zur ersten Kondensationszone offen und das Verdampferrohr zur zweiten Kondensationszone verschlossen. Die Umschaltung der Kondensationszonen erfolgt abhängig von der Temperatur der ersten Kondensationszone. Dadurch kann die vorgenannte Heizvorrichtung geregelt ausgeführt werden, und durch diese Vorrangschaltung ist ein definierter Betrieb der Anordnung zur Kühlung von Halbleiterlichtquellen möglich.
  • In einer Ausführungsform erfolgt die Stromzuführung der Halbleiterlichtquellen über das Wärmerohr. Dies hat den Vorteil einer einfacheren und zuverlässigeren Konstruktion. Bei einer koaxialen Konstruktion des Wärmerohrs können einfache und kostengünstige Rohre als Stromzuführung verwendet werden, wobei die beiden Pole der Stromzuführung durch die beiden koaxialen Rohre gebildet werden.
  • Kurze Beschreibung der Zeichnung(en)
  • Die Erfindung wird nachstehend anhand von Ausführungsbeispielen näher erläutert. Es zeigen:
  • Fig. 1 Eine perspektivische Ansicht eines an ein Wärmerohr angeschlossenes Halbleiterlichtquellenmodul mit einem an das Wärmerohr angeschlossenen rosettenförmigen Kühlkörper in einer Ausführungsform nach dem Stand der Technik.
  • Fig. 2 Eine Detailzeichnung des geschnittenen Halbleiterlichtquellenmoduls mit dem dargestellten Ende des eingearbeiteten Wärmerohrs.
  • Fig. 3 Eine perspektivische Ansicht der obigen Anordnung, eingebaut in einen Lampenschirm.
  • Fig. 4 Eine perspektivische Ansicht einer erfindungsgemäßen Anordnung zur Kühlung von Halbleiterlichtquellen mit zwei unabhängigen Wärmesenken die an je eine Kondensationszone angeschlossen sind, wobei zwischen den Kondensationszonen umgeschaltet werden kann.
  • Fig. 5 Eine schematische Seitenansicht einer erfindungsgemäßen Anordnung zur Kühlung von Halbleiterlichtquellen.
  • Fig. 6 Eine perspektivische Detailansicht eines erfindungsgemäßen Umschaltventils.
  • Bevorzugte Ausführung der Erfindung
  • Fig. 1 zeigt eine Ausführungsform einer Anordnung zur Kühlung von Halbleiterlichtquellen nach dem Stand der Technik mit lediglich einer Kondensationszone, die von einem rosettenförmigen Kühlkörper 31 umschlossen ist, der die anfallende Kondensationswärme abführt. Eine Multichip-Leuchtdiode 5 (nicht gezeigt) mit einer aufgesetzten Primäroptik 51 ist auf einem Leuchtdiodenmodul 11 angebracht. Das Leuchtdiodenmodul 11 ist aus einem gut wärmeleitenden Material hergestellt, um die anfallende Verlustwärme der Multichip-Leuchtdiode 5 schnell und sicher abführen zu können. Das Leuchtdiodenmodul 11 ist in ein Gehäuse 13 eingebettet, das neben dem Leuchtdiodenmodul 11 noch eine Ansteuerelektronik 15 für die Multichip-Leuchtdiode 5 aufweist. Das Gehäuse 13 ist dabei aus einem schlecht Wärme leitenden Material ausgeführt, um die Temperaturbelastung der Ansteuerelektronik 15 durch die Multichip-Leuchtdiode 5 zu minimieren. Ein Wärmerohr 20 führt vom Leuchtdiodenmodul 11 zu einem Kühlkörper 31.
