EP2071186A2 - Vacuum pump and its operating method - Google Patents

Vacuum pump and its operating method Download PDF

Info

Publication number
EP2071186A2
EP2071186A2 EP08020360A EP08020360A EP2071186A2 EP 2071186 A2 EP2071186 A2 EP 2071186A2 EP 08020360 A EP08020360 A EP 08020360A EP 08020360 A EP08020360 A EP 08020360A EP 2071186 A2 EP2071186 A2 EP 2071186A2
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
operating
cooling
temperature
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08020360A
Other languages
German (de)
French (fr)
Other versions
EP2071186A3 (en
EP2071186B1 (en
Inventor
Gernot Bernhardt
Jürgen Metzger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP2071186A2 publication Critical patent/EP2071186A2/en
Publication of EP2071186A3 publication Critical patent/EP2071186A3/en
Application granted granted Critical
Publication of EP2071186B1 publication Critical patent/EP2071186B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/11Outlet temperature
    • F04B2205/112Outlet temperature between two stages in a multi-stage pump

Definitions

  • the invention relates to a vacuum pump according to the preamble of the first claim. It further relates to a method for operating a vacuum pump according to the preamble of the eighth claim.
  • Vacuum pumps of the coarse and fine vacuum range basically have a problem when compressing gas-vapor mixtures to atmospheric pressure. Without suitable countermeasures, condensation of the vapor content within the pump stages of the vacuum pump may occur. The vapor content is in many cases water vapor. Depending on how it is designed, a vacuum pump can compress water vapor without causing any unwanted problems. This is often referred to as "water vapor compatibility”. Gaede solved this problem for the first time by injecting gas ballast into the pumping stage. This method is presented in the DE-PS 702 480 , This problem solution has prevailed in the prior art and has been used for many decades in various forms.
  • the object of the invention is therefore to provide a vacuum pump that can compress gas-vapor mixtures with larger amounts of vapor to atmosphere.
  • the provision of an operating electronics for the position of the cooling amount of the cooling device allows to reduce the cooling amount targeted.
  • the temperature of the vacuum pump increases as the amount of cooling decreases due to the heat of compression and the heat generated by the power loss of the drive. This reduces the risk of condensation of steam and the vacuum pump can compress gas-steam mixtures with higher vapor content to atmosphere.
  • the above-mentioned disadvantages, including the deterioration of the final pressure, are largely avoided.
  • the temperature sensor connected to the operating electronics makes it possible to keep the temperature of the vacuum pump at a high but harmless value. Too high temperatures lead to premature aging of the components. In lubricant-lubricated vacuum pumps in particular the lubricant is exposed at high temperatures decomposition processes.
  • the temperature of the vacuum pump can be controlled by changing the cooling amount in a range in which such aging and decomposition does not take place. This is limited only by the maximum cooling possibility. To achieve these advantages, the measurement of a temperature, the subsequent determination of a necessary cooling amount and the setting of the determined cooling are necessary as method steps.
  • the vacuum pump can be advantageously further developed, in which a selection means is connected to the operating electronics, which allows the choice of different operating modes of the operating electronics. This makes it possible to adapt the conveying capacity for high vapor contents to the needs. Is a To promote low vapor content, a low operating temperature mode is selected. With increasing steam content, operating modes with increasingly high operating temperatures can be selected.
  • Another development suggests additionally providing a gas ballast access which can be shut off by a valve. As a result, the recoverable vapor content can be further increased.
  • a vacuum pump with a gas ballast access which can be shut off by a valve and a selection means can be further developed in that the switching states of the selection means and of the valve are coupled to one another.
  • a higher temperature operating mode is selected at the moment, even if a gas ballast amount is supplied. This can be set by a throttle. In this way, the operation of the vacuum pump is simplified and produced an optimal compatibility for high vapor content.
  • valve in the gas ballast access comprises a solenoid valve, which is connected to the operating electronics.
  • the operating electronics can supply additional gas ballast as needed. This makes it possible to promote high levels of vapor even when it is necessary to lower the temperature.
  • the cooling device comprises a fan whose speed is variable. In particular, it can be lowered from a standard value, so that the amount of cooling provided can be reduced by reducing the speed. This is a simple and inexpensive design.
  • the vacuum pump has a lubricant-sealed rotary vane pumping stage. Since here the lubricant performs many functions, in particular the sealing of the pump chamber, lubrication of the slide and the lubrication of the bearings, it is important that no vapors condense and enter the lubricant circuit. At the same time, it is important not to damage the lubricant by overheating.
  • the method according to claim 8 can be further developed by checking the selection means for its switching state in a further step and then determining the temperature to be reached. This makes it possible in a very simple and cost-effective manner to offer the user of the vacuum pump a plurality of operating modes, which differ in the compatibility for vapor fractions.
  • Another development proposes to effect the adjustment of the cooling by changing the speed of the fan. This is structurally very simple. In addition, can very quickly cause very accurate changes in the cooling.
  • the vacuum pump has a valve in a gas ballast access and the temperature of the vacuum pump is increased by reducing the speed of a fan when the valve is open. Due to the increase in temperature and the simultaneous feeding of the gas ballast, a maximum high conveying capacity for vapor fractions is achieved.
  • FIG. 1 shows a two-stage vacuum pump 1 of the first embodiment.
  • an end pump stage 2 and a fine vacuum stage 4 are arranged within the vacuum pump.
  • the inlet of the fine vacuum stage is connected to a recipient 3.
  • Gas is sucked from her from this and compressed by the Endpumplie so far that it can be expelled from the atmosphere of the vacuum pump.
  • Both pumping stages are driven by a motor 5. Its driving force is distributed by a gear 6 on both pumping stages.
  • both pumping stages may be disposed on a common shaft driven by the motor.
  • the pumping stages can be designed to be dry-compressing, for example according to the piston principle.
  • at least the final pumping stage may be a lubricant-sealed rotary vane pump.
  • the vacuum pump has a fan 7, which has a drive 5 independent of the motor.
  • An operating electronics 8 sets the speed of the fan.
  • the fan generates an air flow and thus a cooling amount, which is used for cooling the pump stages and the motor.
  • the airflow is in Fig. 1 represented by dashed arrows.
  • a selection means 12 is arranged on the vacuum pump so that it is accessible to the user. This selection means allows the selection of different operating modes. It may for example be designed as a multiple switch, in which each position stands for a mode. Alternatively it can be designed as a plug for a remote control. The operating modes differ in the temperature range to which the vacuum pump is heated.
  • a temperature sensor 13 is connected, which is arranged within the vacuum pump. In this example, it is located at the final pump stage. It can also be arranged in colder places, where the risk of condensation is particularly high, for example at the pump outlet, or at locations which are more critical with respect to excess temperature, for example the engine. Alternatively, a plurality of temperature sensors may be provided.
  • the operating electronics are connected to a solenoid valve 9, which is arranged in a gas ballast access 11.
  • This gas ballast access allows the supply of atmospheric gas in the final pump stage 2.
  • a throttle 10 which may also be connected to the operating electronics, allows regulating the amount of gas added via the gas ballast access.
  • the embodiment according to Fig. 2 is a lubricant sealed rotary vane vacuum pump 1, hereinafter: rotary vane pump. It draws gas through a gas inlet 225 and expels compressed gas to atmosphere through a gas outlet 226. The gas is compressed in the pumping chamber 214 of a pumping stage. This is formed by a shaft 215 eccentrically passing through a cylindrical bore, the shaft carrying one or more slides 216. The shaft is rotatably mounted in plain bearings 217. Due to the rotation of the shaft, the slide runs in the bore, creating a sickle-shaped suction space between the cylinder walls and the slide. The rotation is effected in this example by permanent magnets 224 on the shaft and electric coils 223.
  • a separating element 218 is arranged, which is constructed of non-magnetic material. This may include, for example, glass.
  • the control of the electric coils is carried out by an operating electronics 208. This is designed so that they next to the coils of the Drive also drives a fan 207.
  • the operating electronics are in particular designed so that they cause different speeds of the fan.
  • the fan generates a flow of air in the Fig. 2 is shown by dashed arrows.
  • the air flow is directed to the heat-conducting components of the rotary vane pump, in particular to the area containing drive and pumping stage. Heat generated in this area is taken up by the passing air, so that cooling of this area is effected. In particular, heat is removed from that lubricant which surrounds the housing of the pumping stage and is heated by it.
  • the degree of cooling depends on the strength of the air flow and this depends on the speed of the fan.
  • a temperature sensor 213 is disposed in the rotary vane pump in the vicinity of the drive and outputs a signal dependent on the temperature. It is in communication with the operating electronics 208. This is designed to use the temperature dependent signal to determine the necessary cooling. The determined cooling is then adjusted by the operating electronics by changing the speed of the fan. If a temperature increase is necessary, the cooling must be reduced, therefore the speed is reduced. If the temperature is to be lowered, the speed is increased to increase the cooling amount also. Since the temperature sensor is located in the vicinity of the drive and thus temperature-critical electronic components, its signal can be used to prevent overheating of the electronic components.
  • the switch 212 allows setting of different modes.
  • the operating modes differ in the temperature range to which the vacuum pump is tempered, so that the operating modes also differ in the water vapor compatibility.
  • the switch can therefore be labeled with values or value ranges for the compatibility with water vapor.
  • the operating electronics can have an electronic interface via which a software parameter within the operating electronics is changed.
  • the means for Modification of the software parameter may include a handset, a computer, or the like, and be separably connected to the operating electronics.
  • a gas ballast access 211 connects the sump 214 of the rotary vane pump to the atmosphere.
  • the inlet into the suction chamber is arranged so that at any time the slide causes a separation to the gas inlet of the rotary vane pump.
  • the atmosphere-side inlet of the gas ballast access is designed in this example as an opening 221, which can be completely or partially closed by a sleeve 220. The sleeve and opening together form a gas ballast valve 209.
  • the rotary vane pump has a heat sink 222, which contributes to the passive cooling. It is arranged on the surface of the housing and gives off heat that is generated in it to the ambient air.
  • the rotary vane pump of this example is drawn in one stage, but there may be multiple serially or in parallel arranged pumping stages.
  • FIG. 3 shows in the first line the switching state S of the selection means 12 and the switch 212 over the time t.
  • the cooling amount C over the time t is given, which is provided for example by a variable speed fan.
  • the course of the temperature T over time t is reproduced in the third line.
  • the switching state S 0 is set.
  • the temperature of the vacuum pump rises from a cold value T C , which is for example the room temperature, to a normal value T N. This is after the typical Values in the prior art and depends on the operating conditions, such as the ambient temperature and the amount of gas to be delivered. Since heat of compression and drive losses heat the vacuum pump, a cooling amount C N is necessary to maintain the temperature T N.
  • the switching state is changed to the state S 1 , thereby selecting an operating state with a higher water vapor compatibility.
  • the operating electronics use the signal of the temperature sensor to set the cooling quantity C of the coolant.
  • the switching state S 1 is given, the operating electronics is in a control mode. In switching state S 0 it is sufficient if it works as a controller.
  • the temperature of the vacuum pump must be increased from the normal value T N to a higher value in the range between a lower limit temperature T B and a maximum temperature T T. To achieve this, the temperature is first measured. If the current temperature of the vacuum pump is below the temperature T B , the cooling amount is lowered to a low value C 1 . Due to the reduced cooling, the vacuum pump heats up due to the heat of compression and the drive losses. At time t 2 , the vacuum pump reaches the lower limit temperature T B. Now, the cooling amount is set to a middle value C 2 to slow down the heating. Upon reaching the maximum temperature T T , the cooling amount is increased to a turn higher value C 3 in order to cool the vacuum pump and to avoid overheating. Due to the strong cooling, the temperature drops to finally reach the lower limit temperature T B again at time t 4 . Upon reaching this temperature, the cooling amount is reduced again to the value C 2 , so that the vacuum pump heats up again.
  • the switching state is changed from S 1 to S 0 .
  • the normal cooling capacity C N is set so that the temperature of the vacuum pump drops to the normal value T N.
  • the FIG. 4 shows two easy ways to adjust the amount of cooling.
  • the cooling rate C is indicated in the upper diagram, in the second diagram the speed f of the fan in a first operating mode and in the lower diagram finally the speed f 'of the fan in a second operating mode.
  • the vacuum pump Before the time t ' 1 , the vacuum pump is in an operating state in which the cooling amount after the heat input by compression and drive losses is measured. With the maximum cooling quantity C ' N , heating of the vacuum pump to impermissible values is prevented even under the most unfavorable operating conditions, eg a very high ambient temperature of 40 ° C. At time t ' 1 is selected by the selection means an operating state with higher water vapor compatibility, which is terminated only at the time t' 3 again.
  • the rotational speed of the fan is lowered from one of the cooling amount C ' N adapted speed f N to a lower speed f 1 . This reduces the amount of cooling. From the time t ' 2 a higher cooling capacity is required, therefore, the speed is set to a value f 2 between f N and f 1 . From t ' 3 the fan runs again at the original speed f N.
  • the speed control can also be infinitely variable instead of discrete speed values.
  • the cooling amount is provided by a pulsed operation of the fan. Between the times t ' 1 and t' 2 is the Fan at a lower speed, which also includes the standstill of the fan, operated and switched only for pulses 41 to another speed. This may be the speed f N in a simple embodiment. Averaged over the time interval t ' 1 to t' 2 results from the pulsed operation, a smaller amount of cooling. In the time interval t ' 2 to t' 3 , a higher cooling amount is required. This results by using several pulses 42. By changing the pulse height, pulse duration and pulse rate, the cooling amount can be set to the required level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)

Abstract

The vacuum pump (1) has end pump stages (2) with a gas ballast inlet that is locked by a valve (9) i.e. magnetic valve, and a cooling device (7). An operating electronics (8) is provided for controlling a cooling rate of the cooling device. A temperature sensor (13) is connected with the operating electronics. A selecting unit (12) is connected with the operating electronics for providing choices for selecting different operating methods of the operating electronics. The cooling device has a ventilator for regulating the cooling rate from a default value. An independent claim is also included for a method for operating a vacuum pump.

Description

Die Erfindung betrifft eine Vakuumpumpe nach dem Oberbegriff des ersten Anspruchs. Sie betrifft weiterhin ein Verfahren zum Betrieb einer Vakuumpumpe nach dem Oberbegriff des achten Anspruchs.The invention relates to a vacuum pump according to the preamble of the first claim. It further relates to a method for operating a vacuum pump according to the preamble of the eighth claim.

Vakuumpumpen des Grob- und Feinvakuumbereichs haben grundsätzlich ein Problem beim Verdichten von Gas-Dampf-Gemischen auf Atmosphärendruck. Ohne geeignete Gegenmaßnahmen kann es zur Kondensation des Dampfanteils innnerhalb der Pumpstufen der Vakuumpumpe kommen. Bei dem Dampfanteil handelt es sich in sehr vielen Fällen um Wasserdampf. Eine Vakuumpumpe kann abhängig von ihrer Gestaltung Wasserdampf mitverdichten, ohne dass es zu unerwünschten Probleme kommt. Dies wird oft mit "Wasserdampfverträglichkeit" bezeichnet. Dieses Problem wurde erstmals von Gaede gelöst, indem er sogenannten Gasballast in die Pumpstufe einströmen lies. Vorgestellt wird diese Methode in der DE-PS 702 480 . Diese Problemlösung hat sich im Stand der Technik durchgesetzt und wird seit vielen Jahrezehnten in verschiedenen Ausprägungen verwendet.Vacuum pumps of the coarse and fine vacuum range basically have a problem when compressing gas-vapor mixtures to atmospheric pressure. Without suitable countermeasures, condensation of the vapor content within the pump stages of the vacuum pump may occur. The vapor content is in many cases water vapor. Depending on how it is designed, a vacuum pump can compress water vapor without causing any unwanted problems. This is often referred to as "water vapor compatibility". Gaede solved this problem for the first time by injecting gas ballast into the pumping stage. This method is presented in the DE-PS 702 480 , This problem solution has prevailed in the prior art and has been used for many decades in various forms.