  • Fig. 2 zeigt einen Detailschnitt durch das Leuchtdiodenmodul 11 mit dem Gehäuse 13. Das Wärmerohr 20 ist mit seinem verdampferseitigem Ende 27 in das Leuchtdiodenmodul 11 eingearbeitet, und reicht bis an die Multichip-Leuchtdiode 5 heran, um die anfallende Verlustwärme möglichst effizient abtransportieren zu können. Die Wärme wird vom Wärmerohr über das verdampfte Arbeitsmedium in die Kondensationszone transportiert und dort vom Kühlkörper 31 (In Fig. 2 nicht gezeigt) absorbiert.
  • Fig. 3 zeigt die ganze Anordnung in einen Reflektorschirm 53 eingebaut. Der Kühlkörper 31 ist mittig am Reflektorschirm 53 angebracht. Sämtliche erzeugte Wärme wird also zum Reflektorschirm 53 hin abgeleitet.
  • Bei Kfz-Scheinwerfern nach dem Stand der Technik besteht jedoch oft das Problem der Vereisung der Streuscheibe. Diese muss im Winter geheizt werden, sonst bilden sich Eiskristalle an der Außenseite, die zu starker Blendung des Gegenverkehrs führen können. Daher würde es sich anbieten, die Abwärme der Leuchtdioden zur Heizung der Streuscheibe zu verwenden. Der Bauraum an der Vorderseite eines Kfz-Scheinwerfers ist jedoch begrenzt, so dass die Größe eines dort angebrachten Kühlkörpers oft nicht ausreichend ist, um die von den Leuchtdioden erzeugte Wärmeenergie beim Betrieb des Scheinwerfers 1 in warmer Umgebung immer komplett absorbieren zu können.
  • Fig. 4 zeigt eine perspektivische Ansicht einer erfindungsgemäßen Anordnung zur Kühlung von Halbleiterlichtquellen, die das oben genannte Problem löst. Die Anordnung ist in diesem Fall ein Kfz-Scheinwerfer, bei dem die Abwärme der Multichip-Leuchtdiode 5 über ein Wärmerohr 20 zur einer Kondensationszone 23 geführt wird, die von einer Wärmesenke 33 gekühlt wird und damit die Streuscheibe 37 heizt. Die erfindungsgemäße Anordnung zur Kühlung von Halbleiterlichtquellen weist zwei umschaltbare Wärmesenken 33, 35 auf. Die Umschaltung wird mittels eines temperaturgesteuerten Ventils im Wärmerohr 20 bewerkstelligt. Die erste Wärmesenke 33 dient wie oben besc hrieben als Heizung, z.B. zur Scheinwerferenteisung. Die Temperatursteuerung ist so ausgelegt, dass vorrangig diese Aufgabe gelöst wird, diese Wärmesenke 33 ist also nur so lange in Betrieb wie hier Wärmeenergie benötigt wird. Ist die Solltemperatur erreicht, wird auf eine zweite Wärmesenke 35 umgeschaltet. Diese ist dazu ausgelegt, den anfallenden Wärmestrom immer und zu jeder Zeit absorbieren zu können.