Nachteilig an dieser Lösung ist, dass mit Einlass einer großen Menge von Gasballast der Enddruck der Vakuumpumpe verschlechtert wird. Bei mehrstufigen Vakuumpumpen ist die Gasballastmenge zudem durch die meist vorgenommene Abstufung zwischen den Stufen begrenzt. Andererseits wird beobachtet, dass Vakuumpumpen in viele Anwendungen Gas-Dampf-Gemische mit hohen Dampfanteilen verdichten müssen.A disadvantage of this solution is that the inlet pressure of a large amount of gas ballast, the final pressure of the vacuum pump is deteriorated. In multi-stage vacuum pumps, the gas ballast amount is also limited by the most common gradation between stages. On the other hand, it is observed that in many applications vacuum pumps must compress gas-vapor mixtures with high vapor contents.

Aufgabe der Erfindung war es daher, eine Vakuumpumpe schaffen, die Gas-Dampf-Gemische mit größeren Dampfanteilen gegen Atmosphäre verdichten kann.The object of the invention is therefore to provide a vacuum pump that can compress gas-vapor mixtures with larger amounts of vapor to atmosphere.

Gelöst wird diese Aufgabe durch eine Vakuumpumpe mit den Merkmalen des ersten Anspruchs und durch ein Verfahren zum Betreiben einer Vakuumpumpe mit den Merkmalen des achten Anspruchs. Die abhängigen Ansprüche 2 bis 7 und 9 bis 11 geben vorteilhafte Weiterbildungen an.This object is achieved by a vacuum pump having the features of the first claim and by a method for operating a vacuum pump having the features of the eighth claim. The dependent claims 2 to 7 and 9 to 11 indicate advantageous developments.

Das Vorsehen einer Betriebselektronik zur Stellung der Kühlmenge der Kühlvorrichtung erlaubt es, die Kühlmenge gezielt zu reduzieren. Die Temperatur der Vakuumpumpe steigt bei gesenkter Kühlmenge aufgrund der Kompressionswärme und der aus der Verlustleistung des Antriebs entstehenden Wärme an. Dadurch sinkt die Gefahr der Kondensation von Dampf und die Vakuumpumpe kann Gas-Dampf-Gemische mit höherem Dampfgehalt gegen Atmosphäre verdichten. Die oben genannten Nachteile, unter anderem die Verschlechterung des Enddrucks, werden weitgehend vermieden. Der mit der Betriebselektronik verbundene Temperaturfühler erlaubt es, die Temperatur der Vakuumpumpe auf einem hohen aber unschädlichen Wert zu halten. Zu hohe Temperaturen führen zu einem vorzeitigen Altern der Bauelemente. Bei schmiermittelgeschmierten Vakuumpumpen ist insbesondere das Schmiermittel bei hohen Temperaturen Zersetzungsprozessen ausgesetzt. Durch den Temperaturfühler kann die Temperatur der Vakuumpumpe durch Verändern der Kühlmenge in einem Bereich geregelt werden, in dem solche Alterung und Zersetzung nicht stattfindet. Dies ist lediglich durch die maximale Kühlmöglichkeit begrenzt. Zum Erreichen dieser Vorteile sind als Verfahrensschritte das Messen einer Temperatur, das anschließende Ermitteln einer notwendigen Kühlmenge und das Einstellen der ermittelten Kühlung notwendig.The provision of an operating electronics for the position of the cooling amount of the cooling device allows to reduce the cooling amount targeted. The temperature of the vacuum pump increases as the amount of cooling decreases due to the heat of compression and the heat generated by the power loss of the drive. This reduces the risk of condensation of steam and the vacuum pump can compress gas-steam mixtures with higher vapor content to atmosphere. The above-mentioned disadvantages, including the deterioration of the final pressure, are largely avoided. The temperature sensor connected to the operating electronics makes it possible to keep the temperature of the vacuum pump at a high but harmless value. Too high temperatures lead to premature aging of the components. In lubricant-lubricated vacuum pumps in particular the lubricant is exposed at high temperatures decomposition processes. By the temperature sensor, the temperature of the vacuum pump can be controlled by changing the cooling amount in a range in which such aging and decomposition does not take place. This is limited only by the maximum cooling possibility. To achieve these advantages, the measurement of a temperature, the subsequent determination of a necessary cooling amount and the setting of the determined cooling are necessary as method steps.

Die Vakuumpumpe lässt sich vorteilhaft weiterbilden, in dem ein Auswahlmittel mit der Betriebselektronik verbunden ist, welches die Wahl unterschiedlicher Betriebsarten der Betriebselektronik ermöglicht. Hierdurch ist es möglich, das Fördervermögen für hohe Dampfanteile den Bedürfnissen anzupassen. Ist ein geringer Dampfanteil zu fördern, wird eine Betriebsart mit niedriger Betriebstemperatur ausgewählt. Mit steigendem Dampfanteil können Betriebsarten mit zunehmend hohen Betriebstemperaturen ausgewählt werden.The vacuum pump can be advantageously further developed, in which a selection means is connected to the operating electronics, which allows the choice of different operating modes of the operating electronics. This makes it possible to adapt the conveying capacity for high vapor contents to the needs. Is a To promote low vapor content, a low operating temperature mode is selected. With increasing steam content, operating modes with increasingly high operating temperatures can be selected.

Eine andere Weiterbildung schlägt vor, zusätzlich einen durch ein Ventil absperrbaren Gasballastzugang vorzusehen. Hierdurch kann der förderbare Dampfanteil weiter gesteigert werden.Another development suggests additionally providing a gas ballast access which can be shut off by a valve. As a result, the recoverable vapor content can be further increased.

Vorteilhaft weiterbilden lässt sich eine Vakuumpumpe mit einem durch ein Ventil absperrbaren Gasballastzugang und einem Auswahlmittel, indem die Schaltzustände des Auswahlmittels und des Ventils miteinander gekoppelt sind. Dadurch wird in dem Moment eine Betriebsart mit höherer Temperatur gewählt, wenn auch eine Gasballastmenge zugeführt wird. Diese kann durch eine Drossel eingestellt werden. Auf diese Weise wird der Betrieb der Vakuumpumpe vereinfacht und eine optimale Verträglichkeit für hohe Dampfanteile hergestellt.Advantageously, a vacuum pump with a gas ballast access which can be shut off by a valve and a selection means can be further developed in that the switching states of the selection means and of the valve are coupled to one another. As a result, a higher temperature operating mode is selected at the moment, even if a gas ballast amount is supplied. This can be set by a throttle. In this way, the operation of the vacuum pump is simplified and produced an optimal compatibility for high vapor content.

Eine Weiterbildung schlägt vor, dass das Ventil im Gasballastzugang ein Magnetventil umfasst, welches mit der Betriebselektronik verbunden ist. Auf diese Weise kann die Betriebselektronik nach Bedarf zusätzlichen Gasballast zuführen. Dies ermöglicht es, auch dann hohe Dampfanteile zu fördern, wenn es notwendig werden sollte, die Temperatur abzusenken.A further development proposes that the valve in the gas ballast access comprises a solenoid valve, which is connected to the operating electronics. In this way, the operating electronics can supply additional gas ballast as needed. This makes it possible to promote high levels of vapor even when it is necessary to lower the temperature.

In einer vorteilhaft einfachen Weiterbildung umfasst die Kühlvorrichtung einen Lüfter, dessen Drehzahl veränderbar ist. Insbesondere ist sie von einem Standardwert absenkbar, so dass die zur Verfügung gestellte Kühlmenge durch Drehzahlreduktion gesenkt werden kann. Dies ist eine einfache und kostengünstige Bauform.In an advantageous simple development, the cooling device comprises a fan whose speed is variable. In particular, it can be lowered from a standard value, so that the amount of cooling provided can be reduced by reducing the speed. This is a simple and inexpensive design.

In einer anderen Weiterbildung weist die Vakuumpumpe eine schmiermittelgedichtete Drehschieberpumpstufe auf. Da hier das Schmiermittel viele Funktionen übernimmt, insbesondere die Abdichtung des Schöpfraumes, Schmierung des Schiebers und die Schmierung der Lager, ist es wichtig, dass keine Dämpfe kondensieren und in den Schmiermittelkreislauf gelangen. Zugleich ist es wichtig, das Schmiermittel nicht durch eine Übertemperatur zu schädigen.In another development, the vacuum pump has a lubricant-sealed rotary vane pumping stage. Since here the lubricant performs many functions, in particular the sealing of the pump chamber, lubrication of the slide and the lubrication of the bearings, it is important that no vapors condense and enter the lubricant circuit. At the same time, it is important not to damage the lubricant by overheating.

Das Verfahren nach Anspruch 8 lässt sich weiterbilden, indem in einem weiteren Schritt das Auswahlmittel auf seinen Schaltzustand überprüft und danach die zu erreichende Temperatur ermittelt wird. Hierdurch ist es auf sehr einfache und kostengünstige Weise möglich, dem Nutzer der Vakuumpumpe eine Mehrzahl von Betriebsarten zu bieten, die sich in der Verträglichkeit für Dampfanteile unterscheiden.The method according to claim 8 can be further developed by checking the selection means for its switching state in a further step and then determining the temperature to be reached. This makes it possible in a very simple and cost-effective manner to offer the user of the vacuum pump a plurality of operating modes, which differ in the compatibility for vapor fractions.

Eine andere Weiterbildung schlägt vor, das Einstellen der Kühlung durch Ändern der Drehzahl des Lüfters zu bewirken. Dies ist baulich besonders einfach. Zudem lassen sich sehr schnell sehr genaue Änderungen der Kühlung bewirken.Another development proposes to effect the adjustment of the cooling by changing the speed of the fan. This is structurally very simple. In addition, can very quickly cause very accurate changes in the cooling.

Eine andere Weiterbildung schlägt vor, dass die Vakuumpumpe ein Ventil in einem Gasballastzugang aufweist und die Temperatur der Vakuumpumpe durch Verringern der Drehzahl eines Lüfters erhöht wird, wenn das Ventil geöffnet ist. Durch die Temperaturerhöhung und dem gleichzeitigen Zuführen des Gasballastes wird ein maximal hohes Fördervermögen für Dampfanteile erreicht.Another embodiment proposes that the vacuum pump has a valve in a gas ballast access and the temperature of the vacuum pump is increased by reducing the speed of a fan when the valve is open. Due to the increase in temperature and the simultaneous feeding of the gas ballast, a maximum high conveying capacity for vapor fractions is achieved.

Anhand zweier Ausführungsbeispiele soll die Erfindung näher erläutert und die Darstellung ihrer Vorteile vertieft werden. Es zeigen:

Fig. 1:
Allgemeiner Aufbau einer ersten Vakuumpumpe gemäß der Erfindung.
Fig. 2:
Schnitt durch eine erfindungsgemäße ölgedichtete Drehschiebervakuumpumpe.
Fig. 3:
Diagramm über den zeitlichen Verlauf von Temperatur, Schaltzustand und Kühlung.
Fig. 4:
Diagramm über den zeitlichen Verlauf von Kühlung und Drehzahl des Lüfters.
Based on two embodiments, the invention will be explained in more detail and the representation of its benefits to be deepened. Show it:
Fig. 1:
General structure of a first vacuum pump according to the invention.
Fig. 2:
Section through an inventive oil-sealed rotary vane vacuum pump.
3:
Diagram of the time course of temperature, switching state and cooling.
4:
Diagram of the time course of cooling and fan speed.

Als erste Abbildung zeigt Fig. 1 den Aufbau einer zweistufigen Vakuumpumpe 1 des ersten Ausführungsbeispiels. Innerhalb der Vakuumpumpe sind eine Endpumpstufe 2 und eine Feinvakuumstufe 4 angeordnet. Der Einlass der Feinvakuumstufe ist mit einem Rezipienten 3 verbunden. Gas wird von ihr aus diesem angesaugt und durch die Endpumpstufe soweit verdichtet, dass es gegen Atmosphäre aus der Vakuumpumpe ausgestoßen werden kann. Beide Pumpstufen werden von einem Motor 5 angetrieben. Seine Antriebskraft wird durch ein Getriebe 6 auf beide Pumpstufen verteilt. Alternativ können beide Pumpstufen auf einer gemeinsamen Welle angeordnet sein, die von dem Motor angetrieben wird. Die Pumpstufen können trocken verdichtend ausgeführt sein, beispielsweise nach dem Kolbenprinzip. In einer vorteilhaften Ausführung handelt es kann sich wenigstens bei der Endpumpstufe um eine schmiermittelgedichtete Drehschieberpumpe.As first picture shows Fig. 1 the construction of a two-stage vacuum pump 1 of the first embodiment. Within the vacuum pump, an end pump stage 2 and a fine vacuum stage 4 are arranged. The inlet of the fine vacuum stage is connected to a recipient 3. Gas is sucked from her from this and compressed by the Endpumpstufe so far that it can be expelled from the atmosphere of the vacuum pump. Both pumping stages are driven by a motor 5. Its driving force is distributed by a gear 6 on both pumping stages. Alternatively, both pumping stages may be disposed on a common shaft driven by the motor. The pumping stages can be designed to be dry-compressing, for example according to the piston principle. In an advantageous embodiment, at least the final pumping stage may be a lubricant-sealed rotary vane pump.

Die Vakuumpumpe weist einen Lüfter 7 auf, welcher einen vom Motor 5 unabhängigen Antrieb aufweist. Eine Betriebselektronik 8 stellt die Drehzahl des Lüfters. Der Lüfter erzeugt einen Luftstrom und damit eine Kühlmenge, die zur Kühlung der Pumpstufen und des Motors genutzt wird. Der Luftstrom ist in Fig. 1 durch gestrichelte Pfeile dargestellt. Ein Auswahlmittel 12 ist derart an der Vakuumpumpe angeordnet, dass es für den Benutzer zugänglich ist. Dieses Auswahlmittel erlaubt die Auswahl verschiedener Betriebsarten. Es kann beispielsweise als Mehrfachschalter ausgeführt sein, bei der jede Stellung für eine Betriebsart steht. Alternativ kann es als Stecker für eine Fernbedienung ausgeführt sein. Die Betriebsarten unterscheiden sich im Temperaturbereich, auf den die Vakuumpumpe temperiert wird.The vacuum pump has a fan 7, which has a drive 5 independent of the motor. An operating electronics 8 sets the speed of the fan. The fan generates an air flow and thus a cooling amount, which is used for cooling the pump stages and the motor. The airflow is in Fig. 1 represented by dashed arrows. A selection means 12 is arranged on the vacuum pump so that it is accessible to the user. This selection means allows the selection of different operating modes. It may for example be designed as a multiple switch, in which each position stands for a mode. Alternatively it can be designed as a plug for a remote control. The operating modes differ in the temperature range to which the vacuum pump is heated.