  • Die zweite Wärmesenke 35 kann dabei ein genügend großer Kühlkörper sein. Es ist aber auch denkbar, das die zweite Wärmesenke 35 an ein bestehendes oder dafür zu schaffendes Kühlsystem angeschlossen ist. Die zweite Wärmesenke 35 kann dabei z.B. an die Wasserkühlung des Kraftfahrzeugs angeschlossen sein. Es kann aber auch z.B. ein Peltierelement vorgesehen sein, das an die zweite Wärmesenke 35 angeschlossen ist.
  • Das Wärmerohr 20 weist ein Umschaltventil 21 auf, mittels dem zwischen zwei Kondensationszonen 23, 25 mit den entsprechend angeschlossenen Wärmesenken 33, 35 umgeschaltet werden kann. Die erste Wärmesenke 33 ist dabei als Ring um die Streuscheibe 37 des Scheinwerfers 1 ausgebildet. Dies ermöglicht es die Streuscheibe 37 bei schlechter Witterung soweit aufzuheizen, dass eine Eiskristallbildung sicher unterbunden wird. Dabei ist die Steuerung des Umschaltventils 21 so beschaffen, dass ab einer bestimmten Temperatur des Rings um die Streuscheibe 37 auf die zweite Kondensationszone 25 umgeschaltet wird, um eine effiziente Kühlung der Multichip-Leuchtdiode 5 zu gewährleisten und eine Überhitzung der Wärmesenke 33 zu verhindern.
  • Die Stromzuführung zu den Multichip-Leuchtdioden 5 wird dabei durch das Wärmerohr selbst bewerkstelligt, das aus einem elektrisch leitenden Material wie Aluminium oder Kupfer besteht. Werden zwei dieser leitenden Rohre mit einer Isolierung dazwischen koaxial ineinander angeordnet, so entsteht eine kostengünstige und robuste Stromzuführung für die Multichip-Leuchtdioden 5 und die auf dem Modul 11 angeordnete Elektronik.
  • Fig. 5 zeigt eine schematische Seitenansicht der erfindungsgemäßen Anordnung zur Kühlung von Halbleiterlichtquellen. Wie oben schon angedeutet, wird das Umschaltventil 21 so gesteuert, dass nach dem Einschalten der Multichip-Leuchtdiode 5 die erste Kondensationszone 23 mit der ersten Wärmesenke 33 aktiv ist. Hat die erste Wärmesenke eine bestimmte Temperatur erreicht, so schaltet das Umschaltventil 21 auf die zweite Kondensationszone 25 mit der zweiten Wärmesenke 35 um. Diese ist hinter dem Lampenschirm 53 angeordnet, und ist von der Größe her so bemessen, dass sie die anfallende Wärmeenergie jederzeit absorbieren kann. Wird die Temperatur aufgrund kalter Witterungsverhältnisse nicht erreicht, so bleibt permanent die erste Wärmesenke 33 aktiv, um Eiskristallbildung auf der Streuscheibe 37 möglichst zu verhindern.