Mit der Betriebselektronik ist ein Temperaturfühler 13 verbunden, welcher innerhalb der Vakuumpumpe angeordnet ist. In diesem Beispiel ist er an der Endpumpstufe angeordnet. Er kann auch an kälteren Stellen, an denen die Kondensationsgefahr besonders hoch ist, beispielsweise am Pumpenauslass, oder an in Bezug auf Übertemperatur kritischere Stellen, beispielsweise dem Motor, angeordnet sein. Alternativ kann eine Mehrzahl von Temperaturfühlern vorgesehen sein.With the operating electronics, a temperature sensor 13 is connected, which is arranged within the vacuum pump. In this example, it is located at the final pump stage. It can also be arranged in colder places, where the risk of condensation is particularly high, for example at the pump outlet, or at locations which are more critical with respect to excess temperature, for example the engine. Alternatively, a plurality of temperature sensors may be provided.

Die Betriebselektronik ist mit einem Magnetventil 9 verbunden, welches in einem Gasballastzugang 11 angeordnet ist. Dieser Gasballastzugang erlaubt das Zuführen von Atmosphärengas in die Endpumpstufe 2. Eine Drossel 10, die ebenfalls mit der Betriebselektronik verbunden sein kann, ermöglicht das Regulieren der über den Gasballastzugang zugegebenen Gasmenge.The operating electronics are connected to a solenoid valve 9, which is arranged in a gas ballast access 11. This gas ballast access allows the supply of atmospheric gas in the final pump stage 2. A throttle 10, which may also be connected to the operating electronics, allows regulating the amount of gas added via the gas ballast access.

Das Ausführungsbeispiel nach Fig. 2 ist eine schmiermittelgedichtete Drehschiebervakuumpumpe 1, im Folgenden: Drehschieberpumpe. Sie saugt Gas durch einen Gaseinlass 225 ein und stößt verdichtetes Gas gegen Atmosphäre durch einen Gasauslass 226 aus. Verdichtet wird das Gas im Schöpfraum 214 einer Pumpstufe. Diese wird gebildet, indem eine Welle 215 eine zylindrische Bohrung exzentrisch durchsetzt, wobei die Welle einen oder mehrere Schieber 216 trägt. Die Welle ist in Gleitlagern 217 drehbar gelagert. Durch die Drehung der Welle läuft der Schieber in der Bohrung um, wobei ein sichelförmiger Schöpfraum zwischen den Zylinderwänden und dem Schieber entsteht. Die Drehung wird in diesem Beispiel von Permanentmagneten 224 auf der Welle und elektrischen Spulen 223 bewirkt. Zwischen elektrischen Spulen und Welle ist ein Trennelement 218 angeordnet, welches aus nichtmagnetischem Material aufgebaut ist. Dieses kann beispielsweise Glas umfassen. Die Ansteuerung der elektrischen Spulen erfolgt durch eine Betriebselektronik 208. Diese ist so gestaltet, dass sie neben den Spulen des Antriebs auch einen Lüfter 207 ansteuert. Die Betriebselektronik ist insbesondere so gestaltet, dass sie unterschiedliche Drehzahlen des Lüfters bewirkt. Der Lüfter erzeugt einen Luftstrom, der in der Fig. 2 durch gestrichelte Pfeile dargestellt ist. Der Luftstrom ist auf die wärmeführenden Bauteile der Drehschieberpumpe gerichtet, insbesondere auf den Bereich, der Antrieb und Pumpstufe enthält. In diesem Bereich entstehende Wärme wird von der vorbeiströmenden Luft aufgenommen, so dass eine Kühlung dieses Bereichs bewirkt wird. Insbesondere wird Wärme von demjenigen Schmiermittel abgeführt, welches das Gehäuse der Pumpstufe umgibt und durch diese aufgeheizt wird. Der Grad der Kühlung hängt von der Stärke des Luftsstroms und dieser von der Drehzahl des Lüfters ab.The embodiment according to Fig. 2 is a lubricant sealed rotary vane vacuum pump 1, hereinafter: rotary vane pump. It draws gas through a gas inlet 225 and expels compressed gas to atmosphere through a gas outlet 226. The gas is compressed in the pumping chamber 214 of a pumping stage. This is formed by a shaft 215 eccentrically passing through a cylindrical bore, the shaft carrying one or more slides 216. The shaft is rotatably mounted in plain bearings 217. Due to the rotation of the shaft, the slide runs in the bore, creating a sickle-shaped suction space between the cylinder walls and the slide. The rotation is effected in this example by permanent magnets 224 on the shaft and electric coils 223. Between electric coil and shaft, a separating element 218 is arranged, which is constructed of non-magnetic material. This may include, for example, glass. The control of the electric coils is carried out by an operating electronics 208. This is designed so that they next to the coils of the Drive also drives a fan 207. The operating electronics are in particular designed so that they cause different speeds of the fan. The fan generates a flow of air in the Fig. 2 is shown by dashed arrows. The air flow is directed to the heat-conducting components of the rotary vane pump, in particular to the area containing drive and pumping stage. Heat generated in this area is taken up by the passing air, so that cooling of this area is effected. In particular, heat is removed from that lubricant which surrounds the housing of the pumping stage and is heated by it. The degree of cooling depends on the strength of the air flow and this depends on the speed of the fan.

Ein Temperaturfühler 213 ist in der Drehschieberpumpe in der Nähe des Antriebs angeordnet und gibt ein von der Temperatur abhängiges Signal ab. Er steht mit der Betriebselektronik 208 in Verbindung. Diese ist so gestaltet, dass sie das von der Temperatur abhängige Signal benutzt, um die notwendige Kühlung zu ermitteln. Die ermittelte Kühlung wird dann durch die Betriebselektronik eingestellt, indem die Drehzahl des Lüfters verändert wird. Ist eine Temperaturerhöhung notwendig, muss die Kühlung reduziert werden, daher wird die Drehzahl reduziert. Soll die Temperatur herabgesetzt werden, wird die Drehzahl erhöht um die Kühlmenge ebenfalls zu erhöhen. Da der Temperaturfühler in der Nähe des Antriebs und damit temperaturkritischer elektronischer Bauteile angeordnet ist, kann sein Signal genutzt werden, eine Überhitzung der elektronischen Bauteile zu vermeiden. Der Schalter 212 erlaubt das Einstellen unterschiedlicher Betriebsarten. Die Betriebsarten unterscheiden sich im Temperaturbereich, auf den die Vakuumpumpe temperiert wird, so dass sich die Betriebsarten auch in der Wasserdampfverträglichkeit unterscheiden. Der Schalter kann daher mit Werten oder Wertebereichen für die Wasserdampfverträglichkeit beschriftet sein. Alternativ zu einem Schalter kann die Betriebselektronik eine elektronische Schnittstelle aufweisen, über die ein Softwareparameter innerhalb der Betriebselektronik verändert wird. Die Mittel zur Änderung des Softwareparameters können ein Handgerät, einen Computer, oder dergleichen umfassen und trennbar mit der Betriebselektronik verbunden sein.A temperature sensor 213 is disposed in the rotary vane pump in the vicinity of the drive and outputs a signal dependent on the temperature. It is in communication with the operating electronics 208. This is designed to use the temperature dependent signal to determine the necessary cooling. The determined cooling is then adjusted by the operating electronics by changing the speed of the fan. If a temperature increase is necessary, the cooling must be reduced, therefore the speed is reduced. If the temperature is to be lowered, the speed is increased to increase the cooling amount also. Since the temperature sensor is located in the vicinity of the drive and thus temperature-critical electronic components, its signal can be used to prevent overheating of the electronic components. The switch 212 allows setting of different modes. The operating modes differ in the temperature range to which the vacuum pump is tempered, so that the operating modes also differ in the water vapor compatibility. The switch can therefore be labeled with values or value ranges for the compatibility with water vapor. As an alternative to a switch, the operating electronics can have an electronic interface via which a software parameter within the operating electronics is changed. The means for Modification of the software parameter may include a handset, a computer, or the like, and be separably connected to the operating electronics.

Ein Gasballastzugang 211 verbindet den Schöpfraum 214 der Drehschieberpumpe mit der Atmosphäre. Der Einlass in den Schöpfraum ist dabei so angeordnet, dass zu jedem Zeitpunkt der Schieber eine Trennung zum Gaseinlass der Drehschieberpumpe bewirkt. Der atmosphärenseitige Einlass des Gasballastzugangs ist in diesem Beispiel als eine Öffnung 221 gestaltet, die durch eine Hülse 220 ganz oder teilweise verschlossen werden kann. Hülse und Öffnung bilden zusammen ein Gasballastventil 209.A gas ballast access 211 connects the sump 214 of the rotary vane pump to the atmosphere. The inlet into the suction chamber is arranged so that at any time the slide causes a separation to the gas inlet of the rotary vane pump. The atmosphere-side inlet of the gas ballast access is designed in this example as an opening 221, which can be completely or partially closed by a sleeve 220. The sleeve and opening together form a gas ballast valve 209.

Die Drehschieberpumpe weist einen Kühlkörper 222 auf, der zur passiven Kühlung beiträgt. Er ist an der Oberfläche des Gehäuses angeordnet und gibt Wärme, die in ihr entsteht, an die Umgebungsluft ab.The rotary vane pump has a heat sink 222, which contributes to the passive cooling. It is arranged on the surface of the housing and gives off heat that is generated in it to the ambient air.

Die Drehschieberpumpe dieses Beispiels ist einstufig gezeichnet, es können jedoch mehrere seriell oder parallel angeordnete Pumpstufen vorhanden sein.The rotary vane pump of this example is drawn in one stage, but there may be multiple serially or in parallel arranged pumping stages.

Beide Vakuumpumpen gemäß den Ausführungsbeispielen werden mit dem nachfolgend anhand der Fig. 3 beschriebenen Verfahren betrieben. Diese Fig. zeigt in der ersten Zeile den Schaltzustand S des Auswahlmittels 12 beziehungsweise des Schalters 212 über der Zeit t. In der zweiten Zeile ist die Kühlmenge C über der Zeit t angegeben, die beispielsweise durch einen Lüfter mit veränderbarer Drehzahl bereit gestellt wird. In der dritten Zeile ist schließlich der Verlauf der Temperatur T über der Zeit t wiedergegeben.Both vacuum pumps according to the embodiments are described below with reference to the Fig. 3 operated method described. This figure shows in the first line the switching state S of the selection means 12 and the switch 212 over the time t. In the second line, the cooling amount C over the time t is given, which is provided for example by a variable speed fan. Finally, the course of the temperature T over time t is reproduced in the third line.

Vor dem Zeitpunkt t1 ist der Schaltzustand S0 eingestellt. Die Temperatur der Vakuumpumpe steigt von einem Kaltwert TC, der beispielsweise die Raumtemperatur ist, auf einen Normalwert TN an. Dieser ist nach den typischen Werten im Stand der Technik bemessen und hängt von den Betriebsbedingungen ab, z.B. der Umgebungstemperatur und der zu fördernden Gasmenge. Da Kompressionswärme und Antriebsverluste die Vakuumpumpe erwärmen, ist eine Kühlmenge CN nötig, um die Temperatur TN zu halten.Before the time t 1 , the switching state S 0 is set. The temperature of the vacuum pump rises from a cold value T C , which is for example the room temperature, to a normal value T N. This is after the typical Values in the prior art and depends on the operating conditions, such as the ambient temperature and the amount of gas to be delivered. Since heat of compression and drive losses heat the vacuum pump, a cooling amount C N is necessary to maintain the temperature T N.

Am Zeitpunkt t1 wird der Schaltzustand auf den Zustand S1 geändert und dadurch ein Betriebszustand mit höherer Wasserdampfverträglichkeit gewählt. Ab jetzt benutzt die Betriebselektronik das Signal des Temperaturfühlers, um die Kühlmenge C des Kühlmittels zu stellen. In dem nun beginnenden Zeitraum zwischen t1 und t5, in welchem der Schaltzustand S1 gegeben ist, befindet sich die Betriebselektronik in einen Regelbetrieb. Im Schaltzustand S0 reicht es aus, wenn sie als Steuerung arbeitet.At the time t 1 , the switching state is changed to the state S 1 , thereby selecting an operating state with a higher water vapor compatibility. From now on, the operating electronics use the signal of the temperature sensor to set the cooling quantity C of the coolant. In the now beginning period between t 1 and t 5 , in which the switching state S 1 is given, the operating electronics is in a control mode. In switching state S 0 it is sufficient if it works as a controller.

Zur Erhöhung der Wasserdampfverträglichkeit muss die Temperatur der Vakuumpumpe vom Normalwert TN auf einen höheren Wert im Bereich zwischen einer unteren Grenztemperatur TB und einer Höchsttemperatur TT heraufgesetzt werden. Um dies zu erreichen, wird zunächst die Temperatur gemessen. Liegt die aktuelle Temperatur der Vakuumpumpe unterhalb der Temperatur TB, wird die Kühlmenge auf einen niedrigen Wert C1 gesenkt. Durch die verringerte Kühlung erwärmt sich die Vakuumpumpe aufgrund der Kompressionswärme und der Antriebsverluste. Zum Zeitpunkt t2 erreicht die Vakuumpumpe die untere Grenztemperatur TB. Nun wird die Kühlmenge auf einen mittleren Wert C2 hochgesetzt um die Erwärmung zu verlangsamen. Bei Erreichen der Höchsttemperatur TT wird die Kühlmenge auf einen wiederum höheren Wert C3 erhöht, um die Vakuumpumpe abzukühlen und eine Überhitzung zu vermeiden. Durch die stärke Kühlung fällt die Temperatur ab, um schließlich zur Zeit t4 wieder die untere Grenztemperatur TB zu erreichen. Bei Erreichen dieser Temperatur wird die Kühlmenge wieder auf den Wert C2 herabgesetzt, so dass sich die Vakuumpumpe wieder erwärmt.To increase the water vapor compatibility, the temperature of the vacuum pump must be increased from the normal value T N to a higher value in the range between a lower limit temperature T B and a maximum temperature T T. To achieve this, the temperature is first measured. If the current temperature of the vacuum pump is below the temperature T B , the cooling amount is lowered to a low value C 1 . Due to the reduced cooling, the vacuum pump heats up due to the heat of compression and the drive losses. At time t 2 , the vacuum pump reaches the lower limit temperature T B. Now, the cooling amount is set to a middle value C 2 to slow down the heating. Upon reaching the maximum temperature T T , the cooling amount is increased to a turn higher value C 3 in order to cool the vacuum pump and to avoid overheating. Due to the strong cooling, the temperature drops to finally reach the lower limit temperature T B again at time t 4 . Upon reaching this temperature, the cooling amount is reduced again to the value C 2 , so that the vacuum pump heats up again.

Am Zeitpunkt t5 wird der Schaltzustand von S1 auf S0 geändert. Die normale Kühlleistung CN wird eingestellt, so dass die Temperatur der Vakuumpumpe auf den Normalwert TN absinkt.At time t 5 , the switching state is changed from S 1 to S 0 . The normal cooling capacity C N is set so that the temperature of the vacuum pump drops to the normal value T N.

Die Figur 4 zeigt zwei einfache Möglichkeiten auf, wie die Einstellung der Kühlmenge erfolgen kann. Dazu ist im oberen Diagramm die Kühlmenge C angegeben, im zweiten Diagramm die Drehzahl f des Lüfters in einer ersten Betriebsart und im unteren Diagramm schließlich die Drehzahl f' des Lüfters in einer zweiten Betriebsart.The FIG. 4 shows two easy ways to adjust the amount of cooling. For this purpose, the cooling rate C is indicated in the upper diagram, in the second diagram the speed f of the fan in a first operating mode and in the lower diagram finally the speed f 'of the fan in a second operating mode.