  • Fig. 6 zeigt eine schematische Detailzeichnung des Umschaltventils 21. Es besteht aus einem T-förmigen Rohrstück, in das ein permanentmagnetischer Doppelkegel eingebracht ist. Dieser besteht aus zwei Kegelförmigen Teilen 411, 412, die an der Basis profilgleich oder deckungsgleich zueinander ausgerichtet sind, so dass die Kegelspitzen in entgegengesetzte Richtungen zeigen. Zwischen den beiden Basisflächen kann noch ein zylinderförmiger Abschnitt 413 liegen. Die Basisflächen können aber auch gegeneinander versetzt angeordnet sein (nicht gezeigt), so dass zwischen den beiden Basisflächen eine zylinderförmige Schräge entsteht. Die Basisflächen der Kegel 411, 412 können auch eine ovale oder eiförmige Form aufweisen (nicht gezeigt). Auch Vielecke sind als Form der Basisfläche möglich. Der Kegel 411, 412 ist dann entsprechend der Basisfläche geformt (nicht gezeigt). Dieser Doppelkegel 41 sitzt im Zentrum des T-förmigen Rohrstücks. An den geschnittenen Enden ist der Querschnitt des Wärmerohrs 20 gezeigt. Die äußere Hülle besteht aus einem gasdichten Rohr 47, in das ein Kapillarrohr 45 aus einem porösen Material eingebracht ist. Innerhalb des Kapillarrohrs 45 liegt das Verdampferrohr 43. Im Bereich des Doppelkegels ist das Kapillarrohr ausgespart oder zumindest die Wanddicke schwächer ausgebildet. Der Basisdurchmesser des Doppelkegels 41 ist größer als der Durchmesser des Verdampferrohrs 43. Die Spitzen des Doppelkegels 41 weisen jeweils zur ersten und zweiten Kondensationszone 23, 25. Der Kegel 41 kann soweit in das Verdampferrohr 43 eindringen, bis er es komplett verschlossen hat. Das Kapillarrohr 45 bleibt davon unberührt, so dass zurückfließendes Arbeitsmittel wieder in die Verdampferzone 27 gelangen kann. Dies trägt zu einer effizienten Arbeitsweise des Wärmerohrs 20 bei. Außen an dem T-Stück sind geeignete gesteuerte Elektromagnete angeordnet (nicht gezeigt). Diese können je nach Ansteuerung den permanentmagnetischen Doppelkegel 41 in das Ende des Verdampferrohrs 43 der ersten oder der zweiten Kondensationszone 23, 25 drücken und dieses somit verschließen. Somit kann zwischen den beiden Kühlpfaden umgeschaltet werden, ohne dass der Wärmefluss insgesamt beeinträchtigt wird. Durch die Konstruktion als 3-Wege Ventil 21 ist ein Wärmefluss in eine der Kondensationszonen 23, 25 immer gewährleistet.
  • Bezugszeichenliste
  • 1
    Scheinwerfer
    11
    Leuchtdiodenmodul aus gut wärmeleitenden Material
    13
    Gehäuse
    15
    Ansteuerelektronik
    20
    Wärmerohr
    21
    Umschaltventil des Wärmerohrs
    31
    Kühlkörper
    23
    Erste Kondensationszone
    33
    Wärmesenke für die erste Kondensationszone
    25
    Zweite Kondensationszone
    27
    Verdampferzone
    35
    Wärmesenke für die zweite Kondensationszone
    37
    Streuscheibe
    41
    permanentmagnetischer Doppelkegel
    411
    Erster Kegel
    412
    Zweiter Kegel
    413
    Kegelmittelstück
    43
    Verdampferrohr
    45
    Kapillarrohr
    47
    Äußeres gasdichtes Rohr
    5
    Multichip-Leuchtdiode
    51
    Primäroptik
    53
    Lampenschirm