Vor dem Zeitpunkt t'1 ist die Vakuumpumpe in einem Betriebszustand, in welchem die Kühlmenge nach dem Wärmeeintrag durch Kompression und Antriebsverlusten bemessen ist. Mit der maximalen Kühlmenge C'N wird auch unter ungünstigsten Betriebsbedingungen, z.B. sehr hoher Umgebungstemperatur von 40°C, die Erwärmung der Vakuumpumpe auf unzulässige Werte verhindert. Zum Zeitpunkt t'1 wird durch das Auswahlmittel ein Betriebszustand mit höherer Wasserdampfverträglichkeit gewählt, der erst am Zeitpunkt t'3 wieder beendet wird.Before the time t ' 1 , the vacuum pump is in an operating state in which the cooling amount after the heat input by compression and drive losses is measured. With the maximum cooling quantity C ' N , heating of the vacuum pump to impermissible values is prevented even under the most unfavorable operating conditions, eg a very high ambient temperature of 40 ° C. At time t ' 1 is selected by the selection means an operating state with higher water vapor compatibility, which is terminated only at the time t' 3 again.

Im ersten Beispiel der Kühlmengenstellung wird die Drehzahl des Lüfters von einem der Kühlmenge C'N angepassten Drehzahl fN auf eine niedrigere Drehzahl f1 abgesenkt. Hierdurch wird die Kühlmenge reduziert. Ab dem Zeitpunkt t'2 ist eine höhere Kühlleistung erforderlich, daher wird die Drehzahl auf einen Wert f2 zwischen fN und f1 eingestellt. Ab t'3 läuft der Lüfter wieder mit der ursprünglichen Drehzahl fN. Die Drehzahlregelung kann statt mit diskreten Drehzahlwerten auch stufenlos erfolgen.In the first example of the cooling amount setting, the rotational speed of the fan is lowered from one of the cooling amount C ' N adapted speed f N to a lower speed f 1 . This reduces the amount of cooling. From the time t ' 2 a higher cooling capacity is required, therefore, the speed is set to a value f 2 between f N and f 1 . From t ' 3 the fan runs again at the original speed f N. The speed control can also be infinitely variable instead of discrete speed values.

Im zweiten Beispiel der Kühlmengenstellung wird die Kühlmenge durch einen gepulsten Betrieb des Lüfters gestellt. Zwischen den Zeitpunkten t'1 und t'2 wird der Lüfter auf einer niedrigeren Drehzahl, wobei hierzu auch der Stillstand des Lüfters gehört, betrieben und nur für Pulse 41 auf eine andere Drehzahl umgeschaltet. Dies kann in einer einfachen Ausführung die Drehzahl fN sein. Über das Zeitintervall t'1 bis t'2 gemittelt ergibt sich durch den gepulsten Betrieb eine geringere Kühlmenge. Im Zeitintervall t'2 bis t'3 ist eine höhere Kühlmenge erforderlich. Diese ergibt sich, indem mehrere Pulse 42 benutzt werden. Durch Verändern von Pulshöhe, Pulsdauer und Pulszahl kann die Kühlmenge auf das erforderliche Maß eingestellt werden.In the second example of the cooling amount setting, the cooling amount is provided by a pulsed operation of the fan. Between the times t ' 1 and t' 2 is the Fan at a lower speed, which also includes the standstill of the fan, operated and switched only for pulses 41 to another speed. This may be the speed f N in a simple embodiment. Averaged over the time interval t ' 1 to t' 2 results from the pulsed operation, a smaller amount of cooling. In the time interval t ' 2 to t' 3 , a higher cooling amount is required. This results by using several pulses 42. By changing the pulse height, pulse duration and pulse rate, the cooling amount can be set to the required level.

Claims (11)

Vakuumpumpe (1; 201) mit einer gegen Atmosphäre verdichtenden Endpumpstufe (2; 214) und einer Kühlvorrichtung (7; 207), dadurch gekennzeichnet, dass sie eine Betriebselektronik (8; 208) zur Stellung der Kühlmenge der Kühlvorrichtung (7; 207) und einen mit der Betriebselektronik (8; 208) verbundenen Temperaturfühler (13; 213) aufweist.A vacuum pump (1; 201) having an end-pumping stage (2; 214) which is compressed against the atmosphere and a cooling device (7; 207), characterized in that it has operating electronics (8; 208) for setting the cooling amount of the cooling device (7; 207) and a temperature sensor (13; 213) connected to the operating electronics (8; 208). Vakuumpumpe nach Anspruch 1, dadurch gekennzeichnet, dass ein Auswahlmittel (12; 212) mit der Betriebselektronik (8; 208) verbunden ist, welches die Wahl unterschiedlicher Betriebsarten der Betriebselektronik ermöglicht.Vacuum pump according to Claim 1, characterized in that a selection means (12; 212) is connected to the operating electronics (8; 208), which enables the selection of different operating modes of the operating electronics. Vakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Endpumpstufe (2; 214) einen durch ein Ventil (9; 209) absperrbaren Gasballastzugang aufweist.Vacuum pump according to claim 1 or 2, characterized in that the end pump stage (2; 214) has a gas ballast access which can be shut off by a valve (9; 209). Vakuumpumpe nach Anspruch 2 und 3, dadurch gekennzeichnet, dass Schaltzustand des Auswahlmittels (12; 212) und Schaltzustand des Ventils (9; 209) miteinander gekoppelt sind.Vacuum pump according to claim 2 and 3, characterized in that switching state of the selection means (12; 212) and switching state of the valve (9; 209) are coupled together. Vakuumpumpe nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Ventil (9; 209) ein Magnetventil umfasst, welches mit der Betriebselektronik verbunden ist.Vacuum pump according to claim 3 or 4, characterized in that the valve (9; 209) comprises a solenoid valve which is connected to the operating electronics. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühlvorrichtung (7; 207) einen Lüfter umfasst, dessen Drehzahl zur Regulierung der Kühlmenge von einem Standardwert absenkbar ist.Vacuum pump according to one of the preceding claims, characterized in that the cooling device (7; 207) comprises a fan, whose speed for regulating the amount of cooling of a standard value is lowerable. Vakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie eine ölgedichtete Drehschieberpumpstufe (214) aufweist.Vacuum pump according to one of the preceding claims, characterized in that it comprises an oil-sealed rotary vane pumping stage (214). Verfahren zum Betrieb einer Vakuumpumpe (1; 201), welche eine gegen Atmosphäre verdichtende Endpumpstufe (2; 214) und einen Lüfter (7; 207) aufweist, dadurch gekennzeichnet, - dass eine Temperatur gemessen, - dass anschließend die notwendige Kühlung ermittelt und - dass dann die ermittelte Kühlung eingestellt wird. Method for operating a vacuum pump (1; 201), which has an end-of-air-pumping stage (2; 214) and a fan (7; 207), characterized in that - that measured a temperature, - That then determines the necessary cooling and - That then the determined cooling is set. Verfahren zum Betrieb einer Vakuumpumpe (1; 201) nach Anspruch 8, dadurch gekennzeichnet, dass in einem Schritt das Auswahlmittel (12; 212) auf seinen Schaltzustand überprüft und danach die zu erreichende Temperatur ermittelt wird.Method for operating a vacuum pump (1; 201) according to claim 8, characterized in that in one step the selection means (12; 212) checks for its switching state and thereafter the temperature to be reached is determined. Verfahren zum Betrieb einer Vakuumpumpe (1; 201) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Einstellen der Kühlung durch Ändern der Drehzahl des Lüfters (7; 207) erfolgt.Method for operating a vacuum pump (1; 201) according to claim 8 or 9, characterized in that the adjustment of the cooling takes place by changing the rotational speed of the fan (7; 207). Verfahren zum Betrieb einer Vakuumpumpe (1; 201) nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Vakuumpumpe (1; 201) ein Ventil (9; 209) in einem Gasballastzugang aufweist und die Temperatur der Vakuumpumpe (1; 201) durch Verringern der Drehzahl eines Lüfters (7; 207) erhöht wird, wenn das Ventil geöffnet ist.Method for operating a vacuum pump (1; 201) according to one of Claims 8 to 10, characterized in that the vacuum pump (1; 201) has a valve (9; 209) in a gas ballast access and the temperature of the vacuum pump (1; 201) is increased by reducing the speed of a fan (7; 207) when the valve is open.
EP08020360.7A 2007-12-12 2008-11-22 Vacuum pump and its operating method Active EP2071186B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007059938A DE102007059938A1 (en) 2007-12-12 2007-12-12 Vacuum pump and method of operation