Claims (16)

  1. Anordnung zur Kühlung von Halbleiterlichtquellen (5), wobei die Halbleiterlichtquellen (5) auf einem wärmeleitenden Modul (11) angeordnet sind, das mit einer Verdampferzone eines Wärmerohrs (20) in Wirkverbindung steht, wobei eine erste Kondensationszone (23) des Wärmerohrs (20) mit einer ersten Wärmesenke (33) verbunden ist, dadurch gekennzeichnet, dass das Wärmerohr (20) an mindestens eine zweite Kondensationszone (25) mit mindestens einer zweiten Wärmesenke (35) angeschlossen ist und ein Wärmestrom zwischen den Kondensationszonen (23, 25) umschaltbar ist oder die zweite Kondensationszone (25) zuschaltbar ist.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass das die Anordnung ein 3-Wege Ventil (21) zur Umschaltung des Wärmestroms in die Kondensationszonen (23, 25) aufweist.
  3. Anordnung nach Anspruch 2, dadurch gekennzeichnet, dass das 3-Wege Ventil einen permanentmagnetischen Doppelkegel (41) enthält, und die Kegelspitzen jeweils das Ende des Verdampferrohrs (43) einer Kondensationszone abwechselnd verschließen.
  4. Anordnung nach Anspruch 1-3, dadurch gekennzeichnet, dass ein Kapillarrohr (45) das koaxial um das Verdampferrohr (43) herum angeordnet ist, immer offen ist.
  5. Anordnung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass ein Antrieb des Doppelkegels (41) au-βerhalb des Wärmerohrs (20) angeordnet ist.
  6. Anordnung nach einem der Ansprüche 3-5, dadurch gekennzeichnet, dass der Antrieb des Doppelkegels (41) magnetisch erfolgt.
  7. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Inbetriebnahme der Halbleiterlichtquellen (5) das Verdampferrohr zur ersten Kondensationszone (23) geöffnet und das Verdampferrohr zur zweiten Kondensationszone (25) verschlossen ist.
  8. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine Vorrichtung zum Umschalten des Wärmestroms in die Kondensationszonen (23, 25) abhängig von der Temperatur der ersten Kondensationszone (23) aufweist.
  9. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass sie ein 2-Wege Ventil zur Ein- und Ausschaltung des Wärmestroms in die zweite Kondensationszone aufweist, wobei der Wärmestrom in die erste Kondensationszone immer möglich ist.
  10. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wärmerohr (20) gleichzeitig mindestens eine Stromzuführung für die Halbleiterlichtquellen (5) ist.
  11. Anordnung nach Anspruch 9, dadurch gekennzeichnet, dass die Stromzuführung über mindestens zwei koaxiale Rohre bewerkstelligt wird.
  12. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wärmesenke (33) der ersten Kondensationszone (23) mit einer Heizvorrichtung in Wirkverbindung steht.
  13. Scheinwerfer (1) mit einer Anordnung nach Anspruch 11, dadurch gekennzeichnet, dass die Anordnung die Heizvorrichtung zum Beheizen einer Streuscheibe (37) des Scheinwerfers (1) aufweist.
  14. Scheinwerfer (1) nach Anspruch 12, dadurch gekennzeichnet, dass die zweite Kondensationszone (25) unterhalb des Scheinwerfers (1) angeordnet und fahrtwindgekühlt ist.
  15. Scheinwerfer (1) nach Anspruch 14, dadurch gekennzeichnet, dass die zweite Kondensationszone (25) hinter dem Scheinwerfer (1) angeordnet ist.
  16. Verfahren zur Kühlung von Halbleiterlichtquellen (5) mit einer Anordnung nach einem der Ansprüche 1-15, gekennzeichnet durch folgende Schritte:
    - Einschalten einer ersten Kondensationszone (23) bei Inbetriebnahme
    - Bei Überschreiten einer vorbestimmten Temperatur der ersten Kondensationszone (23) Abschalten dieser Kondensationszone und Einschalten einer zweiten Kondensationszone (25) oder Zuschalten einer zweiten Kondensationszone (25).
    - Bei Unterschreiten einer vorbestimmten Temperatur der ersten Kondensationszone (23) Umschalten auf die erste Kondensationszone (23) oder Abschalten der zweiten Kondensationszone (25).
EP08707877A 2008-01-14 2008-01-14 Anordnung zur kühlung von halbleiterlichtquellen und scheinwerfer mit dieser anordnung Active EP2229555B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2008/050324 WO2009089903A1 (de) 2008-01-14 2008-01-14 Anordnung zur kühlung von halbleiterlichtquellen und scheinwerfer mit dieser anordnung

Publications (2)

Publication Number Publication Date
EP2229555A1 EP2229555A1 (de) 2010-09-22
EP2229555B1 true EP2229555B1 (de) 2011-11-02

Family

ID=39712436

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08707877A Active EP2229555B1 (de) 2008-01-14 2008-01-14 Anordnung zur kühlung von halbleiterlichtquellen und scheinwerfer mit dieser anordnung

Country Status (8)

Country Link
US (1) US8342728B2 (de)
EP (1) EP2229555B1 (de)
JP (1) JP5210394B2 (de)
KR (1) KR20100114077A (de)
CN (1) CN101910715B (de)
AT (1) ATE532003T1 (de)
TW (1) TW200940894A (de)
WO (1) WO2009089903A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5425024B2 (ja) * 2010-09-07 2014-02-26 シャープ株式会社 車両用前照灯
US8833975B2 (en) 2010-09-07 2014-09-16 Sharp Kabushiki Kaisha Light-emitting device, illuminating device, vehicle headlamp, and method for producing light-emitting device
US8482924B2 (en) * 2010-10-11 2013-07-09 Richard Redpath Heat spreader facet plane apparatus
EP2505913B1 (de) * 2011-03-30 2016-03-23 Nxp B.V. Aktive Wärmeverwaltungsvorrichtung und Wärmeverwaltungsverfahren
DE102012206447A1 (de) * 2012-04-19 2013-10-24 Osram Gmbh Led-modul
SE536661C2 (sv) * 2012-09-24 2014-05-06 Scania Cv Ab Belysningsanordning
CN104696845A (zh) * 2015-02-07 2015-06-10 朱惠冲 一种led前大灯用制冷结构
JP5970572B1 (ja) 2015-02-13 2016-08-17 株式会社フジクラ 車両用ヘッドランプ
GB201509767D0 (en) * 2015-06-05 2015-07-22 Europ Thermodynamics Ltd A lamp
USD776336S1 (en) * 2015-11-05 2017-01-10 Koncept Technologies, Inc Lamp
CN105633259B (zh) * 2016-02-03 2019-12-06 张国生 基于热管原理的大功率led光源
GB2596062B (en) * 2020-06-10 2023-01-18 Baldwin Tech Limited LED array
CN112178589B (zh) * 2020-09-30 2022-09-06 广州光科技术有限公司 一种汽车前照灯散热***

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW237589B (de) 1991-02-27 1995-01-01 Gen Electric
US7028899B2 (en) * 1999-06-07 2006-04-18 Metrologic Instruments, Inc. Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target
US7048412B2 (en) * 2002-06-10 2006-05-23 Lumileds Lighting U.S., Llc Axial LED source
JP2004127782A (ja) * 2002-10-04 2004-04-22 Ichikoh Ind Ltd 車両用灯具および灯火装置
US6910794B2 (en) * 2003-04-25 2005-06-28 Guide Corporation Automotive lighting assembly cooling system
TWI225713B (en) * 2003-09-26 2004-12-21 Bin-Juine Huang Illumination apparatus of light emitting diodes and method of heat dissipation thereof
KR101097486B1 (ko) * 2004-06-28 2011-12-22 엘지디스플레이 주식회사 액정표시장치의 백라이트 유닛
US8569939B2 (en) * 2004-09-15 2013-10-29 Seoul Semiconductor Co., Ltd. Luminous device with heat pipe and method of manufacturing heat pipe lead for luminous device
DE102004047324A1 (de) * 2004-09-29 2006-04-13 Osram Opto Semiconductors Gmbh Leuchtdiodenanordnung
US7331691B2 (en) * 2004-10-29 2008-02-19 Goldeneye, Inc. Light emitting diode light source with heat transfer means
JP4629558B2 (ja) 2004-11-12 2011-02-09 昭和電工株式会社 車両用灯具及び灯火装置
WO2006052022A1 (en) 2004-11-12 2006-05-18 Showa Denko K.K. Automotive lighting fixture and lighting device
JP2006140084A (ja) * 2004-11-15 2006-06-01 Koito Mfg Co Ltd 車両用灯具
CN2748778Y (zh) * 2004-11-24 2005-12-28 超众科技股份有限公司 发光二极管灯具的散热结构
JP4265560B2 (ja) * 2005-03-31 2009-05-20 市光工業株式会社 車両用灯具
JP4527024B2 (ja) * 2005-07-28 2010-08-18 株式会社小糸製作所 車両用灯具
WO2007019733A1 (fr) * 2005-08-19 2007-02-22 Neobulb Technologies, Inc. Dispositif d’eclairage a led de grande puissance et a forte capacite de dissipation thermique
JP2007147257A (ja) * 2005-11-01 2007-06-14 Showa Denko Kk 放熱装置
TWI307756B (en) * 2006-12-08 2009-03-21 Delta Electronics Inc Light-emitting diode heat-dissipating module and display apparatus applied thereto
TW200829852A (en) * 2007-01-09 2008-07-16 Univ Tamkang Loop heat pipe with a flat plate evaporator structure
US20080247177A1 (en) * 2007-02-09 2008-10-09 Toyoda Gosei Co., Ltd Luminescent device
CN101440949A (zh) * 2007-11-23 2009-05-27 富准精密工业(深圳)有限公司 散热装置
FR2940407B1 (fr) * 2008-12-18 2013-11-22 Valeo Vision Sas Dispositif de refroidissement d'un module optique pour projecteur automobile