Publications (3)

Publication Number Publication Date
EP2071186A2 true EP2071186A2 (en) 2009-06-17
EP2071186A3 EP2071186A3 (en) 2014-09-03
EP2071186B1 EP2071186B1 (en) 2017-11-22

Family

ID=40139928

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08020360.7A Active EP2071186B1 (en) 2007-12-12 2008-11-22 Vacuum pump and its operating method

Country Status (3)

Country Link
EP (1) EP2071186B1 (en)
JP (1) JP5496498B2 (en)
DE (1) DE102007059938A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280965A (en) * 2010-06-12 2011-12-14 中国科学院沈阳科学仪器研制中心有限公司 Shield motor for vacuum pump
CN104019035A (en) * 2014-06-25 2014-09-03 上海千山远东制药机械有限公司 Vacuum pump gas ballast device of vacuum freeze drier
EP3434905A1 (en) * 2017-07-25 2019-01-30 Pfeiffer Vacuum Gmbh Vacuum pump and method for operating a vacuum pump
CN111734615A (en) * 2020-06-28 2020-10-02 安图实验仪器(郑州)有限公司 Control system and control method for rear-stage pump of vacuum system
CN112032021A (en) * 2020-09-10 2020-12-04 北京通嘉宏瑞科技有限公司 Temperature regulation and control device for vacuum pump and use method
EP3916225A3 (en) * 2021-09-29 2022-03-09 Pfeiffer Vacuum Technology AG Vacuum pump
EP4043733A3 (en) * 2022-06-17 2023-01-04 Pfeiffer Vacuum Technology AG Vacuum pump with separately controllable fan

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021041943A (en) * 2019-09-09 2021-03-18 ホシザキ株式会社 Kitchen apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE702480C (en) 1935-12-22 1941-02-08 Wolfgang Gaede Dr Single or multi-stage vacuum pump for generating low pressures for extracting fumes and gas-steam mixtures

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268230A (en) * 1979-04-26 1981-05-19 Varian Associates, Inc. Gas ballast for oil sealed mechanical vacuum vane pump
GB9223804D0 (en) * 1992-11-13 1993-01-06 Boc Group Plc Improvements in vacuum pumps
JP2001271777A (en) * 2000-03-27 2001-10-05 Toyota Autom Loom Works Ltd Cooling device in vacuum pump
JP3858667B2 (en) * 2001-10-29 2006-12-20 日立工機株式会社 Scroll vacuum pump
DE10156179A1 (en) * 2001-11-15 2003-05-28 Leybold Vakuum Gmbh Cooling a screw vacuum pump
GB0506987D0 (en) * 2005-04-07 2005-05-11 Boc Group Plc Temperature control apparatus
DE102006058843A1 (en) * 2006-12-13 2008-06-19 Pfeiffer Vacuum Gmbh vacuum pump

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE702480C (en) 1935-12-22 1941-02-08 Wolfgang Gaede Dr Single or multi-stage vacuum pump for generating low pressures for extracting fumes and gas-steam mixtures

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280965A (en) * 2010-06-12 2011-12-14 中国科学院沈阳科学仪器研制中心有限公司 Shield motor for vacuum pump
CN102280965B (en) * 2010-06-12 2013-07-24 中国科学院沈阳科学仪器股份有限公司 Shield motor for vacuum pump
CN104019035A (en) * 2014-06-25 2014-09-03 上海千山远东制药机械有限公司 Vacuum pump gas ballast device of vacuum freeze drier
EP3434905A1 (en) * 2017-07-25 2019-01-30 Pfeiffer Vacuum Gmbh Vacuum pump and method for operating a vacuum pump
CN111734615A (en) * 2020-06-28 2020-10-02 安图实验仪器(郑州)有限公司 Control system and control method for rear-stage pump of vacuum system
CN111734615B (en) * 2020-06-28 2022-03-18 安图实验仪器(郑州)有限公司 Control system and control method for rear-stage pump of vacuum system
CN112032021A (en) * 2020-09-10 2020-12-04 北京通嘉宏瑞科技有限公司 Temperature regulation and control device for vacuum pump and use method
CN112032021B (en) * 2020-09-10 2024-04-26 北京通嘉宏瑞科技有限公司 Temperature regulation and control device for vacuum pump and use method
EP3916225A3 (en) * 2021-09-29 2022-03-09 Pfeiffer Vacuum Technology AG Vacuum pump
EP4043733A3 (en) * 2022-06-17 2023-01-04 Pfeiffer Vacuum Technology AG Vacuum pump with separately controllable fan

Also Published As

Publication number Publication date
JP5496498B2 (en) 2014-05-21
EP2071186A3 (en) 2014-09-03
JP2009144709A (en) 2009-07-02
DE102007059938A1 (en) 2009-06-18
EP2071186B1 (en) 2017-11-22

Similar Documents

Publication Publication Date Title
EP2071186B1 (en) Vacuum pump and its operating method
DE102005033084B4 (en) Oil-injected compressor with means for oil temperature control
DE60207246T2 (en) SCREW COMPRESSOR WITH A MOTOR WITH SWITCHED RELAY DANCE
DE112014000335B4 (en) scroll compressor
DE102014218525B4 (en) Electric control valve for an air conditioning compressor with a sensor for determining the position of the control piston
DE4227332C2 (en) Screw compressor
DE3711143A1 (en) TWO-STAGE VACUUM PUMP DEVICE
EP3161320B1 (en) Side channel pump
DE10213598A1 (en) Oil pump for an internal combustion engine and method for operating the same
DE102010009083B4 (en) vacuum pump
EP1936203B1 (en) Vacuum pump with ventilator
DE102016105145A1 (en) Piston compressor with extended control range
EP3362652A1 (en) Delivery device for a motor vehicle
DE102006050943B4 (en) Vacuum pump and method for operating the same
DE3903340A1 (en) CONTROL CIRCUIT FOR A SOLENOID VALVE OF A COMPRESSOR WITH VARIABLE DELIVERY PERFORMANCE
EP1343972B1 (en) Method for operating a motor pump
EP3434905A1 (en) Vacuum pump and method for operating a vacuum pump
DE19919104B4 (en) Variable discharge compressor for a refrigerant cycle
DE102016108944A1 (en) Adjustable vane pump
EP3119596B1 (en) Device for sealing and inflating inflatable articles
DE102016203688A1 (en) Assembly for a compressor, in particular in an automobile
EP2196669B1 (en) Assembly with vacuum pump and method for operating same
WO2011057843A1 (en) Air conditioning compressor for a vehicle and vehicle
DE102010055058A1 (en) A method for venting a vacuum pump and arrangement with a vacuum pump
EP1555423A2 (en) Method for adjusting the fuel flow of a fuel pump drawing fuel from a fuel tank and fuel pump for such a method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 49/06 20060101ALI20140729BHEP

Ipc: F04B 25/00 20060101AFI20140729BHEP

Ipc: F04B 37/14 20060101ALI20140729BHEP

17P Request for examination filed

Effective date: 20150205

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: RS

Extension state: MK

Extension state: AL

Extension state: BA

17Q First examination report despatched

Effective date: 20161118

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 948666

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008015747

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008015747

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171122

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180905

26N No opposition filed

Effective date: 20180823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180122

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 948666

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 16

Ref country code: CZ

Payment date: 20231110

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 16