Also Published As

Publication number Publication date
JP5210394B2 (ja) 2013-06-12
ATE532003T1 (de) 2011-11-15
KR20100114077A (ko) 2010-10-22
EP2229555A1 (de) 2010-09-22
JP2011510438A (ja) 2011-03-31
US8342728B2 (en) 2013-01-01
TW200940894A (en) 2009-10-01
US20110051449A1 (en) 2011-03-03
CN101910715B (zh) 2012-11-07
WO2009089903A1 (de) 2009-07-23
CN101910715A (zh) 2010-12-08

Similar Documents

Publication Publication Date Title
EP2229555B1 (de) Anordnung zur kühlung von halbleiterlichtquellen und scheinwerfer mit dieser anordnung
DE102005060736B4 (de) Scheinwerfer mit Kondensatabscheider
DE102008013604B4 (de) Kühlvorrichtung für ein Steuergerät einer Beleuchtungseinrichtung eines Kraftfahrzeugs
DE102005019651B4 (de) Scheinwerfer mit Trocknungsmittel
DE102006006099A1 (de) Trocknungseinrichtung für lichttechnische oder elektronische Geräte
DE102006010977A1 (de) Kfz-Scheinwerfer
DE102009021353A1 (de) Scheinwerfer
DE202008015337U1 (de) Scheinwerfer für ein Auto
DE2255736A1 (de) Elektrische heizvorrichtung
EP2193310A1 (de) Kühlkörper und kühlsystem für ein led-modul
DE102011084114A1 (de) Kraftfahrzeugscheinwerfer
DE102005005753A1 (de) Beleuchtungseinrichtung mit mindestens einer Leuchtdiode und Fahrzeugscheinwerfer
DE102012103631B4 (de) Lichtmodul für den Scheinwerfer eines Fahrzeuges
DE102012205434A1 (de) Beleuchtungsvorrichtung für ein Kraftfahrzeug
DE102010001007B4 (de) Leuchte zum Ausleuchten eines Zielbereiches mittels Rückwärtsreflexion von Licht eines Leuchtdiodenmoduls an einem Reflektor
DE102007038911A1 (de) Kühlvorrichtung und Beleuchtungseinrichtung
DE102009044388A1 (de) Außenleuchte und Hochdrucklampenersatz
DE10346070B4 (de) Kühlanordnung für eine Beleuchtungseinrichtung mit einem eine Streuscheibe aufweisenden Gehäuse
AT518977B1 (de) Kühlkörper mit variablem thermischen Widerstand
WO2006066532A1 (de) Beleuchtungseinrichtung mit mindestens einer leuchtdiode und fahrzeugscheinwerfer
EP2722579A1 (de) Kraftfahrzeugscheinwerfer mit Lichtquelle und einer Kühleinrichtung für die Lichtquelle
DE102006057232A1 (de) Fahrzeugscheinwerfer
DE102007046264B4 (de) Fahrzeugleuchte mit Enttauungsvorrichtung
DE112010005163T5 (de) LED-Fahrzeugscheinwerfer
DE102006061619B4 (de) Fahrzeugscheinwerfer mit einem Projektionssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100507

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008005458

Country of ref document: DE

Effective date: 20111229

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111102

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120302

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

BERE Be: lapsed

Owner name: OSRAM A.G.

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120202

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008005458

Country of ref document: DE

Effective date: 20120803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008005458

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008005458

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130823

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 532003

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20140121

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120114

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140121

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080114

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150114

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150202

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008005458

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008100000

Ipc: F21S0043000000

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230821

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 17